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NUMERICALLY EFFICIENT LOW-THRUST FUEL-OPTIMAL
COLLISION AVOIDANCE MANEUVERS WITH TANGENTIAL

FIRING

Andrea De Vittori*, Matteo Omodei†, Pierluigi Di Lizia‡, and Roberto Armellin §

Pau Gago Padreny ¶Marc Torras Ribell||Jorge Rubio Antón **Diego Escobar
Antón ††

This work presents a numerically efficient fuel-optimal Collision Avoidance Ma-
neuver (CAM) for advanced conjunction notifications with tangential thrusting
developed within the Electrocam project in collaboration with ESA and GMV.
Given the acceleration profile stemming from the corresponding energy-optimal
problem, the algorithm selects candidates firing windows tuned to meet a final
constraint in SMD terms for a specified acceleration magnitude. The problem re-
lies on an NLP formulation leveraging only analytic propagators for coasting and
thrusting arcs to the advantage of the computational burden. It ensures a good
match with the non-linear dynamics attaining competitive fuel mass savings.

INTRODUCTION

Since the beginning of space exploration, humans have been projecting objects into orbit at an in-
creasing pace. Radars1 and optical stations regularly watch orbiting objects to update catalogues and
predict close encounters providing conjunction data messages to satellite operators. Given that the
overcrowding problem is expected to get worse, the chance a typical satellite experiences a possible
collision alert during its lifetime is likely to grow. Despite not all alerts requiring evasive action, as
the number of alerts increases, it will become impossible to take action from the ground and move to
onboard CAM planning is becoming an increasingly topical problem. When designing CAMs, two
different models are applicable: the long-term encounter, characterized by non-negligible time spent
in the encounter region, and the short-term one, in which the conjunction is almost instantaneous
and the assumption of constant relative velocity is valid. To decrease the collision probability, the
primary satellite shall perform a maneuver to get away from the secondary object; onboard thrusters
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are used to accomplish this task. Depending on the available acceleration level and the firing time, a
maneuver can be classified as impulsive or low-thrust. While the former strategy is achievable with
low specific impulse thrusters, low-thrust propulsion maneuvers are typically associated with high
specific ones.2 Among the research studying the impulsive CAM problem, Bombardelli et al. in3

and4 formulate an analytical solution to the Optimal Control Problem (OCP) in case of direct and
indirect impact. In addition, they provide analytical expressions for the collision kinematics and
dynamics of a satellite subject to an impulsive ∆v in B-plane coordinates.

Conversely, the literature about low-thrust CAMs includes the research of Raiter et al.,5 who
develop a semi-analytical method for just-in-time collision avoidance based on the hypothesis of
radial thrust. The solution is obtained by applying a multiple linear regression on the fully numerical
solution of the problem, resulting in a polynomial function that, once evaluated, gives the optimal
firing time. However, as highlighted by the authors, this approach suffers from stringent validity
limits due to the approximations introduced by the multiple linear regression. Besides, Hernando-
Ayuso and Bombardelli in6 develop an analytical solution to the low-thrust CAM design problem
by firing with maximum thrust for a fixed time span in the tangential direction to minimize PoC.
The result, valid for circular orbits only, serves as the initial guess for the numerical method in
which the thrust direction is unconstrained and optimized. Nonetheless, the formulation does not
directly consider fuel optimality. Palermo in7 proposes a fully-analytical formula for the Energy
Optimal Control Problem (E-OCP) and a possible solution for the Fuel Optimal Control Problem
(F-OCP) with bang-bang acceleration using smoothing techniques and the four-stage Lobatto IIIa
formula embedded in the bvp5c MATLAB function. However, the transformation from a continuous
acceleration profile to a bang-bang structure cannot always be obtained due to inherent convergence
problems of the numeric algorithm when it comes to a highly discontinuous acceleration profile.
Furthermore, the recent work by Armellin8 presents a a multiple-impulse convex formulation for
the optimization of low-thrust and impulsive CAMs suitable for autonomous calculations. In the
end, the recent work from Pavanello et al.9 investigated convex optimization to solve trajectory
design problems. The method applies the conjunction constraint to the whole window of interest
and employs automatic DA dynamics linearization at the expense of computational burden if likened
to analytical CAM design. Lastly, D. Shrouti and M. Arun present a study in1011 that deals with
fuel-optimal collision avoidance maneuvers while also incorporating the effects of uncertainty on
them. They propose a formulation for convex and another one for non-convex optimization.

This work focuses on a fast semi-analytical method for the design of Advanced Notification
fuel-optimal CAMs with tangential control. The approach is built upon the asymptotic solution
for the two-body problem with constant tangential thrust acceleration proposed by Bombardelli et
al. in12 and aims at computing the location and duration of a fuel-optimal firing window given
a prescribed acceleration magnitude. The pipeline has been developed along with ESA’s ELEC-
TROCAM project, funded by ESA and carried out by GMV, Politecnico di Milano and Universidad
Carlos III de Madrid. It aims to advance the state-of-the-art in low-thrust collision avoidance ac-
tivities, focusing on conjunction screening under various sources of uncertainty, such as those aris-
ing from the thruster included in uncertainty propagation models detailed by M. Maestrini et al.13

and.14 Additionally, the research addresses the design and execution of low-thrust Collision Avoid-
ance Maneuvers (CAMs),15 taking into account operational constraints to ensure safe and effective
decision-making.
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FUNDAMENTALS

This Section summarizes the theoretical principles needed to formulate the aforementioned ap-
proaches.

Conjunction definition
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Figure 1. BPlane representation16

Consider a short-term encounter between a controllable satellite and a debris, hereafter referred to
as primary and secondary respectively. The state vectors, position and velocity, of the primary and
secondary objects expressed in a generic reference frame (r.f.) ℜ̂ are defined by xp = [rp, vp] and
xs = [rs, vs]. Hence, to compute the collision probability, a more convenient coordinate system
is the B-Plane. The latter is centered in the secondary object and is characterized by the following
unitary direction vectors:

uξ =
vp × vs

||vp × vs||
, uη =

vp − vs

||vp − vs||
, uζ = uξ × uη (1)

The projection on the η-axis is given by:

Rb,2D = [uξ,uζ ]
⊺, (2)

and the 2D position vector in B-plane r.f. is defined as b = [ξ, ζ]

Chan’s PoC model

Considering6 as the main reference, and assuming a Gaussian probability distribution function,
the Chan’s 2D PoC truncated at the third order m = 3 reads:

PoC(u, v) = e−
v
2

3∑
m=0

vm

2mm!

[
1− e−

u
2

m∑
k=0

uk

2kk!

]
, (3)
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where u is the ratio of the impact cross-sectional area to the area of the 1σ B-plane covariance
ellipse:

u =
s2A

σξσζ
√
1− ρ2ξζ

, (4)

and v is the squared Mahalanobis distance (SMD):

v = b⊤
p C

−1bp; (5)

C is the covariance matrix, and bp is the relative position of primary object with respect to the
secondary one in the B-plane r.f..

Dynamics

The restricted two-body problem with an acceleration contribution ac coupled with the mass
equation becomes: 

ṙ = v

v̇ = − µ

r3
r+ ac

ṁ = − 1

ce
acm

where : ce = Isp g0 (6)

Asymptotic solution of the two-body problem with tangential acceleration

Bombardelli et al. derived an analytical solution to the two-body problem perturbed by a constant
tangential acceleration with the aid of perturbation theory. This section gives just a sneak peek about
the topic while the complete and in-depth analysis can be found in.12

Coherently with what stated in17 by Peláez et al., the orbit geometry can be fully described by
three generalized orbital parameters assuming that all the acting perturbation forces have a zero
component along the normal direction to the orbital plane:12

q1 =
e

h
cos∆γ q2 =

e

h
sin∆γ q3 =

1

h
(7)

where h is the dimensionless angular momentum of the osculating orbit; e is its eccentricity and ∆γ
is, for this particular case in which the orbit plane is constant, the rotation of the eccentricity vector
with respect to the initial orbit. The evolution of the three generalized orbital parameters in case of
purely tangential acceleration is:

d

dθ

q1q2
q3

 =
ϵ

q3s3
√
e2 + 2e cos ν + 1

 s sin θ (s+ q3) cos θ
−s cos θ (s+ q3) sin θ

0 −q3

[
e sin ν

1 + e cos ν

]
, (8)

where θ is the independent variable used in the Peláez method and is equal to:

θ = ν +∆γ, (9)

ν is the true anomaly of the osculating orbit; s is the dimensionless transverse velocity of the object

s = q1 cos θ + q2 sin θ + q3, (10)
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and ϵ is the corresponding dimensionless value of the constant tangential acceleration At:

ϵ =
At

µ/r20
. (11)

When considering small perturbations (ϵ ≪ 1), the three generalized orbital parameters can be
written as power series through an asymptotic expansion of Eq. 8:

q1(θ, ϵ) = q10 + ϵq11(θ) + o(ϵ)

q2(θ, ϵ) = q20 + ϵq21(θ) + o(ϵ)

q3(θ, ϵ) = q30 + ϵq31(θ) + o(ϵ)

, (12)

where the zeroth order terms are the constant generalized orbital elements of the unperturbed tra-
jectory:

q10 =
e0
h0

q20 = 0 q30 =
1

h0
, (13)

and the first order terms expressed as a function of a new variable Ẽ are:
q11(Ẽ, h0, e0) =

h3
0

(1−e20)
2

[
Q11(Ẽ, e0)−Q11(Ẽ0, e0)

]
q11(Ẽ, h0, e0) =

h3
0

(1−e20)
3
2

[
Q21(Ẽ, e0)−Q21(Ẽ0, e0)

]
q31(Ẽ, h0, e0) =

h3
0

(1−e20)
2

[
Q31(Ẽ, e0)−Q31(Ẽ0, e0)

] , (14)

being Ẽ equal to:

tan
Ẽ

2
=

√
1− e0
1 + e0

tan
θ

2
. (15)

The complete description of the solution and the analytical expression of the Qi,1(e0, Ẽ) functions
are available in.12

However, the evolution of the generalized orbital parameters has been obtained relying on the
variables Ẽ or equivalently θ. To infer the orbit characteristics at any desired epoch, it is necessary
to express q1, q2 and q3 as a function of time. To this end, the series expansion of the time can be
conveniently written as:

t(ϵ, Ẽ) = t0(Ẽ) + ϵt1(Ẽ) + o(ϵ), (16)

where t0(Ẽ) corresponds to the time of the unperturbed trajectory

t0(e0, Ẽ) =
h30(

1− e20
) 3

2

[
Tkep(Ẽ)− Tkep(Ẽ0)

]
, (17)

with
Tkep = Ẽ − e0 sin Ẽ, (18)

while the first order term is:

t1(e0, Ẽ) =
h70(

1− e20
) 9

2

[
T (Ẽ)− T (Ẽ0)

]
, (19)

with the analytical expression of T (Ẽ) available in.12
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ADVANCED NOTIFICATION CAM WITH TANGENTIAL CONTROL

Energy-optimal (EO) CAMs are widely used in the literature for maneuver optimization. That
said, they output a continuously varying unbounded acceleration that may exceed the thruster capa-
bilities. Bang-bang control profiles with a fixed acceleration level can solve this issue by shaping the
propulsion system functioning in an operative scenario and satisfying conditions on the desired PoC.
Fortunately, the EO solution, by looking at the maxima of the continuous acceleration norm, gives
a hint for candidate optimal bang-bang windows placement. In this context,7 shows that tangential
maneuvers almost align with the free directional CAM for advanced conjunction notification.

This section is devoted to describing the Fuel-Optimal CAM with tangential firing as a two-step
process. It requires an acceleration profile guess stemming from the corresponding EO formulation
and tunes the firing windows with an NLP optimization problem.

Energy-optimal CAM with tangential thrust

The analytical CAM formulation for short-term encounters formulates as two-boundary value
problem with the following control acceleration:

ac = amaxϵt, where t =
v

v
. (20)

amax is the maximum acceleration. The Euler-Lagrange equations describing the problem are:

ṙ = v

v̇ = − µ

r3
r− amax

(
λv ·

v

v

)
v

v

λ̇r =
µ

r3
λv −

3µr · λv

r5
r

λ̇v = −λr + amax

(
−
(
λv · v
v2

)2

v +
λv · v
v2

λv

) (21)

With the following boundary conditions:

r(t0) = r0

v(t0) = v0

λr(tf ) = ν
∂d2M (rf )

∂rf
= 2νR⊤

2DC
−1R2D(rf − rs)

λv(tf ) = ν
∂d2(vf )

∂vf
= 0

d2M (rf )− d̄2M = 0.

(22)

From this point on, the analytical and computationally efficient CAM derivation can be found in
Sect. 3 of.7 The initial costates are found through motion linearization and the integration of the
equations of motion outputs the acceleration profile magnitude atanEO.

Fuel-Optimal CAM with tangential thrust

This section addresses the semi-analytical solution of the TPBVP with prescribed acceleration
amax and unknown firing windows. The solution process starts with the identification of the nominal
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firing windows from the tangential EO problem. The latter is here exploited to get a first guess on the
optimal firing windows. The equivalent burning time tb is estimated using the acceleration atanEO(t)
resulting from the tangential EO with continuous thrust.

tb =
∆v

amax
=

1

amax

∫ tf

t0

atanEO(t) dt (23)

Then, the idea is to define ac,th so that the thrusters are fired for atanEO ≥ ath and switched off
otherwise. To this purpose, once amax is set, a bisection method is used to retrieve ath. The
procedure is described below:

1. Set two initial boundary values for ath for the first bisection iteration, namely ath1 = max(atanEO)
and ath2 = min(atanEO);

2. Evaluate the burning time tcb for atanEO ≥ ath1 and for atanEO ≥ ac,th2 ;

3. Iteratively update ath1 or ath2 with the bisection method taking as cost function J = tcb − tb;

4. Do step 3 until |tcb − tb| ≤ ∆t with ∆t a prescribed tolerance.

Figure 2 shows the end result stemming from the reported bisection method

Figure 2. Bisection method representation to find candidate firing windows given atanEO.

Within the Electrocam project, it is required to simulate only a single firing window to com-
ply with GMV’s operative constraints. The algorithm tests separately the guessed windows found
through the bisection method, and it chooses the one featuring the lowest ∆v figure. The FO CAM
solves adopting a NLP approach (Non-Linear Programming) approach, stated as follows:

J = d2M (rp,f (ton,i), rs,f )− ¯d2M (24)

ton,i = γi · ton,guess,i is the i-th firing windows stemming from the enlarged or shortened guess
counterpart (ton,guess,i) visible in Fig.2. γi is the actual minimization variable constrained to
γi ≥ 0. d2M (rp,f (ton,i), rs,f ) − ¯d2M stands for the difference between the current SMD and
the target one. It depends on the secondary position rs,f and primary rp,f at TCA. After the
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optimization procedure, the tuned firing windows and the Bplane position will look like the ones
shown in Fig. 3, where the first thrust arc appears to be the most efficient fuel-wise.

Figure 3. Optimal magnitude acceleration profile on the left and the corresponding
Bplane on the right.

Up to this stage, the nominal firing windows have been sought in the time domain. However, in
the Bombardelli derivation, the evolution of the generalized orbital parameters (q1, q2, q3) is not a
function of time but rather of the Ẽ parameter (or equivalently θ). Hence, the nominal on-off time
windows obtained thanks to the bisection method shall be transformed into equivalent true anomaly
ranges θspan, as follows with an example:

θspan = [

off︷ ︸︸ ︷
θ0, θ1, θ1, θ2︸ ︷︷ ︸

on

,

off︷ ︸︸ ︷
θ2, θtca] if ton,guess,i = ton,guess,1 (25)

The same transformation holds for the firing durations:

ton,i = γi · ton,guess,i → ∆θon,i = αi ·∆θon,guess,i (26)

all αi = 1 for the variable initialization. The orbital parameters of the primary body change during
the accelerated dynamics, so they are updated in the analytical propagation to avoid undesired shifts
(see Alg. 1).The EO solution comes in handy also to understand if the spacecraft acceleration is
more tangential or anti-tangential for each bang. Therefore, a vector of maximum accelerations
amax is defined as follows:

amax = [amax,1, ..., amax,N ] (27)

Such that: {
amax,i = amax if atan

EO (t) = kt with k > 0 in ton,guess,i

amax,i = −amax if atan
EO (t) = −kt with k > 0 in ton,guess,i

(28)

Fig. 4 gives a wrap-up of all the steps described within the pipeline for FO CAM. In the context
of the Electrocam project, the solutions of FO CAMs are fed to advanced CAM optimization tools
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Figure 4. Pipeline wrap-up for the firing windows computation

developed by GMV that encompass perturbations and operative constraints. As previously stated,
among all i − th candidate windows, the one having the minimum firing time is taken as the final
solution.
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Algorithm 1 Propagation core
1: Input:
2: αi: Firing window multiplier
3: xp0: Primary mean state at t0
4: µ: Gravitational constant
5: ∆θon,guess,i: True anomaly interval guess for tangential firing
6: θspan: Vector containing true anomaly guess windows for ballistic and accelerated dynamics
7: amaxi : tangential or anti-tangential maximum acceleration
8: ttca: Time of closest approach
9: d2M : Target SMD

10: rs,f : Position of the secondary at TCA
11: Output:
12: ton: Firing time
13: d2M,err: SMD error
14: Analytical Propagation:
15: kep0 = car2kep(xp0, µ): From cartesian to keplerian elements
16: ton+off = 0 Total propagation time initialization
17: lim = length(θon,guess,i) (dimension 1); k = 0 counter for on windows initialization
18: for the index n = 1 : 2 : length(θspan) do
19: if the thrusters in θspan(n, n+ 1) are on then
20: [xp,prop, tprop,on] = Bombardellipropagator(xp0,αi∆θon,guess,i,amax,i, µ)
21: xp,0 = xp,prop Update the initial state
22: tprop,on+off = tprop,on+off + tprop,on Update the propagation time
23: k=k+1
24: else if the thrusters in θspan(n, n+ 1) are off then
25: kep0 = car2kep(xp,0, µ) Update the keplerian elements
26: if k < lim then
27: if θspan(n+ 2, n+ 3) ̸= θspan(end− 1, end) then
28: tprop,off = ∆θ2∆t(kep0,θspan(n+1)−0.5· (αi−1)∆θon,guess,i, µ) Equivalent

Keplerian ∆t
29: else
30: tprop,off = ∆θ2∆t(kep0,θspan(n+1)− (αi−1)∆θon,guess,i, amax,i, µ) Equiv-

alent Keplerian ∆t
31: end if
32: tprop,on+off = tprop,on+off + tprop,off Update the propagation time
33: else
34: tprop,off = tTCA − tprop,on+off Equivalent Keplerian ∆t
35: end if
36: ∆θprop,off = ∆t2∆θ(kep0, tprop,off , µ) Equivalent Keplerian ∆θ
37: xp,prop= kep2carpropagator(kep0,∆θprop,off , µ)
38: xp,0 = xp,prop Update the initial state
39: end if
40: end for
41: rp,f = xp,0(1 : 3) primary position state at TCA
42: d2M,err = d2M (rp,f , rs,f )− ¯d2M
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RESULTS

Test Cases description

To prove the algorithm’s effectiveness, it is tested against a set of seven Conjunction Data Mes-
sages (CDMs) ranging from low to geostationary orbits. The dataset has been kindly provided by
GMV during the Electrocam project.The Primaries orbit representation is displayed in Fig. 5, whilst
the secondaries counterpart are detailed in Fig. 6. For sake of conciseness, only the encounter data
of LEOH2HMD is shown in Tab. 1.

Table 1. LEOH2HMD test case conjunction data.

rp[km] [-5113.9219 , 27.0979 , 5545.0427 ]⊤

rs[km] [-5113.9225 , 27.0498 , 5545.0444 ]⊤

vp [km/s] [-5.3416 , -0.3599 , -4.9236 ]⊤

vs [km/s] [7.3537, -1.1428, -0.19825]⊤

PoC 0.0271 (Chan)
d [m] 48.131

The corresponding covariance matrix for the primary and secondary in ECI and plane coordinates
is:

Cp =

 1.6602 −1.1612 −0.14638
−1.1613 233.6017 0.0228
−0.1464 0.0228 2.9134

 · 10−4 km2 (29)

Cs =

 1.5805 −3.1446 0.0023
−3.1446 251.6288 −0.1267
0.0023 −0.1267 1.0296

 · 10−4 km2 (30)

Projecting the summed covariances in the Bplane frame results in

C =

[
3.1792 −0.1191
−0.1191 4.5824

]
· 10−4 km2 (31)

The objects combined cross-sectional radius sA = 15 m , and the operative satellites features a
propulsion system granting a constant acceleration amax = 0.1mm

s2
. To reduce the collision likeli-

hood, it targets a collision probability PoC = 10−6, a typical value applied to operative scenarios.
In all the encounters, to see how effective is acting in advance, the primary performs CAMs on
31 equally space initial maneuvering points from 0.5 to 8 orbits before TCA. All the simulations
conducted for this work are run on an Intel(R) Core(TM) i7-10700 CPU processor with 16 GB of
Ram Memory.
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Figure 5. Primaries ballistic trajectory representation in ECI frame

Figure 6. Secondaries ballistic trajectory representation in ECI frame

Energy-Optimal CAM with tangential thrust

In accordance with the proposed solution flow, the first analysed algorithm is the EO CAM with
Chan’s PoC boundary constraint. Especially, Fig. 7 displays the collision probability for CAMs
with a tangential firing after a numerical integration of the dynamics with the solution provided by
the motion linearization. In all scenarios, there is a good agreement between the enforced PoC value
and the resulting one after a numerical integration with few exceptions: LEOH2HRD experience
a deviation of one order of magnitude with regard to the reference PoC. Notwithstanding, the EO
solution serves just as a guess for a more applicable fuel-optimal policy.
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Figure 7. Collision probability for the EO CAM. The initial maneuvering points go
from 0.5 to 8 before TCA.

Pertaining to the ∆v manoeuvre cost in Fig. 8, it appears evident that designing CAMs before-
hand saves fuel with a decreasing trend even at 8 orbits before TCA. This figure of merit is worth
comparing with the FO counterpart presented in the section below (Fig. 10).

Figure 8. ∆v cost for the EO CAM. The initial maneuvering points go from 0.5 to 8 before TCA.

Fuel-Optimal CAM with tangential thrust

Moving on to FO CAMs, after a numerical integration for results validity, PoC assessment shows
that no accuracy concern occurs other than to the LEOH2TRD case when thrusting tangentially
close to conjunction. That said, the error is still within one order of magnitude if likened to 10−6.
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Figure 9. Collision probability for the FO CAM. The initial maneuvering points go
from 0.5 to 8 before TCA.

∆v follows the same pattern as the EO solution, saving even more fuel with the FO strategy, as
seen in Fig. 10. Notably, in some combinations of initial maneuvering point/scenario ∆v is down
by two or three times.

Figure 10. ∆v cost for the FO CAM. The initial maneuvering points go from 0.5 to 8 before TCA.

Fig. 11 reports the bang-bang acceleration profile typical of a FO approach close to conjunction.
The orange line links to the EO tangential CAM and the black one to the FO policy. Given that
amax is approximately one order of magnitude higher than the maximum EO acceleration norm, the
engine are on for roughly 150 s. If compared to traditional continuation techniques, the presented
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Figure 11. Acceleration profile for a relatively short notification maneuver

pipeline is not influenced by steep thrust variations and short firings. Noteworthy, if the EO CAM is
lagging behind too much, the FO strategy may not cope with it. Planning CAMs in advance makes
the EO solution experience lower acceleration levels as seen in Fig. 12, limiting fuel expenditure.
Nonetheless, satellite operators have to take into account additional constraints: Earth’s shadowing,
objects’ uncertainty evolution, and communication shutdowns.

Figure 12. Acceleration profile for a long notification maneuver

Lastly, an equivalent Bplane depicts the maneuver effect at conjunction in Fig. 13. The rhom-
boidal markers are tied to the primary following a ballistic trajectory. Dots refer to the EO CAM
while triangles to the FO equivalent. The EO and FO procedure make the primary land on an
iso-probability ellipse as expected by Chan’s PoC model.
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Figure 13. Bplane position for the primary on ballistic (rhomboid), EO (dots), and
FO (triangles) trajectories.

When it comes to computational time in Fig 14, it encompasses tb computation, the guess-firing
window selection, and the semianalytical iterative scheme. The envisioned procedure for tangential
CAMs takes less than 0.1 s in almost every scenario without dependence on the starting point.
The reason being, exploiting analytical propagators within the NLP formulation does not hinder
efficiency.

Figure 14. Computational time for the FO CAM. The initial maneuvering points go
from 0.5 to 8 before TCA.
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CONCLUSIONS

This work intended to provide novel approaches for the design of a collision avoidance maneuver
with tangential bang-bang control strategies. In this regard, a semi-analytical procedure for the
solution of the Advanced Notification CAM problem has been presented, firstly by formulating the
problem as a TPBVP, and then transforming it into an NLP problem. The analytical propagator
developed by Bombardelli et al. in12 has been exploited to drastically curb the computational time
and attain a satisfactory PoC level. One could improve the model with intermediate evaluations
of the analytical expression that describes the evolution of the generalized coordinates (q1, q2, q3)
along a single thrusting arc. A useful add-on would be optimizing more firing widows all at once
instead of constraining to a single one. Eventually, the pipeline could move the EO CAM showcased
in18 to a FO framework when facing three boundary value problems with return to the nominal orbit
besides CAM design.
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