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Abstract
We propose a discrete random effects multinomial regression model to deal with estimation
and inference issues in the case of categorical and hierarchical data. Random effects are
assumed to follow a discrete distribution with an a priori unknown number of support points.
For a K -categories response, the modelling identifies a latent structure at the highest level of
grouping, where groups are clustered into subpopulations. This model does not assume the
independence across randomeffects relative to different response categories, and this provides
an improvement from themultinomial semi-parametricmultilevelmodel previously proposed
in the literature. Since the category-specific random effects arise from the same subjects, the
independence assumption is seldom verified in real data. To evaluate the improvements
provided by the proposed model, we reproduce simulation and case studies of the literature,
highlighting the strength of the method in properly modelling the real data structure and the
advantages that taking into account the data dependence structure offers.

Keywords Discrete random effects · Multinomial regression · Unsupervised clustering ·
Multivariate statistics · Higher education

1 Introduction and Literature

This paper contributes to the existing literature on multinomial models, hierarchical data and
unsupervised clustering by proposing an innovative multinomial model with discrete random
effects.

In the framework of generalized linear models, multinomial outcomes have traditionally
been treated separately from other response distributions. Indeed, it is more appropriate to
considermultinomialmodels asmultivariate generalized linearmodels, as they involvemulti-
ple logits for a multicategory response (Tutz &Hennevogl, 1996). This approach also applies
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when dealing with hierarchical data, such as longitudinal data or repeated measurements,
where observations are naturally nested within groups (Agresti, 2018). Hierarchical data are
commonly analyzed using linear mixed-effects models (Pinheiro & Bates, 2006), that incor-
porate in the linear predictor both fixed effects, associated to the entire population, and random
effects, associated to the groups in which observations are nested, randomly drawn from the
Gaussian-distributed population (Goldstein, 2011). Generalized linear mixed-effects mod-
els (GLMMs) deal with responses that follow distributions in the exponential family, other
than Gaussian (Diggle et al., 2002; Agresti, 2018). However, extending GLMMs to han-
dle unordered categorical responses presents more challenges (Daniels & Gatsonis, 1997;
Hartzel & Agresti, 2001; Hedeker, 2003; Kuss et al., 2007; Wang & Tsodikov, 2010), due
to the increased complexity associated with their modelling. An appropriate link function
for nominal responses is the baseline-category logit, where fixed and random effects vary
according to the response category.

As an alternative to the classical framework characterized byGaussian-distributed random
effects, we propose an innovative approach focused on the random effects of the multinomial
model to provide new perspectives on their interpretation. We introduce a joint multinomial
semi-parametric mixed-effects (JMSPME) model in which the random effects are assumed
to follow a discrete distribution with an a priori unknown number of support points. For
a multinomial response assuming K different categories, we assume the random effects to
follow a joint (K − 1)-variate discrete distribution where each of the (K − 1) marginal
distributions can have a different number of support points. We adopt a baseline-category
logit approach where fixed and random effects parameters are specific to each category.

This approach builds upon the recent literature on mixed-effects linear models with dis-
crete random effects (Aitkin, 1999; Masci et al., 2019), which allow for the identification of a
classification of highest-level units clustered into subpopulations based on their similarity in
effects. Semi-parametric mixed-effects linear models (SLMMs) were initially proposed for
continuous and binary responses (Masci et al., 2019, 2021; Maggioni, 2020), and a recent
attempt has been made for multinomial responses (Masci et al., 2022), addressing a clas-
sification problem with hierarchical data related to engineering students at Politecnico di
Milano (PoliMI). The authors in Masci et al. (2022) propose a multinomial semi-parametric
model with discrete random effects with the aim to profile engineering students of Politec-
nico di Milano (PoliMI) into three categories (early dropout, late dropout and graduated),
given some student personal and career information and considering their nested structure
within engineering degree programmes. As the authors state, the main drawback of their
method is the assumption of independent random effects relative to different response cat-
egories. This assumption simplifies the parameters estimation procedure, but it is a strong
and seldom verified assumption, since the random effects of different logits arise from the
same subjects. Our work mainly comes to tackle this issue as the proposed semi-parametric
multinomial mixed-effects model does not assume the independence across the category-
specific random effects distributions and is able to model different dependence structures
across the multinomial categories. When estimating the parameters, this refinement results
in two main advantages: the former is that we avoid bias in the estimates, induced by the
natural dependence across categories; the latter is that, by jointly estimating the highest level
units effects on the K −1 logits, we better investigate and interpret their trends. The drawback
is that modelling the dependence across categories increases the dimensional complexity of
the estimation procedure, requiring a nontrivial computational improvement.

The discrete random effects approach is also closely connected to a related field of study
known as latent class and trait analysis (LCTA; Heinen, 1996). LCTAmodels aim to estimate
latent traits, but there are key distinctions between our proposal and these models. Firstly,
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LCTA models require a predetermined number of latent classes, whereas our approach does
not. Moreover, our approach handles covariates in a distinct manner compared to LCTA
models.

We employ an estimation procedure based on an expectation-maximization (EM) algo-
rithm inspired by the EM algorithm proposed in (Masci et al., 2022), relative to MSPEM.
The model is also inserted in a clear inferential framework, that was lacking in previous
works within this context. In particular, we complete the estimation procedure by adding the
computation of the standard errors of the estimates and the assessment of the significance of
the coefficients. The variance of maximum likelihood estimators is calculated by the inverse
of the Fisher information matrix. For what concerns random effects significance, the vari-
ance partition coefficient (VPC) for a semi-parametric multinomial mixed-effects model is
proposed.

In summary, the proposed model has several strengths (Rights & Sterba, 2016). Firstly,
by assuming discrete random effects, we can identify a latent structure at the highest level of
the hierarchy, which is a valuable alternative to the ranking provided by assuming Gaussian
random effects. Secondly, the semi-parametric approach is more flexible and does not assume
any specific parametric distribution, allowing for potential estimation of the true distribution
of random effects. Thirdly, when the number of groups is extremely large, the identification
of subpopulations can aid in interpreting the results and reducing dimensionality. Fourthly,
identifying subpopulations provides insights into outlier detection, where the most populated
subpopulations reveal the most frequent trends, while the smallest subpopulations contain
groups with observations exhibiting anomalous behaviors compared to the majority. Lastly,
from a practical perspective, assuming a discrete distribution for random effects allows us to
express the likelihood as a weighted sum instead of amultiple integral, significantly simplify-
ing the estimation procedure of themodel parameters. Indeed, for amultinomial response, the
integration issues typical of GLMMs to estimate the response marginal distribution become
more complex (De Leeuw et al., 2008), requiring numerical approximations to evaluate the
integral over the random effects distribution. The most commonly used methods are based
on first- or second-order Taylor expansions (Goldstein & Rasbash, 1996), on a combina-
tion of a fully multivariate Taylor expansion and a Laplace approximation (Raudenbush
et al., 2000), or using Gauss-Hermite quadrature (Stroud & Secrest, 1966; Hedeker, 2003).
Nonetheless, these cited procedures are computationally very complex (McCulloch&Searle,
2001), and many authors have reported biased estimates using some of them (Breslow& Lin,
1995; Raudenbush et al., 2000; Rodríguez & Goldman, 1995). Specific software have been
developed to perform these kinds of estimates—among others, HLM (Raudenbush, 2004),
MLwiN (Steele et al., 2005), WinBugs (Spiegelhalter et al., 2003) and Supermix (Hedeker
et al., 2008)—but they tend not to be very flexible and often require a high level of expertise
of the users. Also, procedures implemented in SAS (PROC GLIMMIX, PROC NLMIXED;
Caliński andHarabasz, 2013; Cary, 2015;Kuss et al., 2007), Stata (GSEM;Baum, 2016;Kuss
et al., 2007) and SPSS (Corp., 2021) fit this type of models. In one of the most recent works
on this topic (Hadfield, 2010), the authors develop a Markov chain Monte Carlo (MCMC)
method for multi-response generalized linear mixed models, to provide a robust strategy for
marginalizing the random effects (Zhao et al., 2006). This model is developed in a Bayesian
setting—where the distinction between fixed and random effects does not technically exist—
and the user should define the prior distributions on the parameters. The relativeMCMCglmm
R package (Hadfield, 2010) is, to the best of our knowledge, the only R package (R Core
Team, 2019) that performs parametric mixed-effects multinomial regression.

To properly evaluate the performance of our model and its advantages with respect to its
counterparts, we reproduce both simulation and case studies proposed in Masci et al. (2022),
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with a special focus on the comparison between JMSPME, MSPEM and the parametric
MCMCglmm. Results show that JMSPME performs significantly better than MSPEM, and
estimates are more accurate and have a reduced variance. Moreover, the subpopulations
identified at the highest level of the hierarchy are much more coherent with the ranking
estimated by the parametric MCMCglmm. These evidences frame the JMSPME model as
the enhanced version of its antecedent MSPEM.

The remaining part of the paper is organized as follows: in Section2, we describe the
JMSPME model and its estimation procedure; in Section3, we retrace the simulation study
proposed inMasci et al. (2022) comparing the results of JMSPME andMSPEM; in Section4,
we apply the JMSPME model to the Politecnico di Milano case study presented in Masci et
al. (2022), and we compare its results with the ones obtained by MSPEM and MCMCglmm;
Section5 draws the conclusions.

Software in the form of R code (R Core Team, 2021) together with the simulation study
input data set and complete documentation is available on https://github.com/chiaramasci9/
JMSPME.

2 Methodology: Joint Semi-parametric Mixed-Effects Model
for a Multinomial Response

In this section, we first recall the basics of a mixed-effects multinomial model with discrete
random effects (Section 2.1), and then, we present the JMSPME model and its algorithm
(Section 2.2).

2.1 State of the Art: Multinomial Models with Discrete Random Effects

Consider a multinomial logistic regression model for nested data with a two-level hierarchy
(Agresti, 2018; De Leeuw et al., 2008), where each observation j , for j = 1, . . . , ni , is
nested within a group i , for i = 1, . . . , I . Let Yi = (Yi1, . . . , Yini ) be the ni -dimensional
response vector for observations within the i−th group. The multinomial distribution with
K categories relative to Yi j is the following:

Yi j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 πi j1

2 πi j2

. . .

K πi j K

, (1)

where k = 1, . . . , K indexes the K support points of the discrete distribution of Yi j ,
and πi jk is the probability that observation j within group i assumes value k. Mixed-effects
multinomial models assume that the probability that Yi j = k, i.e., πi jk , is given by

⎧
⎪⎨

⎪⎩

πi jk = P(Yi j = k) = exp(ηi jk)

1 + ∑K
k=2 exp(ηi jk)

for k = 2, . . . , K

πi j1 = P(Yi j = 1) = 1
1+∑K

k=2 exp(ηi jk )

, (2)

where ηi jk = x′
i jαk +z′

i jδik is the linear predictor. xi j is the p×1 covariates vector (includes
a 1 for the intercept) for the fixed effects, αk is the p × 1 vector of fixed effects, zi j is the
q × 1 covariates vector for the random effects (includes a 1 for the intercept) and δik is
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the q × 1 vector of random effects. Logit models for nominal response basically pair each
category with a baseline category. This formulation considers K −1 contrasts, between each
category k, for k = 2, . . . , K , and the reference category,1 that is k = 1. Consequently,
each category is assumed to be related to a latent “response tendency” for that category with
respect to the reference one. Each contrast k′, k′ = 1, . . . , K − 1 is characterized by the set
of contrast-specific parameters (αk′ ; δik′ , for i = 1, . . . , I ), that models the probability of
Yi j being equal to k ≡ k′ + 1 with respect to the probability of Yi j being equal to 1 (the
reference category).2 Starting from Eq.2, the log-odds of each response with respect to the
reference category are as follows:

log

(
πi jk

πi j1

)

= ηi jk k = 2, . . . , K . (3)

For each contrast, the contrast-specific random effects describe the latent structure at the
highest level of the hierarchy.

The maximum likelihood estimation (MLE) method allows to estimate the model param-
eters of this probability distribution.

Considering A = (α2, . . . ,αK ) and �i = (δi2, . . . , δi K ), the distribution of Yi j , condi-
tional on the random effects distribution, takes the following form:

p(Yi j |A,�i ) =π
1{Yi j=1}
i j1 × π

1{Yi j=2}
i j2 × . . . × π

1{Yi j=K }
i j K =

=
K∏

k=1

π
1{Yi j=k}
i jk =

=
K∏

k=1

(
exp(ηi jk)

1 + ∑K
l=2 exp(ηi jl)

)1{Yi j=k}
. (4)

Assuming that Yi j and Yi j ′ are independent for j �= j ′, the conditional distribution of Yi

is as follows:

p(Yi |A,�i ) =
(∑K

k=1

(∑ni
j=1 1{Yi j=k}

))
!

∏K
k=1

((∑ni
j=1 1{Yi j=k}

)
!
) ×

ni∏

j=1

p(Yi j |A,�i ) =

=
(∑K

k=1

(∑ni
j=1 1{Yi j=k}

))
!

∏K
k=1

((∑ni
j=1 1{Yi j=k}

)
!
) ×

ni∏

j=1

K∏

k=1

π
1{Yi j=k}
i jk =

=
(∑K

k=1

(∑ni
j=1 1{Yi j=k}

))
!

∏K
k=1

((∑ni
j=1 1{Yi j=k}

)
!
) ×

ni∏

j=1

K∏

k=1

(
exp(ηi jk)

1 + ∑K
l=2 exp(ηi jl)

)1{Yi j=k}
. (5)

In the semi-parametric approach presented in Masci et al. (2022), the random effects are
assumed to follow a discrete distribution with an a priori unknown number of support points

1 We consider the first category as the reference one (here, ηi j1 = 1), but this choice is arbitrary, and it does
not affect the model formulation.
2 Note that k′ ≡ k−1 for k = 2, . . . , K , and therefore, the sequence of parameters (αk′ ; δik′ , for i = 1, . . . , I )
for k′ = 1, . . . , K − 1 is equal to the sequence (αk ; δik , for i = 1, . . . , I ) for k = 2, . . . , K .
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(Masci et al., 2019). Under this assumption, the multinomial logit takes the following form:

ηi jk = x′
i jαk +

Mk∑

mk=1

[
1{i∈mk } × z′

i jbmkk

]
mk = 1, . . . , Mk, k = 2, . . . , K , (6)

where Mk is the total number of support points of the discrete distribution of b relative to the
k−th category, for k = 2, . . . , K , and1{i ∈ mk} indicates whether group i belongs to support
point mk . The random effects distribution relative to each category k, for k = 2, . . . , K ,
can be expressed as a set of points (b1k, . . . ,bMkk), where Mk ≤ I and bmkk ∈ R

q for

mk = 1, . . . , Mk , and a set of weights (w1k, . . . , wMkk), where
∑Mk

mk=1 wmkk = 1 and
wmk ≥ 0:

B =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
b12, b22, . . . , bM22

(w12), (w22), . . . , (wM22)

. . .

. . .
{
b1K , b2K , . . . , . . . , bMK K

(w1K ), (w2K ), . . . , . . . , (wMK K )

. (7)

The discrete distributions P∗
k , for k = 2, . . . , K , belong to the class of all probability

measures on R
q and are assumed to be independent. P∗

k is a discrete measure with Mk sup-
port points that can then be interpreted as the mixing distribution that generates the density
of the stochastic model in Eq.6. In particular, wmkk = P(δik = bmkk), for i = 1, . . . , I . The
maximum likelihood estimator P̂∗

k of P∗
k can be obtained following the theory ofmixture like-

lihoods in Lindsay (1983); Lindsay et al. (1983), who proved the existence, discreteness and
uniqueness of the semi-parametric maximum likelihood estimator of a mixing distribution,
in the case of exponential family densities.

Given this formulation, Masci et al. (2022) propose an algorithm for implementing
MSPEM for the joint estimations of αk , (b1k, . . . ,bMkk) and (w1k, . . . , wMkk), for k =
2, . . . , K , which is performed through the maximization of the complete likelihood. In the
MSPEM’s algorithm steps, under the independence assumption across the contrast-specific
randomeffects,when estimating the support points relative to each contrast, the other contrast-
specific random effects are fixed to the mean of the relative discrete distributions. In other
words, when estimating the random effects of a group with respect to a response category,
the random effects of this specific group with respect to the other categories are ignored. This
assumption simplifies the parameter estimation procedure, but, as previously discussed, it is
often too strict and unrealistic.

2.2 JMSPMEModel

In the proposed JMSPME, we start from the modelling proposed in Eqs. 6 and 7, but we do
not assume the independence across the random effects distributions relative to the (K − 1)
categories. Instead of considering K−1 independent univariate discrete distributions,we refer
to the (K−1)−variate distributionof randomeffects. TheobjectBdefined inEq.7 is identified
by a discrete distributionP∗, that belongs to the class of all probabilitymeasures onRq×(K−1).
P∗ is a discrete measure with Mtot support points, where Mtot = ∏K

k=2 Mk is the number of
all possible combinations of the k-specific random effects bmkk , for mk = 1, . . . , Mk and
k = 2, . . . , K . We usem = 1, . . . , Mtot to index theMtot (K −1)−variate support points and
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relative weights. By marginalizing this multivariate distribution, we then extract the marginal
random effects distribution relative to each contrast k′, for k′ = 1, . . . , K − 1.

The marginal likelihood is obtained as a weighted sum of all the conditional probabilities.
In particular, the marginal likelihood of Yi is the weighted sum of the likelihood of Yi

conditioned to all the Mtot possible combinations of the values of the (K − 1) discrete
distributions of random effects:

L(Yi |A) =
Mtot∑

m=1

wm p(Yi |A,Bm). (8)

wm is the weight of the m−th combination of the (K − 1) weights distributions, and analo-
gously, Bm is the m−th combination of the (K − 1) random effects distributions.

Under these assumptions, the JMSPME parameter estimates can be obtained by maximiz-
ing the likelihood in Eq.8. Thanks to the likelihood convexity property, the maximization
can be computed in two separate steps: one for computing the weights of the multivariate
discrete distribution of the random effects and one for computing fixed effects and random
effects iteratively.

The EM algorithm for the maximization of the two functionals is an iterative algorithm
that alternates two steps (Dempster et al., 1977): the expectation step in which we compute
the conditional expectation of the likelihood function with respect to the random effects,
given the observations and the parameters that are computed in the previous iteration, and
the maximization step in which we maximize the conditional expectation of the likelihood
function. The observations are the values of the response variable yi j and of the covariates
xi j and zi j , for j = 1, . . . , ni and i = 1, . . . , I . The algorithm allows the number ni , for
i = 1, . . . , I , of observations to be different across groups, but within each group, missing
data are not handled. The EM algorithm stops when the convergence or a maximum number
of iterations are reached. As proven in Appendix A, the update for the parameters is given
by the following:

w
(up)
m = 1

I

I∑

i=1

Wim m = 1, . . . , Mtot, (9)

and

(A(up),b(up)1 , . . . ,b(up)(K−1)) = arg maxA,Bm

Mtot∑

m=1

I∑

i=1

Wim × ln p(yi |A,Bm), (10)

where each elementwm represents the weight of them−th (K −1)−variate support point
(w is an array with K −1 dimensions, i.e., a (M2×M3× . . .×MK )− dimensional array) and,
equivalently,Wim represents the probability that group i belongs to them−th (K−1)−variate
subpopulation, identified by the relative K − 1 marginal subpopulations, conditionally on
observations yi and given the fixed effects A (W is an array with K dimensions, i.e., a
(I × M2 × M3 × . . . × MK )− dimensional array of conditional weights3). In particular,

wm = P(�i = Bm) (11)

3 Note that we are using a single index m to index a position in multidimensional objects (arrays w and W ).
We make this choice to ease the notation, calling with m the m−th combination of (K − 1) indices.
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and

Wim = wm p(yi |A,Bm)
∑Mtot

γ=1 wγ p(yi |A,Bγ )

= p(�i = Bm)p(yi |A,Bm)

p(yi |A)

= p(yi ,�i = Bm |A)

p(yi |A)

=p(�i = Bm |yi , A) m = 1, . . . , Mtot. (12)

BymarginalizingW with respect to k, we obtain the marginal conditional weight matrices
Wk , for k = 2, . . . , K . Theweightw(up)

m is themean of the conditionalweights of the I groups,
relative to the m−th (K − 1)−variate support point.

The maximization step in Eq.10 involves two steps, and it is done iteratively. In the first
step, thanks to the convexity of the logarithm, for each category k, for k = 2, . . . , K , we
compute the argmax with respect to the support points bmkk , for mk = 1, . . . , Mk , keeping
A and bl , for l �= k, fixed to the values computed at the previous iteration. In this way, we
can maximize the expected log-likelihood (computed in the expectation step) with respect to
all support points bmkk separately, i.e.,

b(up)mkk
=arg maxbk

Ctot,k∑

cmk =1

I∑

i=1

Wicmk
ln p(yi |A,bk,B(old)

cmk
)

mk = 1, . . . , Mk, k = 2, . . . , K . (13)

where Ctot,k = Mtot/Mk is the number of (K − 1)−variate support points that have mk as
marginal support point for category k.Wicmk

represents the probability that group i belongs to
the latent subpopulation cmk , that is identified bymk , relatively to category k, and the support
points relative to the other K − 2 categories that correspond to the cmk−th combination.
B(old)
cmk

is the set of random effects, estimated at the previous iteration, relative to categories
(2, . . . , k − 1, k + 1, . . . , K ), that compose the cmk−th combination with mk . In particular,

p(yi |A,bk,B(old)
cmk

)=
(∑K

γ=1

(∑ni
j=1 1{yi j=γ }

))
!

∏K
γ=1

((∑ni
j=1 1{yi j=γ }

)
!
) ×

ni∏

j=1

K∏

γ=1

(
exp(ηi jγ )

1+∑K
ν=2 exp(ηi jν)

){1yi j=γ }
,

(14)
where

ηi jγ =
{
x′
i jαk + z′

i jbk if γ = k

x′
i jαγ + z′

i jb
(old)
(mγ γ )cmk

if γ �= k
. (15)

b(old)(mγ γ )cmk
are the random effects relative to the support point (mγ γ )cmk

, that is the support

point relative to category γ that compose the cmk−th combination with mk .
In the second step, we fix the support points of the random effects distributions computed

in the previous step, and we compute the arg max in Eq.10 with respect to A. Again, thanks
to the convexity of the logarithm, we can compute the arg max in Eq.10 with respect to αk ,
separately for each k = 2, . . . , K , keeping αl , for l �= k fixed to the values computed at the
previous iteration.

To compute the point Bm for each group i , for i = 1, . . . , I , we maximize the conditional
probability of �i given the observations yi and the fixed effects A. The estimates of random

123



Journal of Classification

effects �i for each group i, i = 1, . . . , N , are obtained by maximizing Wim over m, i.e.,

�̂i =Bm̃ where m̃ = arg maxmWim

MSPEM’s and JMSPME’s algorithm skeletons are very similar. Nonetheless, substantial
differences regard the estimation of the random effects distribution, i.e., of the weights (Eq.9)
and of the random effects support points (Eq.13). In the MSPEM’s algorithm, only marginal
weights and marginal conditional weight matrices are treated, and in the maximization in
Eq.13, the latent subpopulation structure relative to the other categories is ignored. In the
JMSPME’s algorithm, all weights and conditional weights are treated in their multivari-
ate setting, and the function to be maximized in Eq.13 takes into account the conditional
weights of groups across all categories. The multivariate optimization implies an increased
computational cost, that scales with the number of covariates and of response categories.

During the iterations of theEMalgorithm, the reduction of the support points of the random
effects discrete distributions is performed. In particular, if two support points are closer, in
terms of Euclidean distance, than a pre-specified tuning parameter Dk , for k = 1, . . . , K ,
they collapse to a unique point. The algorithm converges when the difference between the
estimates of fixed and random effects obtained at two consecutive iterations is smaller than
fixed tolerance thresholds (tollF andtollR, respectively). The initialization of the support
points of the discrete distribution and the choice of the tuningparameter Dk , for k = 1, . . . , K ,
are two key aspects of the EM algorithm, and a detailed description about their tuning can
be found in Appendix B. Further details about convergence criteria and model identifiability
can be found in Masci et al. (2019) and Masci et al. (2022).

Besides the point estimates of both fixed and random effects, a further improvement pro-
vided by the algorithm for the JMSPME model regards the computation of their standard
errors and the assessment of their significance. The variance of maximum likelihood estima-
tors is calculated by the inverse of the Fisher information matrix. Consider θ the parameter
vector to be estimated and θ̂ML its ML estimate:

Var(θ̂ML) = [I (θ̂ML)−1]
= (−E[H(θ̂ML)])−1

=
(

−
[

∂2lnL(θ)

∂θ∂θ ′
]

θ=θ̂ML

)−1

.

H(θ̂ML) is the Hessian matrix, i.e., the matrix of second derivatives of the likelihood L
with respect to the parameter θ , evaluated in θ̂ML . The second derivatives of the observed-data
log-likelihood are obtained by numerical differentiation (Meng et al., 1991). The standard
error of each estimator is just the square root of this estimated variance (King, 1989; Long
et al., 1997). For what concerns random effects variance, given the estimated support points
bmkk , for mk = 1, . . . , Mk and k = {2, 3}, and relative weights, the variance σ 2

rk of the
two marginal distributions of random effects can be computed, thanks to the law of total
variances, as

σ 2
rk = Var[Bk] = E’[Var[Bk |(b1k, . . . , bMkk)]] + Var[E’[Bk |(b1k, . . . , bMkk)]], (16)
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where

E[Var[Bk |(b1k , . . . , bMkk)]] =
= E[B2

k |(b1k , . . . , bMkk)] − (E[Bk |(b1k , . . . , bMkk)])2 =

=
Mk∑

mk=1

b2mkk × wmkk −
⎛

⎝
Mk∑

mk=1

bmkk × wmkk

⎞

⎠

2

and, assuming bmkk , for mk = 1, . . . , Mk , to be independent

Var[E[Bk |(b1k, . . . , bMkk)]] = Var

⎡

⎣
Mk∑

mk=1

bmkk × wmkk

⎤

⎦ =
Mk∑

mk=1

Var[bmkk] × w2
mkk .

The covariance between the couple Bk and Bh , for each h, k = 2, . . . , K , can be computed
as follows:

Cov(Bh, Bk) = E[Bh Bk]−E[Bh]E[Bk] = (17)

=
Mh×Mk∑

m=1

wm × bmh × bmk −
⎛

⎝
Mh∑

mh=1

wmhh × bmhh

⎞

⎠×
⎛

⎝
Mk∑

mk=1

wmkk × bmkk

⎞

⎠ .

3 Simulation Study

In this section, we reproduce the simulation study proposed in Masci et al. (2022), and
we compare the performances of JMSPME and MSPEM models. A categorical response
variable assuming K = 3 possible values is considered, where k = 1 is the reference
category. Three different settings are simulated: (i) one considering only a random intercept,
(ii) one considering only a random slope and (iii) one considering both random intercept and
random slope.4

I = 100 groups of data are considered, where each group contains 200 observations.5

Data are simulated in order to induce the presence of three subpopulations regarding category
k = 2, i.e., M2 = 3, and two subpopulations regarding category k = 3, i.e., M3 = 2. In
particular, for j = 1, . . . , 200 and i = 1, . . . , 100, the model is

πi jk = P(Yi j = k) = exp(ηi jk)

1 + ∑3
l=2 exp(ηi jl)

for k = 2, 3;

πi j1 = P(Yi j = 1) = 1

1 + ∑3
l=2 exp(ηi jl)

, (18)

4 Masci et al. (2022) make this choice since in the application for modelling student dropout, the model
considers a three-categories response and only a random intercept. In the simulation study, they maintain the
three-categories response, to ease the reader, and, besides the case (i) of a random intercept, they add the other
two random effects cases, in order to show the model results in more complex settings. They also include two
covariates in the model (considered both for fixed effects or one for random and one for fixed) to be in line
with the case study.
5 The number of observations is allowed to be different across groups. Here, to facilitate the reader andwithout
loss of generality, they are taken equally across groups.
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where the linear predictor ηik = (ηi1k, . . . , ηi200k) is generated according to the following
data generating process (DGP)6:

(i) Random intercept case (ηik = α1kx1i + α2kx2i + δik)

ηi2 =

⎧
⎪⎨

⎪⎩

+4x1i − 3x2i − 7 i = 1, . . . , 30

+4x1i − 3x2i − 4 i = 31, . . . , 60

+4x1i − 3x2i − 2 i = 61, . . . , 100

ηi3 =
{

−2x1i + 2x2i − 5 i = 1, . . . , 60

−2x1i + 2x2i − 2 i = 61, . . . , 100
(19)

(ii) Random slope case (ηik = α1k + α2kx1i + δikz1i )

ηi2 =

⎧
⎪⎨

⎪⎩

−1 − 3x1i + 5z1i i = 1, . . . , 30

−1 − 3x1i + 2z1i i = 31, . . . , 60

−1 − 3x1i − 1z1i i = 61, . . . , 100

ηi3 =
{

−2 + 2x1i − 2z1i i = 1, . . . , 60

−2 + 2x1i − 6z1i i = 61, . . . , 100
(20)

(iii) Random intercept and slope case (ηik = αkx1i + δ1ik + δ2ikz1i )

ηi2 =

⎧
⎪⎨

⎪⎩

−5x1i − 6 + 5z1i i = 1, . . . , 30

−5x1i − 4 + 2z1i i = 31, . . . , 60

−5x1i − 8 − 1z1i i = 61, . . . , 100

ηi3 =
{

+2x1i + 1 − 4z1i i = 1, . . . , 60

+2x1i − 1 + 2z1i i = 61, . . . , 100
(21)

Variablesx1,x2 and z1 are normally distributedwithmean equal to 0 and standard deviation
equal to 1.

All the parameters used to simulate the data and the tuning parameters of the semi-
parametric model are equal to the ones in Masci et al. (2022). In particular, we perform 500
runs of the JMSPME model for each of the three settings shown in Eqs. 19, 20 and 21. We
fix Dk = 1 as a threshold value for the support point collapse criterion, for k = {2, 3} and
tollR = tollF = 0.01 for the convergence (see Appendix B in Masci et al. (2022) for
the details). In all the runs, the algorithm of the JMSPME model converges in a number
of iterations that ranges between 4 and 7, slightly quicker with respect to MSPEM, whose
number of iterations ranges between 5 and 10. Nonetheless, the computational time for one
run of JMSPME’s algorithm is higher than the one for MSPEM. Indeed, in this simulation
study, JMSPME’s algorithm takes on average 60min for a run relative to DGP (i) and 100min
for a run relative to DGPs (ii) and (iii). For the same runs,MSPEM takes about 30 and 60min.
Figure1 reports the distribution of JMSPMEandMSPEMestimated fixed and randomeffects,
across the runs, for the three DGPs. Descriptive statistics of the estimates are also reported
in Tables 6 and 7 in Appendix C.

6 Without loss of generality, we consider two covariates, simulating the case in which they are both for fixed
effects or one for random and one for fixed. The choice of fixed and random effects values is arbitrary: in this
case, they are chosen in order to simulate different situations in which we obtain both balanced and unbalanced
categories.
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Fig. 1 Distribution of MSPEM and JMSPME estimates in the simulation study, across runs, for the three
DGPs. Green and orange lines mark the real random and fixed effects, respectively. MSPEM and JMSPME
estimates are identified with “M”and “JM”, respectively

Fixed effects estimates are evaluated on the total number of runs,while randomeffects ones
are evaluated on the runs in which the estimated number of subpopulations corresponds to
the simulated one (that is the majority of the cases). Note that, when the algorithm identifies
a higher number of subpopulations with respect to the simulated ones, it simply splits a
subpopulation into two or more subpopulations, but the fixed effects estimates do not result to
be affected by the number of subpopulations identified in the data. Estimates result to be very
accurate, both for fixed and random effects, and their variability across runs is substantially
low. Compared toMSPEM, the JMSPMEmodel produces more precise and stable estimates.
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We observe a 93.55%, 64.12% and 51.43% decrease in the mean estimation error, for the
three settings, respectively. Moreover, given that the ML estimates in multinomial regression
are only asymptotically unbiased, we expect the performance of the algorithm to increase
when the number of observations increases (Masci et al., 2022).

For what concerns the identification of the subpopulations, Table 1 reports the number of
runs out of 500 in which the two models identify the simulated number of subpopulations
(i.e., M2 = 3 and M3 = 2) and correctly assign groups to the identified subpopulations, for
all the three DGPs.

Except for the case (ii), the JMSPME’s algorithm correctly identifies the simulated number
of subpopulations and classifies groups into these subpopulations in a higher number of runs
with respect to theMSPEM’s algorithm. In the random slope case, the twomodels identify the
correct number of subpopulationswith approximately the same incidence, but the JMSPME’s
algorithm shows a better performance in assigning groups to the identified subpopulations.

Extending the approach presented in Masci et al. (2022) into our multivariate setting, we
evaluate the uncertainty of the classification of groups into subpopulations by measuring,
for each group, the normalized entropy of the conditional weight distribution. By looking at
the three-dimensional array W , we evaluate the uncertainty of classification of each group
into one of the Mtot (K − 1)−variate subpopulations. In order to compute the response
category-specific uncertainty of classification, in theMSPEM approach, the authors consider
the marginal conditional weight matrices Wk , for k = {2, . . . , K }. Here, we compute the
global uncertainty of the classification of each group, with respect to all response categories,
by looking at the K -dimensional array W . The normalized entropy of each first-dimension
i of the array W is computed as the entropy Ei = −∑Mtot

m=1 Wim log(Wim) divided by the
maximum possible entropy value relative to Mtot subpopulations, i.e., − log(1/Mtot). We
recall that the lowest level of uncertainty is reached when the algorithm assigns a group to
a bivariate subpopulation m, with probability 1; in this case, the normalized entropy of the
group would be equal to 0. On the opposite, the highest level of uncertainty is reached when
the distribution of the conditional weights of a group i is uniform on the Mtot subpopulations
(Wim = 1/Mtot for m=1, . . . , Mtot), which corresponds to an entropy Ei = − log(1/Mtot),
and, therefore, to a normalized entropy equal to 1. The normalized entropy constitutes also
a driver for the choice of the tuning parameters Dk (details in Masci et al. (2022)). Figure2
reports the distribution of the normalized entropy of Wi , for i = 1, . . . , I , for the three
simulated cases, mediated on the runs in which the JMSPME’s algorithm identifies M2 = 3
and M3 = 2.

Table 1 JMSPME and MSPEM models performances across 500 runs for each of the three DGPs

Number of runs in which the model Number of runs in which the model correctly
identifies M2 = 3 and M3 = 2 classifies all groups into subpopulations
MSPEM JMSPME MSPEM JMSPME

(i) Random inter-
cept case

473 out of 500 480 out of 500 470 out of 473 471 out of 480

(ii) Random slope
case

453 out of 500 452 out of 500 427 out of 453 452 out of 452

(iii) Random inter-
cept and slope case

422 out of 500 460 out of 500 315 out of 422 400 out of 460

The first two columns report the number of runs out of 500 in which the algorithms identify the correct
number of subpopulations that are simulated in DGPs in Eqs. 19, 20 and 21; third and fourth columns report
the number of runs, out of the number of runs in which the algorithms identify M2 = 3 and M3 = 2, in which
the algorithms correctly assign each group to the correspondent subopulation
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Fig. 2 Boxplots of the normalized entropy ofW , measured for each group, obtained by mediating the entropy
in the runs in which the algorithm identifies M2 = 3 and M3 = 2, for the random intercept case (a), random
slope case (b) and random intercept and slope case (c)

We observe that the entropy level is always very low (considering that the maximum
normalized entropy is 1), suggesting that, for the simulated data, the JMSPME’s algorithm
clearly distinguishes the presence of patterns within the data. The normalized entropy com-
puted on the runs in which the algorithm identifies a higher number of subpopulations is,
as expected, higher: since the algorithm estimates two very close subpopulations instead of
the single simulated one, it does not clearly distinguish the belonging of groups into these
subpopulations.

4 Case Study: University Student Dropout Across Engineering Degree
Programmes

Themain novelty introduced by the JMSPME is twofold. The former regards the ability to take
into account and model the correlation structure across response category-specific random
effects; the latter regards the positioning of the model in a tailored inferential framework.

In order to test and evaluate these aspects in the real data application that drove the
development of this type of models, we reproduce the case study presented in Masci et al.
(2022), and we compare our results with the ones obtained by both the MSPEM and the
parametric MCMCglmm models.

4.1 Data andModel Setting

The case study consists in the application of the model to data about Politecnico di Milano
(PoliMI) students, in order to classify different profiles of engineering students and to identify
subpopulations of similar degree programmes. The sample includes the concluded careers
of students enrolled in some of the engineering programmes of PoliMI in the academic
year between 2010/2011 and 2015/2016. The dataset considers 18, 604 concluded careers
of students nested within 19 engineering degree programmes (the smallest and the largest
degree programmes contain 341 and 1246 students, respectively). 32.7% of these careers
is concluded with a dropout, while the remaining 67.3% regards graduate students. The
response variable regards the status of the concluded career that can be classified as follows:

• Graduate: occurs when the student concludes his/her career obtaining the bachelor’s
degree (67.3% of the sample)
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• Early dropout: occurswhen the student dropswithin the third semester after the enrolment
(16.2% of the sample)

• Late dropout: occurs when the student drops after the third semester after the enrolment
(16.5% of the sample)

The distinction between the two types of dropout is motivated by the interest in distin-
guishing the determinants that drive them, that might be structurally different and approached
by different mitigation strategies.

Regarding student characteristics, besides the status of the concluded career and the degree
programme the student is enrolled in, the number of European credit transfer system credits
(ECTS), i.e., the credits he/she obtained at the first semester of the first year of career (the
variable has been standardized in order to have0mean and1 sd) andhis/her gender (the sample
contains 22.3% females and 77.7% males), is considered.7 Table 2 reports the variables
considered in the analysis with their explanation.8

The modelling proposed is the following. For each student j , for j = 1, . . . , ni , nested
within degree programme i , for i = 1, . . . , I (with I = 19), the mixed-effects multinomial
logit model takes the following form:

Yi j =

⎧
⎪⎨

⎪⎩

Graduate πi j1

Early dropout πi j2

Late dropout πi j3

, (22)

where

πi jk = P(Yi j = k) = exp(ηi jk)

1 + ∑3
k=2 exp(ηi jk)

for k = 1, . . . , 3 (23)

and

ηi jk =
{
x′
i jαk + δik k = 2, 3

0 k = 1
. (24)

Yi j corresponds to the student Status (graduate is the reference category); xi j is the
two-dimensional vector of covariates for the fixed effects, that contains student Gender and
TotalCredits1.1; αk is the two-dimensional vector of fixed effects relative to the k-th
category; and δik is the random intercept relative to the i-th degree programme (DegProg)
and to the k-th category.

Given the data setting and model formulation presented in Eqs. 22, 23, 24, we apply the
three models to PoliMI data. The aim of the study is to model the probability of being an early
or late dropout student, with respect to being a graduate one, given student characteristics
and early career information, and considering the nested structure of students within the
19-degree programmes. Both MSPEM’s and JMSPME’s algorithms, by assuming discrete
random effects, identify subpopulations of degree programmes, depending on their effects on
early and late dropout probability, while theMCMCglmm’s algorithm, by assumingGaussian
random effects, identifies a ranking of degree programmes.

The MSPEM algorithm assumes the two effects of each degree programme on early and
late dropout probability to be independent, while in the JMSPME’s algorithm, we assume
there is an unknown dependence structure.

7 Masci et al. (2022) state that only information at the first semester of career is used because it is observable
for all students (either dropout or graduate) and it allows to predict student dropout as soon as possible, i.e.,
at the beginning of the student career.
8 For further information on the original dataset and the preprocessing phase, please refer to Masci et al.
(2022).
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Table 2 List and explanation of variables at the student level to be included in the model (Masci et al., 2022)

Variable Description Type of variable

Status Status of concluded career Three-level factor (G = graduate; D1
= early dropout; D2 = late dropout)

Gender Gender of the student Binary (male=0, female=1)

TotalCredits1.1 Number of ECTS obtained by the stu-
dent during the first semester of the
first year

Continuous

DegProg Degree programme the student is
enrolled in

19-level factor

4.2 JMSPME, MSPEM andMCMCglmmResults

We run JMSPME and MSPEM models’ algorithms with the same parameter setting chosen
in Masci et al. (2022): tollR=tollF=10−2, itmax=60, it1=20, w̃ = 0 and Dk = 0.3,
for k = 2, 3. JMSPME’s algorithm converges in 9 iterations (computational time ≈ 21min)
and identifies 5 supopulations for both categories k = 2 (early dropout) and k = 3 (late
dropout). MSPEM’s algorithm converges in 7 iterations (computational time ≈ 13min) and
identifies 4 supopulations for both categories.

Fixed Effects Estimates

For what concerns fixed effects, Table 3 reports the estimates obtained for the three models.
MSPEMand JMSPMEestimated parameters are very close to each other and coherentwith

theMCMCglmm ones. The estimated significant fixed effects of JMSPME andMCMCglmm
coincide.9 In particular, both JMSPME and MCMCglmm results show that females have,
on average, a lower probability of late dropout with respect to males, while no significant
gender difference emerges for early dropout, and that the number of credits obtained at the
first semester is inversely proportional to the probability of both early and late dropout. Fixed
effects result to be robust and invariant with respect to different random effect assumptions.

Random Effects Estimates

Regarding our main interest, the analysis of random effects, the estimated discrete distri-
butions of JMSPME and MSPEM are reported in Table 4 and displayed in Fig. 3. Figure4
reports the degree programmes ranking estimated by MCMCglmm, complemented by the
correspondent JMSPME andMSPEMmass points. The list of degree programmes belonging
to the various subpopulations, for both JMSPME and MSPEM, can be obtained from Fig.4
and is explicitly provided in Tables 8 and 9, in Appendix D.

Discrete randomeffects are reported in increasing order and are numbered accordingly. For
JMSPME, each subpopulation is identified by one out of five possible values of the intercept
relative to k = 2 and one out of five possible values of the intercept relative to k = 3. JMSPME
identifies biomedical engineering as the degree programme in which students are more likely
to early drop, all else equal, while civil and environmental engineering and environmental and
land planning engineering result to be the ones in which students tend to early drop less than

9 MSPEM’s algorithm does not include any measurement of standard errors or coefficients significance.
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Table 3 Estimated fixed effects of JMSPME,MSPEMandMCMCglmmmodels for student dropout prediction

k=2 k=3
α̂1 α̂2 α̂1 α̂2
(Gender) (TotalCredits1.1) (Gender) (TotalCredits1.1)

JMSPME 0.014 −2.684∗∗∗ −0.577∗∗∗ −1.907∗∗∗
(0.0609) (0.0218) (0.0606) (0.0211)

MSPEM −0.153 −2.704 −0.685 −1.899

MCMCglmm −0.027 −2.797∗∗ −0.6234∗∗ −2.135∗∗
(0.0403) (0.0444) (0.0862) (0.0321)

For JMSPME and MCMCglmm, standard errors of the estimates are reported in brackets. Asterisks denote
different levels of significance: 0.01< p-value< 0.1; *0.001< p-value< 0.01; **0.0001< p-value< 0.001;
***p-value < 0.0001

Table 4 Estimated random effects of JMSPME and MSPEM models for student dropout prediction. For
JMSPME, standard errors of the estimates are reported in brackets

k=2 k=3
b̂mkk ŵmkk b̂mkk ŵmkk

JMSPME b̂12 = −3.504(0.0780) ŵ12 = 0.100 b̂13 = −2.491(0.1001) ŵ13 = 0.147

b̂22 = −3.023(0.0710) ŵ22 = 0.167 b̂23 = −1.950(0.0566) ŵ23 = 0.173

b̂32 = −2.485(0.0385) ŵ32 = 0.291 b̂33 = −1.601(0.0386) ŵ33 = 0.321

b̂42 = −2.138(0.0537) ŵ42 = 0.391 b̂43 = −1.245(0.0519) ŵ43 = 0.144

b̂52 = −1.728(0.0429) ŵ52 = 0.051 b̂53 = −0.903(0.0430) ŵ53 = 0.215

MSPEM b̂12 = −2.841 ŵ12 = 0.482 b̂13 = −2.152 ŵ13 = 0.210

b̂22 = −2.423 ŵ22 = 0.272 b̂23 = −1.733 ŵ23 = 0.421

b̂32 = −2.096 ŵ32 = 0.193 b̂33 = −1.219 ŵ33 = 0.262

b̂42 = −1.586 ŵ42 = 0.053 b̂43 = −0.880 ŵ43 = 0.107

Fig. 3 Estimated discrete bivariate random effects distributions of JMSPME (a) and MSPEM (b). Bubbles
are centred in the random effects estimates, and their size is proportional to the number of degree programmes
belonging to the subpopulations
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Fig. 4 a and b The ranking of the MCMCglmm estimated intercepts with their confidence intervals relative to
the 19-degree programmes, for early (k=2) and late (k=3) dropout, respectively. Alongside degree programme
names, we report subpopulation indexes estimated by both JMSPME’s andMSPEM’s algorithms. Colours are
only intended to help in the visualization

the others, all else equal (Table 8). These two subpopulations have relatively lower weights
with respect to the other three subpopulations, that represent the majority of the sample,
and, consequently, are interpreted as the ones containing three-degree programmes with
anomalous behaviors. For late dropout, degree programmes are more uniformly distributed
across the five subpopulations, starting from Subpopulation 1, that contains the three-degree
programmes associated with the lowest late dropout probability, until Subpopulation 5, that
contains the four-degree programmes associated with the highest late dropout probability.

Comparing the subpopulations identified by the two semi-parametric models, we notice
some differences. BothMSPEM and JMSPME identify biomedical engineering as the degree
programme inwhich students aremore likely to early drop. For late dropout, bothMSPEMand
JMSPME assign civil and environmental engineering and environmental and land planning
engineering to the subpopulation associated with the highest late dropout probability. The
remaining of the distributions of degree programmes on the estimated subpopulations is more
heterogeneous across the two models. What is interesting to note is the comparison between
the distributions of degree programmes on the bivariate subpopulations of MSPEM and
JMSPME, displayed in Fig. 3. Each bubble size is proportional to the weight of the bivariate
subpopulation. For JMSPME, the distribution of the weights on the bisector of the figure
in panel a suggests that, except for very few cases (e.g., biomedical engineering), degree
programme effects are quite coherent between early and late dropout. On the opposite, the
distribution of the weights of the bivariate subpopulations obtained by MSPEM (panel b)
suggests that degree programmes in which students are more likely to early drop are less
likely to late drop and vice versa. This result demonstrates that different assumptions on the
dependence structure across random effects distributions lead to relevant differences in the
estimates and in their interpretation.

Regarding the comparison with the parametric MCMCglmm approach, Fig. 4 shows that
the subpopulations identified by JMSPME align closely with the rankings obtained from
MCMCglmm. However, the results from MSPEM do not exhibit the same level of precision
and coherence in matching the ranking with the subpopulations, as it only provides a partial
alignment.
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Goodness of Fit and JMSPME Evaluation

To compare themodels in terms of goodness of fit, we compute their relativemisclassification
tables (Table 5).

Error rates are 22.1% for JMSPME, 21.6% for MCMCglmm and 23.3% for MSPEM,
respectively. As noted in Masci et al. (2022), we expect the MCMCglmm to have the best fit,
since it estimates a single random effect for each degree programme (and, therefore, it fits
the data ‘deeply’). JMSPME error rate is lower than the MSPEM one, and it is very close to
the MCMCglmm one, suggesting that the identified subpopulations catch almost the entire
heterogeneity across degree programme effects. This is somehow expected since the more
flexible assumptions of JMSPME and MCMCglmm result in a better capacity to model the
real dynamics within the data. Given the high predictive performance and the matching with
the parametric approach, the JMSPME’s algorithm proves to produce precise and reliable
estimates and to overperform compared to MSPEM.

Finally, to complement the JMSPME results, we evaluate the uncertainty of classifica-
tion and the model PVRE. The uncertainty of classification is evaluated by measuring, for
each degree programme i = 1, . . . , 19, the normalized entropy of the conditional weights,
computed as Ei = −∑Mtot

m=1 Wim log(Wim) divided by the maximum possible entropy value
relative to Mtot subpopulations, i.e., − log(1/Mtot), where Mtot = 5 × 5 = 25. The mean
and median of the 19 normalized entropy distributions are 0.0785 and 0.0426, respectively,
while minimum and maximum values are 0.0002 and 0.2681, respectively, indicating a low
level of uncertainty of classification.

Besides the support points and relative weights of the two marginal discrete distributions
of random effects B2 and B3 reported in Table 4, we estimate their variance-covariance
matrix, the correlation between B2 and B3 and the VPCs. For k = {2, 3}, we compute
σ 2
r2 = 0.2275 + 0.0146 = 0.2421 and σ 2

r3 = 0.2603 + 0.0006 = 0.2609, as defined in
Eq.16.

In order to compute the covariance, we refer to the estimated 5×5-matrix of joint weights
w10

w =

⎡

⎢
⎢
⎢
⎢
⎣

0.0947 0.0049 0 0 0
0.0526 0.1130 0.0013 0 0

0 0.0044 0.1167 0.1355 0.0348
0 0.0511 0.1524 0.0081 0.1797
0 0 0.0508 0 0

⎤

⎥
⎥
⎥
⎥
⎦

.

and, by followingEq.17,we computeCov(B2, B3) = 4.1553−(−2.5024)×(−1.5916) =
0.1725. The variance-covariance matrix of B is, therefore,

Var(B2, B3) =
(
0.2421 0.1725
0.1725 0.2609

)

and the correlation between B1 and B2 is 0.6863, that is in line with what we expected
by looking at panel a in Fig. 3. Lastly, the VPC relative to each logit k = {2, 3}, that is the
portion of the total variability in the response explained by the latent structure identified at
the degree programme level, is evaluated as

VPCk = σ 2
rk

σ 2
rk × π2/3

=
{
0.06857 for k = 2

0.07348 for k = 3
.

10 Rows and columns refer to the support points as ordered in Table 4, for k = {2, 3}, respectively.
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Table 5 Misclassification tables relative to JMSPME(left tabular),MSPEM(central tabular) andMCMCglmm
(right tabular) predictions, expressed in percentages

obs D1 obs D2 obs G obs D1 obs D2 obs G obs D1 obs D2 obs G

pred D1 0.099 0.060 0.018 0.095 0.063 0.019 0.100 0.058 0.018

pred D2 0.033 0.043 0.014 0.035 0.038 0.017 0.032 0.047 0.017

pred G 0.032 0.064 0.637 0.032 0.066 0.635 0.030 0.061 0.637

For both early and late dropout, about 7% of the total variability is explained by the
subpopulation structure. Results of MCMCglmm provide VPC2 = 0.0906 and VPC3 =
0.1091.

5 Concluding Remarks and Future Perspectives

In this paper, we propose an enhanced version of a mixed-effects model with discrete ran-
dom effects for unordered multinomial responses, called JMSPME, together with a suitable
inferential framework. Estimates of parameters are obtained through an EM algorithm. The
JMSPME consists in a semi-parametric approach that assumes the response category-specific
random effects to follow a discrete distribution with an a priori unknown number of mass
points, that are allowed to differ across response categories. With respect to the traditional
parametric approach, the JMSPME model constitutes a valid alternative, both from a com-
putational and an interpretative point of view. Indeed, the discrete distribution on the random
effects allows to write the likelihood function as a weighted sum, avoiding integration issues
typical of parametric mixed-effects multinomial models, and, moreover, allows to identify a
latent structure of subpopulations at the highest level of grouping.

JMSPME, in which we do not consider any independence assumption across response-
specific random effects distributions, is an improvement on its previous MSPEM model
presented in Masci et al. (2022). By relaxing this seldom verified assumption considered
in MSPEM, JMSPME results to be a more powerful model, able to provide more accurate
and less uncertain estimates and to better model the heterogeneity at the highest level of the
grouping.

In order to test and evaluate the performances of the JMSPME model, compared to the
MSPEM ones, we reproduce the simulation and case studies reported in Masci et al. (2022).
JMSPME overperformsMSPEM both in the simulation and case studies and the introduction
of the inferential framework results to be a further value added that adds interpretability.

In the context of predicting the types of concluded careers of PoliMi students, nestedwithin
different engineering degree programmes, the JMSPMEmodel proves higher predictive per-
formance compared to MSPEM, and the estimated subpopulations of degree programmes,
that differ from the ones estimated by MSPEM, are extremely coherent with the ranking
obtained by applying the parametric MCMCglmm.

All these evidences support the thesis that, in discrete random effects multinomial models,
a joint modelling of the random effects distributions across response categories is paramount
and overrides the previous version of the model.

This paper enters both in the literature about multinomial regression (Agresti, 2018) and
in the one about mixed-effects models with discrete random effects (Aitkin, 1999; Hartzel &
Agresti, 2001; Masci et al., 2019). The proposed model contributes to both the streams but, at
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the same time, suffers from some of their typical criticalities. Given the presence of multiple
logits, multinomial regression models are treated as multivariate models, and in addition, the
likelihood function is such that its maximization in closed form is not feasible. These two
aspects contribute to require an important computing power and numerical methods for the
maximization steps. For what concerns mixed-effects models with discrete random effects,
we believe that they are extremely useful in many different contexts of application and that
the research of a latent structure of subpopulations at the highest level of grouping is an
innovative and informative way of analyzing this level of the hierarchy. Their application to
real data in which the cardinality of the groups is very high and in which subpopulations are a
posteriori explained can provide important insights. Nonetheless, although these methods do
not require to fix the number of subpopulations a priori but they estimate it together with the
other parameters, this estimate is extremely sensitive to the choice of the threshold distance
D. Some criteria to choose D have been proposed in the literature (Masci et al., 2019, 2022),
but its choice is still sensitive and influential. For these reasons, future work will be devoted
to the embedding of more efficient optimization algorithms and to the development of a clear
rule to drive the choice of the threshold distance D.

The JMSPME model can be applied to any classification problem dealing with an
unordered categorical response and hierarchical data, a context in which the statistical liter-
ature is still poor and quite challenging. Its extension to deal with ordinal responses could be
a further interesting development.

Appendix A: Proof of increasing likelihood property

In the EM algorithm proposed in Section2.2, the updates of the parameters are obtained in
order to increase the likelihood, such that:

L(A(up)|y) ≥ L(A|y),

whereA(up) are the updated fixed effects, and the likelihood L(A(up)|y) is computed summing
up the random effects with respect to the updated discrete distribution (B(up)

m , w
(up)
m ) for

m = 1, . . . , Mtot. Thanks to the definition of the likelihood function in Eq.8, we have that:

log

(
L(A(up)|y)
L(A|y)

)

=
I∑

i=1

log

(
p(yi |A(up))

p(yi |A)

)

.

All these terms can be bounded below by the quantity:

log

(
p(yi |A(up))

p(yi |A)

)

≥ Qi (θ
(up), θ) − Qi (θ, θ), (25)

where

Qi (θ
(up), θ) =

Mtot∑

m=1

(
wm p(yi |A,Bm)

p(yi |A)

)

log(w(up)
m p(yi |A,Bm)).

Qi (θ, θ) is analogously defined and θ = (A,B1, . . . ,BMtot , w1, . . . , wM ). This bound
can be found thanks to the convexity of the logarithm (proof in Azzimonti et al. (2013)).
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Defining

Q(θ (up), θ) =
I∑

i=1

Qi (θ
(up), θ) and Q(θ, θ) =

I∑

i=1

Qi (θ, θ),

we obtain, thanks to Eq.25, a lower bound for the quantity of interest

log

(
L(A(up)|y)
L(A|y)

)

≥ Q(θ (up), θ) − Q(θ, θ).

In order to show now that ∀θ, Q(θ (up), θ) ≥ Q(θ, θ), we can show that, ∀θ fixed, θ (up) is
defined as the argmaxθ̃ Q(θ̃ , θ).

Defining Wim as the probability that the i−th group belongs to the m−th combination
among the Mtot possible combinations, conditionally on the observations yi and given the
fixed effects parameters A, we obtain

Q(θ̃ , θ) =
I∑

i=1

Mtot∑

m=1

(
wm p(yi |A,Bm)

p(yi |A)

)

log(w̃m p(yi | Ã, B̃m))

=
I∑

i=1

Mtot∑

m=1

Wim log(w̃m p(yi | Ã, B̃m))

=
I∑

i=1

Mtot∑

m=1

Wim log(w̃m) +
I∑

i=1

M∑

m=1

Wim log(p(yi | Ã, B̃m))

=J1(w̃1, . . . , w̃Mtot) + J2( Ã,QB1, . . . ,
QBMtot). (26)

The functionals J1 and J2 can be maximized separately. In particular, by maximizing the
functional J1, we obtain the updates for the weights of the random effects distribution, and
by maximizing the functional J2 in an iterative way, we obtain the estimates of A and Bm ,
for m = 1, . . . , Mtot.

Appendix B: EM algorithm technical details

Two key aspects of the JMSPME model’s algorithm regard the initialization of the support
points of the discrete distribution and the choice of the tuning parameter Dk for the support
reduction procedure. In this appendix, we report our initialization procedure, and we discuss
possible choices for Dk .

Support Point Initialization

The EM algorithm is extremely sensitive to the initial grid on which we identify the random
effects discrete distribution. For this reason, we follow an initialization procedure that aims
to be inclusive and not binding. In particular, the algorithm starts by considering N support
points for the random effects that are estimated by fitting N distinct multinomial regression
models (one for each group i). The weights are uniformly distributed on these N support
points. A valuable alternative is to fit a classical multilevel multinomial model, with data

123



Journal of Classification

nested within the N groups, where both the intercept and the slope are treated as random
effects. This approach allows the algorithm to start from a very capillary setting and to
perform a tailored dimensional reduction. When N is extremely large, starting from N mass
points could be time-consuming and not strictly necessary. In this situation, the user can
estimate N∗ < N support points by computing the range of the parameters estimated by the
N multinomial regression models (or, by the single multilevel multinomial model) and, then,
randomly extracting N∗ < N points from a uniform distribution on the range. Again, the
weights of the initial grid are uniformly distributed on the N∗ points.

This procedure results to be robust and generalizable, and it allows to reach stable and
good estimates in both the simulation and the case studies.

Tuning of the Parameter Dk

Dk is certainly themost sensitive parameter of the algorithm.As the value of Dk increases, the
likelihood of mass points collapsing also increases, resulting in a decrease in the final number
of support points. The choice of the parameter Dk might be driven by different factors:

• A priori knowledge: In situations where users are specifically seeking subpopulations
with parameters that differ by a specific quantity that can be interpreted, Dk can be set
accordingly. Although this is the simplest scenario, it is less commonly encountered.

• Evaluation of the entropy: As mentioned in the main text, the entropy of the conditional
weightsmatrixWk can serve as a useful indicator for selecting an appropriate value for Dk .
It can be argued that good values of Dk are those that result in the algorithm classifying
groups with low uncertainty, which corresponds to a low entropy of the matrix Wk .

• Identification of stability regions: In the absence of prior knowledge, a further potential
approach to select the optimal value for Dk is to experiment with multiple values and
assess the trend in the number of identified subpopulations. Ideally, Dk should encom-
pass a range of values that result in the identification of a reasonably high number of
subpopulations, gradually decreasing until values that lead to the identification of a single
mass point. This iterative process is helpful to highlight stability regions, i.e., ranges of
values of Dk for which the algorithm identifies the same number of masses. Similar to
hierarchical clustering, stability regions identify the existence of distinct patterns within
the data.

• The elbow method: The final and well-known method that can provide valuable insights
into determining the optimal choice of Dk involves evaluating the model likelihood
and other goodness-of-fit indices such as BIC (Bayesian information criterion) and AIC
(Akaike information criterion).We anticipate that as the number ofmass points decreases,
the likelihood of the model will also decrease. However, following the concept of the
elbow method, we are interested in identifying the point where the decrease in model
likelihood is minimal for the lowest number of mass points. This approach helps identify
the optimal value of Dk that balances model complexity and goodness of fit.

In addition to recommending the optimal value for Dk , these procedures offer additional
valuable insights regarding the performance of the model, the robustness of the results, and
the strength of the interpretation.
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Appendix C: JMSPME andMSPEM results of the simulation study

Table 6 Estimated fixed and random effects of JMSPME model in the three different DGPs of the simulation
study

α̂1k α̂2k b̂mkk ŵmkk

k=2 α̂12 = 4.002 ± 0.085 α̂22 = −2.998 ± 0.080 b̂12 = −7.009 ± 0.152 ŵ12 = 0.300

b̂22 = −4.006 ± 0.084 ŵ22 = 0.300

b̂32 = −2.012 ± 0.061 ŵ32 = 0.400

T V = +4 T V = −3 T V = (−7,−4,−2) T V = (0.3, 0.3, 0.4)

k=3 α̂13 = −1.994 ± 0.038 α̂23 = 2.005 ± 0.037 b̂13 = −5.016 ± 0.091 ŵ13 = 0.599

b̂23 = −2.004 ± 0.048 ŵ23 = 0.401

T V = −2 T V = +2 T V = (−5,−2) T V = (0.6, 0.4)

Estimated fixed and random effects of JMSPME model for the DGP in Eq. 19.

α̂1k α̂2k b̂mkk ŵmkk

k=2 α̂12 = −0.993 ± 0.038 α̂22 = −2.963 ± 0.079 b̂12 = 4.964 ± 0.143 ŵ12 = 0.300

b̂22 = 1.946 ± 0.053 ŵ22 = 0.301

b̂32 = −1.017 ± 0.052 ŵ32 = 0.399

T V = −1 T V = −3 T V = (+5,+2, −1) T V = (0.3, 0.3, 0.4)

k=3 α̂13 = −1.873 ± 0.029 α̂23 = 1.859 ± 0.049 b̂13 = −1.699 ± 0.156 ŵ13 = 0.600

b̂23 = −5.307 ± 0.289 ŵ23 = 0.400

T V = −2 T V = +2 T V = (−2, −6) T V = (0.6, 0.4)

Estimated fixed and random effects of JMSPME model for the DGP in Eq. 20.

α̂k b̂1mkk b̂2mkk ŵmkk

k=2 α̂2 = −5.007 ± 0.125 b̂112 = −5.982 ± 0.057 b̂212 = 5.032 ± 0.146 ŵ12 = 0.300

b̂122 = −4.459 ± 0.118 b̂222 = 1.827 ± 0.136 ŵ22 = 0.300

b̂132 = −8.011 ± 0.129 b̂232 − 1.147 ± 0.097 ŵ32 = 0.400

T V = −5 T V = (−6,−4,−8) T V = (+5,+2, −1) T V = (0.3, 0.3, 0.4)

k=3 α̂3 = 2.021 ± 0.048 b̂113 = 0.836 ± 0.047 b̂213 = −3.742 ± 0.092 ŵ13 = 0.600

b̂123 = −0.917 ± 0.044 b̂223 = 2.139 ± 0.165 ŵ23 = 0.400

T V = +2 T V = (+1, 1) T V = (−4,+2) T V = (0.6, 0.4)

Estimated fixed and random effects of JMSPME model for the DGP in Eq. 21.

Estimates are reported in terms of mean ± sd, computed on the 500 runs of the simulation study for the fixed
effects and on the runs in which the algorithm identifies M2 = 3 and M3 = 2 (reported in Table 1) for the
random effects. True values (T V ) of the coefficients used to simulate data are reported under the relative
estimates
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Table 7 Fixed and random effects estimated by MSPEM in the three different DGPs of the simulation study,
first presented in Masci et al. (2022) and reproduced in this paper

α̂1k α̂2k b̂mkk ŵmkk

k=2 α̂12 = 4.096 ± 0.081 α̂22 = −3.051 ± 0.053 b̂12 = −6.819 ± 0.182 ŵ12 = 0.300

b̂22 = −3.916 ± 0.109 ŵ22 = 0.300

b̂32 = −2.122 ± 0.099 ŵ32 = 0.400

T V = +4 T V = −3 T V = (−7, −4,−2) T V = (0.3, 0.3, 0.4)

k=3 α̂13 = −2.067 ± 0.046 α̂23 = 2.059 ± 0.034 b̂13 = −5.200 ± 0.089 ŵ13 = 0.599

b̂23 = −1.899 ± 0.048 ŵ23 = 0.401

T V = −2 T V = +2 T V = (−5, −2) T V = (0.6, 0.4)

Fixed and random effects estimated by MSPEM algorithm for the DGP in Eq. 19.

α̂1k α̂2k b̂mkk ŵmkk

k=2 α̂12 = −1.195 ± 0.039 α̂22 = −2.766 ± 0.085 b̂12 = 4.786 ± 0.121 ŵ12 = 0.300

b̂22 = 1.811 ± 0.071 ŵ22 = 0.301

b̂32 = −0.117 ± 0.134 ŵ32 = 0.399

T V = −1 T V = −3 T V = (+5, +2, −1) T V = (0.3, 0.3, 0.4)

k=3 α̂13 = −1.672 ± 0.039 α̂23 = 1.713 ± 0.051 b̂13 = −1.601 ± 0.057 ŵ13 = 0.600

b̂23 = −4.791 ± 0.210 ŵ23 = 0.400

T V = −2 T V = +2 T V = (−2, −6) T V = (0.6, 0.4)

Fixed and random effects estimated by MSPEM algorithm for the DGP in Eq. 20.

α̂k b̂1mkk b̂2mkk ŵmkk

k=2 α̂2 = −5.013 ± 0.098 b̂112 = −5.863 ± 0.236 b̂212 = 5.091 ± 0.195 ŵ12 = 0.300

b̂122 = −4.700 ± 0.129 b̂222 = 2.801 ± 0.119 ŵ22 = 0.300

b̂132 = −8.022 ± 0.237 b̂232 = −1.185 ± 0.079 ŵ32 = 0.400

T V = −5 T V = (−6, −4,−8) T V = (+5, +2, −1) T V = (0.3, 0.3, 0.4)

k=3 α̂3 = 1.977 ± 0.040 b̂113 = 0.739 ± 0.058 b̂213 = −3.651 ± 0.092 ŵ13 = 0.600

b̂123 = −0.888 ± 0.055 b̂223 = 2.419 ± 0.160 ŵ23 = 0.400

T V = +2 T V = (+1, −1) T V = (−4, +2) T V = (0.6, 0.4)

Fixed and random effects estimated by MSPEM algorithm for the DGP in Eq. 21.

Estimates are reported in terms of mean ± sd, computed on the 500 runs of the simulation study for the fixed
effects and on the runs in which the algorithm identifies M2 = 3 and M3 = 2 (shown in Table 1 in Masci et
al. (2022) and here reported in Table 1) for the random effects. True values (T V ) of the coefficients used to
simulate data are reported under the relative estimates

Appendix D: Distribution of the 19-degree programmes across the
MSPEM and JMSPME identified subpopulations
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