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A B S T R A C T

The production of overhanging surfaces in Laser Powder-Bed Fusion (LPBF) has long been a challenging
task due to poor heat dissipation and lack of support of loose powder, resulting in surface defects and
increased roughness due to dross formation and sintering. Surface quality is a critical aspect of AM mechanical
components that undergo fatigue loading, as a rough surface can act as a preferential crack initiation site and
lead to premature failure. Predicting the quality of the as-built surfaces could be used to identify critical areas
that require rework or post-processing, or to find regions that require optimization of the process parameters
to improve the final quality. The orientation of the surface itself (i.e., the degree of inclination of the surface)
could be used to predict the final surface quality and will be employed as benchmarking reference throughout
the work (referred to as ‘‘geometry-based’’ model).

This study demonstrates the effectiveness of using data mining on high-speed thermal video images to
create a real-time predictive model based on ‘‘in-situ’’ data for estimating surface roughness (𝑆𝑎) of overhanging
surfaces printed at different inclinations. The results showed that the model based on ‘‘in-situ’’ data has a
prediction accuracy that is more than 2 times higher than the one obtained with a model that is purely based
on geometric data, i.e., a model that relies only on the inclination angle of the surface during the print.
The proposed method is tested on different materials (AISI 316L stainless steel and AlSi10Mg) and process
conditions (continuous and pulsed laser, low and high power) to show the flexibility and extended applicability
of the proposed solution. The newly developed method opens new possibilities for in-situ quality control and
process optimization of surface quality in Laser Powder Bed Fusion (LPBF).
1. Introduction

Laser Powder Bed Fusion (LPBF) technology has revolutionized
manufacturing by providing exceptional design flexibility for produc-
ing intricate geometries. However, complex LPBF parts often exhibit
sub-optimal as-built surface quality, particularly on overhanging or
down-facing surfaces that lack structural support from the underly-
ing powder substrate. This lack of support results in higher surface
roughness, which can lead to defects such as dross and sintering. These
defects compromise the integrity and functionality of components,
potentially reducing fatigue life by up to 40% [1]. Although post-
processing techniques (e.g., machining, shot peening, electrochemical
polishing, etc.) can enhance surface quality, they are often costly
and time-consuming, especially for geometrically complex parts [2,3].
Therefore, understanding the impact of process conditions on surface
quality is crucial for developing strategies to prevent or, at least,
mitigate these issues.

Extensive research has focused on the influence of process param-
eters and build orientations on printed surface quality in LPBF [4–7].
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One critical factor is the overhang angle (i.e., the inclination of the sur-
face measured with respect to the build direction), which significantly
affects surface roughness. Higher overhang angles increase the staircase
effect and hinder heat dissipation, leading to rougher surfaces. For a
wide range of engineering materials such as aluminum, titanium, and
nickel alloys, surface roughness (𝑆𝑎) of down-facing surfaces follows a
quadratic increase with the inclination angle [4]. When the inclination
angle exceeds 45◦, the lack of support causes the melt pool to penetrate
(‘‘sink’’) into the powder bed, resulting in dross formation, increased
particle adhesion, and partial melting (sintering) of the powder.

The effects of laser parameters and scan strategies on surface quality
have also been studied. Feng et al. [4] conducted both experimental
and numerical analyses, demonstrating that increasing the volumetric
energy density contributes to a substantial expansion of the melt pool,
which increases its contact area with the powder bed, thus promoting
the melt pool sinking mechanism described above. Other studies have
highlighted the complex relationships between laser power, scan speed,
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and hatch distance [6,8,9], but these studies did not provide empirical
models linking these parameters to surface roughness. Yang et al. [5]
showed that the orientation of scan lines relative to overhang edges
significantly impacts surface roughness, emphasizing the critical role of
scan strategy. In general, researchers agree that the underlying mech-
anism that leads to the increase of surface roughness is intrinsically
linked to the accumulation of heat near the surface of the part.

In-situ monitoring techniques have emerged as powerful tools for
observing defect formation mechanisms in LPBF. These techniques can
capture deviations from nominal shapes, unusual cooling dynamics,
spattering, plume, and porosity [10–13]. Temperature-related met-
rics are particularly promising for correlating heat accumulation with
surface quality. However, most studies focus on fundamental aspects
such as melt pool shape and size, rather than the quality of external
surfaces [14–17]. Typically, existing studies monitor the top surface,
which, while convenient to observe, does not represent external sur-
faces facing the powder bed during printing and thus is not directly
observable.

To address this gap, the present work combines ex-situ and in-
situ measurements to predict the surface quality of external surfaces
using an indirect monitoring approach developed on samples with
varying inclinations and process conditions. Specifically, in-situ high-
speed thermal imaging is employed to capture the temperature histories
of overhanging surfaces printed at different inclinations. These in-
situ thermal videos are then analyzed alongside ex-situ surface quality
measurements to understand and model the influence of geometry and
heat accumulation on the quality of external surfaces.

The proposed method is tested on different materials, namely AISI
316L and AlSi10Mg. We compare the performance of a model based on
in-situ measurements (‘‘in-situ’’ model) with a geometry-based model
that predicts surface quality based solely on the inclination angle. The
in-situ model, which relies on a flexible heat accumulation metric,
proves more general and effective in predicting surface quality for
new process parameter combinations. This approach could support
qualification by guiding post-process operations and, ultimately, enable
online optimization of the process parameters to enhance the surface
quality of overhangs.

The rest of the work is organized as follows:

• Section 2 describes the experimental setup, process parameters,
and data acquisition and analysis methods.

• Section 3 presents the experimental results and models link-
ing surface quality to inclination (‘‘geometry-based’’ model) and
in-situ thermal signatures (‘‘in-situ’’ model), including their pre-
diction capabilities on unseen process conditions.

• Section 4 concludes the paper.

2. Materials and methods

2.1. Experimental campaigns

The primary focus of the experimental campaigns is to investi-
gate how the surface quality is influenced by the different process
conditions while monitoring how the process behaves in terms of its
thermal signature. This was done to model the ex-situ surface quality
measurements under different process conditions and compare the
experimental factors (i.e., the different process conditions) with the in-
situ temperature data as possible explanatory variables. To this end, a
first set of experiments was designed to print 4 small cube-like samples
considering the following factors:

• Overhang (OH) angle: the inclination angle of the overhang surface
with respect to the build plate was varied between 0◦ and 50◦

(Fig. 1(a)).
• Material: the same samples were printed with AISI 316L stainless

steel and AlSi10Mg aluminum powders with the same target
1341

particle size distribution (PSD) of 15–45 μm.
Table 1
Process parameters used for the experiments.

Parameter 316L AlSi10Mg

Laser power (W) 200 200
Laser mode Continuous wave (CW)
Scan speed (mm/s) 900 1000
Hatch distance (mm) 0.05 0.09
Layer thickness (mm) 0.03 0.025
Hatch strategy Meandering Meandering
Rotation between layers (◦) 90 90
Pre-heating temperature (◦C) Not set Not set

The geometry of the printed samples is shown in Fig. 1(c).
The samples were printed on the 3D-NT LPBF system installed in

the AddMe Lab facility of Politecnico di Milano (Fig. 2). The process
parameters for 316L and AlSi10Mg used for the two test prints are
shown in Table 1.

All process parameters were set to default, apart from the rotation
between layers which was set to 90◦ to have a shorter, periodic
sequence of 4 hatch patterns to analyze. The patterns and the hatch
direction are shown in Fig. 3. The length of the scanning vectors for this
sample geometry is equal to 4.8 mm at 90◦ and 270◦ rotation, while
t changes at every layer for 0◦ and 180◦ rotations according to the

following equation:

𝑠𝑐𝑎𝑛𝑛𝑖𝑛𝑔 𝑣𝑒𝑐𝑡𝑜𝑟 𝑙𝑒𝑛𝑔𝑡ℎ = 5+𝐿𝑎𝑦𝑒𝑟𝑁𝑜.⋅𝑙𝑡⋅𝑡𝑎𝑛(𝑂𝐻)−2⋅𝑏𝑒𝑎𝑚 𝑜𝑓𝑓𝑠𝑒𝑡 [mm]

(1)

where 𝐿𝑎𝑦𝑒𝑟 𝑁𝑜. is the layer number, 𝑙𝑡 is the layer thickness, 𝑂𝐻 is
he surface inclination angle and 𝑏𝑒𝑎𝑚 𝑜𝑓𝑓𝑠𝑒𝑡 is the distance between
he start/end of the vector and the edge of the part, which was set
o 0.1 mm. Despite the increasing scanning vector length and print
rea at every layer results in a longer total time required to scan the
arts, the interlayer dwell time is kept between 28–30 s for all the
ayers because of the constant time required for a complete recoating
ycle. This allowed to avoid interaction and heat accumulation across
ultiple layers.

After the first set of experiments, a second experimental campaign
as designed to investigate new process settings. A total of 4 additional
lSi10Mg samples were printed. In this case, the geometry was fixed

same cube-like geometry with the same OH inclination = 45◦) and the
samples were printed with different combinations of laser mode and
power (Fig. 4):

• 1 sample printed under the default nominal process conditions
(i.e., at 200 W in continuous wave (CW) mode)

• 3 samples printed in pulsed wave mode and at 3 different levels
of laser power, i.e., 160 W (nominal −20%), 200 W (nominal),
and 240 W (nominal +20%).

his second set of experiments allowed to expand the number of
nalyzed process conditions by introducing laser power and laser mode
n the experimental factors.

.2. In-situ monitoring equipment

All experiments were monitored using a high-speed medium wave
nfrared (MWIR) camera, the FLIR X6901sc. The camera is mounted
utside a viewport placed on top of the build chamber, approximately
00 mm away from the target and inclined 30◦ from the vertical. The
indow is made of sapphire, which is characterized by a very high

ransmissivity for the wavelengths of interest, (transmissivity > 85%
n the 2000–5000 nm range). The camera settings used to monitor all
he prints are reported in Table 2.

Because of the wide range of temperatures covered during the
rocess, the super-framing option was used to increase the dynamic
ange of the camera. This option consists in the acquisition of multiple
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Fig. 1. Sample geometry.
Fig. 2. 3D-NT LPBF system with the FLIR X6901sc IR camera.
consecutive frames (2 frames in this case) at different integration times,

which are then combined to obtain a single image that covers a wider

temperature range. The integration time of each frame is automatically

set by the camera according to the temperature range of the chosen

preset. This comes at the cost of a lower frame rate compared to the
1342
single preset acquisition mode, but it is necessary to capture the wide
temperature range covered by the LPBF process.

A total of 4 consecutive layers were monitored for each sample at
approximately 1/2 of the total height of the print. The monitored layers
were chosen to be in the middle of the sample to avoid the influence
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Fig. 3. Sequence of hatch patterns used for the experiments.
Fig. 4. Process conditions of the second experimental campaign.
Table 2
Camera settings used for the experiments.

Parameter Value

Frame rate (fps) 667
Frame size (px) 224 × 72
Resolution (μm/px) ≈300

Table 3
Emissivity of AISI 316L and AlSi10Mg in solid state.

Material AISI 316L AlSi10Mg

Emissivity 0.22 [18] 0.36 [19]

of the heat sink effect of the build plate and monitor the process in a
steady-state condition.

To estimate the true temperature of the body, the global equivalent
emissivity, i.e., a combination of transmittance of the optical chain and
emissivity of the observed materials, was measured. The transmittance
was experimentally estimated following the procedure described in the
ASTM E1897-97 and then multiplied by the emissivity. The emissivities
of AISI 316L and AlSi10Mg in solid state were taken from literature and
are reported in Table 3.

2.3. Ex-situ characterization

The external surface of the samples was characterized using a Focus
Variation (FV) microscope, the Alicona InfiniteFocus. The microscope
was used to reconstruct the surface topography of the down-facing
surfaces, i.e., the overhangs, and the vertical surface on the opposite
side of the overhang (Fig. 5).

Both the overhang and the opposite vertical surfaces were acquired
with the microscope and then processed to register it with respect to
a new reference system (x′y′z′, Fig. 5) and remove any unwanted tilt
in the point cloud. The area was then split into 25 1 × 1 mm2 patches
over which the surface roughness 𝑆 was computed (Fig. 6).
1343

𝑎

3. Results and discussion

The models based on the experimental factors, the in-situ acqui-
sitions and the ex-situ characterization results are discussed in the
following sections. All the models relate the surface quality measured
ex-situ to either experimental factors (i.e., the surface inclination in the
‘‘geometry-based’’ model) or other temperature-related characteristics
of the process observed via in-situ monitoring (i.e., thermal imaging
results in the ‘‘in-situ’’ model). Depending on the availability of the
chosen explanatory variables, either the full set or only a subset of
the surface quality indicators extracted from the reconstructed patches
was considered. Specifically, the ‘‘geometry-based’’ model was fitted
using the full set of observations, while the ‘‘in-situ’’ model was fitted
on a subset of observations corresponding to the monitored layers.
Additional details are discussed in the following sections.

3.1. Surface roughness analysis and ‘‘geometry-based’’ model

Among all the possible surface quality indicators, the areal surface
roughness (𝑆𝑎) [20] parameter was chosen to characterize the target
external surfaces. This parameter is computed as the average abso-
lute value of the difference in height at points on a surface patch
with respect to the arithmetical surface mean. The indicator is the
2-dimensional equivalent of the well-known average roughness 𝑅𝑎
computed on 1-dimensional profiles. The 𝑆𝑎 parameter is also com-
monly used in the literature to quantify the surface roughness of parts
produced by LPBF [21]. Therefore, it was also selected to facilitate
comparison with other works in the field. The 𝑆𝑎 values extracted from
the patches of each overhang surface were first analyzed individually
to understand if the position of the patch on the surface had an
influence on the surface roughness. No significant patterns or trends
could be identified, therefore the individual 𝑆𝑎 values of each patch
were considered as replicates of the same process condition.

Fig. 7 shows the 𝑆𝑎 values of the down-facing surfaces of the 316L
and AlSi10Mg samples. Despite being different in absolute value, the
surface roughness of the two materials show a similar trend. Up to
30◦ inclination, the surface roughness is still comparable with the
one of the vertical surfaces. Beyond the 30◦ inclination, the surface
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Fig. 5. Ex-situ measured surfaces.
Fig. 6. Measured surface after registration (left) and patches for 𝑆𝑎 computation (right).
Fig. 7. 𝑆𝑎 vs. 𝑂𝐻 models of the two materials with fitted line and 95% prediction interval.
roughness increases significantly, showing the start of what seems to
be an exponential trend. This confirms that the lack of support in the
overhang region induces the melt pool to sink into the loose powder
bed, thus leading to higher surface roughness due to dross formation
and partial powder sintering [4]. A linear regression model was fitted
to the 200 surface roughness observations (i.e., 25 patches * 8 surfaces
(4 with 0◦ inclination + 4 with 15◦, 30◦, 45◦ and 50◦ inclination,
respectively)) to quantify the increase in surface roughness with respect
to the inclination angle. The models fitted to the data are shown as
red dashed lines together with their 95% prediction interval in Fig. 7.
The coefficients of the two quadratic models are reported in Table 4 to
predict the average 𝑆𝑎 for any surface inclination.

The significantly different values of the intercept reflect the differ-
ent surface roughness of the two materials at low inclination angles. But
the same model structure, i.e., quadratic with respect to the inclination
1344
overhang angle (OH), seems to provide a good fit, regardless of the
material.

3.2. Thermal images analysis and ‘‘in-situ’’ model

The following procedure was followed to process the thermal
videos:

1. Phase correction: the thermal videos record the temperature his-
tory of the top surface during all the production steps. This
involves the phase change of the material, i.e., from powder to
liquid to solid metal. To keep into account this effect, the phase
change of each pixel was tracked and the correct emissivity was
assigned according to its phase.

2. ROI selection: the region of interest (ROI) was selected using
the laser position to isolate the areas that experienced a phase
change (i.e., the printed area).
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Fig. 8. High-speed IR video processing steps, from ROI definition to 𝑇𝐴𝑇 computation.
Fig. 9. Overhang edge super-pixels (left) and corresponding surface patches (right)
used for the 𝑇𝐴𝑇 vs. 𝑆𝑎 analysis.

3. Super-pixel: the individual pixels along the overhang edge of the
ROI were grouped into 5 ‘‘super-pixels’’ (3 × 2 pixels in size).

4. Temperature profile extraction and registration: for each super-
pixel, the 6 individual temperature profiles were extracted and
registered to the same reference frame to account for the small
delays between hatches and then averaged to obtain a single
temperature profile.

5. Time above threshold (TAT): the 𝑇𝐴𝑇 was computed from the
average profile of each super-pixel. The 𝑇𝐴𝑇 is defined as the
amount of time a given temperature profile exceeds a specified
threshold value. It allowed to synthetically describe the average
profile while still being sensitive to the different local heat
accumulation conditions within the part.

The steps are visually outlined in Fig. 8.
The choice of splitting the overhang edge of the ROI into 5 super-

pixels was made for two reasons:

• Noise reduction: the temperature profiles of the individual pixels
can be extremely noisy due to the high-frequency heating and
cooling cycles induced by the laser and the process by-products
(e.g., spatters, plume) affecting the reading. The registration and
the averaging of all the temperature profiles in the super-pixel
allow to mitigate the noise and compute a more representative
𝑇𝐴𝑇 value, while still maintaining a good spatial resolution and
being representative of the local heat accumulation near the edge
of the part.

• Correspondence with 𝑆𝑎 patches: the splitting of the overhang
edge of the ROI into 5 regions allows to have each super-pixel
match with one of the patches used for computing the 𝑆𝑎, as
discussed in Section 3.1. The overhang edge super-pixels and the
corresponding surface patches are shown in Fig. 9.

A first preliminary analysis on the 𝑇𝐴𝑇 computed for each moni-
tored layer showed that heat accumulation near the overhang is sen-
sitive to the orientation of the scan strategy (Fig. 10). As discussed
1345
Table 4
Coefficients of the linear regression model fitted to the surface roughness data with
the ‘‘geometry-based’’ model.

Material 𝑆𝑎 [μm] 𝑅2
𝑎𝑑𝑗

316L 15.76 − 0.09 ⋅ 𝑂𝐻 + 0.013 ⋅ 𝑂𝐻2 84.6%
AlSi10Mg 28.82 + 0.03 ⋅ 𝑂𝐻 + 0.006 ⋅ 𝑂𝐻2 77.2%

Table 5
Coefficients of the ‘‘in-situ-based’’ model fitted to the surface roughness data.

Material 𝑆𝑎 [μm] 𝑅2
𝑎𝑑𝑗

316L 11.68 + 0.029 ⋅ 𝑇𝐴𝑇 + 0.00026 ⋅ 𝑇𝐴𝑇 2 96.8%
AlSi10Mg 32.29 − 0.066 ⋅ 𝑇𝐴𝑇 + 0.00018 ⋅ 𝑇𝐴𝑇 2 83.0%

previously, a sequence of 4 hatch patterns was repeated for the entire
build (Fig. 3), therefore, to account for the differences in heat accu-
mulation for the 4 scan strategies, the 𝑇𝐴𝑇 of each super-pixel was
averaged over 4 consecutive layers. The average time above threshold,
𝑇𝐴𝑇 , was used for the rest of the analysis.

To set the temperature threshold for the computation of the 𝑇𝐴𝑇 ,
a k-fold cross-validation approach was employed. First, the 𝑇𝐴𝑇 was
extracted for different threshold values. A second order linear model
with 𝑇𝐴𝑇 as regressor was fitted on the corresponding 𝑆𝑎 values
(Eq. (2)):

𝑆𝑎 = 𝛽0 + 𝛽1 ⋅ 𝑇𝐴𝑇 + 𝛽2 ⋅ 𝑇𝐴𝑇
2

(2)

The 5-fold cross validation was used to compare the fit of 𝑆𝑎 vs. the
𝑇𝐴𝑇 computed for different threshold values in terms of average mean
square error (MSE). The best results were yielded when the threshold
was set to 500 ◦C for 316L and 150 ◦C for AlSi10Mg. When compared
to the absolute melting temperature of the two materials (i.e., 1670 K
and 840 K), the two thresholds are set to approximately half the melting
point of the two materials (0.46 and 0.50 respectively), indicating a
possible general rule to extend this type of model to other materials
with different properties.

To investigate the prediction ability of the 𝑇𝐴𝑇 value observed in-
situ and in-line as a proxy indicator of the final surface roughness, 𝑆𝑎,
two quadratic models were fitted to the data of the first experimental
campaign (Eq. (2)). In this case, 40 data points were used to fit the
model (i.e., 5 patches with matching in-situ measurements * 8 surfaces
(4 with 0◦ inclination + 4 with 15◦, 30◦, 45◦ and 50◦ inclination,
respectively)). The models show a very good prediction ability (Fig. 11
and Table 5), with a final 𝑅2

𝑎𝑑𝑗 of 96.8% and 83.0% for 316L and
AlSi10Mg, respectively.

3.3. Prediction capability for new process conditions

To evaluate the prediction capability of both the ‘‘geometry-based’’
and the ‘‘in-situ’’ models, the predictions obtained from the models
fitted using only the data from the initial AlSi10Mg experimental
campaign were compared to the data obtained from the second exper-
imental campaign. This test was conducted to assess the improvement
of prediction achievable when in-situ data is incorporated into the
modeling process. A total of 20 𝑆𝑎 and 𝑇𝐴𝑇 values (i.e., 5 patches
with matching in-situ measurements * 4 surfaces printed at OH = 45◦
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Fig. 10. Pixel-wise time above threshold map of all OH samples (right) computed for two different hatch patterns (90◦ and 270◦, left). Heat accumulation is more extreme when
the overhang area is at the end of the scan.
Fig. 11. 𝑆𝑎 vs. 𝑇𝐴𝑇 models of the two materials with fitted line and 95% prediction interval.
with different process parameters) were measured from the second
experimental campaign and used for testing the models. The 𝑆𝑎 data
were first compared to the predictions obtained from the ‘‘geometry-
based’’ model fitted on the data of the first experimental campaign.
Fig. 12(a) shows the new observations from the second experiment
plotted together with the 95% prediction band. It is clear that the
‘‘geometry-based’’ model, where the designed inclination angle is con-
sidered as the only explanatory variable, is not able to capture how
the different process conditions influence the surface roughness. As a
consequence, the same linear model to predict the surface roughness
of a sample printed with different process parameters results in a
significantly worse prediction capability, with a prediction root mean
square error (RMSE) equal to 10 μm.

In the other case, when the ‘‘in-situ’’ model estimated with the
first experimental campaign is used to predict new roughness data
obtained with different process conditions, the prediction capability
1346
is significantly improved. In fact, unlike the overhang angle of the
‘‘geometry-based’’ model, the 𝑇𝐴𝑇 used as explanatory variable in this
model is sensitive to the thermal impact of the different process condi-
tions explored with the second experimental campaign. This allows the
‘‘in-situ’’ model trained on the AlSi10Mg data of the first experiment
to fit better the new data (Fig. 12(b)) and obtain a prediction RMSE
equal to 4 μm, i.e., less than half of the prediction error obtained when
only the geometry is considered in the model as relevant information to
predict the surface roughness. This is also immediately noticeable from
the 95% prediction intervals shown in Fig. 12: all the new observations
fall within the prediction interval of the ‘‘in-situ’’ model, whereas sev-
eral points fall outside the prediction interval of the ‘‘geometry-based’’
model.

Most importantly, it is interesting how the ‘‘in-situ’’ model seems to
adjust to the new conditions without needing to be re-fitted of modified
in any way. The range of 𝑇𝐴𝑇 covered by the new observations
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Fig. 12. New experimental data plotted on the previously fitted models.
significantly extends the range over which the model was originally
fitted (from ≈ [180; 550] to ≈ [180; 700]), but the model appears to be
just as accurate. This seems to suggest that, unlike the first ‘‘geometry-
based’’ model, the ‘‘in-situ’’ model is more general as it relies on real
thermal data to directly observe the true root cause of the increased
surface roughness (i.e., heat accumulation). Thanks to its more general
validity, it could be also used to predict the surface roughness outside
of the process window used to fit the model.

The ‘‘geometry-based’’ model offers a good fit over the process
window used for training, but it would need to be re-fitted and re-
designed with additional explanatory variables to have a chance at
predicting the other process conditions. While it would be possible to
include other process parameters in a more complex empirical model,
it is impractical to study in advance all the potential factors that
might influence the heat accumulation near a surface, e.g., changes in
geometry, scan order, etc., as it would require extensive experimental
work.

The ‘‘in-situ’’ model, on the other hand, was found to provide
a better fit for all the process conditions investigated in this work.
This was made possible by including direct process observations in
the model without forcing any other factor that fails at capturing
the complex interactions between part design and process parameters
that influence the heat accumulation and, ultimately, the final surface
quality.

Thanks to its proven prediction capabilities, in addition to providing
important insights to support surface quality control for any printed
surface, the ‘‘in-situ’’ model can be easily envisaged as a tool for
optimizing the process directly in-line, without the need to wait for
the parts to be printed and measured ex-situ, thus saving time and
resources.

4. Conclusions

The work presented in this paper demonstrates the potential of using
in-situ high-speed thermal imaging for predicting the surface roughness
of LPBF parts and compares it with an alternative model based only on
geometric characteristics of the part. In particular, the following aspects
have been investigated:

• Surface roughness vs. inclination angle (‘‘geometry-based’’ model).
First, the relation between surface roughness and surface incli-
nation angle was studied for two materials, i.e., AISI 316L and
AlSi10Mg. This aimed at reproducing the results reported by other
authors that showed that surface roughness is strongly depen-
dent on the inclination angle of the surface itself. Although the
parameters that best fitted the data were different, for both the
investigated materials it was observed a quadratic trend similar
1347

to the one found in literature.
• A synthetic indicator called the average Time Above Threshold (𝑇𝐴𝑇 )
was introduced to assess heat accumulation via in-situ monitoring.
High-speed thermal camera data were utilized to extract the tem-
perature profiles of pixels near the target surfaces. The profiles
of adjacent pixels were grouped together into super-pixels, regis-
tered with respect to the same reference and then averaged. This
allowed the calculation of the 𝑇𝐴𝑇 indicator for all the super-
pixels of each layer, i.e, the amount of time that the temperature
exceeds a pre-defined temperature threshold. Cross validation was
used to calibrate the threshold to the specific material being
studied. The 𝑇𝐴𝑇 values were then averaged across multiple
layers to take into account the periodic behavior of the scan
strategy and its influence on heat accumulation. The final 𝑇𝐴𝑇
indicator offers a convenient way for summarizing the local heat
accumulation to use it as explanatory variable to predict the final
roughness on the down-facing surface.

• Surface roughness vs. heat accumulation (‘‘in-situ’’ model). A
quadratic dependency of 𝑆𝑎 against 𝑇𝐴𝑇 was found for both AISI
316L and AlSi10Mg and two separate models were fitted to the
data of the first experimental campaign.

• The prediction capabilities of the models were tested and compared.
The models fitted on the data of the first experiment were used
to predict the surface roughness of samples printed under other
process conditions (i.e., different laser power and laser mode).
The ‘‘in-situ’’ model outperformed the ‘‘geometry-based’’ model
in terms of prediction accuracy, with a RMSE of 4 μm vs. 10 μm
on the new data.

The results demonstrate that the ‘‘in-situ’’ model, when compared
with the simpler ‘‘geometry-based’’ model, is more general and capable
of predicting the surface roughness even when previously unseen pro-
cess parameters combinations are used. Heat accumulation has been
reported as one of the main factors influencing surface quality and,
since the effect of any process condition on heat accumulation is
intrinsically embedded in the 𝑇𝐴𝑇 metric used in the ‘‘in-situ’’ model,
there is no need to fit a more complex model and incorporate new
factors.

The ‘‘in-situ’’ model can be directly applied to monitor the status of
the print and detect unwanted process drifts that affect the thermal his-
tory and influence the final surface quality of the part. This would give
the possibility of supporting part qualification and guide targeted post-
processing operations (if required). In addition, the ‘‘in-situ’’ model can
be also envisaged as a tool for optimizing the process directly during
the process, without the need to wait for the parts to be printed and
measured ex-situ, thus reducing the time and resources required for the
optimization, or even help removing the maximum surface inclination
constraints, which have always been a major limitation to the design
freedom in AM.
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Future work will focus on exploring the boundaries and the limits
of validity of the model, while testing it on other materials and process
conditions.
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