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Abstract

This paper proposes a novel clustering-based approach to the bounded-error identification of switched and piecewise
affine autoregressive exogenous systems. We address the problem of determining a minimal collection of linear-in-the-
parameters models (called modes) fitting with a given accuracy ε a set of input-output data while complying with the
switched or piecewise affine nature of the system. The problem is tackled by suitably clustering the data according to
their preferences with respect to a pool of candidate models identified on subsets of the available data. The preference
of a data point for a model is assessed based on the extent to which that model fits that data point and is set to zero
if the fit is worse than ε. A two-level clustering with outliers isolation is employed, first grouping data based on their
preferences subject to suitable time/space adjacency conditions depending on the nature of the switching mechanism,
and then collecting together non-adjacent clusters that can be described by the same mode. The performance of the
proposed method is demonstrated via comparative numerical examples and on experimental data from an electronic
component placement process in a pick-and-place machine.
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1. Introduction

This paper addresses the identification of switched sys-
tems expressed in input-output form and characterized
by a set of affine AutoRegressive with eXogenous inputs
(ARX) systems, called modes. Specifically, we consider
the classes of Switched (SARX) and PieceWise affine ARX
(PWARX) systems, depending on the nature of the switch-
ing mechanism. An exogenous switching signal, possibly
subject to some dwell-time condition, is assumed for the
first class, whereas in PWARX systems switching is trig-
gered by transitions of the regressor vector from one region
to another of a polyhedral partition in the regressor space.
The switching signal is not known in advance so that one
needs to infer from the available input/output data not
only the model parameters of each mode, but also the
number of modes and the sample-mode assignment.

The identification problem can be formulated as a mixed
integer optimization program with continuous (the model
parameters) and discrete (the number of modes and the
sample-mode assignment) variables, which is NP-hard [1],
and hence challenging to solve in practice. Various ap-
proaches have been proposed in the literature to address
the identification of switched systems, see e.g., the surveys
[12, 15] and the papers referenced in [6, 7] for a compre-
hensive review. We next briefly review the methods to
which the present approach is closer to. The k-RANSAC

algorithm [13] is a greedy approach based on a repeated
application of the scheme in [11]: at each iteration a new
model is identified that fits most of the remaining data,
until all data are covered. This method copes well with
outliers, but is negatively affected by the incremental na-
ture of the procedure. In [10, 9] data are clustered based
on the assumption that samples well fitted by models with
similar parameterizations are likely associated to the same
mode. A similar assumption is exploited in [8], where suit-
able probability distributions are introduced to model the
influence of each datum on the cluster membership of its
neighbors, and in [19, 17] to construct the weight matrix
appearing in the regularization term. In [3] a bounded-
error condition is used to define a set of linear inequalities
derived from the data, which are then partitioned in sub-
sets, each one leading to a different subsystem. A greedy
partitioning scheme is adopted, whereby at each iteration
a model is obtained that satisfies the maximum number of
remaining inequalities. Differently from the k-RANSAC
method, a refinement step is applied to a posteriori cor-
rect the sample-mode assignment. Even so, the presence
of noise in the data and outliers may cause misclassifica-
tions. Notably, this method does not require prior infor-
mation on the number of modes, as this follows indirectly
from imposing a threshold on the error. However, vari-
ous parameters need to be appropriately tuned in order
to correctly estimate the number of modes. Exploiting
prior knowledge on the switching mechanism can greatly
enhance the ability of the identification method to handle∗Corresponding author at: Dipartimento di Elettronica, Infor-
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noise and outliers, thereby improving the sample classifi-
cation accuracy. For example, [4] adds a term in the cost
function of the optimization problem, that suitably penal-
izes mode switchings. The method of [5], instead, adopts
an heuristic post-processing of the sample assignment that
exploits information such as the minimum dwell time.

In this work, we present a novel clustering-based method
for the identification of SARX and PWARX systems that
builds upon the bounded-error approach of [3] and extends
to the class of switched dynamical systems the clustering
method described in [21, 18], originally introduced for fit-
ting multiple instances of a static model to noisy data in
computer vision applications. Differently from [10, 9], the
clustering is not carried out in the regressor domain, which
relies on the similarity of the parameters of the local mod-
els and is consequently badly affected by noise in the data.
Data are instead clustered in groups sharing similar “pref-
erences” with respect to a set of models, implying that
data sharing similar preferences are likely to be explained
by the same mode. Furthermore, along with [4] and [5],
we exploit prior knowledge on the switching mechanism
to improve the mode assignment, integrating spatial (for
PWARX) and temporal (for SARX) adjacency relations
between data points in the data clustering mechanism.
Key to the effectiveness of the approach is the introduction
of a graph encoding these adjacency relations.

The proposed method operates two clustering steps, the
first one grouping adjacent samples that are compatible
with the same model, and the second one further collect-
ing together non-adjacent data segments that can be as-
signed to the same model. These two steps are iterated
until convergence, which is guaranteed to occur in a fi-
nite number of iterations. When no bound on the additive
noise is known, different ε are explored for a fine tuning.

2. Problem formulation

We consider a single-input single-output switched sys-
tem with input ut and output yt, characterized by s◦

affine dynamics (called modes) and a signal σt ∈ M =
{1, . . . , s◦} governing the switching among them. More
precisely, the system is described by

yt = ϕ>tϑ
◦
σt

+ et, (1)

where ϕt = [1 xt]
> ∈ Rn, with xt = [yt−1 · · · yt−ny

ut−1 · · · ut−nu
] and n = nu + ny + 1, is the (extended)

regression vector, ϑ◦σt
∈ Rn is the parameter vector asso-

ciated with the mode σt that is active at time t, and et is
a disturbance input. In this work, we assume that

Assumption 1. The orders ny and nu of the switched
system (1) are known.

If σt is an exogenous signal, then (1) is referred to as
a SARX system. If, instead, σt is an endogenous signal
whose value depends on which element of a polyhedral

partition of Rnu+ny xt belongs to, then (1) is a PWARX
system. For PWARX systems, samples that are close in
the regressor space are likely to belong to the same mode.
For SARX systems, this is the case for samples that are
consecutive in time. This information can be exploited to
constrain the identification procedure.

Given a set D = {(yt,xt)}Nt=1 of time-ordered consecu-
tive data collected from (1), we consider the optimization
problem

min
s∈N,{ϑi∈Rn}si=1

s (2)

subject to: max
t=1,...,N

min
i=1,...,s

|yt −ϕ>tϑi| ≤ ε,

where ε > 0 is a bound on the disturbance amplitude.
Problem (2) entails finding a minimal collection of modes

ŷt = ϕ>tϑi, i = 1, . . . , s, (3)

fitting D with a Maximum Absolute Error (MAE) that is
below the threshold ε. The optimal solution is then char-
acterized by a minimal number s? of modes and the corre-
sponding parameterizations {ϑ?i }s

?

i=1, identifying the sys-
tem that generated the data in D. The associated switch-
ing signal can be reconstructed by selecting

σ?t ∈ {i : |yt − ϑ?i>ϕt| ≤ ε} ⊆ {1, . . . , s?}, t = 1, . . . , N.
(4)

Such a signal has to comply with the underlying
SARX/PWARX nature of the system. In particular, in
the PWARX case, the partition of Rnu+ny originating the
switching signal can be further identified by solving a su-
pervised classification problem with s? classes on the data
set {(xt, σ?t )}Nt=1.

Problem (2) is hard to solve in practice since it is equiv-
alent to the NP-hard minimum-size partition of feasible
subsystems problem, [1]. Here, we propose a novel con-
strained clustering method to approximately solve it.

3. The proposed constrained clustering method

The proposed approach is inspired by [18] and consists in
performing data clustering based on the closeness of data
in a suitably defined preference space, built using the pref-
erences expressed by each datum for all models in a pool
constructed from small sets of data. Intuitively, data that
share similar preferences are likely to be well explained by
the same model and can then be grouped together.

Prior knowledge on the SARX or PWARX model class
to which the underlying system belongs is integrated
within the construction of the initial pool of local models
and the clustering procedure. This is achieved by describ-
ing the temporal (SARX) or spatial (PWARX) relation
between data through an undirected graph, on which clus-
ters of coherent data can be easily identified.

The clustering process is separated into two stages, the
first one aiming to find the largest temporally or spatially
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coherent subsets using the introduced graph, and the sec-
ond one to find the minimum number of modes, by ag-
gregating non-adjacent clusters with the same dynamics.
This two-stage procedure is also beneficial in increasing
the accuracy of the model identification, as it enlarges the
set of data on which each individual mode is estimated.

By iterating this clustering process using the identified
modes as model pool for the next iteration, we allow the
algorithm to further reduce the number of modes and re-
fine the associated models. The properties of the resulting
iterative procedure are discussed in Section 3.6.

3.1. Graph encoding prior knowledge on the model class

Depending on the nature of the switched system, sam-
ples that are temporally (SARX) or spatially (PWARX)
close are likely to belong to the same mode. In order
to make our approach exploit this a-priori information,
we associate an undirected graph G = (V, E) to the data
set D = {(yt,xt)}Nt=1 so that two data that are close are
mapped into two adjacent vertices of the graph, i.e., two
vertices that belong to an edge in E . More precisely, each
datum is coded through its time index t and is repre-
sented by a vertex in the set V = {1, . . . , N}. As for
the edge set, if D is generated by a SARX system, then
the unordered pair {t1, t2} is an edge in E if and only
if t2 = t1 + 1. Instead, if it is generated by a PWARX
system, then {t1, t2} ∈ E if and only if xt1 and xt2 are
connected by an edge in the Delaunay triangulation [16]
of {xt}Nt=1 within Rnu+ny . Indeed, since in the Delaunay
triangulation each xt is joined to neighboring points in
the regression space, we can use it to model spatial rela-
tions among {xt}Nt=1. Alternatively, one can employ the
K-nearest neighbor graph, which is simpler to build, but
requires to specify the number of neighbors K of a datum
as a design parameter.

Note that, since data in D are assumed to be con-
secutive in time, then, in both the SARX and PWARX
cases the resulting graph G is connected by construction,
i.e., for any two vertices v0 and vn, there exists a se-
quence of vertices v1, . . . , vn−1, such that {vk−1, vk} ∈ E ,
k = 1, . . . , n. Given a subset of vertices V ′ ⊂ V, the sub-
graph GV′ = (V ′, E ′) is the graph containing the vertices in
V ′ and the edges connecting only the vertices in V ′ (i.e.,
E ′ = E ∩ {{v1, v2}, v1, v2 ∈ V ′}). Let G1 = (V1, E1) and
G2 = (V2, E2) be two connected subgraphs of G. Then, the
subgraph of G with V1 ∪ V2 as set of vertices is connected
only if G1 and G2 are adjacent, i.e., there exist v1 ∈ V1 and
v2 ∈ V2 such that v1 and v2 are adjacent.

3.2. Initial model pool and preference space generation

The method starts with the selection of sets containing
a given (small) number α of data points that are close to
each other in time (for SARX) or in space (for PWARX),
which are then used to estimate the local models. These
sets are built using the introduced graph representation
G = (V, E) of the dataset D and constructing Np ≤ N

connected subgraphs G̃j = (Ṽj , Ẽj), j = 1, . . . , Np, each
one with α vertices.

More precisely, the Np subgraphs are built by choosing
Np vertices {v1, v2, . . . , vNp} ⊆ V and performing for each
j = 1, 2, . . . , Np a breadth-first search on G starting from

vj until α − 1 vertices are discovered. Ṽj is then given

by the set of these α − 1 vertices and vj , whereas Ẽj =

{{v1, v2} ∈ E : v1, v2 ∈ Ṽj}.
In order to guarantee a coverage of the available data,

one can set N = Np, so that a subgraph for each vertex in
V (and hence for each datum in D) is obtained. If N is too
large, one can still obtain a wide data coverage by choos-
ing the vertices in V corresponding to Np < N data that
are equally spaced in time (for SARX models) or obtained
by uniformly gridding the convex hull containing all avail-
able regressors xt’s and then picking the data associated
with Np regressors that are closest to the grid points (for
PWARX models).

For each subgraph G̃j = (Ṽj , Ẽj), j = 1, . . . , Np, a model

ϑ̃j ∈ Rn is identified by minimizing the MAE, i.e.,

ϑ̃j ∈ arg min
ϑj∈Rn

max
t∈Ṽj
|yt −ϕ>tϑj |, (5)

which amounts to solving the linear programming problem

min
ϑ,h

h (6)

subject to: yt −ϕ>tϑ ≤ h ∀t ∈ Ṽj
ϕ>tϑ− yt ≤ h ∀t ∈ Ṽj .

Clearly, a necessary condition for the solution to (6) to be
uniquely defined, is α ≥ n, where n is the size of ϑ.

Once the model pool has been generated, following [18],
one can assess the preference of the t-th datum for the j-th
model as

ptj =

{
0 rtj > ε

e−5
rtj
ε rtj ≤ ε

(7)

where rtj = |yt−ϕ>t ϑ̃j | is the absolute value of the residual
and ε the user-given threshold in (2). Note that (yt,xt)
has a strictly positive preference for model j if and only
if model j fits (yt,xt) with an absolute error within ε.
Expression (7) provides a normalized preference value be-
tween 0 and 1 and the chosen coefficient 5 allows to fully
exploit the variability range of the exponential for values
of rtj within [0, ε]. Notice that this exponential preference
function is only instrumental to the clustering procedure,
and it is not meant to provide any ranking between lo-
cal models. Indeed, all the local models with rtj ≤ ε are
equally good according to the problem formulation (2).

A data point (yt,xt) can then be represented by its pref-
erence vector pt = [pt1 · · · ptNp ]> in the preference space
[0, 1]Np . Intuitively, if the model pool is rich enough, data
points generated by the same mode will have a similar
preference vector and one can leverage this information to
cluster these points together.
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If the model pool is sufficiently rich and the disturbance
absolute value is upper bounded by ε, then pt 6= 0, ∀t.
If this were not the case, then all data such that pt = 0
(i.e., no model fits them within an ε error) are considered
as outliers and left aside in a set O. One then needs to
define the reduced dataset Dε = D \ O and construct its
(not necessarily connected) graph representation Gε to feed
into the two-stage constrained clustering.

3.3. Two-stage constrained clustering

To measure the likelihood that two data points have
been generated by the same mode, following [18] we con-
sider their preference vectors and evaluate the complement
of the Tanimoto similarity coefficient, which is defined for
every a, b ∈ [0, 1]Np that are not both equal to zero as

S◦T (a, b) = 1− a>b

‖a‖2 + ‖b‖2 − a>b
, (8)

where ‖ · ‖ denotes the standard Euclidean norm, [22].
S◦T (a, b) ranges from 0 (a = b) to 1 (a>b = 0). According
to (7) and (8), S◦T (pt,pt′) < 1 implies that there exists j
such that ptj and pt′j are both positive. Note that remov-
ing the data with pt = 0 prevents the case a = b = 0, for
which (8) is not defined.

Resting on (8) one could perform data clustering to par-
tition the dataset into groups of data with similar pref-
erences, along the lines of [18]. However, the resulting
classification performance is not entirely satisfactory, es-
pecially regarding the “undecidable” points, i.e. those
samples that (e.g. due to noise) exhibit a small resid-
ual (and thus a positive preference) for more modes than
just the correct one. As a result, the identified switched
model switches too frequently and displays many isolated
samples (see also the illustrative example in Section 3.4).

Intuitively, as also acknowledged in [3], the ambiguity of
these points may be solved by exploiting temporal/spatial
localization information of these points. However, differ-
ently from [3], where this information is used only a pos-
teriori with the aim of reducing misclassifications in the
already computed data partition, we here propose to use
it to explicitly assist the clustering procedure. More pre-
cisely, we first apply a “low-level clustering” phase, that
aims to group together samples that are both temporally
or spatially coherent, and share common preference vec-
tors (i.e., are well described by the same model). Then,
after a pruning phase, a second “high-level clustering” is
operated, to aggregate non-adjacent data clusters obtained
in the first stage that can be described by the same model.

The low-level clustering phase (Algorithm 1) is ini-
tialized assigning each data point index in the set I ⊆
{1, . . . , N} associated with Dε to a different cluster Vi,
which inherits the preference vector of the corresponding
data point. Then, the procedure looks for the closest pair
of adjacent clusters according to (8), adjacency being as-
sessed with reference to graph Gε, and if they share a pos-
itive preference it merges them into a new cluster with

Algorithm 1 Low-level clustering
Require: Data indices Iε = {t : (yt,xt) ∈ Dε}, preference vectors

{pt}t∈Iε , graph Gε
Ensure: Data partition {Vi}, preference vectors {ρi}

1: Vt = {t}, t ∈ Iε . Initialize clusters

2: ρt = pt, t ∈ Iε . Initialize cluster preference

3: repeat

4: (t?, τ?)← arg min
t,τ∈Iε,t6=τ

S◦T (ρt,ρτ ) . Find closest pair

subject to: Vt and Vτ adjacent in Gε
5: if S◦T (ρt? ,ρτ? ) < 1 then

6: Vt? ← Vt? ∪ Vτ? . Merge cluster pair

7: ρt? ← min{ρt? ,ρτ?} . Update preference set

8: Iε ← Iε \ {τ?}
9: end if

10: until S◦T (ρt? ,ρτ? ) = 1

preference vector equal to the component-wise minimum
among the preference vectors of the merged clusters. The
procedure is iterated while there are at least two adjacent
clusters sharing a positive preference, otherwise it stops.
Intuitively, if an undecidable point has a positive prefer-
ence for both modes j and i, but it is adjacent to data
points preferring i, then it is more likely to be clustered
with them despite its (possibly higher) preference for j.

Following the first clustering stage, we perform a prun-
ing phase, in which we start from the partition {V ′i,ρ′i}s

′

i=1

resulting from the low-level clustering and look for all the
clusters V ′i with cardinality less than a user-defined thresh-
old β > 0, discarding their data as outliers and transferring
them to the set O. The rationale underlying this pruning
step is that a few isolated points calling for an additional
cluster are likely to be outliers. The value of β can be
inferred from prior knowledge on the underlying system,
if available. In the SARX case, for example, β can be set
equal to the minimum dwell time, if this is known. In both
the SARX and PWARX cases, β ≥ n, since problem (6)
has multiple solutions and, hence, model parameters are
not uniquely defined for a cluster with less than n data.
After pruning, up to a re-indexing of the clusters, one ob-
tains {V ′′i ,ρ′′i }s

′′

i=1, with s′′ ≤ s′.
Finally, in the second high-level clustering stage we run

Algorithm 2, using as input the indices I = {1, . . . , s′′} of
the clusters returned by the pruning phase and pt = ρ′′t ,
t ∈ I, for their preference vectors. The clustering criterion
is the same as before, except that the adjacency constraint
has been removed. Algorithm 2 aggregates those data por-
tions {V ′′i }s

′′

i=1 that are not adjacent. This allows to asso-
ciate to the same mode data that are apart (either in time
or in space), allowing at the same time a more accurate es-
timation of the model parameters (since more data can be
used for identification purposes). The outcome {Vi,ρi}ŝi=1

of the high-level clustering phase provides both the esti-
mated data partition and the estimated number of modes
ŝ. Notice that, for PWARX systems, one can detect if
a mode has been associated to different non-adjacent re-
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Algorithm 2 High-level clustering
Require: Indices set I, preference vectors {pt}t∈I
Ensure: Data partition {Vi}, preference vectors {ρi}

1: Vt = {t}, t ∈ I . Initialize clusters

2: ρt = pt, t ∈ I . Initialize cluster preference

3: repeat

4: (t?, τ?)← arg min
t,τ∈I,t 6=τ

S◦T (ρt,ρτ ) . Find closest pair

5: if S◦T (ρt? ,ρτ? ) < 1 then

6: Vt? ← Vt? ∪ Vτ? . Merge cluster pair

7: ρt? ← min{ρt? ,ρτ?} . Update preference set

8: I ← I \ {τ?}
9: end if

10: until S◦T (ρt? ,ρτ? ) = 1

gions of Rnu+ny by inspecting the graph associated with
that mode and checking whether or not it is connected.

Given the estimated data partition {Vi}ŝi=1, we can triv-
ially reconstruct the switching signal as

σ̂t = i, t ∈ Vi, t ∈ {1, . . . , N}, t /∈ IO, (9)

where IO is the set of time indices associated with the set
O of outliers.

The partition returned by the explained two-stage clus-
tering scheme satisfies the following properties [18]:

P1: all data belonging to a cluster share at least a posi-
tive preference for some model, i.e., for each cluster
Vi there exists some model j such that 0 < ρij =
mint∈Vi ptj ;

P2: two distinct clusters do not share a positive prefer-
ence for any model, i.e., their preference vectors are
orthogonal: ρ>i ρi′ = 0 for all i 6= i′.

Remark 1. Notice that the low-level clustering phase only
satisfies property P1, as clusters sharing a similar prefer-
ence vector are merged together only if they are adjacent.

Remark 2. Alternative approaches to data-segmentation
could be adopted in place of Algorithm 1, e.g., [20]. Note,
however, that in our approach data-segmentation is func-
tional to the next clustering stage where data corresponding
to different segments that are generated by the same mode
are aggregated in the same cluster.

3.4. Illustrative example

The next example illustrates the importance of introduc-
ing adjacency relations in the clustering process. Consider
the following SARX system [2]

mode 1: yt =− 0.0322yt−1 + 0.8017yt−2

− 1.2878ut−1 − 1.1252ut−2 + et

mode 2: yt =− 0.1921yt−1 + 0.5917yt−2

+ 1.1050ut−1 + 0.0316ut−2 + et

mode 3: yt = + 1.4746yt−1 − 0.5286yt−2

− 0.4055ut−1 + 0.2547ut−2 + et

(10)

where et and ut are zero mean white Gaussian processes
with variance ζ2 = 0.01 and 1, respectively. The system
switches randomly 20 times in the interval (1, 2000), with
a minimum dwell time τD of 10 time instants.

Suppose that the true model parameters ϑ◦i , i = 1, 2, 3,
are accessible. Then, if one tries to associate samples to
modes using the intuitive heuristic

σ̂t = arg min
k
|yt −ϕ>tϑ

◦
k|, (11)

6% of the samples (a subset of the undecidable ones) are
misclassified. This result is only marginally improved if
one applies the preference-based clustering without the
adjacency constraint (i.e., using [18]), even if the prefer-
ences are computed using the true models. Indeed, with
ε = 4ζ = 0.4, one obtains a misclassification rate of 5.6%.
Figure 1 provides a pictorial representation of the unsat-
isfactory mode classification in both cases. Note that the
misclassified points are not always located at the bound-
aries of data segments associated with different modes.

Figure 1: True switching signal (top), switching signal estimated ac-
cording to rule (11) (middle), and switching signal estimated with
the preference-based clustering approach without the adjacency con-
straint (bottom). Red dots represent misclassified data points.

Using Algorithm 1 instead, one obtains the clustering
reported in Figure 2 (middle plot). As can be seen from
the picture, consecutive data points generated by the same
mode are correctly identified, except for two (close) mis-
classified points. Notice that the algorithm has correctly
estimated the number of switchings and their locations as
well, except for one case. This example provides also evi-
dence for the observation in Remark 1. Indeed, inspecting
Figure 3, where each column represents the preference of
a cluster for the model indexed by the row number (dark
color reads as high preference), it is easy to see that there
are non-adjacent clusters (columns) with similar prefer-
ences. For comparison purposes, we also applied the data-
segmentation scheme in [20] and obtained a comparable
data segmentation result but with a much (almost 1000
times) higher computational effort.

Performing the pruning procedure with β = 10 (equal to
the minimum dwell time) on the outcome of Algorithm 1
results in no outliers being detected. If one then applies Al-
gorithm 2, the switching signal σ̂t shown in Figure 2 (bot-
tom plot) is obtained. Apparently, the estimated switch-
ing signal almost perfectly matches the true one (0.1%
misclassification rate).
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Figure 2: True switching signal (top), output of the low-level clus-
tering (middle), and switching signal estimated after the high-level
clustering (bottom). Red dots represent misclassified data points.

Figure 3: Preference matrix. Each column is a cluster and each row
is a model. The preference of a cluster for each model is represented
as shades of color (dark color reads as high preference).

3.5. Procedure iteration and stopping criteria

The estimated data partition {Vi}ŝi=1 may be improved,
possibly re-including also those data points marked as out-
liers, by iterating the presented clustering procedure on the
whole data set D according to the flow chart in Figure 4.

In particular, based on the clustered data {Vi}ŝi=1, the
parameters of each mode i are identified as follows

ϑ̂i ∈ arg min
ϑi∈Rn

max
t∈Vi
|yt −ϕ>tϑi|, (12)

and the procedure to generate the preference vectors de-
scribed in Section 3.2 is repeated using the identified
modes as model pool (i.e., setting Np = ŝ and ϑ̃j = ϑ̂j ,
j = 1, . . . , ŝ), followed by the two-stage clustering scheme
described in Section 3.3. The procedure is iterated un-
til the estimated switching signal σ̂t computed according
to (9) is equal to a previous estimate. Note that, in the
PWARX case, there is no guarantee that the returned clus-
ters are linearly separable.

3.6. Algorithm properties

We can now state the properties of the proposed con-
strained clustering iterative algorithm in terms of conver-
gence and performance.

Theorem 3.1. The proposed iterative algorithm is guar-
anteed to terminate, and, upon termination, each data
(yt,xt), t = 1, . . . , N , is either classified as an outlier or
it satisfies

|yt −ϕ>t ϑ̂σ̂t
| ≤ ε, (13)

where σ̂t and {ϑ̂i}ŝi=1 are the switching signal and mode
parameters in (9) and (12) obtained at convergence.

Proof. Termination is guaranteed since a) the recon-
structed switching signal can assume only a finite number

{(yt,xt)}
N
t=1

data parameters
Np, ε,α,β

model generation

{ϑ̃j}
Np

j=1

clusters pruning

preference computation

{pt}
N
t=1

low-level clustering

high-level clustering

{Vi}
ŝ
i=1

parameter identification

MODEL

{ϑ̂i}
ŝ
i=1

convergence?
{ϑ̂i}

ŝ
i=1

SWITCHED

true

false

Figure 4: Flow chart of the proposed algorithm. Notice that while
iterating, the identified modes {ϑ̂i}ŝi=1 are used as model pool.

of values, given that the number of possible data clus-
ters is finite (there can be at most N clusters, one for
each sample), and b) the stopping criterion prevents from
cycling back to previously found solutions. Since both
the low-level and the high-level clustering operations sat-
isfy property P1 and the pruning procedure only removes
clusters, one has that for each of the resulting clusters Vi,
i = 1, . . . , ŝ, there exists at least one model ̄ ∈ {1, . . . , Np}
such that 0 < ρī = mint∈Vi pt̄. This implies

rt̄ = |yt −ϕ>t ϑ̃̄| ≤ ε, t ∈ Vi. (14)

Now, if t ∈ IO, then (yt,xt) is considered as an outlier,
otherwise there exists a cluster i such that t ∈ Vi and the
following chain of inequalities holds

|yt −ϕ>t ϑ̂i| ≤ max
t∈Vi
|yt −ϕ>t ϑ̂i| = min

ϑi∈Rn
max
t∈Vi
|yt −ϕ>tϑi|

≤ max
t∈Vi
|yt −ϕ>t ϑ̃̄| ≤ ε,

where the first equality and the second inequality are due
to ϑ̂i being a minimizer according to (12), and the last
inequality is due to (14). If t ∈ Vi, by (9), σ̂t = i, thus

|yt −ϕ>t ϑ̂σ̂t
| = |yt −ϕ>t ϑ̂i| ≤ ε.

These results are valid at each iteration and, specifically,
at the last one, which concludes the proof.

3.7. Selection of parameter ε

The output of the proposed procedure obviously de-
pends on the value of the threshold ε. Large values of
ε cause many data points to express positive preferences
for a large number models in the pool, as large absolute er-
rors are tolerated, and this results in a data partition with
few clusters (under-estimation of the number of modes).

6



Figure 5: Estimated number of clusters as a function of ε.

In particular, if the value of ε is set too large, i.e.,

ε ≥ ε = min
j=1,...,Np

max
t=1,...,N

rtj , (15)

then a single mode is identified, since there exists one
model in the pool that fits all data points within an ab-
solute error ε. Conversely, small values of ε cause many
data points to express positive preferences for only a few
models in the pool (only small errors are tolerated), thus
leading to an over-estimation of the number of modes s
and overfitting issues. Note, however, that the number of
clusters may decrease as ε gets smaller (see, e.g., Figure 5),
since the chance of getting outliers grows. Indeed, if

ε < ε = max
t=1,...,N

min
j=1,...,Np

rtj , (16)

then there exists at least one data point t̄ for which rt̄j > ε
for all models j = 1, . . . , Np, thus implying pt̄ = 0 and
(yt̄,xt̄) ∈ O. In case D is known not to contain outliers,
then ε and ε appear to be reasonably good bounds for ε.

The a priori information on the noise characteristics can
be used to set a sensible value for ε. For example, if the
noise is Gaussian with zero mean and standard deviation ζ,
then one can set ε ≥ 3ζ. If no information is available, one
can execute the proposed algorithm for increasing values
of ε. Then, a sensible value of ε can be taken at the knee
of the curve that plots the identified number of modes ŝ
as a function of ε, as discussed also in [3].

Applying the overall procedure to Example 3.4 for ε ∈
[0.1, 10] one obtains the curve reported in Figure 5, where
it is apparent that any value of ε between 3.3ζ = 0.33 and
11ζ = 1.1 leads to the correct identification of the true
number of modes s◦.

4. Numerical and experimental examples

In this section, we perform a comparative analysis with
various competitor algorithms. The methods are evaluated
in terms of fitting and classification accuracy, based on
the indices defined next. The fitting accuracy is measured
according to

FIT = 100
(

1−
∑N
t=1 ‖yt − ŷt‖22∑N
t=1 ‖yt − ȳ‖22

)
, (17)

where ŷ denotes the estimated model output sequence, and
ȳ is the average of the true output sequence y, so as to
normalize with respect to the size and variability of the

output data. Unless specified differently, ŷ denotes the
one-step ahead prediction. Detected outliers are ruled out
from the computation of (17). This consideration applies
only to our method and the one in [3], since they alone
include an outlier detection procedure.

The classification accuracy is the percentage of correctly
classified data points and is given by

CtrueN =
100

N

N∑
t=1

1[σ̂t = σt], (18)

where 1[σ̂t = σt] = 1, if σ̂t = σt, and 0, otherwise, with
σ̂t set to 0 if the datum at t is identified as an outlier.
Since the value of index (18) depends on the labeling of
the modes of the identified switched model, we consider
the labeling that maximizes it in all methods.

The comparative analysis is performed on data realiza-
tions of 2000 samples each associated with 100 indepen-
dent extractions of the exogenous inputs, which include
the switching signal in the SARX case. Indices (17) and
(18) are computed on training data and averaged over the
100 runs. Table 1 lists the parameters adopted in the dif-
ferent methods, which are finely tuned on one additional
data realization of length 4000 so as to get the largest
FIT . Recall that in the algorithm proposed in this paper
and in the bounded-error method [3] the number of modes
s◦ of the system (1) generating data is not assumed to be
known and the goal is to identify a switched model that
guarantees an estimation error smaller than or equal to ε
(δ in [3]). In order to carry out a fair comparison, for each
Monte Carlo run, ε is chosen so that the correct number s◦

of modes is identified. Finally, we assume that the model
orders ny and nu are known for all methods.

Table 1: Parameter settings for each method (please, refer to the
cited papers for the parameter definitions and notations).

Method SARX PWARX
Proposed method Np = 100, α = 20, β =

τD

Np = 100, α = 20,
β = 20

Bounded-error [3] C = 10, ρ = 0.7, T0 =
100, γ = 0.001, c = 5,
β = τD

N , α not used

C = 10, ρ = 0.7,
T0 = 100, γ = 0.001,
c = 90, β = 70

N , α not
used

k-RANSAC [13] ε = 0.1, |Sk| = 10 ε = 0.3, |Sk| = 10
Clustering [10] − c = 35

− K-means runs: 15

Framework [4]
` = ‖yt − xTt ϑst‖2

` = ‖yt − xTt ϑy,st‖2

+ 0.01‖xt − ϑx,st‖2
r(ϑk) = 0.00001 r(ϑk) = 0
L(S) see Section 5.1 in [4],
with τ = 0.02, π = 0.01

L(S) = 0

Method [5] w = 19 p = 9

4.1. SARX identification

With reference again to the example discussed in Section
3.4, Table 2 reports the aggregated results of the compar-
ative analysis for the methods in Table 1. The methods
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that account explicitly for information about the switch-
ing mechanism, i.e., [4] and [5], as well as the proposed
method, outperform the others, especially in terms of clas-
sification accuracy. Among this restricted group of meth-
ods, the proposed one has the highest classification and
fitting accuracy. Also, the low standard deviation of the
evaluation indices indicates that the proposed approach is
robust with respect to the exogenous inputs realizations.
A maximum of 5 algorithm iterations is required.

Table 2: SARX comparative analysis: mean ± standard deviation.

Method Ctrue
N [%] FIT [%] Comp. time [s]

k-RANSAC [13] 85.42 ± 6.59 81.76 ± 8.44 0.48 ± 0.05
Framework [4] 99.85 ± 3.99 92.88 ± 3.30 1.10 ± 0.59
Method [5] 99.41 ± 0.19 91.80 ± 1.59 0.50 ± 0.19
Bounded-error [3] 85.85 ± 1.72 91.85 ± 0.86 6.63 ± 1.82
Bounded-error [3]† 91.85 ± 0.86 99.66 ± 0.15 2.78 ± 0.12
Proposed method 93.74 ± 0.67 99.86 ± 0.15 2.74 ± 0.07
† We exploit temporal adjacency instead of spatial adjacency when refining

the assignment of undecidable points.

4.2. PWARX identification

Consider the following PWARX system [3]:

yt =



−0.4yt−1 + ut−1 + 1.5 + et

if 4yt−1 − ut−1 + 10 < 0

0.5yt−1 − ut−1 − 0.5 + et

if 4yt−1 − ut−1 + 10 ≥ 0

and 5yt−1 + ut−1 − 6 ≤ 0

−0.3yt−1 + 0.5ut−1 − 1.7 + et

if 5yt−1 + ut−1 − 6 > 0

(19)

where ut is a sequence of independent random variables
uniformly distributed in the range [−4, 4], while et is a

zero mean white Gaussian noise with variance ζ2 =
(

1
15

)2
.

A data realization of length 2000 was used for estimation.
The data clustering obtained by applying the proposed ap-
proach with ε = 0.3 (see Figure 6) is consistent with the
true region boundaries except for a few data points (red
dots). This is reflected by the final CtrueN and FIT val-
ues which amount to 99.85% and 97.58%, respectively. A
deeper analysis points out that the few misclassified points
lie in regions where two modes exhibit comparable output
values yt. Consequently, since the regressor vectors xt are
also close to each other, in these cases the spatial adja-
cency information does not help in solving the ambiguity
between the two modes.

Figure 7 shows the curves for the MAE, the number
of outliers, the number of clusters, and the classification
error as a function of the error bound ε. The shaded areas
represent the envelopes of the curves relative to 100 data
realizations. Observe that there is wide range of ε values
for which the correct number of modes is exactly retrieved
irrespective of the realization, thus confirming that the
actual number of modes can be identified by appropriately
tuning ε. Also, as discussed in Section 3.7 (see (15)), an
increased variance in the retrieved number of clusters is
experienced beyond ε ' 2.3, until only one cluster results

Figure 6: PWARX Identification: Obtained data classification. Dif-
ferent markers denote different modes. Solid lines denote the true
region boundaries. Misclassified data are plotted in red.

from the identification procedure. Finally, observe that
the MAE is always below the error bound (dashed red
line) and that this holds for all the data, provided that ε
is chosen so as no outliers arise (see (16)).

Figure 7: PWARX Identification: sensitivity analysis to ε. The
shaded areas represent the envelopes of the curves relative to 100
different data realizations.

A comparative analysis (see Table 3) shows the
supremacy of the methods that consider time/spatial lo-
calization information, as in the SARX case. Conversely,
the clustering approach of [10] is performing poorly in this
example. This is due to the fact that in [10] data cluster-
ing is performed in the model parameter space and, hence,
is badly affected by noise and requires a careful tuning of
the size of the local datasets. Instead, performing data
clustering in the preference space robustifies the proposed
method against noise and makes the choice of the size of
the local data sets less critical as clearly shown in Figure 8.
Regarding the proposed method, the larger computation
time needed with respect to the SARX example is mainly
due to the computation of the Delaunay triangulation re-
quired to derive the graph Gε at each iteration (at most 4
in this example, 5 in the SARX one).
4.3. Robustness to outliers

In this subsection we first analyze the robustness of the
proposed method and the bounded-error approach with
respect to the presence of outliers. To this purpose, we
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Figure 8: Proposed method (dashed blue line), clustering method in
[10] (solid red line).

Table 3: PWARX comparative analysis: mean ± standard deviation.

Method Ctrue
N [%] FIT [%] Comp. time [s]

k-RANSAC [13] 97.47 ± 0.40 97.44 ± 0.82 0.43 ± 0.03
Clustering [10] 95.39 ± 1.07 86.65 ± 3.27 5.87 ± 0.22
Framework [4] 99.91 ± 0.07 97.84 ± 0.06 1.73 ± 0.38
Method [5] 99.90 ± 0.09 97.83 ± 0.06 0.71 ± 0.37
Bounded-error [3] 97.43 ± 0.76 96.98 ± 0.29 3.52 ± 1.12
Proposed method 99.91 ± 0.09 97.68 ± 0.11 11.02 ± 1.70

consider the previous PWARX example, but this time we
corrupt a fraction r of the data of each realization by
adding a zero mean white Gaussian noise δt with variance
25. Note that not all the corrupted data can be consid-
ered as outliers since for some index t the resulting noise
term et + δt might be compatible with the assumed range
of variability for et. Accordingly, we consider as outliers
only the corrupted data for which the resulting noise term
|et + δt| > 0.2 = 3ζ and we assign σt = 0 to them. In this
way, when we compute index (18) for the proposed method
and the bounded-error approach in [3], correctly detected
outliers count as correctly classified data points. Figure
9 shows the CtrueN , FIT , and percentage of the detected
outliers, for r = 0.05, 0.10, 0.15, 0.20, 0.25. Apparently, the
proposed method outperforms the bounded-error approach
in all considered performance indexes. This confirms its
effectiveness in detecting and isolating the outliers.

For the sake of completeness, Table 4 reports the aggre-
gated results of the comparative analysis for all the meth-
ods in Table 1, in the case when r = 0.10. Since only the
proposed method and the bounded-error approach are able
to detect and isolate the outliers, it is not surprising that
the other methods provide relatively poor results both in
terms of classification accuracy and fit.

Table 4: PWARX comparative analysis in the presence of outliers:
mean ± standard deviation. Case 1: all data are used to compute
CtrueN and FIT . Case 2: data outliers are ruled out.

Case 1 Case 2
Method Ctrue

N [%] FIT [%] Ctrue
N [%] FIT [%]

k-RANSAC [13] 86.43 ± 1.15 48.43 ± 2.15 95.54 ± 1.27 88.24 ± 2.09
Clustering [10] 85.79 ± 1.47 54.29 ± 1.94 94.83 ± 1.63 84.73 ± 3.81
Framework [4] 81.16 ± 11.01 66.85 ± 1.70 89.71 ± 12.19 86.90 ± 4.30
Method [5] 84.28 ± 6.91 65.18 ± 1.89 93.16 ± 7.62 87.78 ± 3.82
Bounded-error [3] 95.51 ± 0.89 95.68 ± 0.41 96.51 ± 0.96 95.78 ± 0.43
Proposed method 99.83 ± 0.13 97.59 ± 0.27 99.87 ± 0.12 97.59 ± 0.26

Figure 9: PWARX Identification in the presence of r% outliers, r =
0.05, 0.10, 0.15, 0.20, 0.2. Comparative analysis: proposed method
(black line) and bounded-error method [3] (red line). Solid lines
denote mean values.

Figure 10: Experimental example: data set used for identification
(top) and validation (bottom). The solid and dashed lines represent
the system output (position of the mounting head) and the scaled
input (voltage applied to the motor), respectively.

4.4. Experimental example: pick-and-place machine

The proposed method is applied to a benchmark exam-
ple presented in [14] and discussed in [3, 8, 19, 4]. The ex-
ample consists of a component placement process operated
by a pick-and-place machine. Specifically, this process is
characterized by switchings between two main operational
modes, the free and the impact mode (the mounting head
in contact with the board). Available data represent mea-
surements of the voltage applied to the motor driving the
mounting head, ut, and the vertical position of the mount-
ing head, yt, (see Figure 10).

The objective is to identify a PWA model in the form of
(1), with regression vector ϕt = [1 yt−1 yt−2 ut−1]>. The
model performance is evaluated by the FIT criterion (17)
considering the model simulation output as ŷt, i.e., the
model output computed based on previous model estima-
tions and the measured system input only. The Multicat-
egory Robust Linear Programming (MRLP) linear separa-
tion technique is employed to reconstruct the polyhedral
partition of the regressor space which is needed to map
each xt = [ŷt−1 ŷt−2 ut−1] to one of the identified modes,
for use in the validation.

By choosing ε = 0.75, 0.65, and 0.3, models with s = 2,
3, and 4 discrete modes, respectively, are identified from
the training data, the other parameter settings being Np =
N (one local model per datum), α = 10, and β = 30.
Also, a single ARX model with the same model orders is
identified for comparison purposes. Table 5 reports the
FIT values for the four identified models. These values
clearly show that a single ARX model is not adequate, and
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that better models can be obtained with a switched model
with multiple modes. Further analysis, not reported for
brevity, proved that no significant improvements in terms
of fitting accuracy can be obtained by further reducing ε.

Table 5: FIT values for the identified models.

s 1 2 3 4
FIT 67% 78% 81% 84%

The simulated responses are graphically compared to
the measured one in Figure 11. Note that all the models
failed in tracking the system output in the interval between
1.5s and 2.5s, as experienced also in [14]. In this period,
the system response is not affected by some input vari-
ations, possibly due to the presence of friction, whereas
the simulated responses are. As for the reconstructed
switching signal, the model with s = 2 apparently cap-
tures well the physical operational modes. Indeed, mode
1 and mode 2 can be respectively mapped on the impact
and free modes. In the model with s = 3, the extra mode
seems to account for transitions between the two physical
modes, which can be still mapped on mode 1 and 2, re-
spectively. Further reducing the value of ε increases the
number of modes, hampering the physical interpretation of
the reconstructed switching signal. The presented results
have been obtained within a maximum of 14 algorithm
iterations and 13.21 seconds on average.

5. Conclusions

This paper introduces a unified framework to address
bounded-error identification of SARX and PWARX sys-
tems by an iterative two-level clustering with outliers iso-
lation integrating the a-priori information on the model
class through an adjacency graph and adopting as cluster-
ing criterion the preferences expressed by data for some
candidate models rather than the similarity of the can-
didate model parameters, which is extremely sensitive to
noise and subject to overparameterization issues.

The resulting algorithm proved to be superior to alter-
native state-of-the-art approaches in solving some identifi-
cation problem benchmarks, being also robust to outliers.
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Figure 11: Experimental example: simulation results for the models with s = 1, 2, 3, and 4 modes, from left to right. Top: simulated output
(dashed line) and system output (solid line). Bottom: switching signal.
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