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A B S T R A C T

Recent advances in the development of reconfigurable batteries pave the way for novel DC microgrid
architectures that eliminate the need for DC–DC converters. The present study is focused on the control of
a microgrid comprising a battery system with three reconfigurable strings to flexibly operate two electric
vehicle (EV) fast chargers, a photovoltaic (PV) system, and a grid-tie inverter. The primary control tasks are
to dynamically connect the individual battery strings to the other system components through a busbar matrix,
and to manage the energy exchange with the AC grid. The paper formulates the control tasks as a mixed-integer
linear optimization problem, virtually splitting the system into three parallel representations, each constructing
the perspective of one battery string on the busbar matrix. The functionality of the proposed control is assessed
through simulation scenarios using actual PV production and EV charging data of a prototype installed on the
Danish island of Bornholm. To quantify the performance, the optimizer is compared with a heuristic control.
Considering grid energy costs and revenues through EV charging, the optimal control increased the profit by
5.4% in the summer and 13.0% in the winter scenario, with respect to the benchmark control.
1. Introduction

Batteries are expected to play a key role in future power systems.
As an energy storage with fast response time and high power capa-
bility they qualify for various applications, such as electric vehicles
(EV) [1] or stationary storage systems for supporting the electricity
network [2,3]. The increasing number of EVs requires the development
of sufficient charging infrastructure to fulfill charging needs and mit-
igate typical concerns of potential customers, such as range anxiety
and long charging times [4,5]. In particular, fast chargers of above
50 kW are important assets in locations where short charging times are
required, for instance along high ways or in city centers [6]. However,
high power charging processes can stress distribution grids [7,8], which
makes the deployment of fast chargers dependent on the local grid
conditions.

One solution is to equip fast charging stations with stationary
battery storage [9]. The battery serves as a power and energy buffer,
which allows to install charging stations in places where reinforcing the
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existing grid infrastructure entails long-term planning or high invest-
ment costs [10,11]. Energy storage further facilitates the local usage
of renewable energy resources, such as wind and solar, and make
the charging station to a certain degree self-sufficient [12]. Thus, the
connection of renewables, battery energy storage systems (BESS), and
EV chargers in hybrid systems offers the opportunity for a green and
grid-friendly future mobility. Conventionally, the different system com-
ponents have diverse operating voltages and are therefore integrated
via DC–DC converters to a common bus [13]. In this microgrid design,
the power converters have the key task to convert the voltage levels
of the individual units to the bus voltage, and to actively control the
power flow to and from the bus [14,15].

However, recent developments in battery designs pave the way for
novel microgrid layouts that are fundamentally different from con-
ventional architectures. Based on the need of solving cell unbalance
issues, the concept of reconfigurable batteries has emerged in the past
years [16,17]. Reconfigurable batteries can change the topology in
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Fig. 1. Overview of the DC microgrid comprising three reconfigurable battery strings, a grid-tie inverter, a PV system, and two EV fast chargers. The battery strings are directly
connected to the other units through a busbar matrix.
Source: Adapted from [22].
which their cells are connected, making it possible to engage and
bypass individual cells [18]. Hence, each cell is utilized based on
its individual performance, which may increase reliability, lifetime
and effective capacity of the whole battery system. Furthermore, the
achieved flexibility allows to change the battery voltage dynamically
during operation [19]. Recent studies have shown that this capability
enables reconfigurable batteries to be directly connected to other DC
components and actively control the power flow, without interfacing
power converters [20,21].

The H2020 project Insulae explores the potential application of such
reconfigurable batteries in battery-buffered EV fast charging stations
with local renewable generation [22]. As part of the demonstration
activities, a microgrid protopype has been installed on the Danish
island of Bornholm [23]. The microgrid design is free of any DC–
DC converters and relies fully on the controllability provided by the
advanced battery technology. The system comprises three reconfig-
urable battery strings, two EV fast chargers, a PV system, and a grid-tie
inverter. The battery strings can be individually connected to the other
components through a busbar matrix, which serves as the central port
for directing power flows to and from the storage unit. The prototype
is operational and demonstrates the general functionality of this novel
microgrid design with reconfigurable battery technology. The energy
management system (EMS) of the system, responsible for allocating the
components through the busbar matrix and for managing the energy
exchange with the grid, is based on heuristic algorithms and applies
primary control principles.

In future systems and commercial applications, control algorithms
based on optimization have the potential to incorporate all objectives
of the different components and unleash the full potential of this new
system design. While control concepts for conventional DC microgrid
designs have been previously presented in the literature, these cannot
be applied to the new system due to its fundamentally different lay-
out. For the microgrid design at hand, no optimal control has been
developed or explored in the literature to date. The present study
breaks fresh ground by formulating the control tasks as an optimization
problem and has the following main contributions:

• The paper proposes an optimal control approach of a DC microgrid
with three reconfigurable battery strings and busbar matrix, oper-
ated as a fast charging station for electric vehicles accommodating
PV generation.

• The methodology applies a virtual system split into three parallel
representations, each constructing the perspective of one battery
2

string and converting the busbar matrix into a single point of
connection. This allows to seamlessly adapt the formulation for
systems with diverse numbers of battery strings.

• The proposed control is tested in a simulation environment with
actual PV and EV data, recorded at a demosite on the Danish island
of Bornholm where a prototype of the system is installed.

• The performance of the control approach is quantified through
various metrics and compared against a benchmark algorithm.

The remainder of the paper is structured as follows: Section 2
introduces the microgrid layout. Section 3 formulates the optimiza-
tion problem for the control of the system. Section 4 describes the
simulation model that was used to test the developed control. Sec-
tion 5 summarizes and discusses the numerical results, followed by
concluding remarks in Section 6.

2. Microgrid layout

The system at hand comprises a 312 kWh BESS, two 175 kW EV fast
chargers, a 61 kWp PV system, and a 66 kW grid-tied inverter. A high
level overview of the setup is provided in Fig. 1. The BESS forms the
core of the DC microgrid and consists of three strings with reconfig-
urable topology. In the following, the term ‘‘string’’ is exclusively used
for the battery and no other system component. One string consists
of 324 lithium-iron phosphate (LFP) cells with a nominal capacity of
100Ah and a nominal cell voltage of 3.2V, resulting in a total string
energy capacity of 104 kWh. Each cell can be switched in and out of
the series connection, making it possible to dynamically change the
string voltage during operation [21]. Hence, each string can be directly
connected to another DC component without the need of interfacing
power converters.

This facilitates a new system design, where all DC–DC convert-
ers are eliminated from the DC microgrid. Instead, the components
are connected through a busbar matrix, serving as the central port
for power flows within the system. Since the battery strings are the
only components with fully controllable voltage range (0–1000 V), the
following set of connection rules is defined for the busbar matrix:

• PV system, EV chargers, and inverter can only be connected to
battery strings and not among each other.

• Battery strings can only be connected to one other component (PV,
EV, inverter) at a time.
• Battery strings cannot be connected among each other.
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Each of the strings is equipped with a string controller, which
manages the cell configuration to meet the voltage requirements of
the connected component. Relevant system states, such as the state
of energy (SOE) of the string, are transmitted to the battery man-
agement system (BMS). The BMS is the central control unit of the
BESS responsible for ensuring safe operation of the system and can
disconnect strings if they are operated outside their safe operating
area. In the present setup, the battery strings are operated within
10% and 90% of their energy capacity, in order to prevent over- and
undercharging. The functionality of the battery string design has been
demonstrated through a prototype, which is currently operating on the
Danish island of Bornholm [24]. In the following it is therefore assumed
that low-level control aspects such as voltage compatibility between the
microgrid components are successfully accomplished by the BMS.

The energy management system (EMS) is responsible for managing
the energy level of the three strings and has two primary control tasks.
Firstly, it assigns the battery strings to the other components, following
the connection rules of the busbar matrix. Secondly, it plans and
controls the energy exchange with the distribution grid by proposing
the power setpoint of the inverter. The following Section describes how
the EMS control tasks for such a microgrid design are formulated as an
optimization problem.

3. Optimization problem

This Section formulates the optimization problem. First, the oper-
ating task of allocating units through the busbar matrix is tackled by
virtually splitting the microgrid into three parallel representations, each
constructing the perspective of one of the three battery strings. Second,
the constraints for the external components (PV system, EV chargers,
inverter) are defined. Third, the equations defining the operation of
battery strings are introduced. Finally, the objective function is for-
mulated. Table 1 summarizes decision variables, parameters, sets, and
scalars.

3.1. Virtual system split

The busbar matrix allows for each battery string to be connected to
one other component at a time (inverter, EV, PV). Hence, the system
can be seen from the perspective of each string individually. This is
done by splitting the system virtually into three parallel systems, as
shown in Fig. 2. Each system represents the perspective of one of the
strings while disregarding the remaining strings, and is subject to the
busbar constraints summarized in Section 2. The general power balance
equation for a string 𝜁 at each time instance 𝑡 is given by

PV
𝜁,𝑡 + 𝑃 batt,dis

𝜁,𝑡 = 𝑃 ch1
𝜁,𝑡 + 𝑃 ch2

𝜁,𝑡 + 𝑃 batt,ch
𝜁,𝑡 + 𝑃 inv,dc

𝜁,𝑡 , (1)

here the left side of the equation summarizes power flows going into
he busbar matrix, and the right side power flows going out. Specifi-
ally, 𝑃 PV

𝜁,𝑡 is the PV power at time 𝑡, 𝑃 batt,dis
𝜁,𝑡 is the string discharging

ower, 𝑃 ch1
𝜁,𝑡 is the charging power for charger 1, 𝑃 ch2

𝜁,𝑡 is the charging
ower to charger 2, 𝑃 batt,ch

𝜁,𝑡 is the string charging power, and 𝑃 inv,dc
𝜁,𝑡

s the power on the DC side of the inverter. Since the busbar matrix
llows for the battery string to be connected to only one component at
time, binary variables are introduced, each defining the connection

tate between the string and the respective component. For instance,
PV
𝜁,𝑡 is ‘1’ if string 𝜁 is connected to the PV system at time 𝑡, and ‘0’ if not.
imilarly, 𝛾ch1

𝜁,𝑡 , 𝛾ch2
𝜁,𝑡 , and 𝛾 inv

𝜁,𝑡 , define the connection state to charger 1,
harger 2, and the inverter, respectively. The variables are constrained
y
ch1
𝜁,𝑡 + 𝛾ch2

𝜁,𝑡 + 𝛾 inv
𝜁,𝑡 + 𝛾PV

𝜁,𝑡 ≤ 1, (2)

s each battery string can only be connected to one other component
t a time. The three representations of the system are linked through
he following coupling constraints:
∑

𝛾PV
𝜁,𝑡 ≤ 1,

∑

𝛾ch1
𝜁,𝑡 ≤ 1, (3a,b)
3

𝜁∈𝑆 𝜁∈𝑆
Table 1
Nomenclature for decision variables, parameters, and scalars.

Value Unit Description

Sets

𝑡 ∈ 𝑇 ∈  h Set of time instances.

𝜁 ∈ 𝑆 ∈ N+ – Set of battery strings.

∗ – – Superscript that stands for ch1/ch2/PV/inv.

Variables

𝐸batt
𝜁,𝑡 ∈ R+

0 kWh Energy of string 𝜁 .

𝜖batt,up
𝜁,𝑡 ∈ R+

0 kWh Energy difference to upper SOE threshold.

𝜖batt,low
𝜁,𝑡 ∈ R+

0 kWh Energy difference to lower SOE threshold.

𝑃 batt,ch
𝜁,𝑡 ∈ R+

0 kW Charging power of string 𝜁 .

𝑃 batt,dis
𝜁,𝑡 ∈ R+

0 kW Discharging power of string 𝜁 .

𝑃 inv,dc
𝜁,𝑡 ∈ R kW DC inverter power of string 𝜁 .

𝑃 inv,ex,ac
𝜁,𝑡 ∈ R+

0 kW Export AC inverter power from string 𝜁 .

𝑃 inv,im,ac
𝜁,𝑡 ∈ R+

0 kW Import AC inverter power from string 𝜁 .

𝑃 PV
𝜁,𝑡 ∈ R+

0 kW PV power to string 𝜁 .

𝑃 ch1
𝜁,𝑡 ∈ R+

0 kW Power for charger 1 provided by string 𝜁 .

𝑃 ch2
𝜁,𝑡 ∈ R+

0 kW Power for charger 2 provided by string 𝜁 .

𝜌inv,ex
𝜁,𝑡 ∈ R+

0 kW Increase in inverter export power.

𝜌inv,im
𝜁,𝑡 ∈ R+

0 kW Increase in inverter import power.

𝛹 sw
𝑡 ∈ R+

0 e Switching costs.

𝛹PV
𝑡 ∈ R+

0 e PV curtailment costs.

𝛹EV
𝑡 ∈ R+

0 e Costs for not delivered EV energy.

𝛹batt
𝑡 ∈ R+

0 e Costs for exceeding SOE thresholds.

𝛹 inv
𝑡 ∈ R+

0 e Costs for inverter setpoint changes.

𝛼inv
𝜁,𝑡 ∈ [0, 1] – Inverter status: import (0), export (1).

𝛽batt
𝜁,𝑡 ∈ [0, 1] – String status: charging (0), disch. (1).

𝛿∗𝜁,𝑡 ∈ [0, 1] – String status: ‘1’ if getting disconn. from *.

𝛾∗𝜁,𝑡 ∈ [0, 1] – Status of 𝜁 and *: disconn. (0), conn. (1).

Parameters

𝑃 ch1
𝑡 ∈ R+

0 kW Power request at EV charger 1.

𝑃 ch2
𝑡 ∈ R+

0 kW Power request at EV charger 2.

𝑃 PV
𝑡 ∈ R+

0 kW Available PV power.

𝜋inv,im
𝑡 ∈ R e Import electricity price.

𝜋inv,ex
𝑡 ∈ R e Export electricity price.

Scalars

𝛥𝑡 ∈ R+
0 h Time step of optimization intervals.

𝜂inv ∈ R+
0 – Constant fraction of inverter efficiency.

𝜂batt ∈ R+
0 – Constant battery string efficiency.

𝐸batt
max ∈ R+

0 kWh Upper energy limit of battery string.

𝐸batt
min ∈ R+

0 kWh Lower energy limit of battery string.

𝐸batt
pen,up ∈ R+

0 kWh Upper threshold for SOE penalty.

𝐸batt
pen,low ∈ R+

0 kWh Lower threshold for SOE penalty.

𝑃 inv
loss,con ∈ R+

0 kW Constant fraction of inverter losses.

𝑃 batt
max ∈ R+

0 kW Maximum absolute power of battery string.

𝑃 inv,im
max ∈ R+

0 kW Maximum import power at grid connection.

𝑃 inv,ex
max ∈ R+

0 kW Maximum export power at grid connection.

𝜉PV ∈ R+
0 e/kWh Penalty for curtailing PV energy.

𝜉EV ∈ R+
0 e/kWh Penalty for not delivering requested EV energy.

𝜉inv ∈ R+
0 e/kW Penalty for changing inverter setpoint.

𝜉sw,* ∈ R+
0 e Penalty for switching battery string.

𝜉batt,up ∈ R+
0 e/kWh Penalty for exceeding upper SOE threshold.

𝜉batt,low ∈ R+
0 e/kWh Penalty for exceeding lower SOE threshold.

∑

𝜁∈𝑆
𝛾ch2
𝜁,𝑡 ≤ 1,

∑

𝜁∈𝑆
𝛾 inv
𝜁,𝑡 ≤ 1. (3c,d)
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Fig. 2. Virtual system split into three parallel representations. Each representation constructs the perspective of one of three battery strings, converting the busbar matrix into a
single connection point to which the external components are linked.
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These constraints are imposed by the busbar matrix and make sure that
only one string is connected to the same components at the same time.
Additional binary variables 𝛿∗𝜁,𝑡 are introduced to specify if at time 𝑡,
string 𝜁 gets disconnected from unit ∗ (EV chargers, PV, inverter):

𝛿PV
𝜁,𝑡 ≥ 𝛾PV

𝜁,(𝑡−1) − 𝛾PV
𝜁,𝑡 , 𝛿ch1

𝜁,𝑡 ≥ 𝛾ch1
𝜁,(𝑡−1) − 𝛾ch1

𝜁,𝑡 , (4a,b)

𝛿ch2
𝜁,𝑡 ≥ 𝛾ch2

𝜁,(𝑡−1) − 𝛾ch2
𝜁,𝑡 , 𝛿inv

𝜁,𝑡 ≥ 𝛾 inv
𝜁,(𝑡−1) − 𝛾 inv

𝜁,𝑡 . (4c,d)

These variables allow for setting a price 𝛹 sw
𝑡 for switching actions

to avoid unnecessary switching between the strings and the other
components:

𝛹 sw
𝑡 =

∑

𝜁∈𝑆

(

𝜉sw,ch ⋅ (𝛿ch1
𝜁,𝑡 + 𝛿ch2

𝜁,𝑡 ) + 𝜉sw,inv ⋅ 𝛿inv
𝜁,𝑡 + 𝜉sw,PV ⋅ 𝛿PV

𝜁,𝑡
)

, (5)

where 𝜉sw,ch, 𝜉sw,inv, 𝜉sw,PV are penalization costs for EV chargers,
inverter, and PV system, respectively. Such costs need to be set ac-
cording to the characteristics of each component and according to
the strategy that the optimizer needs to pursue. The setting of such
terms is discussed in relation to the case study further in the paper.
The connection state variables 𝛾*

𝜁,𝑡 further allow to put constraints on
the power flow between the strings and the individual components, as
described in the following subsection.

3.2. PV system, EV chargers, and inverter

The available PV power 𝑃 PV
𝑡 can only flow to string 𝜁 , if the two

nits are connected through the busbar matrix. Hence, the constraints
or the actual PV power to the string are defined by

≤ 𝑃 PV
𝜁,𝑡 ≤ 𝛾PV

𝜁,𝑡 ⋅ 𝑃
PV
𝑡 . (6)

o incentivize the use of local PV production, curtailment of PV energy
hould be avoided. Hence, a curtailment penalty is defined as

PV
𝑡 = 𝜉PV ⋅

(

𝑃 PV
𝑡 −

∑

𝜁∈𝑆
𝑃 PV
𝜁,𝑡

)

⋅ 𝛥𝑡, (7)

here 𝜉PV is a penalization factor defining the costs for curtailed PV
nergy (e/kWh), and 𝛥𝑡 is the time step of the optimization.

For EV charging, the power requests at the two chargers, 𝑃 ch1
𝑡 and

ch2
𝑡 , can only be met if a string is connected to the corresponding
harger. Furthermore, a string should only be connected to a charger
uring the energy transfer to an EV. These constraints are summarized
n the following equations:

≤ 𝑃 ch1
𝜁,𝑡 ≤ 𝛾ch1

𝜁,𝑡 ⋅ 𝑃 ch1
𝑡 , (8a)

≤ 𝑃 ch2
𝜁,𝑡 ≤ 𝛾ch2

𝜁,𝑡 ⋅ 𝑃 ch2
𝑡 , (8b)

ch1 ≤ 𝑃 ch1∕W, (8c)
4

𝜁,𝑡 𝑡 s
ch2
𝜁,𝑡 ≤ 𝑃 ch2

𝑡 ∕W. (8d)

cost 𝛹EV
𝑡 is introduced that penalizes energy that was requested at

he EV chargers, but not delivered. The cost is calculated as

EV
𝑡 = 𝜉EV ⋅

(

𝑃 ch1
𝑡 + 𝑃 ch2

𝑡 −
∑

𝜁∈𝑆
(𝑃 ch1

𝜁,𝑡 + 𝑃 ch2
𝜁,𝑡 )

)

⋅ 𝛥𝑡, (9)

here 𝜉EV is a penalization factor defining the costs for not delivered
V energy (e/kWh).

In case of the inverter, a distinction is made between the AC
nd the DC side, to account for the power losses of the component.
urthermore, the bidirectional capability requires to represent the AC
ower by two parts 𝑃 inv,ex,ac

𝜁,𝑡 and 𝑃 inv,im,ac
𝜁,𝑡 , corresponding to grid export

nd import, respectively. The direction is defined by a binary variable
inv
𝜁,𝑡 that is ‘1’ for grid export, and ‘0’ for import. Using the two binary
ariables 𝛼inv

𝜁,𝑡 and 𝛾 inv
𝜁,𝑡 , the constraints for the AC grid power are

ummarized by the following equations:

≤ 𝑃 inv,ex,ac
𝜁,𝑡 ≤ 𝛾 inv

𝜁,𝑡 ⋅ 𝑃 inv,ex
max , (10a)

≤ 𝑃 inv,im,ac
𝜁,𝑡 ≤ 𝛾 inv

𝜁,𝑡 ⋅ 𝑃 inv,im
max , (10b)

≤ 𝑃 inv,ex,ac
𝜁,𝑡 ≤ 𝛼inv

𝜁,𝑡 ⋅ 𝑃 inv,ex
max , (10c)

≤ 𝑃 inv,im,ac
𝜁,𝑡 ≤ (1 − 𝛼inv

𝜁,𝑡 ) ⋅ 𝑃
inv,im
max . (10d)

qs. (10a) and (10b) ensure that energy exchange with the grid only
ccurs if the inverter is connected to the string, and Eqs. (10c) and
10d) ensure that it is either exported or imported. The power losses
f the inverter are modeled with two parts. Firstly, a loss fraction
ith linear dependency on the inverter power is considered through
constant efficiency 𝜂inv. Secondly, constant losses 𝑃 inv

loss,con through
nverter auxiliary systems occur when the inverter is active. Hence, the
elation between AC and DC power of the inverter is given by

inv,dc
𝜁,𝑡 =

𝑃 inv,ex,ac
𝜁,𝑡

𝜂inv − 𝑃 inv,im,ac
𝜁,𝑡 ⋅ 𝜂inv + 𝛾 inv

𝜁,𝑡 ⋅ 𝑃 inv
loss,con. (11)

ore information on the inverter efficiency model is presented in
ection 4. To reduce the impact of the microgrid on the AC distribution
rid, a cost 𝛹 inv

𝑡 for increasing the inverter power setpoint is defined:

inv
𝑡 = 𝜉inv ⋅ (𝜌inv,ex

𝜁,𝑡 + 𝜌inv,im
𝜁,𝑡 ), (12a)

inv,ex
𝑡 ≥

∑

𝜁∈𝑆
(𝑃 inv,ex,ac

𝜁,𝑡 − 𝑃 inv,ex,ac
𝜁,(𝑡−1) ), (12b)

inv,im
𝑡 ≥

∑

𝜁∈𝑆
(𝑃 inv,im,ac

𝜁,𝑡 − 𝑃 inv,im,ac
𝜁,(𝑡−1) ), (12c)

here 𝜌inv,ex
𝑡 and 𝜌inv,im

𝑡 (kW) are increases in the inverter power
inv
etpoint for grid export and import, respectively, and the parameter 𝜉
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Fig. 3. Overview of the simulation structure for testing the control model.
s a penalization factor defining the costs for power increase (e/kW)
linked to the user’s grid connection fees.

3.3. Battery strings

As for the inverter, the battery string power has two possible direc-
tions, represented by the binary variable 𝛽batt

𝜁,𝑡 . The variable takes the
value ‘0’ for charging, and ‘1’ for discharging. Charging is only possible
if the battery string is connected to either the PV system or the inverter,
while discharging is only possible if the string is connected to one of
the two chargers or the inverter. This is being ensured by the following
constraints:

1 − 𝛽batt
𝜁,𝑡 ≤ 𝛾PV

𝜁,𝑡 + 𝛾 inv
𝜁,𝑡 , (13a)

batt
𝜁,𝑡 ≤ 𝛾ch1

𝜁,𝑡 + 𝛾ch2
𝜁,𝑡 + 𝛾 inv

𝜁,𝑡 . (13b)

he string power is composed of two separate components for charging
nd discharging. Since both are mutually exclusive at the same time
nstance 𝑡, 𝛽batt

𝜁,𝑡 is used to constrain their upper limit through

≤ 𝑃 batt,ch
𝜁,𝑡 ≤ (1 − 𝛽batt

𝜁,𝑡 ) ⋅ 𝑃 batt
max , (14a)

≤ 𝑃 batt,dis
𝜁,𝑡 ≤ 𝛽batt

𝜁,𝑡 ⋅ 𝑃 batt
max , (14b)

here 𝑃 batt,ch
𝜁,𝑡 and 𝑃 batt,dis

𝜁,𝑡 are charging and discharging power, respec-
ively. The energy stored in a battery string is defined by the following
onstraints:
batt
min ≤ 𝐸batt

𝜁,𝑡 ≤ 𝐸batt
max, (15a)

batt
𝜁,𝑡 = 𝐸batt

𝜁,(𝑡−1) −
(𝑃 batt,dis

𝜁,𝑡

𝜂batt − 𝑃 batt,ch
𝜁,𝑡 ⋅ 𝜂batt

)

𝛥𝑡, (15b)

where 𝐸batt
min and 𝐸batt

max are the minimum and maximum string energy,
respectively, 𝜂batt is the string efficiency, and 𝛥𝑡 is the time step of the
optimization.

A cost 𝛹batt
𝑡 is introduced when operating the battery system close

to its maximum and minimum energy limits. Continuously operating
the battery close to its maximum energy limit accelerates battery
degradation. Conversely, if the battery has a low charge level and more
EVs arrive than predicted, those vehicles could not be charged. For
this reason, upper and lower energy limits 𝐸batt

pen,up and 𝐸batt
pen,low are

introduced. When crossing these limits, penalization factors 𝜉batt,up and
𝜉batt,low (e/kWh/h) apply to the energy difference above the upper
limit 𝜖batt,up

𝜁,𝑡 or below the lower limit 𝜖batt,up
𝜁,𝑡 , respectively. The battery

energy level costs are summarized in the following equations:

𝛹batt
𝑡 = (𝜉batt,up ⋅ 𝜖batt,up

𝜁,𝑡 + 𝜉batt,low ⋅ 𝜖batt,up
𝜁,𝑡 ) ⋅ 𝛥𝑡, (16a)

𝜖batt,up
𝜁,𝑡 >=

∑

𝜁∈𝑆
𝐸batt
𝜁,𝑡 − 𝐸batt

pen,up, (16b)

𝜖batt,low
𝜁,𝑡 >= 𝐸batt

pen,low −
∑

𝐸batt
𝜁,𝑡 . (16c)
5

𝜁∈𝑆
3.4. Objective function

The objective function 𝐽 addresses multiple control aspects and is
formulated as a minimization problem with regard to the set of decision
variables (D.V.). The goals are to minimize the grid energy costs (import
costs minus revenues from export), and the penalization costs for PV,
EV, inverter, and the battery system:

min
𝐷.𝑉 .

𝐽 =
∑

𝑡∈𝑇

(

(

𝜋inv,im
𝑡 ⋅

∑

𝜁∈𝑆
𝑃 inv,im,ac
𝜁,𝑡

− 𝜋inv,ex
𝑡 ⋅

∑

𝜁∈𝑆
𝑃 inv,ex,ac
𝜁,𝑡

)

⋅𝛥𝑡

+ 𝛹 sw
𝑡 + 𝛹PV

𝑡 + 𝛹EV
𝑡 + 𝛹 inv

𝑡 + 𝛹batt
𝑡

)

,

(17)

where 𝜋inv,im
𝑡 and 𝜋inv,ex

𝑡 are the electricity prices (e/kWh) for import-
ing and exporting energy from/to the grid, respectively. The different
penalization factors 𝜉* can be set to prioritize specific control goals.
This will be further addressed in Section 4.3.

4. Simulation model

This Section describes the simulation environment that is used to
test the proposed optimization algorithm. First, the simulation structure
is presented. Then, the data used to create the test scenarios are
introduced. Finally, the parameter settings of the optimization are
defined.

4.1. Simulation structure

The performance of the proposed optimization is assessed in a
simulation environment using the tools Matlab & Simulink [25] and
CPLEX [26]. Fig. 3 provides an overview of the simulation structure. A
mathematical model of the microgrid developed in Matlab & Simulink
was adopted from a previous work [22]. This physical model represents
the characteristics and dynamic states of the microgrid components.
The CPLEX optimizer is integrated into the simulation environment and
acts as the EMS of the system. As such, it is called in intervals of 𝛥𝑡 =
5min and provided with the current system states, as well as with a 3 h
rolling forecast for expected EV charging demand, PV production, and
electricity prices. When called, the optimizer calculates the setpoints
for busbar matrix and inverter power in intervals of 𝛥𝑡 = 5min for the
3 h horizon, and returns the proposed setpoints to the physical system.
The physical model applies the setpoints and simulates the next 5min.
The system states after this interval may be different than predicted,
for instance due to inaccuracies in the forecast. Hence, the optimizer
is called again with updated system states and forecasts to re-evaluate
the setpoints for busbar matrix and inverter. As depicted in Fig. 3, this

procedure is repeated throughout the simulation.
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Fig. 4. Generic daily EV forecast pattern used to create a 3 h rolling forecast of EV
charging.

4.2. Input data

EV charging data are available from the demosite on Bornholm,
where the prototype is operated. All charging events recorded between
June 2021 and March 2022 were filtered to only consider sessions with
a charged energy of at least 10 kWh and an average charging power
of above 40 kW. The remaining 102 charging sessions were sorted by
their respective arrival time – day of the week and time of the day – to
create a 7-day timeseries of charging requests at the two EV chargers.
A queue management algorithm was applied to assign arriving EVs to
the chargers depending on their availability. In case both chargers were
occupied, arriving EVs queued to be recharged.

To challenge the developed optimization algorithm with unforeseen
charging events, the exact arrival time of the vehicles remains con-
cealed to the EMS. Instead, a generic forecast profile was created, where
the charging request of all days was averaged in intervals of 40 min.
Fig. 4 shows this EV consumption pattern, which is used to provide a
rolling 3 h forecast horizon for the optimizer. It is assumed that when
an EV connects to one of the chargers, the optimizer is informed about
charging duration and energy request of this specific charging session.

For the PV system, actual production data from the microgrid
were used to create two different scenarios with different levels of PV
power. The first timeseries was recorded from June 1st–7th, 2021, and
represents a period with high PV potential, while the second timeseries
was recorded from November 1st–7th, 2021, representing a period
with low PV potential. The electricity prices for imported and exported
energy were considered with historical values for the same periods
as the PV data. The electricity prices comprise the hourly intraday
price [27], TSO tariffs, and DSO tariffs. TSO tariffs [28] for imported
energy include system tariffs (‘‘Systemtarif’’), grid tariffs (‘‘Nettarif’’),
and balancing tariffs for consumption (‘‘Balancetarif for forbrug’’), and
for exported energy feed-in tariffs (‘‘Indfødningstarif’’) and balancing
tariffs for production (‘‘Balancetarif for produktion’’). DSO tariffs arise
only for imported energy and are dependent on the time of the day, the
day of the week, and the season, as further specified in [29].

4.3. Optimizer settings

Table 2 summarizes the optimizer settings in the simulation model.
As mentioned in Section 3.4, the penalty costs can be set to prioritize
specific control goals. In the presented use case, EV charging has the
highest priority, as it is the service provided to the customers and the
main source of profit. Hence, the penalty of 10e∕kWh for not delivering
energy requested by the EVs is based on the value of lost load (VoLL)
for private end users [30]. Similarly, the penalty for PV curtailment of
0.1e∕kWh is based on the levelized cost of energy (LCOE) of rooftop PV
system [31]. The costs of 0.02e∕kW for changing the inverter setpoint
incentivize grid-friendly operation with a constant progression of the
inverter power. Yet, the value is low enough to allow a full step up
to the available grid capacity (0.86e) when the battery needs to be
6

recharged through the grid in periods with high EV utilization. The o
Table 2
Optimizer settings in the simulation model.

Scalar Value

Penalization

𝜉EV 10e∕kWh

𝜉PV 0.1e∕kWh

𝜉inv 0.02e∕kW

𝜉sw,ch 1e

𝜉sw,inv 0.5e

𝜉sw,PV 0.25e

𝜉batt,up 0.0017e∕kWh∕h

𝜉batt,low 0.1e∕kWh∕h

Battery

𝐸batt
max 85% ⋅ 𝐸batt

N

𝐸batt
min 15% ⋅ 𝐸batt

N

𝐸batt
pen,up 70% ⋅ 3𝐸batt

N

𝐸batt
pen,low 40% ⋅ 3𝐸batt

N

𝜂batt 92.5%

Inverter

𝜂inv 98.35%

𝑃 inv
loss,con 111W

𝑃 inv,ex
max 43 kW

𝑃 inv,im
max 39.5 kW

switching costs for disconnecting battery strings from other components
are set in descending order from chargers, inverter, to PV system, to
avoid switching strings during charging sessions and preferably use
inverter and PV system to achieve the desired overall charge level.
The upper SOE penalization 𝜉batt,up, applied when the total battery
SOE exceeds 70%, considers the increasing calendar degradation of
LFP cells between 70% and 90%. Based on [32], the degradation was
estimated as 1.5⋅10−5 %∕h for each percent that the upper SOE threshold
is exceeded. Considering a battery cost of 550e∕kWh [33], the upper
SOE penalization was calculated as 0.0017e∕kWh∕h. Furthermore, the
penalization cost of 0.1e∕kWh∕h when the system’s SOE drops below
40% was set above the average grid export price of 0.08e∕kWh, and
nsures that the optimizer aims at maintaining a certain energy buffer
or unforeseen charging events. The remaining parameters presented in
able 2 are directed at the respective component properties of inverter
nd battery strings, as introduced in Sections 3.2 and 3.3.

. Results and discussion

This Section presents the results obtained from the simulation runs.
irst, the functionality of the proposed control is discussed for the
ummer scenario. Second, the results of the winter scenario are shown.
inally, the results from both scenarios are quantified through a set
f metrics, and compared with the results achieved by a benchmark
ontrol.

.1. Summer week

The first scenario covers the simulation of a summer week with
ctual PV production data from June 1st–7th, 2021. Fig. 5 shows a
epresentative excerpt of this simulation of two of the days, June 4th
nd 5th. It can be seen that the trend of the available PV power
hows clear differences between the two days. While June 4th shows an
ntermittent production profile due to cloud coverage, June 5th offers a
elatively smooth progression of the available PV power. The requested
ower at the two fast chargers is significantly higher compared to
he PV system, ranging between 45 kW and 160 kW for the shown
ime period. In this regard, please note the different 𝑦-axis scaling of
he two upper subplots. The EV consumption forecast provides the

ptimizer with a certain degree of preparation for periods in which
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Fig. 5. Excerpt of two representative days, June 4th and 5th, from the simulated summer scenario.
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higher energy demand is expected. However, as in real life applications,
the actual charging request remain unknown to the chargers until the
EVs connect. The progression of the inverter power is presented in
the third subplot, with positive values corresponding to export and
negative values corresponding to import. It can be seen that in the
shown period more energy is imported than exported. The last subplot
shows the SOE for the three battery strings, as well as the average
value representing the system SOE. Due to the penalization on system
SOE values of below 40%, the optimizer usually keeps the charge level
above this level. However, periods with intense EV charging can bring
the charge level below 40%. In such situations, the inverter imports
energy from the grid to restore the SOE. Conversely, when the power
consumption through EVs is expected to be low, the inverter is used
to generate revenues by exporting energy to the grid. This is apparent
during the night from June 4th to 5th, where String 3 is discharged
from 59% to 19%, causing the system SOE to approach 40%. Another
key moment occurs at 14:00 on June 4th, when PV energy is curtailed.
At this moment, an EV arrives at Charger 1 in addition to the EV
already charging at Charger 2. As a response to the rapidly dropping
system SOE, the optimizer disconnects String 3 from the PV system
and connects it to the inverter instead which provides a higher import
power than the PV potential at this time. PV power is resumed directly
when the EV at Charger 2 disconnects, allowing to assign String 2 to
the PV system. A similar situation occurs 15 min later, with the PV
curtailment lasting for 10 min.

5.2. Winter week

The second scenario covers the simulation of a winter week, using
data from November 1st–7th, 2021. Fig. 6 shows a representative
excerpt of two of the days, November 1st and 2nd. Compared with
the first scenario, the PV potential is significantly lower, both in terms
of peak power and total energy. Consequently, the grid exchange is
characterized by notable grid import in order to meet the EV demand.
Grid export is only performed when the expected EV consumption
is low and the storage charge level sufficiently high. The buffering
effect of the battery storage on the grid is apparent when comparing
the power profiles of the inverter and the two EV chargers. The grid
exchange is characterized by periods with constant power, while the EV
charging pattern is intermittent and at significantly higher power levels
ranging from 51 kW up to 128 kW on these two days. Furthermore, the
battery allows to cover EV demand with local PV production even when
the coincidence factor between the units is low, as on November 1st. On
7

this winter day, the available PV energy allows to increase the average E
battery SOE from 59% to 72%, until the EVs arriving from 11:40 lead to
a successive decrease of the charge level. As in the summer scenario, the
penalty on SOE values below 40% incentivizes the optimizer to increase
the inverter setpoint in periods where the charge level drops below
this value. This provides an important energy buffer for periods where
the energy demand from EVs is unexpectedly high. For instance, the
six charging sessions after 19:45 on November 2nd required 117 kWh,
which is 2.5 times of what the EV forecast assumed for this period.
Consequently, the inverter is used to restore the charge level back to
40% which allows to meet unforeseen charging events in the upcoming
hours.

5.3. Comparative analysis

The results of the 1-week simulations are further quantified through
several key metrics summarized in Table 3, to assess the performance of
the proposed control in the two scenarios. The metrics are categorized
in groups related to EV charging, PV system, grid exchange, and
economical considerations. For EV charging, the delivered energy of
all 102 charging sessions is compared with the energy requested by
the EVs. Since both the summer and the winter scenario are simulated
with the same 1-week EV charging pattern, the requested energy is the
same in both cases. The charging system controlled by the optimizer
managed to fulfill the EV demand with 99.8% and 98.2% in the summer
and winter scenario, respectively. For the PV system, the values of
available and utilized energy are compared. One difference between
the two scenarios is the significant contrast in available energy, with
the summer week offering a more than ten times higher PV potential
than the winter week. From the available PV energy, the optimizer
utilized 99% in the summer scenario, and 92.1% in the winter scenario.
The grid exchange is characterized by a higher import than export in
both seasons, yet, with different shares. While in the simulated summer
week the exported energy was around half of the imported energy, in
the winter week 58 kWh exported energy compares against 2.9MWh
mported energy. Another important metric is the self-sufficiency of the
ystem, which states what percentage of the consumed EV energy was
rovided by the local PV system. The calculations were based on [34],
nd gave values of 69% for the summer week, and 6% for the winter
eek. The accumulated energy costs for the grid exchange are negative

n both seasons, since generally more energy is imported than exported.
n winter, the loss is around 5 times higher than in summer, due to the
igher energy import and almost no export. However, the grid energy
osts are relatively small compared to the revenues generated through

V charging, calculated based on charging costs of 0.8e∕kWh. All in
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Fig. 6. Excerpt of two representative days, November 1st and 2nd, from the simulated winter scenario.
Table 3
Summary of simulation results for summer and winter scenario, and comparison to benchmark algorithm.

Category Metric Optimization Heuristic control [22]

Summer week Winter week Summer week Winter week

EV charging
Requested energy 2766 kWh 2766 kWh 2766 kWh 2766 kWh
Delivered energy 2761 kWh 2718 kWh 2622 kWh 2428 kWh
Ratio 99.8% 98.2% 94.8% 87.8%

PV system
Available energy 2546 kWh 239 kWh 2546 kWh 239 kWh
Utilized energy 2520 kWh 220 kWh 2546 kWh 239 kWh
Ratio 99% 92.1% 100% 100%

Grid exchange
Exported energy 548 kWh 58 kWh 824 kWh 29 kWh
Imported energy 1157 kWh 2914 kWh 1921 kWh 2541 kWh
Self-sufficiency [34] 69% 6% 57% 9%

Economics
Grid energy costs 76e 396e 75e 369e
Revenues EV charging 2208e 2174e 2097e 1943e
Total profit 2132e 1778e 2022e 1574e
all, the slightly higher delivered EV energy together with lower grid
energy costs make the simulated summer week more profitable than
the winter week.

To compare the performance of the proposed optimization against
a benchmark, a heuristic control algorithm from a previous study [22]
was tested with the same scenarios. The results were assessed with
the same metrics and are also summarized in Table 3. While the
heuristic control utilizes all the available PV energy in both scenarios,
it performs worse in EV charging. In the summer week, 94.8% of
the requested energy at the EV chargers was delivered, while in the
winter week this value was 87.8%. This highlights the strength of the
optimizer, which weights the different objectives against each other
and, for instance, curtails PV energy if the solar potential is low during
intervals of high EV utilization. This becomes particularly apparent in
the winter scenario, where the optimizer curtailed around 8% of the
available PV energy to allow for reliable EV charging. Furthermore,
the optimizer achieves a higher self-sufficiency despite the curtailed
PV energy, since generally more energy is delivered to the EVs. In
the economical comparison, the difference in grid energy costs are
marginal. However, the higher revenues through EV charging make the
optimizer the more profitable management system, increasing the profit
by 5.4% in the summer and 13.0% in the winter scenario, with respect
to the benchmark control.

6. Conclusion

The present study proposes an energy management system based
8

on optimization for controlling a DC microgrid with busbar matrix
and modular battery storage. The presented system design comprises
three reconfigurable battery strings, which can be directly connected
to other DC components through a busbar matrix, without the need
of interfacing DC–DC converters. The main tasks of the management
system is to dynamically assign the individual battery strings to the
other system components, namely two EV fast-chargers, a PV system,
and a grid connected inverter, and to control the power exchange
with the primary grid. The proposed MILP optimization performs a
virtual system split into three separate representations, where each
subsystem is considering the busbar matrix from the perspective of
one single battery string. The three system representations are linked
through coupling constraints imposing the connection rules of the
busbar matrix.

The performance of the control approach was assessed in a sim-
ulation environment consisting of a Matlab&Simulink model of the
physical system, with integrated CPLEX optimizer for solving the op-
timization problem. The test scenarios were based on PV production
patterns and EV charging behavior at an actual prototype of this
new microgrid design. The simulations demonstrated the functionality
of the proposed control method. To quantify the performance, the
optimizer was compared with a heuristic control, which was tested
with the same scenarios. While the benchmark control fully utilized
the available PV energy, the proposed optimization algorithm curtailed
PV energy during periods of low solar potential and high EV demand.
By utilizing the grid connection instead to recharge the battery strings,
the optimal control provided an important energy buffer for intervals
with unexpectedly high EV charging. Hence, the optimizer was able to
deliver on average 99.0% of the total energy requested by all EVs, while
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the heuristic control achieved 91.3%. Taking into account grid energy
costs and revenues through EV charging, the optimal control method
increased the profit by 5.4% in the summer and 13.0% in the winter
scenario, with respect to the benchmark control.
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