
One Automaton to Rule Them All:
Beyond Multiple Regular Expressions Execution

Luisa Cicolini, Filippo Carloni, Marco D. Santambrogio, Davide Conficconi,
Dipartimento di Elettronica, Informatica e Bioingegneria, Politecnico di Milano, Milan, Italy

luisa.cicolini@mail.polimi.it; {filippo.carloni, marco.santambrogio, davide.conficconi}@polimi.it

Abstract—Regular Expressions (REs) matching is crucial to
identify strings exhibiting certain morphological properties in
a data stream, resulting paramount in contexts such as deep
packet inspection in computer security and genome analysis
in bioinformatics. Yet, due to their intrinsic data-dependence
characteristics, REs represent a complex computational kernel,
and numerous solutions investigate pattern-matching efficiency in
different directions. However, most of them lack a comprehensive
ruleset optimization approach to truly push the pattern matching
performance when considering multiple REs together. Thus,
exploiting REs morphological similarities within the same dataset
allows memory reduction when storing the patterns and drastically
improves the dataset-matching throughput.

Based on this observation, we propose the Multi-RE Finite
State Automata (MFSA) that extends the Finite State Automata
(FSA) model to improve REs parallelization by leveraging
similarities within a specific application ruleset. We design a
multi-level compilation framework to manage REs merging and
optimization to produce MFSA(s). Furthermore, we extend iNFAnt
algorithm for MFSAs execution with the novel iMFAnt engine.
Our evaluation investigates the MFSA size-reduction impact and
the execution throughput compared with the one of multiple
FSA in both single- and multi-threaded configurations. This
approach shows an average 71.95% compression in terms of
states, introducing limited compilation time overhead. Besides,
best iMFAnt achieves a geomean 5.99× throughput improvement
and 4.05× speedup against single and multiple parallel FSAs.

Index Terms—pattern matching, multi-level compilation, regu-
lar expressions, automata merging, parallel execution

I. INTRODUCTION

Regular Expressions (REs) are a powerful computational
kernel describing simple and complex data patterns allowing
the identification of characters sub-sequences by matching
a set of structural requirements in the analyzed data. Their
use is intrinsic in a wide range of practical applications,
ranging from computer security [1]–[6] to genome analysis [7],
natural language processing [8], and database management [9],
[10]. In these applications, REs are essential to identify data
segments presenting specific characteristics in a large data
stream, e.g., when looking for malicious signature during packet
inspection [2], [11]. However, to do so, REs rely on complex
operators, e.g., describing (un)bounded repetitions of characters
and sub-REs. These characteristics make pattern matching
more complex than basic string matching with its simple
character concatenation [12]–[14], which is instead a well-
defined problem addressed by various existing algorithms [15].
In this context, the parallelization [6], [16]–[23] of pattern
matching represents a valuable opportunity, increasing the

BRO DS9 PEN PRO RG1 TCP
Datasets

0.0

0.1

0.2

0.3

0.4

0.5

N
or

m
al

iz
ed

IN
D

EL
si

m
ila

ri
ty

[0
,1

]

Fig. 1: Average normalized INDEL index for different REs
datasets [29], [30] illustrating a proxy of REs similarities.
Computed by averaging the normalized INDEL values for
every couple of REs within the same dataset.

throughput - in terms of number of patterns simultaneously
analyzed - thus yielding significant improvements to time- and
performance-critical applications such as packet filtering [2],
[3], [19], [24], [25]. A first naive approach to this issue could
rely on the parallel execution of multiple REs via multiple
threads, i.e., distributing the REs in a ruleset among a set of
threads [26]–[28]. Nevertheless, this approach is limited by the
number of available cores within the matching engine, which
bounds the number of REs that can be executed in parallel. This
severely impairs actual applications and dataset applicability,
which rely on the analysis of hundreds of REs [26], [29],
[30]. A different approach exploits regex decomposition to
split complex patterns into disjoint sets of string and FSA
components, thus alleviating the computation load by delaying
FSA execution until the string matching analysis is required [6].

However, the literature lacks approaches extensively taking
advantage of REs similarities within a dataset. Figure 1
quantitatively estimates the average string similarities within
two REs using the normalized INDEL metric as a representative
proxy, showing an average morphological similarity ratio of
0.34 out of 1. In particular, the normalized INDEL similarity
ratio is calculated as 1− INDEL, where INDEL represents

the insertion-deletion distance1 between any two different
strings within the same dataset, normalized to the length of the
strings. For example, consider strings s1 = lewenstein and
s2 = levenshtein. The insertion-deletion distance between s1
and s2 is 3, while the strings length is 10 + 11. Therefore,
INDEL = 3

11+10 = 0.1428 and the corresponding similarity
ratio is 1−0.1428 = 0.8572. Considering the potential benefits
of these similarities, we observe that grouping sub-patterns
of single Finite State Automata (FSA) shared across multiple
FSAs into a single optimized representation would enable more
parallel execution of REs with a single exploration.

For these reasons, to fully take advantage of the datasets’ mor-
phological characteristics, we propose a novel approach based
on merging a common sub-RE among REs within a dataset,
such that their matching is performed only once. Specifically,
we look for common sub-paths among different FSAs, to be
iteratively merged into a single Multi-RE Finite State Automata
(MFSA). These sub-paths must exhibit identical morphological
characteristics, i.e., they must describe equivalent sub-FSAs
recognizing the same language. By introducing the concept of
activation function, an MFSA can recognize all the languages
the concerned FSAs describe, allowing for their distinction.
Replacing FSAs with MFSAs in RE-matching reduces the
required states and transitions while increasing the ruleset
matching throughput.

On top of this, we propose an extensive merging-based
optimization technique producing MFSAs, which stands on a
formal model extending FSAs one. This procedure is embed-
ded in a compilation framework managing REs conversion
and optimization into executable MFSAs. Altogether, our
framework comprises both lexical and syntactical analyses
of REs, ensuring their correctness, their transformation into
equivalent FSA, their subsequent optimization and merging into
a single MFSA, and their eventual translation into Automata
Network Markup Language (ANML) format, to enable their
execution. In addition, we propose an ad-hoc extended version
of iNFAnt pattern matching algorithm [32], called iMFAnt,
able to correctly handle and execute MFSAs in this format.

Experimental results show that the merging approach
significantly reduces the states and transitions by 71.95%
and 38.88% on average, compared to the equivalent FSAs
set, thanks to the merging procedure (§VI-A). Notably, this
reduction is effective without resorting to alphabet reduction
techniques [33]. Moreover, combining the MFSAs with the
proposed iMFAnt algorithm improves at most the single-FSA
(single-thread) throughput with a geometric mean of 5.99×.
Finally, we analyze iMFAnt thread number scalability and
compare against the parallel multi-threaded FSAs approach
showcasing a best geomean 4.05× speedup. On top of
this, MFSAs and iMFAnt demonstrate to achieve better
execution times while leveraging fewer threads than the
parallel multi-threaded FSAs approach (§VI-C).

1equivalent to Levenshtein distance with insertions and deletions only [31].

The contribution of this work can be summarized as:
• A merging-based optimization procedure, taking advan-

tage of REs similarities to build a MFSA out of an initial
set of standard FSAs (§III-A).

• A formal model of MFSAs, extending FSAs to take into
account datasets’ morphological characteristics (§III-B).

• An extensive multi-level compilation framework com-
prising the analysis of input REs, their conversion into
FSAs, their optimizations and merging into MFSA, and
their translation into ANML representation (§IV).

• An extension of a current state-of-the-art pattern match-
ing algorithm to enable the support of MFSAs from an
execution perspective (§V).

II. BACKGROUND KNOWLEDGE

We summarize the formal FSA characteristics, including
the differences between Deterministic FSA (DFA) and Non-
Deterministic FSA (NFA).

a) Fundamentals of FSAs: REs optimization and mini-
mization algorithms often exploit the FSA equivalent represen-
tation which is easier to manipulate [34]. A FSA, specifically
a NFA2, is described by a tuple:

a = (Q,Σ, δ, q0, F)

Where Q is the set of states, Σ is the set of allowed input
symbols, δ is a state transition function, q0 is the initial state
and F ⊆ Q is the set of final states [35]. A state transition
function δ : Q× Σ→ P(Q) defines the automaton behavior,
where P(Q) represents the power set of the states set, i.e., the
set of all subsets of Q. A move from a state q1 to a state q2
upon reading a symbol c is represented as follows:

(q1, cw) ⊢FSA (q2, w)

where w represents the remainder of the input string after
consuming (i.e., reading) character c [36]. A standard FSA a
recognizes all the strings belonging to the specific language
L(a). Moreover, FSAs enjoy graph properties, such as the
isomorphism between FSAs U : a1 → a2 that defines a
biunivocal mapping between equivalent FSAs [37]. That is,
a1 and a2 induce the same family of mappings on the same
alphabet. Taking advantage of isomorphisms among different
FSAs is at the core of our merging-based optimization.

b) DFA versus NFA: The intrinsic differences between
DFAs and NFAs represent a core challenge for automata-based
pattern matching. On the one hand, the traversal of DFAs
shows an upper complexity limit strictly related to the time
required for a single transition traversal. At the same time,
DFAs introduce exponential state-explosion issues [38]. To
overcome this limitation, DFAs compression algorithms rely
on default transitions, i.e., transitions reaching a certain state
with a certain character starting from different starting states.
The representation of default transitions is negligible in the
compressed FSA since they are stored once and assumed to

2NFA and DFA recognize the same language [34].

apply by default for any other state in the FSA unless otherwise
specified [33], [34], [39], [40]. On the other hand, NFAs have
a significantly lower memory footprint compared to DFAs.
However, their execution requires the simultaneous activation
of multiple transitions, leading to severe bandwidth limitations.
A set of works addressing this issue targets NFAs execution on
hardware accelerators [13], [21], [41], [42], exploiting ad-hoc
algorithms [27], [28], [43]. These algorithmic solution take
advantage of NFAs multiple active states by parallelizing the
automaton traversal [32]. However, they require non-negligible
pre-processing methods.

III. MFSA: A MERGING APPROACH TO RES OPTIMIZATION

The core idea of our approach consists of searching common
sub-paths (i.e., sub-patterns) among two or more REs describing
equivalent sub-languages over the same alphabet. Upon finding
sub-paths common to a sub-set of FSAs a1, ..., aM , we
propose an iterative merging procedure producing a final MFSA
preserving the initial FSAs morphology and the languages they
describe (§III-A). This approach is equipped with a formal
model supporting MFSAs correctness (§III-B).

A. Merging FSAs: Search for Common Sub-Patterns

We design an algorithm aimed at identifying common sub-
patterns in a set of input REs. We adopt the FSA-based
representation to look for sub-sets of isomorphic transitions
describing identical sub-languages, i.e., transitions describing
paths with the same morphology and labels.

Algorithm 1 Merging a set of FSAs into a single MFSA

1: function MERGE MULTI(ToBeMerged A[])
2: z ← new MFSA
3: generateNew(z,A[1]) ▷ add first automaton
4: for a : a ∈ A[2 : end] do
5: ms← new MS[]
6: for i : i ∈ NTS,a do
7: for j : j ∈ NTS,z do
8: if idxa[i] == idxz[j] then
9: r ← trans(i)

10: t← trans(j)
11: while r.idx == t.idx and
12: isPath(r − 1, r) and isPath(t− 1, t)) do
13: ms.push(r, t)
14: r ← next(r)
15: t← next(t)
16: end while
17: end if
18: end for
19: end for
20: relabel(ms, a)
21: generateNew(mrg, a)
22: end for
23: end function

We merge a set A of FSAs a1, ...aM , in a cascaded fashion
as in Algorithm 1, generating a single MFSA z1←M . For each

4

0 1 2

6

3
a [gj]

l m

c d

0 1
k j

2 3

456

a

[gj]cd

z1:

a2:

idx k j a c d

col 1 2 3 4 5 6

row 0 1 2 3 4 5

MS[1] MS[2]

bel 1 1 1 1 1 1

idx a l m c d

col 1 2 4 3 6 3

row 0 1 2 4 2 6

MS[1] MS[2]
[gj]

[gj]

0 1 2

4

6

3
a [gj]

l m

c d
z1←2

7 8
k

j
bel 1 1

idx a l m c d

col 1 2 4 3 6 3

row 0 1 2 4 2 6

[gj]

2

k

8

7

2

j

0

8

1,2 1,2 1,2 1,2

Fig. 2: Given a MFSA z1 and a FSA a2, the merging algorithm
stores each identical sub-path in its Merging Structure (MS)
(e.g., 0 a−→ 1

[gj]−−→ 2 for z1 and 2
a−→ 3

[gj]−−→ 4 for a2 in MS[1]).
The combination of the MSs and their merging yields z1←2.

M -sized group of REs, the first automaton a1 is copied as-is
into the MFSA z (line 3, in Figure 2: z1 is a copy of a1).
Starting from the second FSA a2, the algorithm compares
each incoming FSA a with the evolving MFSA z (line 4). To
this end, we represent automata via their adjacency matrix in
Coordinate Format (COO): for each transition q1

c−→ q2 we
store the starting state q1 in vector row, the arriving state q2
in vector col, and the single character c or Character Class
(CC) C enabling the transition in vector idx, where CC is
a set of allowed characters. Additionally, MFSAs include a
vector preserving the derivation of each transition from the
corresponding initial FSAs. To reference this FSA derivation,
we say that a transition belongs to a FSA. Thus, the bel
vector of Figure 2 contains the identifiers3 of the FSAs each
transition belongs to. A transition belongs to multiple FSAs
when it is common to all of them. Figure 2 exemplifies this
representation, with an initial MFSA z1, an incoming FSA a2,
and the result of their merging z1←2. To search for a common
sub-path, the algorithm iterates over the idx vector of this
representation (line 6 and 7). Upon finding two transitions
enabled by the same single character or CC, (in Figure 2:
0

a−→ 1 in z1 and 2
a−→ 3 in a2) the algorithm explores the

subsequent transitions as long as they describe identical paths
(in Figure 2: 0 a−→ 1

[gj]−−→ 2 in z1 and 2
a−→ 3

[gj]−−→ 4 in a2).
To perform this check, an additional loop (lines 11-16) checks
the equivalence of sub-paths, transition-by-transition and stops
at the first difference. Cocerning the comparison of standard
transitions, given a MFSA z1 and a FSA a2, the algorithm looks
for two couples of states (qi,1, qj,1) ∈ z1 and (qn,2, qm,2) ∈ a2
such that there exists a character c ∈ Σ1 ∧ c ∈ Σ2 for which
δ1(qi,1, c) = qj,1 ∧ δ2(qn,2, c) = qm,2.4

3The identifier of a FSA is unique and corresponds to the index of FSA a
in set A[], e.g., FSA aj has identifier j ∈ [1,M].

4In all the equations the second part of the pedex indicates the belonging
of the state, e.g., state qi,k is the i-th state of FSA k

Overall, this search yields a set of 4-tuples:

X = {(qi,1, qj,1, qn,2, qm,2)|(qi,1, qj,1) ∈ z1

∧ (qn,2, qm,2) ∈ a2 ∧ ∃ c ∈ Σ1, c ∈ Σ2 s.t.

(δ1(qi,1, c) = qj,1 ∧ δ2(qn,2, c) = qm,1}
(1)

where Σ1 and Σ2 are the alphabets of z1 and a2, respectively.
Transitions enabled by CCs require a thorough comparison to
check all the characters in the CC. In this case, the algorithm
analyzes every transition qi,1 → qj,1 described by a character
class CCh,1 ∈ z1 and compares it with the transitions in a2
described by a character class CCl,2. The purpose of this
phase is to check whether any two classes CCh,1 and CCl,2

comprehend the same characters, i.e. CCh,1 ≡ CCl,2. The
output of this step is a set of 4-tuples:

Y = {(qi,1, qj,1, qn,2, qm,2)|(qi,1, qj,1) ∈ z1

∧ (qn,2, qm,2) ∈ a2 ∧ ∃CCh,1, CCl,2

s.t. (δ1(qi,1, CCh,1) = qj,1

∧ δ2(qn,2, CCl,2) = qm,1 ∧ CCl,2 ≡ CCh,1)}

The tuples in X and Y describe equivalent sub-paths, in fact:

∀(qi,1, qj,1, qn,2, qm,2), (qj,1, qp,1, qm,2, qs,2) ∈ X ∪ Y

∃ k,w, v s.t. δ1(qi,1, kwv) = qj,1

∧ δ1(qj,1, wv) = qp,1 ∧ δ2(qn,2, kwv) = qm,2

∧ δ2(qm,2, wv) = qs,2

(2)

Overall, combining the mergeable tuples returned by X and
Y yields the sets of transitions that describe isomorphic paths
between the initial FSAs. In both cases, if multiple equivalent
sub-paths exist, each of them is stored in an ad-hoc structure,
called Merging Structure (MS). A MS stores exactly the 4-
tuples in sets X and Y to enable the subsequent relabeling
phase. In fact, combining the so-obtained MSs yields the subset
of transitions and states to merge. Based on this subset, the
algorithm exploits a relabeling function (line 19) to relabel the
incoming FSA a’s state labels without changing its morphology.
Specifically, states involved in a MS are relabeled to be identical
to MFSA z state labels in the corresponding MS (in Figure 2:
relabel state 2 in a2 with 0), while the remaining ones are
relabeled not to overlap current MFSA states (in Figure 2:
relabel state 0 in a2 with 7).

Subsequently, Algorithm 1 updates the MFSA z with the
transitions and states of the incoming FSA a (line 20). It
updates the belonging of merged transitions with the incoming
FSA identifier (e.g., in Figure 2: update the belonging of
transition 0

a−→ 1 in z1 to contain id = 2) and copies the non-
merged transitions to z (e.g., in Figure 2: copy 7

k−→ 8 to z1).
Preserving the beloging of each transition to the corresponding
FSAs is fundamental to distinguish one language from another.

To sum up, the search for common sub-paths has three
possible outcomes:

a) There are no common sub-REs, i.e., no states to merge:
the incoming FSA a is entirely copied into the MFSA, ensuring
that all its relabeled states are disjoint from those of the MFSA
to avoid states overlapping in the MFSA.

b) There are some common sub-REs: the belonging field
of common transitions is updated in the MFSA with the
incoming FSA identifier, while non-merged states are relabeled
not to overlap with existing state labels.

c) The incoming FSA and the MFSA are identical: for
all transitions, the algorithm updates the belonging field in the
MFSA with the incoming FSA identifier.

This procedure merges a set of M FSAs into a single MFSA,
and we can repeat it to merge a set of FSAs in M -sized groups,
generating a set of MFSAs.

Overall, this procedure constructs correct MFSAs, since the
morphology of initial FSAs is respected, and no transition is
removed nor changed. We approximate the merging Algorithm 1
time complexity as:

O(4M ·N2
TS + 8N3

TS)(M − 1)) (3)

where NTS is the number of transitions in the single FSA and
M is the number of merged FSAs (i.e., the merging factor).
In Equation (3), the quadratic term is due to the comparisons
the algorithm performs between any couple of transitions in
the two automata5. Instead, the cubic term derives from the
multiple iterations over the set of MSs (which includes NTS−1
transitions at most), necessary to relabel each state. For most
state-of-the-art datasets, the leading terms M and NTS of a
single FSA have comparable size (NTS

~M for actual use
cases), as Table I will summarize. With this assumption, the
average complexity becomes O(M4).

The proposed merging approach suits any dataset, with no
requirements on the form of the involved REs and no limitations
to the possibly mergeable REs.

B. The Formal Model of the MFSA

The new features of the MFSA model require to extend
the formal FSA one to enable the simultaneous description
and recognition of multiple languages belonging to the set
of merged FSAs. Indeed, the proposed merging procedure
differs from classical operations, such as intersection and union,
because it does not generate a new language class. Specifically,
an MFSA has to recognize and distinguish all the languages
described by the merged FSAs that compose it.

For this purpose, we introduce the new concept of activation
function, which allows the MFSA to keep track of the active
matching FSAs. An activation function J encodes the set
of all the valid (i.e., active) FSAs during the traversal of a
transition for every state in the recognition path. The activation
of a FSA j on a certain transition depends on a set of
rules enforcing the correctness of the traversed paths. This
feature is essential to MFSAs to prevent incorrect matches. For
example MFSA z1←2 in Figure 2 is the result of merging
a1 recognizing L(a1) = a[gj](lm|cd) and a2 recognizing
L(a2) = kja[gj]cd. However, with no further precaution, z1←2

could recognize strings belonging to neither of the languages
a1 and a2 describe, e.g., s = kjaglm, allowing new unwanted
recognized languages. To ensure matched strings correctness

5NTS,m is at most M ·NTS,a.

in these cases, we introduce the activation function, that tracks
the origin of each transition, i.e., the FSAs a transition belongs
to, according to the MFSA construction, and compares it with
the active FSAs at traversal time, according to a set of rules.
Upon moving from state q1 to state q2, after reading character
c, the set of active FSAs identifiers changes depending on the
number of FSAs the traversed transition belongs to:
• if state q1 is initial for some FSA j in the set of merged

FSAs, identifier j is pushed to the set of active FSAs
(Equation (4)),

• if state q2 is final for some FSA j, as long as j is already
active on the departure state q1, such that j ∈ J(q1), label
j is popped from the set of active FSAs identifiers, and a
match occurs for that RE (Equation (5)),

• if an FSA that is active at starting state q1 (i.e., j ∈ J(q1))
comprises no transition q1

c−→ q2, label j is popped from
the set of active FSAs, meaning that the current transition
does not belong to FSA j (Equation (6)).

At the beginning of the MFSA recognition, the set J is empty.
A transition q1

c−→ q2 is valid if the active FSAs set returned
from arriving state J(q2) shares at least one common label j
with the starting one J(q1) (J(q1)∩J(q2) ̸= ∅). If this happens,
the path (i.e., set of subsequent transitions) analyzed so far is
consistent with at least one of the paths in the set of merged
FSAs, i.e., it belongs to at least one FSA. In mathematical
terms, for a transition q1

c−→ q2, the set of active function on
the destination state q2 changes as follows:

q1 = q0,j for j ∈ R ⇒ J(q2) = J(q1) ∪ {j} (4)

q2 ∈ Fj for j ∈ R∧ j ∈ J(q1)⇒ J(q2) = J(q1)\{j} (5)

∀j ∈ J(q1),∀c ∈ Σ : δj(q1, cw) = ∅ ⇒ J(q2) = J(q1) \ {j}
(6)

Where R is the set of merged FSAs identifiers, Fj is the set of
final states for FSA j, ij is the initial state of FSA j (unique
by definition), δj is the standard transition function of FSAs
j. The extension of the standard transition function δ follows
from these equations to support the update of the activation
function throughout the traversed path, formalized as:

∆ : (Q× Σ× P(R))→ (P(Q)× P(R)) (7)

For every transition q1
c−→ q2, function ∆ maps a starting

state q1 ∈ Q, a character c ∈ Σ and a set of active FSAs
identifiers on starting state q1 (i.e., P(R) = J(q1)) to a set
of arrival states P(Q) with an updated set of active FSAs
P(R) = J(q2). The extension of moves formalization follows
from these concepts. For every move q1

c−→ q2, MFSA requires
the update of the set of active FSAs depending on the character
read and the active FSAs on the departure state, such that:

(q1, aw, J(q1)) ⊢MFSA (q2, w, J(q2)) (8)

Eventually, a sequence of moves from an initial to a final
state yields a match for a certain FSA j if it traverses a set
of consistent transitions, i.e., if at least one FSA j is always
active during their traversal:

∃ j ∈ R : j ∈ J(q) ∀q ∈ matching path (9)

2 3 4 5 6

7 8z1←2

b c
J={2}
d

J={2}
e f

h

s1 = degh

a1 a2 a1 and a2
Transitions belong to:

J=∅
g

1

2 3 4 5

7 8
h

1

J={1}
b

J={1}
c

J={1,2}
d

J={1,2}
e

J={2}
f

6

g

s2 = bcdef

z1←2

Fig. 3: Activation function J behavior during path traversal:
depending on the branch taken the set of active FSAs is updated.
The coloring of the transitions determines their derivation from
either a1, a2, or both a1 and a2.

We can now complete the formal model of a MFSA, expanding
that of standard FSAs [34]:

z = (Q,Σ,∆, I, F, J,R) (10)

A MFSA comprises a set Q of states, an alphabet Σ, a transition
function ∆, a set of initial states I ⊆ Q representing each
merged FSA initial state q0, a set of final states F ⊆ Q, the
activation function J , and the merged FSAs identifiers R.

To conclude, Figure 3 exemplifies MFSAs behavior during
path traversal, considering a MFSA z1←2 resulting from the
merging of FSAs a1 and a2, recognizing L(a1) = bcdegh and
L(a2) = def , respectively. We analyse the behavior of z1←2

against input strings s1 = degh and s2 = bcdef . s1 activates
a2 starting from state 3, matching characters d and e, which
leads to state 5. State 5 marks a branch: upon reaching it the
only active FSAs is a2. However, no transition strarting from
5 with character g keeps a2 active, yielding an empty set J
of active FSAs and thus no matches. Instead, s2 causes the
activation of a1 on state 1 and the match of characters b and c,
leading to state 3. Upon reaching this state, a2 is activated too,
since 3 maps a2’s initial state. Subsequently, characters d and
e are matched, for both FSAs 1 and 2. Upon reading character
f at the branch starting from state 5, label 1 is discarded from
the active set, since the transition 5

f−→ 6 activates a2 only.
Eventually, reaching the final state 6 produces a match for a2.

IV. OVERALL COMPILATION FRAMEWORK

To fully exploit the proposed merging approach, we designed
a multi-level compilation framework managing the input REs,
their optimization, and tailoring towards iMFAnt. Figure 4
presents the sequence of compilation steps and their correspond-
ing inputs and outputs. In brief, our framework comprises five
steps: (1) lexical and syntactical analyses of REs, (2) conversion
from RE to FSA, (3) single-FSAs optimization, (4) merging,
and (5) ANML generation.

⌈ ⌉

Fig. 4: Proposed compilation framework overview: Front-End
for syntax and grammar checking; the Middle-End converts
the REs into FSAs form, performs application-specific FSA
optimizations and the proposed MFSA optimization; the Back-
End generates an ANML representation suitable for iMFAnt
execution. Keep in mind merging factor M = #merged FSA

A. Front-End - Lexical and Syntax Analysis

The first step of the framework is the Front-End, which
includes the lexical and syntactical analyses of the input
REs [35], checking their compliance with POSIX ERE [44]
standard. This step outputs an Abstract Syntax Tree (AST)
for each input RE, containing all the tokenized elements in a
high-level syntactic structure.

B. Mid-End - from Regular Expressions to FSAs

The AST, resulting from the Front-End, is the starting point
of the conversion to FSAs. For this purpose, we exploit a
Thompson-like construction algorithm [34], [45]. Specifically,
an AST provides all the information concerning characters
and sub-pattern relationships that concur to defining the
morphology a FSA. Each operator in the AST maps to a
well-defined structure in the output FSA. Therefore, exploiting
the advantages of the AST tree structure, the FSAs construction
relies on a depth-first search to find nodes with no children (i.e.,
leaves), representing atomic sub-expressions by construction.
After encoding an atomic sub-expression into a sub-FSA, as
referenced by a leaf node, by jumping back in the tree to
the parent node, it is possible to retrieve the operator acting
on the sub-expression. This procedure yields FSAs that are
non-deterministic for a lightweight representation.

C. Mid-End - Optimizing and Processing FSAs Before Merging

FSAs deriving from ASTs are singularly optimized and
transformed to simplify the subsequent merging procedure.
Specifically, these transformations are: (1) ϵ-arcs removal -
our Thompson-like construction algorithm exploits ϵ-arcs (e.g.,

(a) Compressed loops (a2,a) make the merging less effective, while
expanded ones (a2,b) maximize mergeable a1 and a2 transitions.

k
b c

h
a2,a 1 2 3 4

[kh] b c

k f d

a2,b

a1

1 2 3 4

1 2 3 4

(b) a1 and a2 recognize (k|h)bc and kfd, respectively. Merging
transitions 1

k−→ 2 in a1,a and 1
k−→ 2 in a2 would yield an

incorrect MFSA recognizing hfd. Instead, transforming a1,a into
a1,b prevents their merging, since labels [kh] and k are different.

Fig. 5: Examples of how applying different pre-merging FSAs
transformations facilitate FSAs merging.

to connect branches of sub-REs alternation to a common final
state). We remove them to simplify the merging and ANML
generation6. In fact, ϵ-arcs add no useful information and their
removal ensures that the MFSAs contain non-empty transitions
only. (2) loops expansion - during FSAs generation, an ad-hoc
data structure saves each loop (i.e., quantified sub-REs) and
its characteristics (upper and lower bounds, involved states).
This optimization expands loop structures according to their
boundaries to optimize and maximize possibly mergeable states
by providing additional merging paths, as in Figure 5a. (3)
simplification of arcs with multiplicity greater than 1 (i.e.,
single characters alternation) - we identify the multiplicity of a
transition as the number of alternative paths between a couple
of states, i.e., when considering single characters alternation
or CCs. With no additional optimizations, merging transitions
with multiplicity greater than 1 can generate incorrect paths in
the final MFSA. For instance, Figure 5b shows that merging
the transitions connecting states 1 and 2 would yield a MFSA
indefinitely matching (k|h)bc, kfd, but also (k|h)fd, makes
the MFSA able to recognize a language which belongs to
neither of the initial FSAs. To manage these cases, we turn
transitions with multiplicity greater than 1 into range-like
structures, describing a CC. A transition labeled by a CC
(e.g., a range between characters) is enabled by any of the
characters the reference of the range structure contains.

These optimizations prevent the generation of incorrect
MFSAs (i.e., MFSAs recognizing languages different than
those described by the input FSAs) while maximizing the
number of possibly mergeable states.

6ANML does not support ϵ-moves.

a1 a2 a1 and a2
Transition belong to:

s = a c b a b 1
2

3

z1←2

4
6

7
5

c b

a,
J={1}

d

b

c

a,
J={2}

1
2

3

z1←2

4
6

7
5

c, J={1} b

a d

b

c, J={2}

a

1
2

3

z1←2

4
6

7
5

c b, J={2}

a d

b

c

a

1
2

3

z1←2

4
6

7
5

c b

a,
J={1}

d

b

c

a, J={1,2}

1
2

3

z1←2

4
6

7
5

c b

a d

b, J={1,2}

c

a

s = a c b a b

s = a c b a b

s = a c b a b

s = a c b a b

Fig. 6: Matching procedure exploiting iMFAnt, deriving from
the merging of a1 (recognizing L(a1) = (ad|cb)ab) and a2
(recognizing L(a2) = a(b|c)). For every read character of s,
iMFAnt enables all suitable arcs (i.e., initial ones or those
starting from an active state). Transitions coloring indicates
whether they belong to either a1, a2, or both a1 and a2.

D. Mid-End - Merging

The so-obtained optimized FSAs are then merged, depending
on the input merging factor M , according to Algorithm 1
(§III-A, §III-B).

E. Back-End - Lowering the Intermediate Representation

The last step of the framework transforms the MFSAs
into ANML representation suitable for the iMFAnt execution.
Specifically, we extended the ANML standard to include the
REs each transition belongs to support MFSAs activation
function and ensure correctness of the matching procedure.

V. MFSAS EXECUTION: FROM INFANT TO IMFANT

To enable the proper execution of the MFSA model, we
extend the iNFAnt [32] algorithm, calling it iMFAnt. Standard
iNFAnt [32] targets explicitly NFAs execution, enabling multi-
ple active states simultaneously and providing high execution
throughput. It relies on a data structure linking each symbol in
a standard 256-characters alphabet to the transitions it enables

on a FSA. Moreover, it employs a state vector sv describing
whether the state at position i in the vector is active (sv(i) = 1)
or not (sv(i) = 0). Since iNFAnt [32] natively supports the
simultaneous exploration of all the transitions enabled by the
same character, it naturally fits the simultaneous traversal of
multiple active FSAs in the MFSA execution.

To support MFSAs activation function, we included in the
state vector structure an additional field, indicating for each
active state the result of the activation function upon reaching
it. The proposed iMFAnt algorithm takes as input an extended
ANML representation supporting the MFSA model, whose
conversion into an iMFAnt-compliant structure is part of the
algorithm pre-processing.

Intuitively, for each string input character, the iNFAnt
algorithm evaluates every transition enabled by that character.
If the transition starts in an initial or active state (i.e., a state
reached after reading the immediately previous character),
the algorithm enables the move on that transition. If no
valid transition is allowed on a certain character, all active
paths are discarded, and the matching procedure starts from
scratch with the next character in the input string. The key
requirement toward extending this algorithm supporting MFSAs
is to include an additional check on transitions consistency.
In particular, the algorithm must ensure that each move it
performs updates the activation function J correctly, according
to the rules in Equations (4) to (6).

Figure 6 details the iMFAnt behavior for a simple MFSA,
deriving from the merging of a1 and a2, that recognize
(cb|ad)ab and a(b|c), respectively.

1) Upon reading the first character a, the algorithm enables
all the transitions the character allows (1 a−→ 3 with
J = {1}, 4 a−→ 5 with J = {2}), as long as they start
in an initial state. Notably, although transition 4

a−→ 5
belongs to both FSAs a1 and a2, this transition only
activates the match for FSA 2, since state 4 is only
initial for a2.

2) Moving on to character c, the algorithm activates tran-
sitions 1

c−→ 2 with J = {1} (initial, active for A1) and
5

c−→ 7 with J = {2} (state 5 was previously activated
for a2, which is consistent with this transition). The last
transition determines a match on state 7 for a2, i.e., the
only active FSA on the current path. The previously
active state 3 is then discarded since no valid transition
starting in 3 exists for character c.

3) After reading character b, the algorithm enables the only
available transition 2

b−→ 4 with J = {1}. However, since
state 4 is initial for a2, J is updated upon reaching it
with J(4) = {1, 2}.

4) Reading character a yields two transitions: 1 a−→ 3 with
J = {1} (initial for A1) and 4

a−→ 5 with J = {1, 2}.
The second transition now activates both 1 and 2 because
the current matching path differs from the one at 1).

5) The final character b activates transition 5
b−→ 6 with

J = {1, 2}. This last transition yields a match for FSAs
1 and 2, both active upon reaching the final state 6.

TABLE I: Datasets main characteristics.

Dataset Bro217 Dotstar09 PowerEN Protomata Ranges1 TCP-ext.
homenet

Ref. [30] [29] [30]

Abbr. BRO DS9 PEN PRO RG1 TCP
Num. REs 217 299 300 300 299 300

Tot. NS
≀ 2863 12883 4726 3704 12913 9105

Tot. NTS
† 2645 12614 4554 3400 12644 8906

Tot. NCC
‡ 2791 2031 152 11905 1689 2341

Avg. NS
≀ 13.19 43.08 15.75 12.34 43.18 30.35

Avg. NTS
† 12.19 42.19 15.18 11.33 42.29 29.69

≀ Number of states † Number of transitions ‡ Length of CCs in the FSA

In conclusion, executing this MFSA against the input string
acbab yields three matches: ac and ab for a2, cbab for a1.

The novel iMFAnt algorithm suits the MFSA activation
function concept, preventing false positives over-matching
during the algorithm execution.

VI. EXPERIMENTAL EVALUATION

We implement the front-end of our framework through
standard Flex and Bison while the middle-end, the back-end,
and iMFAnt in C++ and compile with -O3. Firstly, §VI-A
analyzes the transition and state compression percentage of the
MFSA. Then, §VI-B describes the compilation time overhead
due to our framework. Finally, §VI-C evaluates iMFAnt
execution time and throughput by varying the merging factors
M from 1 to the dataset size (i.e., 217 to 300 REs), and number
of threads T , from 1 to 128.

We employ an Intel i7-6700 CPU (4 cores, 8 threads) for
all the time measurements. We select six benchmarks based on
widely employed benchmark suites: four from Becchi et al. [30]
and two from Wadden et al. [29]. Table I details the datasets
showing the number of employed REs, the abbreviations
we adopted for the sake of compactness, the average and
total number of states, transitions, and CCs with their length.
Whenever applying the MFSA merging methodology with
a merging factor M , we are sampling the input M REs
sequentially from the dataset.

A. Automata Compression Evaluation

Automata optimization works focus on the compression as
a metric directly impacting the representation of the FSAs,
hence their memory footprint [33], [39], [40]. We asses the
reduction of number of states and transitions with increasing
merging factor M compared to standard FSAs characteristics
(Table I). Given a dataset of FSAs a ∈ A to merge into a final
set of MFSAs z ∈ Z , we compute the compression percentage
%comp as follows:

%compstates =
Σa∈A#statesa − Σz∈Z#statesz

Σa∈A#statesa
· 100

%comptrans =
Σa∈A#transa − Σz∈Z#transz

Σa∈A#transa
· 100

Figure 7 displays the compression performance of our frame-
work with variable merging factor M , ranging from 1 (single-
FSAs case) to the dataset size (all). Specifically, the left plot

presents the state reduction, while the right one describes the
variation in transitions number. On average, the merging factor
configuration of M = all is the best for compression as it
achieves 71.95% and 38.88% in states and transitions number
reduction, respectively. Moreover, Figure 7 shows how the
impact of merging is significantly higher in state reduction. This
trend is intrinsic to the merging algorithm, which represents
common transitions once, without replicating them for each
FSA they belong to. Merging one transition implies merging
both its starting and arrival states, hence the increased impact
concerning states.

Finally, in both transitions and states cases, there is a
plateau in the compression trend. This behavior is because
any alphabet has a finite number of characters. Upon building
an MFSA with as many transitions as the characters in the
dataset’s alphabet, the space for further optimization decreases.
A possible improvement stands in the CC transitions matching
optimization. We currently merge CCs that describe the same
exact set of characters, while it could be possible to partially
merge two CCs based on the characters belonging to both. For
instance, in CCs [abce] and [bcd] it could be possible to
merge the common characters [bc] only. Although INDEL
metric (Figure 1) represents a preliminary estimate of REs
merging potential, these results confirm the impact of exploiting
similarities among REs.

To sum up, the merging optimization halves in average the
necessary number of states representing a REs set.

B. Compilation Stages Time Analysis

The assessment of compilation stages evaluates the time to
output a set of MFSA in ANML format from the entire REs
dataset (Table I) with variable merging factor M . Figure 8
shows the total execution time of our framework considering
a certain merging factor and the impact each compilation
stage has in this process, from the initial REs analysis to the
generation of an output ANML file. We obtained these results
by averaging 30 executions of our compilation framework
considering the multiple REs of the dataset. Figure 8 highlights
how the impact of single-FSA-related stages (front-end, AST
to FSA conversion, FSAs single optimization) is independent
of M . In particular, considering all configurations in Figure 8,
these steps take on average 1.29ms (front-end), 1.33ms (AST
to FSA conversion), 2.03ms (single-FSA optimization).

Instead, the merging stage is responsible for the significant
variation in the overall compilation time. On average, in the
most computationally-intensive configuration (i.e., M = all),
the merging procedure takes 6.65 s to complete, yielding an
entire compilation-time of 6.66 s on average.

Even if, as Figure 8 illustrates, the merging step during
the dataset compilation has the highest impact, the overhead
is limited concerning the execution times shown in §VI-C,
emphasizing the benefits of merging multiple REs.

C. iMFAnt Throughput and MFSA Execution Impact

The execution impact evaluation considers the novel iMFAnt
algorithm against a 1MB data input stream with the previously

BRO DS9 PEN PRO RG1 TCP
Datasets

0

10

20

30

40

50

60

70

80

St
at

e
C

om
p.

[%
]

BRO DS9 PEN PRO RG1 TCP
Datasets

0

10

20

30

40

50

Tr
an

s.
C

om
p.

[%
]

M=2 M=5 M=10 M=20 M=50 M=100 M=all

Fig. 7: Memory footprint reduction in terms of states and transitions number, considering different merging factors: M = 1
(i.e., no merging), M = 2, 5, 10, 50, 100, all (the higher, the better).

BR
O

,M
1

BR
O

,M
10

BR
O

,M
50

BR
O

,M
10

0
BR

O
,M

al
l

D
S9

,M
1

D
S9

,M
10

D
S9

,M
50

D
S9

,M
10

0
D

S9
,M

al
l

PE
N

,M
1

PE
N

,M
10

PE
N

,M
50

PE
N

,M
10

0
PE

N
,M

al
l

PR
O

,M
1

PR
O

,M
10

PR
O

,M
50

PR
O

,M
10

0
PR

O
,M

al
l

R
G

1,
M

1
R

G
1,

M
10

R
G

1,
M

50
R

G
1,

M
10

0
R

G
1,

M
al

l
TC

P,
M

1
TC

P,
M

10
TC

P,
M

50
TC

P,
M

10
0

TC
P,

M
al

l

Datasets

100

101

102

103

104

Ti
m

e
[m

s]
-l

og
.s

ca
le

FE AST to FSA ME-single ME-merging BE

Fig. 8: Impact of each compilation stage in the overall
procedure (the most significant M values), in logarithmic scale
(the lower, the better): front-end (FE), AST-to-FSA conversion
(AST to FSA), middle-end optimization for single FSAs (ME-
single), middle-end merging optimization (ME-merging) and
finally ANML generation (BE).

compiled MFSAs. To increase the reliability of the results, we
averaged the execution time of 15 iMFAnt runs. We compare
against single-thread (§VI-C1) and multi-thread (§VI-C2)
ruleset executions considering the execution time and the
throughput improvement against M = 1 configuration with
increasing values of M from 2 to the whole dataset. Specifically,
the throughput is calculated as:

thMFSA =
#REexe ·Dsize

Exe timetot
=

#MFSA ·M ·Dsize

Exe timetot
(11)

where M is the merging factor, Exe timetot is the sum of all
single REs execution time, and Dsize is the size of the data
to analyze. The throughput computation evaluates the number
of processed REs against the entire input string. Specifically,
#MFSA ·M represent the different analyzed REs.

1) Single-Threaded Execution: Figure 9 illustrates the
iMFAnt scalability across different benchmarks for the single

TABLE II: Datasets execution characteristics.

Abbr. BRO DS9 PEN PRO RG1 TCP

Avg. Nac
¶ 10.73 38.02 21.27 101.8 6.55 4.55

Max Nac
¶ 40 90 39 652 63 149

¶ Total number of active FSAs during MFSAs traversal (M = all)

thread. Notably, the datasets display variable performance
peaks: while in some cases (i.e., BRO, RG1, TCP, PEN)
merging the entire dataset (M = all) yields the lowest
execution time, others display a dissimilar optimum value of M
(i.e., 100 and 10 for DS9 and PRO, respectively). Differently
from the others, PRO and DS9 exhibit this behavior due to the
high average number of active REs per read symbol, which
spans from 40 to 100 approximately (Table II). This introduces
additional complexity for iMFAnt to manage numerous active
REs and partial matches spread in the MFSA. Considering
the throughput, the MFSA with iMFAnt always leads an
improvement against the single-FSA with a geometric mean
spreading from 1.47× (M=2) to 5.44× (M=100). Considering
the best MFSA configuration for each dataset, iMFAnt engine
yields 5.99× of geomean improvement.

2) Multi-Threaded Execution: The straightforward approach
to improve the throughput distributes multiple REs among
an increasing number of threads. In this evaluation, for
each benchmark, we distribute the MFSAs over a pool of
a fixed number of available threads. Each thread manages
different automata asynchronously, selecting an MFSA at a
time from the remaining ones until all are executed. The
measured execution time represents the latency to compute
all the REs of a benchmark. Figure 10 summarizes the
scalability (1 to 128 threads) evaluation of the naive approach
against ours, executing MFSAs on the available threads. We
consider two performance indicators: one to address time-
critical applications, reducing the execution time as much as

BRO DS9 PEN PRO RG1 TCP Average
Datasets

0

50

100

D
at

as
et

Ex
.T

im
e

[s
]

BRO DS9 PEN PRO RG1 TCP Geo. Mean
Datasets

0

2

4

6

8

10

Th
ro

ug
hp

ut
Im

p.
[x

]

M=1 M=2 M=5 M=10 M=20 M=50 M=100 M=all

Fig. 9: Performance evaluation in terms of dataset execution time and throughput, considering iMFAnt algorithm against a 1
MB input stream with M ∈ [1, all].

1 2 4 8 16 32 64 12
8

#Threads

10

2

4

20

Ti
m

e
[s

]-
lo

g.
sc

al
e

BRO

1 2 4 8 16 32 64 12
8

#Threads

10

5

25

50

DS9
1 2 4 8 16 32 64 12
8

#Threads

10

2

5

25

50
PEN

1 2 4 8 16 32 64 12
8

#Threads

10

25

50

PRO

1 2 4 8 16 32 64 12
8

#Threads

10

5

25

50

RG1

1 2 4 8 16 32 64 12
8

#Threads

10

5

25

50

TCP

M=1 M=5 M=10 M=20 M=50 M=100 M=all Best Perf. M=1 Best Perf. M¿1 Best Th. Ut.

Fig. 10: iMFAnt execution time (logarithmic scale) considering merging factors M ∈ [1, all] and scaling the number of threads
T ∈ [1, 128] (max hardware threads in the CPU 8). Highlighted markers describe the top performing single-FSAs configurations
(Best Perf. M=1), the top performing MFSAs configuration (Best Perf. M>1), and the configuration reaching the same execution
time as top performing single-FSAs with the least number of threads (Best Th. Ut.).

possible, and another for thread-critical applications, reducing
the thread number without impairing the execution time. Firstly,
we evaluate the speedup granted by MFSAs multi-threaded
execution (red border in Figure 10) against the top-performing
multi-threaded single-FSAs (bigger circle and a black border
in Figure 10). Secondly, we point out MFSAs configurations
reaching single-FSAs top performance with the least number
of threads (blue border in Figure 10).

Although there is no pre-defined optimal M applying for
every dataset, the majority of MFSAs with M > 1 over-
comes parallel multi-threaded FSAs execution time. Moreover,
M = all always improves the execution time with a geomean
speedup per benchmark ranging from 1.5× (DS9) to 3.47×
(RG1). The only exception is PRO, where scaling the thread
number for single-FSAs improves against the M = all.
Nevertheless, all the other merging factors overcome the single-
FSAs performance. Considering the optimal improvement
our approach achieves, M = 50 is the best configuration
in the majority of the datasets. Instead, PRO benchmark
exhibits M = 20 as top merging factor. Overall, with the
best configuration per the parallel multi-thread FSAs and our
best MFSA per benchmark, we achieve top speedups ranging
from 2.52× (PRO) to 6.18× (RG1) with a geomean of 4.05×.

Concerning threads utilization, MFSAs reach the same (or
slightly better) top performance of the parallel multi-threaded
FSAs with one or two threads at most. Indeed, the blue border
of Figure 10 highlights that M = all is the best configuration
of thread-critical scenarios for three datasets (PEN, RG1, TCP).
Instead, DS9, BRO, and PRO have in M = 100 (DS9, BRO)
and M = 20 (PRO) their top thread utilization improvement.

Figure 10 also shows how the execution time halves on
average for both FSAs and MFSAs when doubling the number
of threads, with the upper bound of 4 physical cores. On top of
this, the MFSA model also halves the execution time compared
to single FSAs, across the increasing number of threads. This
suggests that an MFSA-based approach can be beneficial with
an increasing number of physical cores, as long as the number
of REs to analyze remains sufficiently bigger than the number
of cores, as for real-case scenarios.

To summarize, the analysis of iMFAnt behavior in multi-
threaded configuration further highlights the benefits of exploit-
ing MFSAs for pattern matching purposes. Specifically, MFSAs
execution achieves and overcomes the same performance as
single FSAs, even relying on a lower number of threads. This
makes the use of MFSAs more advantageous in resource-
constrained applications such as networking ones [2], [3], [19],

[24], [25], where MFSAs and iMFAnt can save precious CPU
clock cycles.

VII. RELATED WORK

To fully exploit FSAs executive potential, there exist various
techniques fostering the optimization of both NFAs and DFAs
that tackle NFAs partitioning [26], multi-stride DFAs [11], [28],
[40], and DFAs compression [33], [46]. These optimization
approaches involve both architectural [6], [13], [20]–[23], [26],
[41], [47] and algorithmic aspects [11], [12], [14], [33]. An
architectural approach to optimizing NFAs [26] relies on
a toolchain to partition them, depending on the available
hardware resources and units. Given a constraint on the
number of NFA states that can fit onto a specific hardware
component, the partitioning algorithm aims at splitting the NFA
while minimizing the state replication. However, this approach
misses generality, since it strongly depends on the underlying
architecture specifications.

Concerning DFAs optimization, an algorithmic approach
to reduce their memory footprint increases the number of
bytes consumed in the text, per state-traversal, via an inverse
homomorphism [11]. Such inverse homomorphism enables
the faster construction of a k-step (i.e., multi-stride) DFA,
an automaton that consumes k symbols per state-traversal.
In general, multi-stride automata provide another common
approach to optimizing DFA. However, their complexity [40]
significantly affects their performance since it comprises all
the k-characters combinations of adjacent transitions.

Concerning the compression of DFAs, an entire category of
algorithms [33], [39], [48] relies on the presence of multiple
incoming transitions with identical labels for a specific state q.
One such transition can be assumed to be a default transition
toward state q. Thus, its representation is negligible, yielding
a DFA representation that only comprehends the non-default
transitions. However, evaluating these works from an executive
perspective is extremely difficult since it requires adapting
pattern matching algorithms to the default-transition-dependent
data structure.

Differently, Wang et al. [6] approach optimize pattern
matching via REs decomposition to extract simpler strings out
of complex ones, matching them separately and eventually
re-composing their results. Others focus on the execution
improvements of counting in REs and FSAs [12]–[14] focusing
either on decomposing at the bit level the automaton or on
software-hardware codesigned in-memory architectures.

VIII. CONCLUSIONS AND FUTURE WORK

The presented work advocates that exploiting REs similarities
within a ruleset pushes the REs matching further. Specifically,
we present the MFSA model, detailing its construction and
formal properties to enable multiple distinct REs recognition.
We devise a multi-level compilation framework that takes
REs rulesets in input, transforms and optimizes the FSA
representation, merges into the MFSAs, and produces the
ANML. Moreover, we illustrate an ad-hoc extended execution
algorithm called iMFAnt to support MFSAs [49].

Overall, the MFSAs significantly compresses the state
(71.95%) and transition (38.88%) number of FSAs equivalent
representation, and, with iMFAnt, delivers a geomean of 5.99×
of throughput improvement and 4.05× speedup for the best
single-threaded and multi-threaded configuration.

Future Work. We will expand the support for MFSAs across
different algorithms and architectures and considering even non-
regular operators such as backreferences [50]. Moreover, we
plan to devise a systematic similarity RE analysis for possible
clustering techniques.

ACKNOWLEDGMENT

The authors are grateful to the anonymous reviewers and
Eleonora D’Arnese for their insightful feedback.

IMFANT CGO 2024 ARTIFACT

A. Artifact Check-List (Meta-Information)
• Compilation: C++, Makefile, Bash
• Data set: REs from ANMLZoo [29] and from [30] and 1MB

input streams
• Run-time environment: Ubuntu
• Metrics: Percentage compression (%), compilation time (ms)

and execution time (s)
• Output: Raw results, PDF charts, 5GB of disk space
• Experiments: Replicate Figs. 7, 8, 9, 10
• How much time is needed to prepare workflow (approxi-

mately)?: 10 minutes
• How much time is needed to complete experiments (approx-

imately)?: 15 hours
• Publicly available?: yes
• Code licenses (if publicly available)?: MIT License
• Data licenses (if publicly available)?: Refer to single

benchmarks licenses
• Archived (provide DOI): https://zenodo.org/doi/10.5281/zenodo.

10475372

B. Description

1) How to Access: Code publicly and benchmarks publicly
available at https://github.com/necst/iMFAnt with the following
DOI https://zenodo.org/doi/10.5281/zenodo.10475372

2) Software Dependencies:
• Requires Python 3.10, including numpy, pandas, and

matplotlib for plots
• Requires OpenMP
3) Data Sets: The datasets are available in the corresponding

repositories. A copy of the executed REs and input stream is
available in the dataset and input_stream folder.

C. Installation

Clone the repo:

git clone https://github.com/necst/iMFAnt.git

Or build and run the docker:

run_docker.sh

Go to the scripts folder:

cd iMFAnt/scripts/

https://zenodo.org/doi/10.5281/zenodo.10475372
https://zenodo.org/doi/10.5281/zenodo.10475372
https://github.com/necst/iMFAnt
https://zenodo.org/doi/10.5281/zenodo.10475372

D. Experiment Workflow

The repository already contains the datasets necessary for
the experimental evaluation. The scripts in folder scripts
reproduce the figures reported in the paper.

1) ./compilation_time.sh

reproduces Fig. 8 (ETA: 30 min with 30 reps)
2) ./compression.sh

reproduces Fig. 7 (ETA: 5 min)
3) ./iMFAnt_performance.sh

reproduces Figs. 9 and 10 (ETA: 12 h with 15 reps)

E. Evaluation and Expected Results

The scripts in folder scripts/ reproduce the experimental
results reported in the paper. These include the automatic
generation of the plots with the default merging factors (1, 2,
5, 10, 20, 50, 100, all).

To reproduce the results run the desired scripts. The resulting
plots will be in iMFAnt/plots folder. To reduce the time
required modify the repetitions with -r.

Figure 9 and 10 are expected to display different optimal
merging factor according to testing machine characteristics.
Anyhow, the MFSAs are expected to improve the simple multi-
thread scaling according to the trends in the paper.

F. Experiment Customization

• To customize the generation of automata enter the compi-
lation framework and build the compiler:
cd framework/compiler && bison -d compiler.yy -v

flex -o compiler.yy.cc compiler.lex

Run
g++ -o compiler compiler.yy.cc compiler.tab.cc

ast.cpp ../re2automata/re2automata.cpp -
DSTATES=1 -DSTACK_TIME=0 -w -std=c++11 -g -
O3

Set STATES=1 to evaluate states compression, 0 oth-
erwise. Set STACK_TIME = 1 to measure compilation
time. Run
python merging.py -r REPS -b M1 ... Mn

to generate the automata for the benchmark datasets. Flag
-r indicates the number of repetitions to evaluate the
compilation time, and -b is followed by the list of merging
factors M1 ... Mn. Any value for M is valid. To merge
the entire dataset, set M=0. To run the merging engine,
the merging factors in matching/imfant.py must be
consistent with the ones of the generated MFSA.

• To analyze a specific folder of MFSAs, first compile the
matching algorithm:
cd matching/ && make clean all

To change the number of repetitions (default: 15), enter
the Makefile (matching/Makefile) and change the
value of -DREPS variable as desired, in the compilation
command. Then, run:

export OMP_NUM_THREADS=N; make &&
./multithreaded_imfant STREAM_IN MFSA_DIR NUM

OUTPUT_FILE

where N is the number of threads, STREAM_IN is the
input stream to be matched, MFSA_DIR is the directory
of the folder containing the MFSAs to match, NUM is
the number of MFSAs to match in that directory, and
OUTPUT_FILE contains the results of the matching
(matching time, #matches)

• To merge and analyze a new dataset save the RE
file and the input stream file in dataset and
input_streams folders, respectively. Add the RE
directory into framework/compiler/merging.py
file in inputRE variable and run it to perform
the merging, setting flags -r and -r as desired.
To pattern-match a new dataset, add the corre-
sponding mfsa and input_streams directories to
matching/imfant.py file and run it, ensuring that
the merging factors are consistent with the ones employed
during the merging.

G. Methodology

Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/
artifact-review-and-badging-current

• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

REFERENCES

[1] C. R. Panigrahi, M. Tiwari, B. Pati, and R. Prasath, “Malware
detection in big data using fast pattern matching: A hadoop
based comparison on gpu,” in Mining Intelligence and Knowledge
Exploration. Springer, 2014, pp. 407–416. [Online]. Available:
https://doi.org/10.1007/978-3-319-13817-6 39

[2] C. Xu, S. Chen, J. Su, S.-M. Yiu, and L. C. Hui, “A survey on
regular expression matching for deep packet inspection: Applications,
algorithms, and hardware platforms,” IEEE Communications Surveys
& Tutorials, vol. 18, no. 4, pp. 2991–3029, 2016. [Online]. Available:
https://doi.org/10.1109/COMST.2016.2566669

[3] Z. Zhao, H. Sadok, N. Atre, J. C. Hoe, V. Sekar, and J. Sherry,
“Achieving 100gbps intrusion prevention on a single server,” in
Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2020, pp. 1083–1100. [Online]. Available:
https://www.usenix.org/conference/osdi20/presentation/zhao-zhipeng

[4] Cisco, “Snort - open source intrusion prevention system (ips),” 2023.
[Online]. Available: https://www.snort.org/

[5] ——, “Clamav®: An open-source antivirus engine for detecting trojans,
viruses, malware & other malicious threats.” 2023. [Online]. Available:
http://www.clamav.net

[6] X. Wang, Y. Hong, H. Chang, K. Park, G. Langdale, J. Hu, and
H. Zhu, “Hyperscan: A fast multi-pattern regex matcher for modern
{CPUs},” in 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), 2019, pp. 631–648. [Online]. Available:
https://www.usenix.org/conference/nsdi19/presentation/wang-xiang

[7] T. Tanjo, Y. Kawai, K. Tokunaga, O. Ogasawara, and M. Nagasaki,
“Practical guide for managing large-scale human genome data in
research,” Journal of Human Genetics, vol. 66, no. 1, pp. 39–52, 2021.
[Online]. Available: https://doi.org/10.1038/s10038-020-00862-1

[8] Y. Li, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and
H. Jagadish, “Regular expression learning for information extraction,”
in Proceedings of the 2008 conference on empirical methods in
natural language processing, 2008, pp. 21–30. [Online]. Available:
https://doi.org/10.5555/1613715.1613719

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://doi.org/10.1007/978-3-319-13817-6_39
https://doi.org/10.1109/COMST.2016.2566669
https://www.usenix.org/conference/osdi20/presentation/zhao-zhipeng
https://www.snort.org/
http://www.clamav.net
https://www.usenix.org/conference/nsdi19/presentation/wang-xiang
https://doi.org/10.1038/s10038-020-00862-1
https://doi.org/10.5555/1613715.1613719

[9] Z. István, D. Sidler, and G. Alonso, “Runtime parameterizable regular
expression operators for databases,” in Field-Programmable Custom
Computing Machines (FCCM), 2016 IEEE 24th Annual International
Symposium on. IEEE, 2016, pp. 204–211. [Online]. Available:
https://doi.org/10.1109/FCCM.2016.61

[10] D. Sidler, Z. István, M. Owaida, and G. Alonso, “Accelerating
pattern matching queries in hybrid cpu-fpga architectures,” in
Proceedings of the 2017 ACM International Conference on Management
of Data. ACM, 2017, pp. 403–415. [Online]. Available: https:
//doi.org/10.1145/3035918.3035954

[11] D. Ficara, S. Giordano, G. Procissi, F. Vitucci, G. Antichi, and
A. Di Pietro, “Faster dfas through simple and efficient inverse homo-
morphisms,” in IEEE INFOCOM 2009. IEEE, 2009, pp. 2851–2855.
[Online]. Available: https://doi.org/10.1109/INFCOM.2009.5062245

[12] L. Turoňová, L. Holı́k, O. Lengál, O. Saarikivi, M. Veanes, and
T. Vojnar, “Regex matching with counting-set automata,” Proceedings of
the ACM on Programming Languages, vol. 4, no. OOPSLA, pp. 1–30,
2020. [Online]. Available: https://doi.org/10.1145/3428286

[13] L. Kong, Q. Yu, A. Chattopadhyay, A. Le Glaunec, Y. Huang,
K. Mamouras, and K. Yang, “Software-hardware codesign for efficient
in-memory regular pattern matching,” in Proceedings of the 43rd
ACM SIGPLAN International Conference on Programming Language
Design and Implementation, 2022, pp. 733–748. [Online]. Available:
https://doi.org/10.1145/3519939.3523456

[14] A. Le Glaunec, L. Kong, and K. Mamouras, “Regular expression
matching using bit vector automata,” Proceedings of the ACM on
Programming Languages, vol. 7, no. OOPSLA1, pp. 492–521, 2023.
[Online]. Available: https://doi.org/10.1145/3586044

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to algorithms. MIT press, 2022. [Online]. Available:
http://mitpress.mit.edu/9780262046305/introduction-to-algorithms/

[16] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams
et al., “The landscape of parallel computing research: A view from
berkeley,” 2006. [Online]. Available: http://www2.eecs.berkeley.edu/
Pubs/TechRpts/2006/EECS-2006-183.pdf

[17] J. Qiu, X. Sun, A. H. N. Sabet, and Z. Zhao, “Scalable fsm parallelization
via path fusion and higher-order speculation,” in Proceedings of the
26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2021, pp. 887–901.
[Online]. Available: https://doi.org/10.1145/3445814.3446705

[18] T. Mytkowicz, M. Musuvathi, and W. Schulte, “Data-parallel
finite-state machines,” in Proceedings of the 19th international
conference on Architectural support for programming languages
and operating systems, 2014, pp. 529–542. [Online]. Available:
https://doi.org/10.1145/2541940.2541988

[19] J. van Lunteren and A. Guanella, “Hardware-accelerated regular
expression matching at multiple tens of gb/s,” in Proceedings of
IEEE INFOCOM. IEEE, 2012, pp. 1737–1745. [Online]. Available:
https://doi.org/10.1109/INFCOM.2012.6195546

[20] V. Gogte, A. Kolli, M. J. Cafarella, L. D’Antoni, and T. F.
Wenisch, “Hare: Hardware accelerator for regular expressions,” in
Proceedings of the Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2016, pp. 1–12. [Online]. Available:
https://doi.org/10.1109/MICRO.2016.7783747

[21] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and H. Noyes,
“An efficient and scalable semiconductor architecture for parallel
automata processing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 12, pp. 3088–3098, 2014. [Online]. Available:
https://doi.org/10.1109/TPDS.2014.8

[22] D. Conficconi, E. Del Sozzo, F. Carloni, A. Comodi, A. Scolari, and
M. D. Santambrogio, “An energy-efficient domain-specific architecture
for regular expressions,” IEEE Transactions on Emerging Topics
in Computing, vol. 11, no. 1, pp. 3–17, 2022. [Online]. Available:
https://doi.org/10.1109/TETC.2022.3157948

[23] D. Parravicini, D. Conficconi, E. D. Sozzo, C. Pilato, and M. D.
Santambrogio, “Cicero: A domain-specific architecture for efficient
regular expression matching,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 20, no. 5s, pp. 1–24, 2021. [Online].
Available: https://doi.org/10.1145/3476982

[24] S. Miano, A. Sanaee, F. Risso, G. Rétvári, and G. Antichi, “Domain
specific run time optimization for software data planes,” in Proceedings
of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2022, pp. 1148–1164.
[Online]. Available: https://doi.org/10.1145/3503222.3507769

[25] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh,
M. Andrewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung
et al., “Azure accelerated networking: Smartnics in the public cloud,”
in 15th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 18), 2018, pp. 51–66. [Online]. Available:
https://www.usenix.org/conference/nsdi18/presentation/firestone

[26] M. Nourian, X. Wang, X. Yu, W.-c. Feng, and M. Becchi, “Demystifying
automata processing: Gpus, fpgas or micron’s ap?” in Proceedings
of the International Conference on Supercomputing, 2017, pp. 1–11.
[Online]. Available: https://doi.org/10.1109/IPDPS.2014.51

[27] H. Liu, S. Pai, and A. Jog, “Why gpus are slow at executing nfas
and how to make them faster,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 251–265. [Online].
Available: https://doi.org/10.1145/3373376.3378471

[28] M. Avalle, F. Risso, and R. Sisto, “Scalable algorithms for nfa
multi-striding and nfa-based deep packet inspection on gpus,” IEEE/ACM
Transactions on Networking, vol. 24, no. 3, pp. 1704–1717, 2015.
[Online]. Available: https://doi.org/10.1109/TNET.2015.2429918

[29] J. Wadden, V. Dang, N. Brunelle, T. Tracy II, D. Guo, E. Sadredini,
K. Wang, C. Bo, G. Robins, M. Stan et al., “Anmlzoo: a benchmark
suite for exploring bottlenecks in automata processing engines and
architectures,” in 2016 IEEE International Symposium on Workload
Characterization (IISWC). IEEE, 2016, pp. 1–12. [Online]. Available:
https://doi.org/10.1109/IISWC.2016.7581271

[30] M. Becchi, M. Franklin, and P. Crowley, “A workload for evaluating
deep packet inspection architectures,” in 2008 IEEE International
Symposium on Workload Characterization. IEEE, 2008, pp. 79–89.
[Online]. Available: https://doi.org/10.1109/IISWC.2008.4636093

[31] H. Hyyrö, Y. Pinzon, and A. Shinohara, “New bit-parallel indel-distance
algorithm,” in Experimental and Efficient Algorithms: 4th International
Workshop, WEA 2005, Santorini Island, Greece, May 10-13, 2005.
Proceedings 4. Springer, 2005, pp. 380–390. [Online]. Available:
https://doi.org/10.1007/11427186 33

[32] N. Cascarano, P. Rolando, F. Risso, and R. Sisto, “infant: Nfa
pattern matching on gpgpu devices,” ACM SIGCOMM Computer
Communication Review, vol. 40, no. 5, pp. 20–26, 2010. [Online].
Available: https://doi.org/10.1145/1880153.1880157

[33] M. Becchi and P. Crowley, “An improved algorithm to accelerate regular
expression evaluation,” in Proceedings of the 3rd ACM/IEEE Symposium
on Architecture for networking and communications systems, 2007, pp.
145–154. [Online]. Available: https://doi.org/10.1145/1323548.1323573

[34] J. E. Hopcroft, R. Motwani, and J. D. Ullman, “Introduction to automata
theory, languages, and computation,” Acm Sigact News, vol. 32, no. 1, pp.
60–65, 2001. [Online]. Available: https://dl.acm.org/doi/10.5555/1196416

[35] A. V. Aho and J. Ullman, “The theory of parsing, translation
and compiling. parsing, vol. i,” 1972. [Online]. Available: https:
//dl.acm.org/doi/book/10.5555/578789

[36] S. C. Reghizzi, L. Breveglieri, and A. Morzenti, Formal languages
and compilation. Springer, 2013. [Online]. Available: https://
link.springer.com/book/10.1007/978-1-4471-5514-0

[37] V. M. Glushkov, “The abstract theory of automata,” Russian
Mathematical Surveys, vol. 16, no. 5, p. 1, 1961. [Online]. Available:
https://dx.doi.org/10.1070/RM1961v016n05ABEH004112

[38] J. Patel, A. X. Liu, and E. Torng, “Bypassing space explosion in
high-speed regular expression matching,” IEEE/ACM Transactions on
Networking, vol. 22, no. 6, pp. 1701–1714, 2014. [Online]. Available:
https://doi.org/10.1109/TNET.2014.2309014

[39] D. Ficara, S. Giordano, G. Procissi, F. Vitucci, G. Antichi, and
A. Di Pietro, “An improved dfa for fast regular expression matching,”
ACM SIGCOMM Computer Communication Review, vol. 38, no. 5, pp. 29–
40, 2008. [Online]. Available: https://doi.org/10.1145/1452335.1452339

[40] M. Becchi and P. Crowley, “Efficient regular expression evaluation:
Theory to practice,” in Proceedings of the 4th ACM/IEEE Symposium on
Architectures for Networking and Communications Systems, 2008, pp.
50–59. [Online]. Available: https://doi.org/10.1145/1477942.1477950

[41] E. Sadredini, R. Rahimi, M. Lenjani, M. Stan, and K. Skadron, “Impala:
Algorithm/architecture co-design for in-memory multi-stride pattern
matching,” in 2020 IEEE international symposium on high performance
computer architecture (HPCA). IEEE, 2020, pp. 86–98. [Online].
Available: https://doi.org/10.1109/HPCA47549.2020.00017

[42] Y. Fang, T. T. Hoang, M. Becchi, and A. A. Chien, “Fast
support for unstructured data processing: the unified automata
processor,” in Proceedings of the 48th International Symposium

https://doi.org/10.1109/FCCM.2016.61
https://doi.org/10.1145/3035918.3035954
https://doi.org/10.1145/3035918.3035954
https://doi.org/10.1109/INFCOM.2009.5062245
https://doi.org/10.1145/3428286
https://doi.org/10.1145/3519939.3523456
https://doi.org/10.1145/3586044
http://mitpress.mit.edu/9780262046305/introduction-to-algorithms/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
https://doi.org/10.1145/3445814.3446705
https://doi.org/10.1145/2541940.2541988
https://doi.org/10.1109/INFCOM.2012.6195546
https://doi.org/10.1109/MICRO.2016.7783747
https://doi.org/10.1109/TPDS.2014.8
https://doi.org/10.1109/TETC.2022.3157948
https://doi.org/10.1145/3476982
https://doi.org/10.1145/3503222.3507769
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://doi.org/10.1109/IPDPS.2014.51
https://doi.org/10.1145/3373376.3378471
https://doi.org/10.1109/TNET.2015.2429918
https://doi.org/10.1109/IISWC.2016.7581271
https://doi.org/10.1109/IISWC.2008.4636093
https://doi.org/10.1007/11427186_33
https://doi.org/10.1145/1880153.1880157
https://doi.org/10.1145/1323548.1323573
https://dl.acm.org/doi/10.5555/1196416
https://dl.acm.org/doi/book/10.5555/578789
https://dl.acm.org/doi/book/10.5555/578789
https://link.springer.com/book/10.1007/978-1-4471-5514-0
https://link.springer.com/book/10.1007/978-1-4471-5514-0
https://dx.doi.org/10.1070/RM1961v016n05ABEH004112
https://doi.org/10.1109/TNET.2014.2309014
https://doi.org/10.1145/1452335.1452339
https://doi.org/10.1145/1477942.1477950
https://doi.org/10.1109/HPCA47549.2020.00017

on Microarchitecture, 2015, pp. 533–545. [Online]. Available:
https://doi.org/10.1145/2830772.2830809

[43] Y. Zu, M. Yang, Z. Xu, L. Wang, X. Tian, K. Peng, and Q. Dong,
“Gpu-based nfa implementation for memory efficient high speed regular
expression matching,” in Proceedings of the 17th ACM SIGPLAN
symposium on Principles and Practice of Parallel Programming, 2012, pp.
129–140. [Online]. Available: https://doi.org/10.1145/2145816.2145833

[44] . e. I. S. .-. R. o. I. S. .-. The Open Group Base Specifications
Issue 7, “Portable operating system interface (posix). base definitions
and headers, section 9, regular expressions.” 2018. [Online]. Available:
https://pubs.opengroup.org/onlinepubs/9699919799/

[45] R. McNaughton and H. Yamada, “Regular expressions and state graphs
for automata,” IRE transactions on Electronic Computers, no. 1, pp. 39–
47, 1960. [Online]. Available: https://doi.org/10.1109/TEC.1960.5221603

[46] F. Carloni, D. Conficconi, I. Moschetto, and M. D. Santambrogio,
“Yarb: a methodology to characterize regular expression matching on
heterogeneous systems,” in 2023 IEEE International Symposium on
Circuits and Systems (ISCAS), 2023, pp. 1–5. [Online]. Available:
https://doi.org/10.1109/ISCAS46773.2023.10181547

[47] F. Carloni, L. Panseri, D. Conficconi, M. Sironi, and M. D.

Santambrogio, “Enabling efficient regular expression matching at
the edge through domain-specific architectures,” in 2023 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 2023, pp. 71–74. [Online]. Available: https:
//doi.org/10.1109/IPDPSW59300.2023.00023

[48] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner,
“Algorithms to accelerate multiple regular expressions matching for
deep packet inspection,” ACM SIGCOMM computer communication
review, vol. 36, no. 4, pp. 339–350, 2006. [Online]. Available:
https://doi.org/10.1145/1151659.1159952

[49] L. Cicolini, F. Carloni, M. D. Santambrogio, and D. Conficconi,
“Artifact repository of one automaton to rule them all: beyond
multiple regular expressions execution,” 2024. [Online]. Available:
https://doi.org/10.5281/zenodo.10475372

[50] D. Moseley, M. Nishio, J. Perez Rodriguez, O. Saarikivi, S. Toub,
M. Veanes, T. Wan, and E. Xu, “Derivative based nonbacktracking
real-world regex matching with backtracking semantics,” Proceedings of
the ACM on Programming Languages, vol. 7, no. PLDI, pp. 1026–1049,
2023. [Online]. Available: https://doi.org/10.1145/3591262

https://doi.org/10.1145/2830772.2830809
https://doi.org/10.1145/2145816.2145833
https://pubs.opengroup.org/onlinepubs/9699919799/
https://doi.org/10.1109/TEC.1960.5221603
https://doi.org/10.1109/ISCAS46773.2023.10181547
https://doi.org/10.1109/IPDPSW59300.2023.00023
https://doi.org/10.1109/IPDPSW59300.2023.00023
https://doi.org/10.1145/1151659.1159952
https://doi.org/10.5281/zenodo.10475372
https://doi.org/10.1145/3591262

	Introduction
	Background Knowledge
	MFSA: a Merging Approach to REs Optimization
	Merging FSAs: Search for Common Sub-Patterns
	The Formal Model of the MFSA

	Overall Compilation Framework
	Front-End - Lexical and Syntax Analysis
	Mid-End - from Regular Expressions to fsa
	Mid-End - Optimizing and Processing FSAs Before Merging
	Mid-End - Merging
	Back-End - Lowering the Intermediate Representation

	MFSAs Execution: from iNFAnt to iMFAnt
	Experimental Evaluation
	Automata Compression Evaluation
	Compilation Stages Time Analysis
	iMFAnt Throughput and MFSA Execution Impact
	Single-Threaded Execution
	Multi-Threaded Execution

	Related Work
	Conclusions and Future Work
	Artifact Check-List (Meta-Information)
	Description
	How to Access
	Software Dependencies
	Data Sets

	Installation
	Experiment Workflow
	Evaluation and Expected Results
	Experiment Customization
	Methodology

	References

