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a b s t r a c t 

The study of functional Brain-Heart Interplay (BHI) from non-invasive recordings has gained much interest in 

recent years. Previous endeavors aimed at understanding how the two dynamical systems exchange information, 

providing novel holistic biomarkers and important insights on essential cognitive aspects and neural system func- 

tioning. However, the interplay between cardiac sympathovagal and cortical oscillations still has much room for 

further investigation. In this study, we introduce a new computational framework for a functional BHI assessment, 

namely the Sympatho-Vagal Synthetic Data Generation Model, combining cortical (electroencephalography, EEG) 

and peripheral (cardiac sympathovagal) neural dynamics. The causal, bidirectional neural control on heartbeat 

dynamics was quantified on data gathered from 26 human volunteers undergoing a cold-pressor test. Results 

show that thermal stress induces heart-to-brain functional interplay sustained by EEG oscillations in the delta 

and gamma bands, primarily originating from sympathetic activity, whereas brain-to-heart interplay originates 

over central brain regions through sympathovagal control. The proposed methodology provides a viable compu- 

tational tool for the functional assessment of the causal interplay between cortical and cardiac neural control. 
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. Introduction 

Recent studies on brain-body interactions showed that neural pro-

essing of bodily signals contributes to the subjective perception of the

nvironment, bodily-self, and inner mental states ( Azzalini et al., 2019 ;

lanke and Metzinger, 2009 ; Candia-Rivera et al., 2021a ; Park et al.,

016 ; Petzschner et al., 2019 ). In fact, while brain regions respond-

ng to autonomic changes are part of interoceptive awareness networks

 Craig, 2009 , 2002 ; Khalsa et al., 2009 ), the neural signaling to the heart

ontinuously interacts with the cerebral structures involved in cardiac

rocessing and nervous-system-wise homeostasis ( Critchley and Harri-

on, 2013 ); such functional interactions in a wide-sense refer to func-

ional brain-heart interplay (BHI). 

Because of its comprehensive definition, the assessment of func-

ional BHI may be linked to the activity of several brain structures

hat are part of relevant networks, i.e., the central-autonomic net-

ork, linked to autonomic control ( Silvani et al., 2016 ; Thayer and

ane, 2009 ; Valenza et al., 2020 , 2019 ), and the default mode net-

ork, which shares components with the aforementioned network

 Thayer et al., 2012 ) and participates in the neural monitoring of car-

iac inputs for self-related cognition and conscious perception ( Babo-
Abbreviations: BHI, Brain-heart interplay; SDG, Synthetic data generation; SV-SD

ndex; SAI, Sympathetic activity index; ICA, Independent component analysis; MAD, 
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ebelo et al., 2016 ; Park et al., 2014 ). Furthermore, functional BHI may

e modulated by signaling occurring, e.g., through pain, visceroceptive,

pinothalamocortical, and somatosensory pathways ( Bushnell et al.,

999 ; Craig, 2002 ; Hofbauer et al., 2001 ; Khalsa et al., 2009 ) via bio-

hemical, hormonal, electrical and mechanical changes. 

In these regards, the development of computational approaches

or the assessment functional BHI, also using task-based experimen-

al paradigms and non-invasive physiological recordings, is of out-

ost importance ( Catrambone and Valenza, 2021a ). To this extent,

he study of brain-body physiological networks ( Antonacci et al., 2020 ;

ernice et al., 2021 ), the analysis of spontaneous neural responses to

eartbeats ( Candia-Rivera et al., 2021d ; Petzschner et al., 2019 ), and

he analysis of synchronizations between the brain and heart oscillations

 Candia-Rivera et al., 2021d ; Pfurtscheller et al., 2018 ; Valenza et al.,

016 , 2020 , 2019 ) have been successfully performed. However, most of

he existing methodologies do not take into account the measurement

f both ascending heart-to-brain and descending brain-to-heart modula-

ions ( Candia-Rivera et al., 2021d ). One existing strategy to assess func-

ional BHI, in terms of directionality and modulation time courses, is the

odel of Synthetic Data Generation (SDG) ( Candia-Rivera et al., 2021c ;

atrambone et al., 2019 ), which assesses the bi-directional modulations
G, Sympatho-vagal synthetic data generation; PAI, Parasympathetic activity 

Median absolute deviation; HF, High frequency; LF, Low frequency. 
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Fig. 1. Sympatho-Vagal Synthetic Data Generation 

Model (SV-SDG). The model relies on the estimation 

of autonomous nervous system activity from heart- 

rate variability, comprising sympathetic (SAI) and 

parasympathetic (PAI) dynamics. The model assumes a 

communication loop in which ongoing autonomic ac- 

tivity modulates EEG activity and ongoing EEG activity 

modulates SAI and PAI. 
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etween EEG oscillations at a given frequency band and heart rate vari-

bility spectral estimators for sympathovagal activity. Such model may

ccurately describe BHI under emotion elicitation ( Candia-Rivera et al.,

021c ), and shows the potential of physiological modeling for the anal-

sis of BHI. Nevertheless, the study of sympathovagal activity through

eart rate’s spectral analysis has been challenged because such esti-

ators do not allow a proper quantification of cardiac sympathetic

ctivity. The sympathetic activity is traditionally studied in the 0.04–

.15 Hz range, which present an overlap with parasympathetic oscilla-

ions ( Reyes del Paso et al., 2013 ; Valenza et al., 2018a ). 

To overcome this limitation, here we propose a novel methodology

or the assessment of functional BHI, namely the Sympatho-Vagal Syn-

hetic Data Generation (SV-SDG), in which a recursive estimation of

eart-to-brain and brain-to-heart interplay is computed (see Fig. 1 ). The

ethod does not rely on the classical heart-rate’s spectral estimators and

xploit recent developments on the assessment of peripheral autonomic

ontrol: the Sympathetic Activity Index (SAI) and Parasympathetic Ac-

ivity Index (PAI) ( Valenza et al., 2018a ). These indices leverage on La-

uerre expansions of RR interval series, an alternative mathematical ap-

roach to disentangle oscillations, allowing to a personalized decompo-

ition of a signal in slow and fast oscillations, instead of classical Fourier

ecomposition in sinusoids oscillating in specific frequencies ( Mitsis and

armarelis, 2002 ). Laguerre expansions can accurately estimate the car-

iac sympatho-vagal activity; indeed, SAI and PAI may effectively be

sed for generating physiologically plausible synthetic heartbeat series

 Candia-Rivera et al., 2021b ). 

In this study, we explore functional BHI changes triggered by the

old-pressor test. Accordingly, we validate our model using data gath-

red from healthy subjects undergoing thermal stress through a cold-

ressor test. Such a thermal stress is known to elicits changes in sym-

athovagal activity ( Cui et al., 2002 ; Victor et al., 1987 ), accelerating

he heart-rate up to 30 s from the onset ( Victor et al., 1987 ) as a re-

ult of an increase in sympathetic activity and decrease in vagal outflow

 Mourot et al., 2009 ). In parallel to the autonomic activity, cortical re-

ponses to thermal stress occur within 200 ms ( Dowman et al., 2007 ;

ruhstorfer et al., 1976 ; Ploner et al., 2006 ; Wang et al., 2004 ). EEG

tudies have reported that these stimuli cause an increase in the power

n delta and gamma bands over the fronto-temporal areas ( Chang et al.,

002 ; Fardo et al., 2017 ; Ferracuti et al., 1994 ; Huber et al., 2006 ;

ascalis et al., 2019 ; Shao et al., 2012 ; Wang et al., 2020 ). The existing

vidence on functional BHI during thermal stress shows a suppression of

eartbeat-evoked potentials ( Shao et al., 2011 ). In addition, BHI mod-
2 
ls showed a bidirectional interplay with predominant changes through

EG delta and gamma bands, directly related to ascending communica-

ion pathways from autonomic inputs ( Catrambone et al., 2019 ). 

. Materials and methods 

.1. Dataset description 

A group of 32 right-handed young healthy adults underwent a cold-

ressor test while recording physiological signals. Data from 26 subjects

age range 21–41 years, median 27 years, 13 males) were considered in

his study for further analysis because of data length and quality. Par-

icularly, data from three subjects were not considered because of the

resence of artifacts in their physiological data (EEG or ECG), while data

rom further three subjects were discarded because of early withdrawal

f their hand from the cold water. Each subject recording comprised

28-channel high-density EEG (Electrical Geodesics, Inc.), respiratory

ctivity, and one-lead ECG, sampled at 500 Hz. Before data acquisition,

ubjects were asked to sit comfortably on a chair to ensure hemodynamic

tabilization. The task consisted in a 3 min resting state, followed by up

o 3 min cold-pressor test and subsequent recovery, in which subjects

ere asked to withdraw the hand from the ice water bucket. Through-

ut the protocol, subjects were asked to keep their eyes closed in order

o minimize artifacts. Subjects were guided while submerging their left

and up to their wrist into a bucket filled with ice water (0–4 °C). 

This study was approved by the local ethical committee Area Vasta

ord-Ovest Toscana. Subjects signed an informed consent to participate

n the study, as required by the declaration of Helsinki. All subjects de-

lared no history of neurological, cardiovascular, or respiratory diseases.

.2. EEG processing 

EEG data were pre-processed using MATLAB R2017a and Fieldtrip

oolbox ( Oostenveld et al., 2011 ). Data were bandpass filtered with a

utterworth filter of order 4, between 0.5 and 45 Hz. EEG channels

utside the scalp were not considered in this analysis (97 out of the 129

hannels were considered), to avoid the interpolation of non-neural data

n the correction of contaminated channels detailed below. Large move-

ent artifacts were removed using the wavelet-enhanced independent

omponent analysis ( Gabard-Durnam et al., 2018 ), which were iden-

ified using automated thresholding over the independent component

nd multiplied by a factor of 50 to remove only very large artifacts as
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𝑚 𝑆𝐴𝐼 𝑃𝐴𝐼  
escribed in ( Candia-Rivera et al., 2021d ). Consecutively, the Inde-

endent Component Analysis (ICA) was re-run to recognize and re-

ect the eye movements and cardiac-field artifacts from the EEG data

 Dirlich et al., 1997 ). To this end, one lead ECG was included as an addi-

ional input to the ICA to enhance the process of finding cardiac artifacts.

nce the ICA components with eye movements and cardiac artifacts

ere visually identified, they were set to zero to reconstruct the EEG

eries. The results of this step were eye-movements and cardiac-artifact-

ree EEG data. Thus, individual EEG channels were analyzed. The chan-

els were marked as contaminated if their area under the curve exceeded

 standard deviations of the mean of all channels. The remaining chan-

els were compared with their weighted-by-distance-correlation neigh-

ors using the standard Fieldtrip neighbor’s definition. If a channel re-

ulted in a weighted-by-distance correlation of less than 0.6, it was con-

idered contaminated. The contaminated channels were replaced by the

eighbor’s interpolation. Channels were re-referenced using a common

verage, which resulted to be the most appropriate for a functional BHI

ssessment ( Candia-Rivera et al., 2021d ). Subsequently, a subset of 64

hannels (out of 97 channels used until this part) were selected for fur-

her analysis to reduce redundancy and to use a standard neighbors’

efinition in the cluster analysis. The channel selection was performed

ccording to the 10-10 system guidelines ( Luu and Ferree, 2000 ). 

The EEG spectrogram was computed using the short-time Fourier

ransform with a Hanning taper. Calculations were performed through

 sliding time window of 2 s with a 50% overlap, resulting in a spec-

rogram resolution of 1 s and 0.5 Hz. Then, time series were integrated

ithin five frequency bands (delta: 1–4 Hz, theta: 4–8 Hz, alpha: 8–

2 Hz, beta: 12–30 Hz, gamma: 30–45 Hz). 

.3. ECG processing 

ECG time series were bandpass filtered using a Butterworth filter

f order 4, between 0.5 and 45 Hz. The R-peaks from the QRS waves

ere identified first via an automatized process, followed by a visual

nspection of misdetections and final automated correction of remain-

ng misdetections or ectopic heartbeats. The procedure was based on

 template-based method for detecting R-peaks ( Candia-Rivera et al.,

021d ). All the detected peaks were visually inspected over the orig-

nal ECG, along with the inter-beat intervals histogram. Manual cor-

ections were performed where needed and then automatic corrections

ere done using a point-process algorithm ( Citi et al., 2012 ). 

.4. Computation of sympathetic and parasympathetic activity indices 

The cardiac sympathetic and parasympathetic activities were esti-

ated through Laguerre expansions of the RR interval series, as de-

cribed in Valenza et al. (2018a ). Importantly, this procedure does not

equire an interpolation of the unevenly sampled RR series, therefore

𝑅 ( 𝑘 ) indicates the 𝑘 th sample in time of the original series. The RR

eries are convolved with a set of Laguerre functions 𝜑 𝑗 , as shown in

q. (1) : 

 𝑗 ( 𝑘 ) = 

𝑘 −1 ∑
𝑛 = 0 

𝜑 𝑗 ( 𝑛 ) ⋅ 𝑅𝑅 ( 𝑘 − 𝑛 − 1 ) (1)

here n indicates the convolution index of the sum. The RR series

an then be expanded using the convolved Laguerre functions 𝐿 ( 𝑘 ) =
 𝐿 0 ( 𝑘 ) , 𝐿 1 ( 𝑘 ) , ..., 𝐿 8 ( 𝑘 ) ] 𝑇 , and the theoretical autoregressive model can

e used to separate the sympathetic and parasympathetic components

s follows: 

𝑅 ( 𝑘 ) = 𝑔 0 ( 𝑘 ) 
⏟⏟⏟
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 

+ 

1 ∑
𝑗 = 0 

𝑔 1 , 𝑗 ( 𝑘 ) ⋅ 𝐿 𝑗 ( 𝑘 ) 

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑠𝑦𝑚𝑝𝑎𝑡ℎ𝑒𝑡𝑖𝑐 

+ 

8 ∑
𝑗 = 2 

𝑔 1 , 𝑗 ( 𝑘 ) ⋅ 𝐿 𝑗 ( 𝑘 ) 

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑝𝑎𝑟𝑎𝑠𝑦𝑚𝑝𝑎𝑡ℎ𝑒𝑡𝑖𝑐 

(2)

The time-varying Laguerre coefficients 𝑔( 𝑘 ) =
 𝑔 0 ( 𝑘 ) , 𝑔 1 , 0 ( 𝑘 ) , ..., 𝑔 1 , 8 ( 𝑘 ) ] 𝑇 are modelled according to a dynamic
3 
ystem that fulfills Eqs. (3) and (4) . 

 ( 𝑘 ) = 𝑔 ( 𝑘 − 1 ) + 𝜀 𝑔 ( 𝑘 ) (3)

𝑅 ( 𝑘 ) = 𝐿 ( 𝑘 ) 𝑇 𝑔 ( 𝑘 ) + 𝜀 𝑅𝑅 ( 𝑘 ) (4)

here 𝜀 𝑔 is the state noise and 𝜀 𝑅𝑅 is the observation noise. The co-

fficients are then estimated using a Kalman filter with a time-varying

bservation matrix Valenza et al., 2018b ), and SAI and PAI are finally

stimated as shown in Eqs. (5) and ( (6) . 

𝐴𝐼 ( 𝑘 ) = 

[ 

Ψ𝑠 0 + 

2 ∑
𝑗 = 1 

Ψ𝑠 𝑗 ⋅ 𝑔 1 , 𝑗−1 ( 𝑘 ) 

] 

∕ 𝑅𝑅 ( 𝑘 ) (5)

 𝐴𝐼 ( 𝑘 ) = 

[ 

Ψ𝑝 0 + 

7 ∑
𝑗 = 1 

Ψ𝑝 𝑗 ⋅ 𝑔 1 , 𝑗+1 ( 𝑘 ) 

] 

⋅ 2 𝑅𝑅 ( 𝑘 ) (6)

Here, Ψ𝑠 𝑗 and Ψ𝑝 𝑗 are the generalized values for the sympathetic and

arasympathetic kernels, which were derived from a former selective

ympathetic and parasympathetic blockade study; numeric values are

𝑠 𝑗∈{ 0 , 1 , 2 } = {39.2343, 10.1963, − 5.9242} and Ψ𝑝 𝑗∈{ 0 , …, 7 } = {28.4875,

 17.3627, 5.8798, 12.0628, 5.6408, − 7.0664, − 5.6779, − 3.9474}. For

 comprehensive description of the model generation and parametriza-

ion, see Valenza et al. (2018a ). SAI and PAI were computed using a pub-

icly available online software, which can be gathered from www.saipai-

rv.com . 

.5. The proposed Sympatho-Vagal Synthetic Data Generation model 

We propose the assessment of functional brain-heart interplay us-

ng a model of Sympatho-Vagal Synthetic Data Generation (SV-SDG).

he model provides time-variant estimates of the bidirectional cou-

ling coefficients between the different heart and brain components.

he source code implementing the SV-SDG model is publicly available

t ⟨13:italic ⟩github.com/diegocandiar/brain _ heart _ svsdg/ ⟨/13:italic ⟩. 
.5.1. Functional interplay from the brain to the heart 

The descending interplay is quantified through a physiologically-

lausible, synthetic heartbeat generation model leveraging on our

ecently proposed Sympatho-Vagal Modulation Model ( Candia-

ivera et al., 2021b ). The synthetic heartbeats are modelled as Dirac

unctions 𝛿( 𝑡 ) generating an impulse at the timings of heartbeats

ccurrences 𝑡 𝑘 as presented in Eq. (7) . 

 ( 𝑡 ) = 

𝑁 ∑
𝑘 = 1 

𝛿
(
𝑡 − 𝑡 𝑘 

)
(7)

The beat-to-beat generation comprises an integration within the in-

erval from 𝑡 𝑘 to 𝑡 𝑘 +1 on a modulation function of autonomic activity

 ( 𝑡 ) . When the integral function reaches a threshold (equal to 1), the

eartbeat is generated, as shown in Eq. (8) , where 𝜇𝐻𝑅 corresponds to

he mean heart rate (in Hz) in the studied interval. 

 = 

𝑡 𝑘 +1 
∫
𝑡 𝑘 

[
𝜇𝐻𝑅 + 𝑚 ( 𝑡 ) 

]
𝑑𝑡 (8)

The first heartbeat occurs at 𝑡 = 0 , and the integration over time is

eset to 0 when the threshold is reached. Thus, the model generates

eartbeats at a frequency defined by the mean 𝜇𝐻𝑅 , whereas the time-

arying modulation on the heart rate is defined by the sympathetic and

arasympathetic interplay. 

Herein, we further implement a sympathovagal modulation model,

here heartbeat generation is related to the modulation function m(t),

hich models sympathetic and parasympathetic activities and their

espective coupling coefficients with the central nervous system, ex-

ressed as 𝐶 𝑆𝐴𝐼 and 𝐶 𝑃𝐴𝐼 : 

 ( 𝑡 ) = 𝐶 ( 𝑡 ) ⋅ 𝑆𝐴𝐼 ( 𝑡 ) + 𝐶 ( 𝑡 ) ⋅ 𝑃 𝐴𝐼 ( 𝑡 ) (9)

http://www.saipai-hrv.com
https://github.com/diegocandiar/brain_heart_svsdg/
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The model is based on the same hypothesis defined for heartbeat

eneration in Eqs. (7) and (8) . Here, 𝐶 𝑆𝐴𝐼 and 𝐶 𝑃𝐴𝐼 are estimated using

 sliding time window and a generalized linear model regression with

he constant term omitted for fitting. Regression was performed using

 15 s long time window with a 1 s step. The time series were evenly

ampled using a spline interpolation with a 10 Hz sampling frequency,

nd the resulting RR series data from the model were re-centered to the

riginal mean RR duration. 

The model defines the interaction between heartbeat dynamics and

he cortical neural control as the ratio between the coupling con-

tants 𝐶 𝑆𝐴𝐼 and 𝐶 𝑃𝐴𝐼 and the EEG power in the previous time win-

ow Powe r f ( 𝑡 − 1 ) at a defined frequency f . Therefore, the brain-heart

nterplay coefficients SD G brain →SAI and SD G brain →PAI are defined by

qs. (10) and (11) , respectively as: 

D G brain →SAI (t) = 𝐶 𝑆𝐴𝐼 ( 𝑡 ) ∕ Powe r f (t − 1) (10)

D G brain →PAI (t) = 𝐶 𝑃𝐴𝐼 ( 𝑡 ) ∕ Powe r f (t − 1) (11)

.5.2. Functional interplay from the heart to the brain 

The functional interplay from heart to brain is quantified through a

odel based on the generation of synthetic EEG series using an adap-

ative Markov process ( Al-Nashash et al., 2004 ), as shown in Eq. (12) .

he model estimates the modulations to the brain expressed by the co-

fficient Φ𝑓 using least squares in an auto-regressive process as shown

n Eq. (13) , where f is the main frequency in a defined frequency band,

𝑓 is the phase, κf is a constant and ε f is the adjusted error. 

EG ( t ) = 

f n ∑
𝑓 = f 1 

Powe r f ( t ) ⋅ sin 
(
𝜔 𝑓 𝑡 + 𝜃f 

)
(12) 

owe r f (t) = κf ⋅ Powe r f (t − 1) + Φ𝑓 (t − 1) + ε f , (13)

Therefore, the coupling coefficients SD G heart →brain in which the

arkovian neural activity generation within a specific EEG channel,

requency band and time window, uses its previous neural activity and

eartbeat dynamics as inputs to estimate the contribution of heartbeat

ynamics SAI or PAI to the auto-regressive model for EEG data genera-

ion: 

D G SAI →brain (t) = Φ𝑓 (t) ∕ SAI(t) (14) 

D G PAI →brain (t) = Φ𝑓 (t) ∕ PAI(t) (15) 

.6. Controls on non-stationarities, surrogate data analysis, and 

onfounding factors 

Functional BHI coupling coefficients were controlled for the pres-

nce of non-stationarities, for the reliability of the estimation through

urrogate analysis, and for the presence of confounding respiratory fac-

ors. 

The analysis for the presence of non-stationarities was inspired by

agagnin et al. (2011 ). We tested EEG power and heartbeat series for

on-stationarity using the so-called Kwiatkowski, Phillips, Schmidt, and

hin (KPSS) test ( Hobijn et al., 2004 ). Series within the interval − 60 to

0 s centered to the cold-pressor onset were derived from each subject at

ach frequency band and were tested as a function of time windows 1–

0 s, with 1 s step. Series are associated with a non-stationary process

f the p -value from the KPSS test was lower than 0.05, given the null

ypothesis of stationarity. In the transition between resting state and

old pressure, series are deemed stationary for length lower than 5 s (see

ig. 5 in Supplementary Material). However, a 15 s estimation window

roduces reliable results (see Figs. 6 and 7 in Supplementary Material).

We confirmed the reliability of each functional BHI estimation, sep-

rately for rest and cold-pressor, through a surrogate data analysis

 Porta and Faes, 2016 ). By considering a rest period from − 30 to 0 s
4 
ith respect to the cold onset and a cold-pressor period from 0 to

0 s with respect to the cold onset, we generated 100 surrogates in-

ependently for each EEG power series and SAI/PAI series to preserve

rst-order moment statistics (average in time) and uncouple brain-heart

ross-correlations. The surrogates were generated through random per-

utations of samples, performed independently for each time series.

 p -value was obtained from each estimate (from each subject, chan-

el, direction, autonomic component, and experimental condition) by

omparing the original coupling coefficient with respect to a two-tail

istribution of coupling coefficients obtained from the surrogate series.

esults from a surrogate analysis suggest that more than 50 − 60% of the

stimates were above the significance threshold, which was set to 0.05.

e noted that the brain-to-heart functional direction is associated with

10 − 20%) greater significant estimates than the heart-to-brain direc-

ion. Distribution of p -values gathered from EEG series from 4 channels

Fz, Cz, Pz, Oz), for each of the 26 subjects, at 3 EEG frequency bands

delta, alpha, gamma) are shown in Fig. 9 in the Supplementary Mate-

ial. 

Confounding factors as the respiration activity might bias the esti-

ation of autonomic nervous system activity from heart rate variability

nd, consequently, might bias functional BHI estimates. We estimated

he respiratory frequency for each experimental session, i.e., rest and

old-pressor test, by identifying the maximum of the signal frequency

pectrum. We confirmed that the main respiratory frequency lies within

he HF band (0.15–0.4 Hz) in all the experimental conditions. Because

f issues with the belt sensors during the recordings, 16 out of 24 respi-

atory signals were available for this analysis. Results indicate that the

espiratory frequency was non-statistically different between the rest,

.2056 ± 0.0389 Hz (median ± median absolute deviation), and cold-

ressor test, 0.2511 ± 0.0592 Hz (median ± median absolute deviation),

ith a p = 0.566 from a Wilcoxon test for paired samples (see Fig. 8 in

he Supplementary Material). 

.7. Statistical analysis 

Group-wise statistical analysis between resting state, cold session,

nd recovery was performed through the non-parametric Friedman test

or paired samples. The statistical tests were performed over individual

EG channels, in which the inputs of the Friedman test corresponded

o an SV-SDG coupling coefficient computed at different experimental

onditions. The significance level of the p -values was corrected in ac-

ordance with the Bonferroni rule for 64 channels, with an uncorrected

tatistical significance set to alpha = 0.05. The samples were described

roup-wise using the median, and related dispersion measures were ex-

ressed as the median absolute deviation (MAD). 

Cold-pressure and recovery conditions were compared to the av-

rage resting state period with a cluster-based permutation test. The

on-parametrical cluster-based permutation tests included a prelimi-

ary mask definition, identification of candidate clusters and the com-

utation of cluster statistics with Monte Carlo’s p -value correction. The

reliminary mask was computed by performing a paired Wilcoxon test

or individual samples defined in space, time, and frequency. If a sample

btained a p -value lower than alpha = 0.01, then the sample was consid-

red part of the preliminary mask. Candidate clusters were formed first

n individual time stamps and separately for each frequency band. The

dentification of neighbor channels was based on the default Fieldtrip

hannels’ neighborhood definition for 64 channels. A minimum clus-

er size of 3 channels was imposed (i.e., one channel needs at least 2

eighbors to form a cluster). Adjacent candidate clusters on time were

rapped if they had at least one channel in common. The overall mini-

um duration of the cluster was imposed to 5 s. Cluster statistics were

omputed from 10,000 random partitions. The proportion of random

artitions that resulted in a lower p -value than the observed one was

onsidered as the Monte Carlo p -value, with significance at alpha = 0.01.

he cluster statistic considered is the Wilcoxon’s absolute maximum Z -

alue obtained from all the samples of the mask. 
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Fig. 2. (A) Results from Friedman tests for heart-to-brain and brain-to-heart interplay from Sympathetic or Parasympathetic Activity Index (SAI or PAI) to EEG 

frequency bands. The test is performed over 7 phases of the experiment (rest, cold pressor test: 0–20 s, 20–40 s, 40–60 s, and recovery: 0–20 s, 20–40 s, 40–60 s). 

Colormap represents the Friedman Statistic and thick electrodes represent significant change ( p < 0.05/64). (B) Exemplary group-wise dynamics related to the 

bidirectional coupling between SAI/PAI and EEG oscillations in the gamma band over posterior channels (ascending interplay) and central channels (descending 

interplay) from resting state (40 s before the stimulus onset) to cold-pressor. 
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. Results 

In this study we applied the SV-SDG model to estimate functional BHI

uring thermal stress processing, gathered from a hand cold-pressor test.

e tested whether the SV-SDG model can uncover the changes in BHI

rom rest to cold-pressor and recovery. The analysis includes the func-

ional estimation of the bidirectional modulations between sympatho-

agal activity (SAI and PAI dynamics) and cortical brain oscillations

delta: 1–4 Hz, theta: 4–8 Hz, alpha: 8–12 Hz, beta: 12–30 Hz, gamma:

0–45 Hz). 

.1. Overall changes in functional brain-heart interplay 

We first assessed overall changes in functional BHI through the Fried-

an test, including the conditions of resting state and different latencies

rom the cold-pressor onset and recovery phases. The ascending modu-

ations from heart to brain showed group-wise changes in a wide scalp

overage (see Fig. 2 A), particularly originating from sympathetic activ-

ty to EEG delta, theta, beta and gamma oscillations. Ascending modu-

ations from parasympathetic activity was present mostly towards EEG

lpha and gamma oscillations. 

Sympathetic activity shows a major causal influence on the activity

ver posterior regions at higher EEG frequency overall midline regions

t low EEG frequency. Parasympathetic activity shows major links with

he EEG activity from posterior regions over alpha and gamma oscil-

ations. Exemplary time series of the observed BHI changes between
5 
EG gamma oscillations and sympathetic and parasympathetic activity

re shown in Fig. 2 B. It is possible to observe a rapid change from the

scending interplay lasting approximately 20 s from the cold-pressure

nset, along with a decrease in the descending brain-to-heart interplay.

Table 1 shows the estimated functional BHI components associated

ith a clustered significant change during the cold-pressor phase, with

espect to the resting state, within a cluster-based permutation analy-

is. Note that 120 s corresponds to the minimal duration a subject un-

er cold elicitation. In the ascending direction from the heart-to-brain,

he interplay from SAI to delta and theta is suppressed shortly after the

hase change; a significant change in the SAI-to-alpha interplay can also

e observed. The interplay from brain-to-heart is sustained by sympa-

hetic activity after the phase change, predominantly through delta and

amma oscillations. 

.2. Brain-heart interplay during a phase change 

To properly characterize the neural mechanisms associated with

he cardiovascular responses to rest-to-cold and cold-to-recovery tran-

itions, here we focus on the observed changes in functional BHI up to

0 s from the phase change onset. To this end, we have performed a

luster-based permutation analysis over the four hypothesized commu-

ication pathways: SAI-to-brain, PAI-to-brain, brain-to-SAI and brain-to-

AI throughout the five considered EEG frequency bands. Additionally,

e explored the BHI changes measured in the individual brain and heart

omponents. 
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Table 1 

Brain-heart interplay components presenting a clustered effect during the cold-pressor test, and the 

latency of this change with respect to the cold onset. The interplay changes are assessed in a cluster-based 

permutation test, compared to the averaged resting state period. 

Heart to Brain latency (s) Z -stat p -value Brain to Heart latency (s) Z -stat p -value 

SAI →delta 0–21 4.0256 < 0.0001 delta →SAI 0–97 3.6446 0.0019 

SAI →theta 0–11 3.6446 0.0001 theta →SAI – – –

SAI →alpha 32–59 − 3.3652 0.0037 alpha →SAI – – –

SAI →beta 0–113 3.7970 < 0.0001 beta →SAI 0–96 3.1367 0.0022 

SAI →gamma 0–99 4.3812 < 0.0001 gamma →SAI 2–99 3.8478 0.0011 

PAI →delta 0–102 4.2542 < 0.0001 delta →PAI – – –

PAI →theta 1–76 3.9494 0.0001 theta →PAI – – –

PAI →alpha – – – alpha →PAI – – –

PAI →beta 0–99 4.2034 < 0.0001 beta →PAI – – –

PAI →gamma 0–111 4.4319 < 0.0001 gamma →PAI 6–19 − 3.1620 0.0061 

Fig. 3. Brain-Heart Interplay during the cold-pressor test. (A) Ascending heart-to-brain interplay. (B) Descending brain-to-heart interplay. The scalp topographies 

shown correspond to the components in which significant results were found in the permutation cluster-based analysis. The colorbar represents the group median 

interplay coefficients, with the resting-state period subtracted. (C) Changes in sympathetic activity (SAI) and parasympathetic activity (PAI). (D) Changes in the EEG 

power in the delta and gamma bands, in frontal and central electrodes. 
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Fig. 3 A shows the ascending interplay from heart to brain in which

ignificant changes can be observed at the cold-pressor onset. In partic-

lar, an increase in the functional BHI is observed at all EEG frequency

ands, with the except for the alpha band. The maximum is observed

pproximately 10 s after the cold-pressor onset. The observed changes

re mainly over the midline frontal and posterior regions Fig. 3 .B shows
6 
he descending interplay from brain to heart, which follows an oppo-

ite trend as compared to the ascending interplay. We observed changes

nly from delta-to-SAI, beta-to-SAI, gamma-to-SAI and gamma-to-PAI.

he cold-pressor onset triggers a decrease in the descending interplay

bsolute value, reaching its minimum in approximately 15–20 s respect

he phase change. 
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Fig. 4. Brain-Heart Interplay during the recovery from cold-pressor test. (A) Ascending heart-to-brain interplay. (B) Descending brain-to-heart interplay. The scalp 

topographies shown correspond to the components in which significant results were found in the permutation cluster-based analysis. Colorbar represents the group 

median interplay coefficients, with the resting-state period subtracted. (C) Changes in sympathetic activity (SAI) and parasympathetic activity (PAI). (D) Changes in 

the EEG power in the delta and gamma bands, in frontal and central electrodes. 
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For the sake of completeness, Fig. 3 C shows the time course of sym-

athetic and parasympathetic activity i.e., SAI and PAI, and Fig. 3 D

hows exemplary EEG activity in the delta and gamma bands. We ob-

erve that the cold-pressor triggers an increase in sympathetic activity

nd EEG power, and a decrease in parasympathetic activity. 

The BHI changes observed during the phase change from cold to

ecovery are similar to the ones observed in the rest-to-cold transition

ig. 4 .A shows estimates of the ascending interplay from heart-to-brain.

hen the cold-pressor ends, a significant increase in the BHI from SAI

nd PAI to delta, theta, beta and gamma bands is observed over the mid-

ine frontal and posterior scalp regions. The cold-pressor offset triggers

n increase in the ascending interplay, reaching its maximum after up to

0–15 s with respect to the phase change Fig. 4 .B shows the estimates of

he descending interplay from the brain-to-heart when the cold-pressor

est ends; differently from the cold-pressor onset, changes in the direc-

ional interplay between delta-to-SAI, theta-to-SAI, beta-to-SAI, gamma-

o-SAI, delta-to-PAI and gamma-to-PAI can be observed. The latencies

re slightly delayed from the ascending modulations, reaching the min-

mum after 15 s from the cold offset. 

Fig. 4 C shows the time course of sympathetic and parasympathetic

ctivity i.e., SAI and PAI, and Fig. 4 D shows exemplary EEG activity

n the delta and gamma bands for the recovery transition. The cold-

ressor offset triggers an increase in sympathetic activity and a decrease
7 
n parasympathetic activity, lasting around 15 s only. Conversely, the

EG power increase lasts longer than the one observed at cold onset,

aintaining the relative differences previously observed between lower

nd higher frequencies. 

.3. Functional brain-heart interplay in recovery mechanisms 

In this section we explore the recovery process after the cold offset

able 2 . shows the BHI components in which a significant change was

bserved during the recovery period, with respect to the resting state. In

he ascending direction from heart-to-brain, the interplay is suppressed

fter about 38 s from the phase change. On the functional direction from

rain-to-heart, we observe that such a descending interplay is sustained

or up to 171 s after the cold offset, with a delay of no less than 11 s

ith respect to the ascending interplay. 

. Discussion 

Computational strategies for a functional BHI assessment aims to

uantify the neural information exchange between brain regions and

ardiac autonomic control, which occurs through multiple pathways,

uch as the spino-thalamo-cortical pathway ( Craig, 2002 ). While brain

esponses to tactile/thermal stimuli or tonic pain have been described
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Table 2 

Brain-heart interplay components presenting a clustered effect during the recovery period, and the la- 

tency of this change with respect to the cold offset. The interplay changes are assessed in a cluster-based 

permutation test, compared to the averaged resting state period. 

Heart to Brain latency (s) Z -stat p -value Brain to Heart latency (s) Z -stat p -value 

SAI →delta 0–38 4.4573 < 0.0001 delta →SAI 13–171 3.9494 0.0037 

SAI →theta 3–21 4.4573 < 0.0001 theta →SAI 14–27 3.6192 0.0076 

SAI →alpha 123–129 − 3.1874 0.0037 alpha →SAI – – –

SAI →beta 3–21 4.4573 < 0.0001 beta →SAI 14–46 3.5684 0.004 

SAI →gamma 1–25 4.4573 < 0.0001 gamma →SAI 11–61 3.7462 0.0005 

PAI →delta 0–37 4.4573 < 0.0001 delta →PAI 14–171 − 3.6446 0.0115 

PAI →theta 0–23 4.4573 < 0.0001 theta →PAI – – –

PAI →alpha 48–66 − 3.4160 0.0008 alpha →PAI – – –

PAI →beta 3–22 4.4573 < 0.0001 beta →PAI 16–27 − 3.1620 0.0033 

PAI →gamma 1–23 4.4573 < 0.0001 gamma →PAI 12–62 − 3.7970 0.0019 
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 Bushnell et al., 1999 ; Hofbauer et al., 2001 ), there is an impor-

ant overlap with the described pathways of interoceptive awareness

 Craig, 2009 , 2002 ; Khalsa et al., 2009 ). In this study, building upon ex-

sting literature, we explored the functional BHI through the proposed

odel under sympatho-vagal elicitation driven by a cold-pressor test. 

Cortical responses to tactile, thermal, and painful stimuli oc-

ur within 200 ms ( Dowman et al., 2007 ; Fruhstorfer et al., 1976 ;

loner et al., 2006 ; Wang et al., 2004 ), and the initial processing

ime may last up to 350 ms ( Ploner et al., 2006 ). Subsequent periph-

ral responses may include heart rate increase within the first 30 s

 Victor et al., 1987 ), as a result of an increase in sympathetic activity

nd decreased cardiac vagal outflow ( Mourot et al., 2009 ). We found

hat major changes in brain-heart interplay occur during the first 20 s

f the phase change from rest to cold and from cold to recovery, with

ewer functional components being involved after that period. Impor-

antly, we found that the transitions from rest to cold-pressure, and cold

o no-cold, trigger the ascending interplay first, particularly from the

ympathetic activity to primarily midline frontal and posterior scalp re-

ions. Descending interplay, mainly originating over the central regions,

ccurs with a short delay and lasts 40–100 s. These late autonomic re-

ponses to cold pressure of up to 50 s were previously described to be

elated to feedforward processes ( Peng et al., 2015 ). 

The relation between cardiovascular and brain responses to so-

atosensory stimulation and thermal stress has been previously de-

cribed through the baroreceptor modulation of heart rate due to physi-

logical arousal ( Cui et al., 2002 ; McIntyre et al., 2006 ), and heartbeat-

voked potential differences associated with the subjective pain percep-

ion ( Shao et al., 2011 ). We showed that the cold-pressor test primarily

riggers cardiac sympathetic activity acting towards frontal and poste-

ior cortical regions. Consistently, it was reported that heartbeat-evoked

otentials under cold stimuli shows a prominent deflection mainly over

he frontal and central scalp locations ( Shao et al., 2011 ). The pro-

osed framework confirmed that the ascending BHI information trans-

er occurs earlier than the descending one. Indeed, cardiac afferent

ignals reach subcortical brain areas first, with a subsequent link to

igher cortical areas devoted to cardiac afferent information processing

 McCraty et al., 2009 ). In this frame, we recall that pain perception may

e modulated by the cardiac cycle ( Edwards et al., 2008 ; Martins et al.,

009 ), and brain structures involved in the regulation of pain-related

esponses are linked to perceptual, motor, and autonomic control re-

ions, including the cingulate, medial orbitofrontal and parahippocam-

al regions ( Piché et al., 2010 ). Moreover, sympathovagal afferent sig-

als from the heart may modulate pain perception through different

eural pathways, mediated by the nucleus of tractus solitanus, the peri-

queductal gray matter, the thalamus, the hypothalamus, the amygdala,

nd the prefrontal cortex ( McCraty et al., 2009 ). 

Previous studies on EEG correlates of thermal stress and tonic pain

howed that the spectral power in the delta-theta range is increased in

rontal areas, and power in the beta-gamma range increases as well;

he power in the alpha band decreases, with slight differences between
8 
tudies ( Chang et al., 2002 ; Ferracuti et al., 1994 ; Huber et al., 2006 ;

ascalis et al., 2019 ; Shao et al., 2012 ; Wang et al., 2020 ). The scalp re-

ions described in the literature show that fronto-temporal areas are as-

ociated with changes in EEG power in the delta-theta and beta-gamma

anges, whereas changes in the alpha band are located over the posterior

egions ( Chang et al., 2002 ). Source localizations showed that pain per-

eption was anticorrelated to the power in the theta-alpha range in the

refrontal and cingulate regions, and in the power in the beta band at the

osterior-cingulate, temporal, parietal and occipital regions ( Shao et al.,

012 ). In our study, we observed that changes in the delta band were

reater than the ones in the gamma band and, at a speculative level,

uch a difference may be due to an active avoidance process responsible

or escape strategies from the cold pain stimuli ( Pascalis et al., 2019 ). 

The recovery or post-cold stimuli responses are associated with the

o-called reorganization of cerebral electrical activity towards the home-

static baseline ( Chang et al., 2005 ). In the first 20 s of recovery, BHI

ynamics was similar to the one observed right after the cold pressure

nset. This suggests that adaptation mechanisms for cold stimuli and its

ecovery may involve overlapping brain-heart pathways ( Chang et al.,

005 ), at least for the first phases. 

Different mechanisms may be employed by the nervous system to

nsure an optimal energy use, including anticipation processes in par-

llel to local feedforward regulatory processes ( Sterling, 2012 ). The

ulti-process mechanisms observed thanks to our SV-SDG model pro-

ide more evidence supporting the role of visceroceptive mechanisms in

aintaining homeostasis, as occurs with energy and metabolic control

 Quigley et al., 2021 ). 

.1. On the brain-body communication framework 

Brain-body interactions are linked to different neural pathways, in-

luding pain and thalamo-cortical pathways ( Craig, 2002 ). Indeed, the

halamo-cortical system and descending inhibitory neuronal networks

nd the arterial baroreceptor system may be involved in the regula-

ion of pain intensity ( Chang et al., 2003 ; Duschek et al., 2008 ), as

ell as contextual changes may influence bodily communications dur-

ng pain processing ( Schwabe et al., 2008 ). The brain regions including

refrontal/frontal cortex, insular cortex, somatosensory cortex, amyg-

ala, thalamus, hypothalamus, and cingulate cortex, are all involved in

nteroceptive processing ( Cameron, 2009 , 2001 ). 

While overlapping brain regions control autonomic pathways for

he activity of peripheral organs and systems (e.g., pupil, heart-rate,

lectro-gastric activity), such regions show also sensory specificity

 Rebollo et al., 2018 ). Indeed, changes in heart rate during cold stimuli

epend on the body part under elicitation ( Saab et al., 1993 ). In par-

icular, a functional source separation study showed that scalp frontal

esponses on EEG to somatosensory hand stimuli are originated in the

rainstem, near-thalamic and subthalamic brain regions projecting to

he cortex ( Gobbelé et al., 2004 ; Porcaro et al., 2009 ). The high integra-

ion of brain-body communication mechanisms shows the importance
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f interoception and homeostasis, and emerging dysfunctions may in-

erfere at a neurological, psychiatric, or behavioral level ( Chen et al.,

021 ). 

Previous research has uncovered the involvement of heartbeat dy-

amics in a number of cognitive processes, including emotions (e.g.,

andia-Rivera et al. 2021c , Salamone et al. 2021 ), mood disorders

 Catrambone et al., 2021 ; Terhaar et al., 2012 ), self-awareness ( Babo-

ebelo et al., 2016 ; Sel et al., 2017 ), and consciousness ( Candia-

ivera et al., 2021e , 2021a ). It has been proposed that the role of

he ascending signals, including sympathovagal signaling, may medi-

te conscious awareness of cognitive and bodily states ( Azzalini et al.,

019 ; Munn et al., 2021 ). To this extent, experimental evidence

as shown that heartbeat dynamics may be involved in shaping so-

atosensory ( Al et al., 2020 ; Grund et al., 2021 ), visual ( Park et al.,

014 ), and auditory perceptions ( Candia-Rivera et al., 2021e ). Like-

ise, respiration aligns with the perception of sensory inputs, imply-

ng that respiration is involved in perceptual sensitivity modulation

 Grund et al., 2021 ; Kluger et al., 2021 ). Moreover, experimental ev-

dence has shown that cognitive/affective processes modulate physio-

ogical responses to cold and pain ( Rainville et al., 2005 ; Rhudy et al.,

007 ; Santarcangelo et al., 2013 ), and the somatization of emotions in

he body ( Nummenmaa et al., 2018 ). Further evidence in this regard

hows differences between resting state and mental arithmetic perfor-

ance, in which the effects of the physiological arousal level was in-

ibited according to the cardiac cycle during rest only ( McIntyre et al.,

006 ). Similarly, the evidence on heartbeat-evoked potentials during

old stimuli showed significant changes in BHI, but this effect was mini-

ized when subjects performed mental calculations ( Shao et al., 2011 ).

revious research on thermal stress has shown effects on memory as well

 Duncko et al., 2009 ; Ishizuka et al., 2007 ). EEG studies showed changes

n the alpha band, which is repeatedly interpreted as a possible reflect of

he increased attention related to the processing of stimuli, with a con-

ecutive inverse effect to motivation ( Chang et al., 2002 ; Dowman et al.,

008 ). Those effects were later confirmed in a task of controlled at-

ention levels ( Giehl et al., 2014 ). In our study, we observed that BHI

hanges involving EEG oscillations in the alpha band were not triggered

y the change in the experimental condition, in line with the interpre-

ation above. In this context, the dominance of resting background or

dling activity associated with the cold-pressor test might have played

 role. Further investigation is needed to demonstrate if these observed

hanges may be related to either a direct effect of thermal stress, or

hanges in attention or arousal, or possibly to an unspecified indirect

ause mediated in part by BHI. 

.2. Clinical relevance 

The understanding of the role of BHI is of importance in several

linical domains ( Chen et al., 2021 ). A variety of clinical evidence

xists on pathological conditions and disrupted BHI ( Catrambone and

alenza, 2021b ; Critchley, 2005 ; Critchley et al., 2005 , 2003 ; Tahsili-

ahadan and Geocadin, 2017 ). Indeed, the characterization of func-

ional BHI has contributed to the development of novel biomarkers with

otential clinical use ( Candia-Rivera et al., 2021a ; Catrambone et al.,

021 ; Iseger et al., 2021 ; Perogamvros et al., 2019 ; Schiecke et al.,

019 ; Terhaar et al., 2012 ). Such a clinical relevance is also supported

y the so-called human neurovisceral integration, showing changes af-

er vagus nerve stimulation on interoception ( Richter et al., 2020 ), and

einforcement learning ( Weber et al., 2021 ), as well as the changes in

ardiac interoception after heart transplant ( Salamone et al., 2020 ). Fur-

her clinical applications include the control of anesthetics, given that

ardiac markers have shown features assessing analgesia ( Jeanne et al.,

009 ), and, importantly, a better understanding of the role of the heart

n these mechanisms could explain the existing relations between the

se of general anesthesia and worsen patients’ outcomes after stroke

 Campbell et al., 2018 ). 
9 
.3. Limitations and future directions of the research 

The proposed study effectively provides novel quantitative BHI mea-

urements. However, we are aware that many aspects, such as the low

ime resolution given the EEG spectral representation and the estimation

f the SV-SDG coefficients using a sliding time window, should be im-

roved in future endeavors. The specific model of the interplay between

rain and heart is a peculiar aspect of the proposed methodology. Given

he complexity of such an interplay, we did not follow specific physi-

logical considerations, but rather considered the simplest non-trivial

oupling between dynamical system: the linear bidirectional coupling.

he rationale underlying this formulation is that the activity of one inter-

cting system (e.g., sympathetic activity for cardiovascular dynamics) is

roportionally modulated by activity of the other system (e.g., 𝛼 power

esynchronization for brain dynamics). Moreover, the proposed model

oes not account for autonomic covariates as respiratory activity, blood

ressure, and others. In addition, further investigations on BHI mecha-

isms should be directed toward the assessment of interoceptive mecha-

isms in cognitive states, as observed in heartbeat-evoked potentials and

he links to the cardiac cycle ( McIntyre et al., 2006 ; Shao et al., 2011 ).

ndeed, much more remains to be uncovered on the specific physiologi-

al and anatomical mechanisms that allow transfer of information from

eural responses at any level in the brain and autonomic modulation of

he heart. 

. Conclusion 

The proposed SV-SDG modeling has successfully been applied for the

ssessment of for a functional and causal BHI (ascending heart-to-brain

nd descending brain-to-heart interplay) during thermal stress. The ad-

antages of assessing directionality and latencies of functional BHI are

umerous in the neuroscientific and clinical domains. Importantly, for

he first time, the proposed methodology highlights cardiac sympathetic

nd vagal activities sustaining cortical dynamics. 

lossary 

𝛿: Dirac delta 

ε f : Error to adjust modeling at frequency f 

𝜀 𝑔 : state noise 

𝜀 𝑅𝑅 : observation noise 

𝜃f : Phase frequency f 

κf : Constant to adjust modeling at frequency f 

μV: micro volts 

𝜇𝐻𝑅 : mean heart rate (Hz) 

𝜑 𝑗 : Laguerre function of order j 

Φ𝑓 : Increase of EEG power at frequency f 

Ψ𝑝 𝑗 : Generalized values of parasympathetic kernels of order j 

Ψ𝑠 𝑗 : Generalized values of sympathetic kernels of order j 

𝜔 𝑓 : Frequency (rad/s) 

𝐶 𝑃𝐴𝐼 : Time-varying coefficients of central modulation to parasym-

athetic activity 

𝐶 𝑆𝐴𝐼 : Time-varying coefficients of central modulation to sympa-

hetic activity 

𝑔 𝑗 : Laguerre coefficients of the Laguerre function of order j 

𝐿 𝑗 : Convolved Laguerre function of order j 

𝑚 ( 𝑡 ) : Heart modulation function 

𝑃 𝐴𝐼 : Parasympathetic activity index (arbitrary units) 

Powe r f : EEG power measured at the frequency f (μV 

2 /Hz) 

𝑅𝑅 : R-to-R interval duration (seconds) 

𝑆𝐴𝐼 : Sympathetic activity index (arbitrary units) 

SDG : Synthetic Data Generation 

SD G brain →PAI : Time-varying coefficients measuring brain to PAI in-

erplay 

SD G brain →SAI : Time-varying coefficients measuring brain to SAI in-

erplay 
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SD G PAI →brain : Time-varying coefficients measuring PAI to brain in-

erplay 

SD G SAI →brain : Time-varying coefficients measuring SAI to brain in-

erplay 

SV − SDG : Sympathovagal Synthetic Data Generation 

𝑥 ( 𝑡 ) : modelled ECG as a sum of impulse trains 
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