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Abstract
In this paper, we introduce the Pick and Place Packaging Problem (P4), for optimally scheduling a packaging system with one
input conveyor (pick) and one output conveyor (place). We give a formal definition of the underlying dynamic optimization
problem. We describe two properties that hold for its solutions and present an efficient row generation approach exploiting
these properties. Starting from a basic version of the problem, we introduce two variants where we account for the possibility
of holding the grip of items and variable conveyor speed. We extend the proposed exact solution method to these two cases.
Then, we present an efficient Iterated Local Search heuristic for the problem and its variants. Numerical results show the
effectiveness of our approach.
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1 Introduction and state of the art

We consider the problem of scheduling the operations of a
Pick and Place system in a Packaging line. Pick and Place
systems consist of a set of robotic arms and one or more con-
veyors.Oneof the conveyors serves as the input of the system;
thus, we refer to it as the “input conveyor.” The robots are
tasked to remove the items flowing on the input conveyor and
place them in a designated destination. All items that reach
the end of the conveyor without being picked up are lost. A
dynamic example of this type of systems can be watched on
the site:

https://www.youtube.com/watch?v=PrZw-xp_VzE

In this paper, we consider the case of a Pick and Place
line with two conveyors, one input conveyor and one output
conveyor. The robots have to place the input items in some
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containers in the output conveyor. The items are identical,
and the containers have a limited capacity. The operation of
picking up one item from the input conveyor and placing it to
the final destination is called mission. The problem that we
study here involves making decisions about the scheduling
of the missions and, in the extension of the problem, also
about the conveyor’s speed. The objective function consists
of theminimization of the number of items that are not picked
up. In such problems, efficiency is of paramount importance.
Utilizing the robots to their fullest potential is essential due
to their high cost.

We assume that the position of the incoming items
is known in advance. Generally, in these systems, high-
definition cameras monitor the inbound conveyors shortly
before the items enter within the reach of the robots and
provide information of the location of all incoming items.
Typically, these cameras cover a few meters before the reach
of the first robot. The position of the input items is usually
known a very short time in advance (i.e., 5–10 seconds).
Thus, the scheduling of the robots has to be decided in a
timely manner. For this reason, the majority of methods pro-
posed for this kind of system implement simple dispatching
strategies, and the most commonly used approaches in the
industry use queuing mechanisms. These techniques per-
form rather well when the system reaches the steady-state
conditions. However, in systems with frequent transients
and irregularities in their operating conditions, this kind of
strategy often falls short, and the performance gets signifi-
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cantly deteriorated. The alternative to these strategies is to
repeatedly re-optimize the scheduling of the line as more
information becomes available. This is generally referred to
as a rolling horizon approach, where the scheduling period-
ically is recomputed for the next planning horizon. Then,
when the computed scheduling is applied, the scheduling of
the next period is solved.

Most papers on the optimization of Pick and Place systems
concern themselves with the optimization of single conveyor
systems and propose techniques that do not generalizewell in
the two-conveyor case. In these cases, the optimization effort
considersmaximizing the system throughput andminimizing
the wear. This comes in two main forms:

– The load balancing of the various machines, so that no
machine is ever overworked;

– The minimization of the robot’s travel time, by optimiz-
ing of the mission starting time.

In their papers, Mattone et al. (1998) and Mattone et al.
(2000) presented augmented versions of the commonly used
FIFO and LIFO dispatching rules for a single conveyor Pick
and Place system. A more advanced approach is proposed
by Huang et al. (2012), it combines heuristic dispatching
rules, to obtain a performant and fast approach. Humbert
et al. (2015) study the performance of several approaches
mostly focusing on the various developed dispatching rules
in an experimental setting. Huang et al. (2015) present part
dispatching rules in a task-based environment.

Bozma and Kalalıoğlu (2012) propose a coordination
approach based on cost-driven policies. These advanced
methods allowed to directly pursue more elaborate objec-
tives, and the heuristic and metaheuristic approaches ensure
fast computations. For the minimization of robot travel times
on a simple conveyor system (Daoud et al. 2010) con-
centrated on the computation speed using a metaheuristic
approach.

Ahmadi and Kouvelis (1994) put their attention on a dif-
ferent aspect of the problem, trying to balance the usage of
the different robots on the line as to minimize their wear. The
energy optimization and the minimization of the damage of
the components are studied by Pellicciari et al. (2013).

Ho and Ji (2009) focus on the stationary problem that is
solved exactly tominimize the traveled distance of the robots,
as in a sequence-dependent scheduling problem.

The problem of scheduling two conveyors however, to
the best of our knowledge, has received little interest over
the years. Despite this, the problem poses interesting chal-
lenges, both on the optimization of the missions of the robots
themselves, and on the synchronization of the various robots
acting on the system.

For the problem of controlling a packaging line for perish-
able Ferrari et al. (2015) and Pizzi et al. (2016) proposed the

idea of using a rolling horizon approach paired with an exact
model to dynamically compute the scheduling of the robots
and the conveyor’s speed. They were able to show signifi-
cant benefits for the control of the line over the commonly
used dispatching strategies. This approach is very promising,
though it can be applied only to very small instances, due to
the cumbersome scheduling computation.

In this paper, we give a formal definition of the scheduling
problem proposed in Ferrari et al. (2015).Wewill refer to this
problem as the Pick and Place Packaging Problem (P4). We
will present an exact solution method for a basic version of
the problem. This approach will be extended to consider the
case when the robot can hold the grip of items, and the case
when the conveyor speed can be varied. In order to cope with
real instances in a manageable time that is compatible with a
rolling horizon approach, wewill propose an efficient heuris-
tic based on an Iterated Local Search framework.Wewill test
the developed algorithms on a set of instances based on three
realistic lines to validate the developed solution method and
Iterated Local Search heuristic.

The rest of the paper is organized as follows: in Sect. 2, we
give the formal description of P4 and define two theoretical
properties of the problem that can be exploited in its solu-
tion. We propose an efficient solution method based on row
generation in Sect. 3. Then, we deal with the extensions of
the problem to the case where robots can hold an item before
moving it to the containers (Sect. 4.1) and to the case where
the speed of one of the conveyors is controllable (Sect. 4.2).
Afterward, we develop a heuristic method based on Iterated
Local Search in Sect. 5. In Sect. 6, we present the conducted
computational experiments on the problem. Lastly, in Sect. 7
we draw our conclusions and discuss future research.

2 Problem details

The Pick and Place Packaging Problem (P4) considers a sys-
tem with several robots and two conveyors, denoted as the
“ Input ” and the “ Output ” conveyors. In Fig. 1, we show
a schematic view of one possible line. The two conveyors
are parallel and move in the same direction. However, the
methods presented here can be extended to systems with any
configuration since they not require specifically this assump-
tion. The velocity of the conveyors is fixed. In Sect. 4.2, we
relax this assumption and allow our method to control the
velocity profile of one of the conveyors.

The items to be handled by the system enter the line
through the Input conveyor. The task of the system is to pick
up those items and move them in one of the containers on
the output conveyor. All items are identical, aside from their
position on the input conveyor. We consider the items parti-
tioned into columns, i.e., groups of items occupying the same
longitudinal position on the conveyor. Let I be the set of the
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Fig. 1 Example of a pick and
place line

columns I = {1, . . . , n}. We denote by ni the number of
items in column i at the beginning of the planning horizon
before any item is picked by the robots.

Let C be the set of the containers on the output conveyor
C = {1, . . . ,m}. We denote bym j the maximum capacity of
container j at the start of the planning horizon. For the sake
of brevity, we will use “ item i ” as a short-hand to refer to an
item of column i , with i ∈ I , and “ slot j ” as a short-hand
to refer to one of the empty spots in container j ∈ C .

The operation of moving the items to their destination
is handled by the robots that are present along the line. We
denote as R the set of robots. The robots are identical, single-
grip robots, with non-overlapping working areas. Thus, the
robots canmove one item at a time, and the operations of each
robot do not interfere with the other robots on a mechanical
level.

A single pick-and-place operation performedby the robots
is called “ mission ”. We use the tuple (i, j, r) to identify the
mission where robot r ∈ R picks up an item from column
i ∈ I and puts it into container j ∈ C .

A solution of the P4 involves three levels of decisions: (1)
determining the set of missions performed by the robots, (2)
determining the order in which the missions are performed,
and (3) assigning a starting time to each of those missions.

Let us define an “ assignment ” A as the set of missions of
the solution, and Ar ⊆ A as the assignment of robot r , i.e.,
the set of missions assigned to r in A. We denote as Ar

i, j the
number of missions (i, j, r) in A, ∀i ∈ I ,∀ j ∈ C,∀r ∈ R.
An assignment is valid, if:
∑

r∈R

∑

i∈I
Ar
i, j ≤ m j ∀ j ∈ C

∑

r∈R

∑

j∈C
Ar
i, j ≤ ni ∀i ∈ I

Given Ar , we define a “ sequencing ” SrA as the ordered sets
of missions performed by each robot r . We denote by SrA[p]
the p-th mission of SrA.

Additionally, given A, we define a “ scheduling ” TA as a
set of starting times t(i, j,r) of each mission (i, j, r) ∈ A, and
let T r

A denote the scheduling of A
r . We note that a scheduling

of a given assignment implicitly entails a sequencing for the
same assignment. When a sequencing SrA corresponds to the
sequencing entailed in a scheduling T r

A, we say that that T r
A

“matches” SrA.
When A contains multiple copies of the same mission (i, j, r) (i.e.,

Ar
i, j ≥ 2), (i, j, r)p indicates the p-th mission (i, j, r) in A. We denote

by t p(i, j,r) the starting time of mission (i, j, r)p .
The problem input is given by the following data, for each robot r ,

column i and container j :

– ari and bri are the earliest and latest time at which item i can be
picked up by robot r ,

– αr
j and βr

j are the earliest and latest time at which one item can be
placed in container j by robot r .

We assume that if ari < ari ′ then bri < bri ′ , and if αr
j < αr

j ′ then
βr
j < βr

j ′ . Without loss of generality, we assume that the indices of I

and C are in order of earliest starting time. Thus, ∀i, i ′ ∈ I : i > i ′ ⇒
bri > bri ′ and ari > ari ′ ∀r ∈ R, and ∀ j, j ′ ∈ C : j > j ′ ⇒ βr

j > βr
j ′

and αr
j > αr

j ′ ∀r ∈ R. A mission (i, j, r) is feasible if its starting time
falls within its availability window, i.e.,
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Fig. 2 Examples of the
assignments and sequencing
induced by properties 1(left
figure) and 2(right figure)

max(ari , α
r
j ) ≤ t(i, j,r) ≤ min(bri , β

r
j ). (1)

We initially assume that the time for performing a mission is con-
stant and requires δ units of time. This implies that considering mission
(i, j, r), if there is no intersection between the availability windows of
item i and slot j for robot r , the mission is infeasible. However, in some
systems, the robot may pick up an item and hold it until the destination
slot becomes reachable. This would extend the set of possible feasible
solutions but will introduce a variable mission time δ(i, j,r). For the sake
of simplicity, we discuss our exact solution method for the simple case
with constant mission time to extend it afterward to the most general
case.

Let Er denote the set of the possible missions of robot r ∈ R, i.e.,
the set of missions (i, j, r) with i ∈ I , j ∈ C , such that max(ari , α

r
j ) ≤

min(bri , β
r
j ).

A scheduling T r
A is feasible if all the missions in Ar are feasible, and

the starting times any two distinct missions (i, j, r)p, (i ′, j ′, r)p′ ∈ Ar

are separated by at least the time needed to perform the first mission,
i.e.,

t p(i, j,r) − t p
′

(i ′, j ′,r) ≥ δ if t p(i, j,r) > t p
′

(i ′, j ′,r)

t p
′

(i ′, j ′,r) − t p(i, j,r) ≥ δ if t p(i, j,r) < t p
′

(i ′, j ′,r)

∀(i, j, r)p, (i ′, j ′, r)p′ ∈ Ar : (i, j, r)p 	= (i ′, j ′, r)p′

(2)

If there exists a feasible scheduling T r
A for assignment Ar ,

we say that the assignment Ar is feasible. Similarly, if there
exists a feasible scheduling T r

A that matches a sequencing
SrA, we say that SrA is feasible. Lastly, if an assignment A is
feasible for all robots, we say that it is feasible.

If an item is not picked up by any mission in the assign-
ment, the item is lost. The number of lost items is given by:

∑

i∈I

⎛

⎝ni −
∑

r∈R

∑

j∈C
Ar
i, j

⎞

⎠

The P4 problem consists of finding an assignment A and a
feasible scheduling TA, such that the total number of lost
items is minimized. An alternative objective function is min-
imizing the number of lost slots, i.e., slots that are not filled
by any mission in the assignment.

2.1 Properties of the solutions

The solutionmethods that we propose are based on two prop-
erties.

Property 1 Let Ar be an assignment for robot r , such that
(i, j ′, r), (i ′, j, r) ∈ Ar with i ≤ i ′ and j ≤ j ′. If Ar is
feasible, then assignment Âr = Ar\{(i, j ′, r), (i ′, j, r)} ∪
{(i, j, r), (i ′, j ′, r)} is also feasible.

Proof Assume without loss of generality that robot r per-
forms the mission (i, j ′, r) before (i ′, j, r) (see Fig. 2).
Additionally, for simplicity, assume that missions (i, j ′, r)
and (i ′, j, r) are performed immediately one after the other,
with no idle time.

Given that Ar is feasible, it holds:

max(ari , α
r
j ′) ≤ t(i, j ′,r) ≤ min(bri , β

r
j ′)

max(ari ′ , α
r
j ) ≤ t(i ′, j,r) ≤ min(bri ′ , β

r
j )

Where t(i ′, j,r) = t(i, j ′,r) + δ.
On the other hand, Âr is feasible if:

max(ari , α
r
j ) ≤ t(i, j,r) ≤ min(bri , β

r
j )

max(ari ′ , α
r
j ′) ≤ t(i ′, j ′,r) ≤ min(bri ′ , β

r
j ′)

where t(i ′, j ′,r) = t(i, j,r) + δ.
We can then rewrite the conditions that must hold for the

feasibility of Ar as:

t(i ′, j,r) ≥ max(ari , a
r
j ′ + δ, αr

j + δ, αr
j ′) (3)

t(i ′, j,r) ≤ min(bri , b
r
i ′ + δ, βr

j + δ, βr
j ′) (4)

Similarly, Âr is feasible if:

t(i ′, j ′,r) ≥ max(ari + δ, ari ′ , α
r
j + δ, αr

j ′) (5)

t(i ′, j ′,r) ≤ min(bri + δ, brj ′ , β
r
j + δ, βr

j ′) (6)

Recalling that bri < bri ′ , a
r
i < ari ′ , β

r
j < βr

j ′ , and αr
j < αr

j ′ ;
conditions (3)–(4) imply conditions (5)–(6). ��
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Definition 1 An assignment Ar having no two missions
(i, j ′, r), (i ′, j, r)with i < i ′ and j < j ′, is“ 1-irreducible ”.

Corollary 1 Let Ar be a 1-irreducible assignment for robot
r , if Ar is not feasible then the assignment:

Ār = Ar\{(i ′, j ′, r), (i, j, r)} ∪ {(i, j ′, r), (i ′, j, r)}

is also not feasible ∀(i ′, j ′, r), (i, j, r) ∈ Ar .

Property 2 Let Ar be a 1-irreducible assignment for robot r ,
such that (i, j, r), (i ′, j ′, r)∈ Ar , with i ≤ i ′ and j ≤ j ′, and
let there be a feasible sequencing SrA such that (i ′, j ′, r) pre-
cedes (i, j, r). Then, there exists another feasible sequencing
ŜrA of Ar such that (i, j, r) precedes (i ′, j ′, r).

Proof Let us denote by T r
A a feasible scheduling that matches

SrA. Additionally, suppose that T̂ r
A is a scheduling that

matches ŜrA where missions are performed as early as possi-
ble. We now show that if T r

A is feasible, T̂ r
A is also feasible.

Without loss of generality, let us assume that in SrA
and ŜrA all missions are performed as early as possi-
ble. Lastly, for simplicity, let us assume that robot r
is idle before performing missions (i, j, r) and (i ′, j ′, r)
(see Fig. 2). Under these assumptions, we can write the
starting time of the two missions (i ′, j ′, r) and (i, j, r)
in the two schedulings. In case T r

A, it holds t(i ′, j ′,r) =
max(ari ′ , α

r
j ′), and t(i, j,r) = max(t(i ′, j ′,r) + δ, ari , α

r
j ).

We explicitly write the feasibility conditions of T r
A as

such:

max(ari ′ , α
r
j ′) ≤ min(bri ′ , β

r
j ′) (7)

max(ari , α
r
j ) ≤ min(bri , β

r
j ) (8)

max(ari ′ , α
r
j ′) + δ ≤ min(bri , β

r
j ) (9)

For scheduling T̂ r
A, it holds t(i, j,r) = max(ari , α

r
j ) and

t(i ′, j ′,r) = max(t(i, j,r) + δ, ari ′ , α
r
j ′), Consequently, T̂Ar is

feasible if:

max(ari ′ , α
r
j ′) ≤ min(bri ′ , β

r
j ′) (10)

max(ari , α
r
j ) ≤ min(bri , β

r
j ) (11)

max(ari , α
r
j ) + δ ≤ min(bri ′ , β

r
j ′) (12)

Conditions (7)–(8) and (10)–(11) coincide. Conversely,
condition (9) implies (12). Thus, if SrA is feasible, ŜrA is also
feasible. ��

Definition 2 A sequencing SrA is “2-irreducible” if there are
no two missions (i, j, r), (i ′, j ′, r) ∈ Ar , with i ≤ i ′ and
j ≤ j ′, at least one of which holds strictly, such that (i, j, r)
follows (i ′, j ′, r).

Corollary 2 If a 1-irreducible Assignment Ar does not admit
a feasible 2-irreducible sequencing, then Ar is infeasible.

3 An exact method based on a row
generation framework

We now present a MILP formulation for the P4. We express
using variable xri, j ∈ Z+ the number of times mission
(i, j, r) is performed in the scheduling, i.e., xri, j = Ar

i, j .
Binary variable yri, j is one if x

r
i, j > 0; and to zero otherwise.

Variable �r
i, j is the starting time of mission the first mis-

sion (i, j, r) performed in the schedule, i.e., =�r
i, j = t1(i, j,r).

If no mission (i, j, r) is performed (i.e., yri, j = 0), variable
�r

i, j is free to take any value. As for Corollary 2, without loss
of generality,we assume thatwhenmultiplemissions (i, j, r)
are scheduled, those missions are performed consecutively
starting at time�r

i, j . Thus, t
p
(i, j,r) = �r

i, j +(p−1)δ. Lastly,
variable λi is the number of items in column i ∈ I that are
not assigned to any mission (i.e., the number of items lost).
The formulation is as follows.

min
∑

i∈I
λi (13)

s.t.

max(ari , α
r
j ) ≤ �r

i, j

∀i ∈ I , j ∈ C, r ∈ R (14)

�r
i, j ≤ min(bri , β

r
j ) − δ(1 − xri, j ) + M(1 − yri, j )

∀i ∈ I , j ∈ C, r ∈ R (15)

yri, j + yri ′, j ′ ≤ 1

∀i, i ′ ∈ I , j, j ′ ∈ C, r ∈ R, i ′ > i, j ′ ≤ j (16)

�r
i, j + δxri, j ≤ �r

i ′, j ′ + M(1 − yri, j )

∀i, i ′ ∈ I , j, j ′ ∈ C, r ∈ R, i ′ > i, j ′ ≥ j (17)
∑

j∈C

∑

r∈R

xri, j = ni − λi ∀i ∈ I (18)

∑

i∈I

∑

r∈R

xri, j ≤ m j ∀ j ∈ C (19)

xri, j ≤ ni y
r
i, j ∀i ∈ I , j ∈ C, r ∈ R (20)

xri, j , λi ∈ Z+ ∀i ∈ I , j ∈ C, r ∈ R (21)

yri, j ∈ {0, 1} ∀i ∈ I , j ∈ C, r ∈ R (22)

The objective function (13) minimizes the number of items
lost. Constraints (14)–(15) ensure the feasibility of all sched-
uled missions with respect to the availability of items and
containers. Constraints (16) guarantee that the assignment is
1-irreducible. Constraints (17) prevent the robots from per-
formingmore than onemission at a time. In those constraints,
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M is an arbitrarily large constant. Constraints (18) and (19)
enforce the availability of items and the capacity of the
containers. Constraints (20) link the yri, j and xri, j variables.
Lastly, constraints (21) and (22) are the domain constraints.
Note that if no mission (i, j, r) is performed (i.e., yri, j = 0),
the value of �r

i, j has no significance to the solution. In this
case, constraints (14)–(15), and (17) can always be satisfied
by setting �r

i, j = max(ari , α
r
j ).

We develop a dynamic constraint generation algorithm
to solve the formulation. Specifically, our algorithm can be
summarized in the following steps:

1. Generate and solve a Master Problem (MP) to obtain an
initial assignment A.

2. Apply property 1 to the initial assignment to obtain an
equivalent 1-irreducible assignment Â and compute a 2-
irreducible sequencing SÂ.

3. Generate TÂ and verify its feasibility.

4. If TÂ is feasible, return Â and TÂ. Otherwise, separate one
or more violated cut for theMP and iterate the procedure.

All the steps will now be described in detail.

3.1 Master problem

TheMaster Problem is used to generate an initial assignment
A, accounting for the availability of items and containers. The
MP is formulated as follows.

min
∑

i∈I
λi (23)

∑

j∈C

∑

r∈R

xri, j = ni − λi ∀i ∈ I (24)

∑

i∈I

∑

r∈R

xri, j ≤ m j ∀ j ∈ C (25)

xri, j , λi ∈ Z+ ∀i ∈ I , j ∈ C, r ∈ R (26)

3.2 Refinement step

In the refinement step, we apply property 1 to A, to obtain
an equivalent 1-irreducible assignment Â and compute a 2-
irreducible sequencing SÂ. This procedure produces a set
of missions that dominates any other one when attempt-
ing to generate a scheduling of the assignment as for
Corollary 1 and Corollary 2. Moreover, a 1-irreducible

assignment is needed to generate tight constraints in the next
phase.

The refinement step is carried out separately for each
robot. For a given robot r ∈ R, we store in vector I r the
number of items of each column i ∈ I assigned to r ∈ R in
A. Similarly, we use vector Cr to store the number of slots
of each container j ∈ C assigned to r ∈ R in A. We con-
struct Âr and Sr

Â
iteratively from an empty assignment and

sequencing. At each iteration, we add (i ′, j ′, r) to Âr , where
i ′ = min{i : I r [i] > 0} and j ′ = min{ j : Cr [ j] > 0}.
We append (i ′, j ′, r) to Sr

Â
and decrease both I r [i ′] and

Cr [ j ′] by one. This process is iterated until all elements of
I r and Cr are zero. This procedure is described by Algo-
rithm 1, whose time complexity is linear in the number of
missions.

Algorithm1:Theprocedure used for refining the assign-
ment Ar of a robot r ∈ R
Âr ← {};
Sr
Â

← {};
for i ∈ I do

I r [i] ← # of items i assigned to robot r in Ar ;

for j ∈ C do
Cr [ j] ← # of slots j assigned to robot r in Ar ;

p ← 1;

while p ≤ | Âr | do
i ← argmin{I r [i ′] > 0};
j ← argmin{Cr [ j ′] > 0};
I r [i] ← I r [i] − 1;
Cr [ j] ← Cr [ j] − 1;

Âr ← Âr ∪ (i, j, r);
Sr
Â
[p] ← (i, j, r);

p ← p + 1;

return Âr , Sr
Â
;

3.3 Time feasibility check

After the refinement step of each robot r , the feasibility of Sr
Â

is checked in terms of time. The feasibility check is carried
out separately for each robot, by considering the missions of
the sequencing in the order, and iteratively assigning them a
starting time. The process continues until either all missions
have been considered, or an unfeasibility has been found.
We assume without loss of generality that all missions are
scheduled at their earliest possible time. Therefore (i, j, r)
will start as soon as the robot r is idle after the previous mis-
sion, and the column i and the container j are both available
to r .

Let us denote by ψ
p
(i, j,r) the time instant when robot r

becomes available for mission (i, j, r)p. The ready time of
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the robot ψ
p
(i, j,r) is determined as: ψ

p
(i, j,r) = t p

′
(i ′, j ′,r) + δ,

where (i ′, j ′, r)p′
is the mission immediately proceeding

(i, j, r)p in the scheduling of r . The starting time of (i, j, r)p

is obtained as follows.

t p(i, j,r) = max(ari , α
r
j , ψ

p
(i, j,r)) (27)

If (i, j, r) is the first mission performed in the scheduling we
set ψ(i, j,r) = −∞.

If the choice of t p(i, j,r) given by (27) is not compatible

with (1), then there exists no feasible scheduling for Âr as
a consequence of corollary 2, nor for Ar as for corollary 1.
When this occurs, we terminate the time feasibility check for
r .

The time feasibility check of a given robot is described by
Algorithm 2, whose complexity is linear in the size of Ar .

Algorithm 2: Time feasibility check for robot r ∈ R

(i, j, r)p ← Sr
Â
[1];

k ← 1;
ψ ← −∞;
unfeasible ← false;
T r
Â

← {};
while k < |Sr

Â
| do

t p(i, j,r) ← max(ψ, ari , α
r
j );

if t > bri or t > βr
j then

infeasible ← true;
break;

else
TÂr ← TÂr ∪ t p(i, j,r);

ψ ← t p(i, j,r) + δ;

(i, j, r)p ← Sr
Â
[k];

k ← k + 1;

return T r
Â
;

If Algorithm 2 terminates having assigned a starting time to
each mission, Âr is feasible. Conversely, if Âr is infeasible
we generate a new constraint for robot r . Therefore, at each
iteration, we can generate at most one constraint for each
robot.

3.4 Dynamically generated constraints

Whenwedetect an infeasiblemission,we amend theMPgen-
erating an additional constraint. In the rest of this section,
we first present a class of valid inequalities for the prob-
lem. Then, given an infeasible solution, we discuss how the
parameters of the presented inequality are selected to gener-
ate a violated cut. Lastly, we present a lifting of the generated
inequalities that produces stronger cuts for the problem.

For the sake of brevity, let us define a “section” as a sub-
set of the possible missions of a robot contained between a
starting and an ending missions ( f ,F , r) and (l,L, r) that
is:

Er ( f , l,F ,L) = {(i, j, r) ∈ Er | f ≤ i ≤ l ∧ F ≤ j ≤ L}

Given a section Ēr = Er ( f , l,F ,L), the earliest feasible
starting time of any mission in Ēr is t1 = max(arf , α

r
F ).

Consequently, the earliest starting time of the p-th mission
is tp = max(arf , α

r
F + (p− 1)δ). The latest feasible starting

time of anymission in the section is tK = min(brl , β
r
L). Thus,

the starting time of all the missions in Ēr has to fall within
the time interval [t1, tK ). The maximum number of missions
that can be contained in Ēr is given by:

ur ( f , l,F ,L) = 1 +
⌊
min(brl , β

r
L) − max(arf , α

r
F )

δ

⌋

(28)

The following constraint constitute a valid inequality for
assignment A:

∑

(i, j,r)∈Ēr

Ar
i, j ≤ ur ( f , l,F ,L) (29)

We now discuss the choice of Ēr that yields a violated con-
straint upon detecting an unfeasibility in Âr .

Let mission (i ′′, j ′′, r) be the infeasible mission detected
in Âr . Additionally, let (i ′, j ′, r) be the last mission before
(i ′′, j ′′, r) in Âr such that:

t(i ′, j ′,r) = max(ari ′ , α
r
j ′).

According to (27), all missions in Er (i ′, j ′, i ′′, j ′′) are per-
formed with no idle time, and the starting time of (i ′′, j ′′, r)
can be computed as:

t(i ′′, j ′′,r) = max(ari ′ , α
r
j ′) + δ

( i ′′∑

i≥i ′

j ′′∑

j≥ j ′
Âr

(i, j,r) − 1
)
.

Since t(i ′′, j ′′,r) violates (1), it results that:

min(bri ′′ , β
r
j ′′) ≤ max(ari ′ , α

r
j ′) + δ

( i ′′∑

i≥i ′

j ′′∑

j≥ j ′
xri, j − 1

)
.

Consequently, setting Ēr = Er (i ′, j ′, i ′′, j ′′) yields a vio-
lated constraint for Âr . Writing (29) utilizing the MP
variables leads to the following valid inequality:

∑

(i, j,r)∈Ēr

xri, j ≤ ur (i ′, j ′, i ′′, j ′′) (30)
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Fig. 3 Initial infeasible assignment of the example

Fig. 4 Example of how the refinement step may circumvent valid con-
straints

Despite being valid, constraint (30) is rendered ineffective by
the refinement step that maps Ar to Âr . Indeed, it is possible
to find an assignment Ar that satisfies constraint (30), but
that, refined to Âr , violates it. To understand how this can
happen, consider the following example.

Example 1 Let us consider an instance with three columns
I = {1, 2, 3} and three containers C = {1, 2, 3}. Each col-
umn contains a single item, and each container has a single
empty slot. The parameters of the problem are such that
any scheduling containing missions (1, 1, r) and (2, 2, r) is
infeasible. This implies, by corollary 1, that any scheduling
containing (1, 2, r) and (2, 1, r) is also infeasible. Assume
that the solution obtained by the MP, after the refinement
step is Â1 = {(1, 1, r), (2, 2, r), (3, 3, r)}. The assignment
contains both missions (1, 1, r) and (2, 2, r) and it is infeasi-
ble; therefore, a constraint should be generated (see Fig. 3).
According to (30): xr1,1 + xr1,2 + xr2,1 + xr2,2 ≤ 1. If the
Master Problem is solved again with the additional con-
straint a valid solution would be the assignment A2 =
{(1, 1, r), (2, 3, r), (3, 2, r)}. However, after the refinement
step, A2 is reordered into Â2 = {(1, 1, r), (2, 2, r), (3, 3, r)},
which is the same, infeasible assignment obtained before (see
Fig. 4). Therefore, the method would cycle, generating the
same constraint at each iteration.

We strengthened (30) by enlarging section Ēr to Ẽr =
Er ( f , l,F ,L). Specifically, we resolve the min and max
operators in (28) to determine the largest section Ẽr ⊇ Ēr ,
such that ur ( f , l,F ,L) = ur (i ′, j ′, i ′′, j ′′). Let f r =
in f {i ∈ I : (i, j, r) ∈ Er }, lr = sup{i ∈ I : (i, j, r) ∈
Er }, Fr = in f { j ∈ C : (i, j, r) ∈ Er }, and Lr = sup{ j ∈
C : (i, j, r) ∈ Er }. The extremes of Ẽr = Er ( f , l,F ,L)

are determined as follows.

f =
{
i ′, if ari ′ ≥ αr

j ′

f r , otherwise
(31)

F =
{
j ′, if ari ′ < αr

j ′

Fr , otherwise
(32)

l =
{
i ′′, if bri ′′ ≤ βr

j ′′

lr , otherwise
(33)

L =
{
j ′′, if bri ′′ > βr

j ′′

Lr , otherwise
(34)

The resulting constraint added to the MP is the following:

∑

(i, j,r)∈Ẽr

xri, j ≤ ur (i ′, j ′, i ′′, j ′′) (35)

In our previous example, this would correspond to extend-
ing the section of the constraint from Er (1, 1, 2, 2) to either
Er (1, 1, 3, 2) or Er (1, 1, 2, 3), depending the availability
intervals of the items and boxes. Respectively giving rise
to either constraint:

xr11 + xr12 + xr21 + xr22 + xr31 + xr32 ≤ 1

or constraint:

xr11 + xr12 + xr21 + xr22 + xr13 + xr23 ≤ 1.

Both of these constraints would prevent the cycling behavior
presented.

These “ extended ” parameters strengthen the constraint,
reducing the number of times the MP needs to be solved and
preventing the MP to bypass some of the added constraints
by exploiting the refinement step.

4 Problem extensions

So far, we have assumed a simple problem setting. Namely,
we assumed a constant mission time, deriving from the fact
that the robots place the items immediately after they have
picked them up; and a constant conveyor speed. This setting
is enough representative when the input and output flows are
reasonably steady. Indeed, if items and containers arrive on
the conveyors with good regularity, placing items just after
having picked them up is by far more efficient. However,
when the items and the containers start to be highly scat-
tered, the impossibility of holding the items by the robots to
wait for the arrival of a container, or to modify the speed of
one of the conveyors may be limiting. Thus, excluding some
missions that may improve the quality of the scheduling. In
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this section, we propose two extensions. The first one allows
the robot to hold the grip of the items. The second one allows
us to modify the speed of one of the two conveyors.

4.1 Item holding

When a robot is allowed to hold an item, the assumption
of having a constant mission time does no longer hold true.
Indeed, a mission (i, j, r)may start when the items i is avail-
able to r but the container j is not yet in the reach of the robot.
Thus, formally, t(i, j,r) is not required to be in the intersec-
tion of the two intervals [ari , bri ) and [αr

j , β
r
j ). The feasibility

condition (1) is extended as follows.

ari ≤ t(i, j,r) ≤ min(bri , β
r
j ). (36)

If i and j are such that ari < αr
j and t(i, j,r) ∈ [ari , αr

j ) the
mission is feasible; however, its duration will be larger than
δ. The robot has to wait αr

j − t(i, j,r) before the j is reachable;
thus, the total mission time is δ + αr

j − t(i, j,r). We note that
in this case, the mission finishes at time δ +αr

j , regardless of
the choice of t(i, j,r).

Without loss of generality, we assume that the starting
time of the missions will be selected such that its duration is
minimized. Thus,we distinguish two cases, either (1) [ari , bri )
and [αr

j , β
r
j ) have a non-empty intersection, or (2) [ari , bri )

and [αr
j , β

r
j ) have an empty intersection. In the first case,

mission (i, j, r) has a duration of δ when t(i, j,r) satisfies
(1). If the availability of i and j has an empty intersection,
and βr

j < ari , mission (i, j, r) cannot be performed. If bri <

αr
j , the mission is feasible but will involve some waiting.

The minimum duration of the mission is δ + αr
j − bri , and

is achieved when t(i, j,r) = bri . Let us define δ(i, j,r) as the
minimum duration of mission (i, j, r), i.e.,

δ(i, j,r) =
{

δ, if ari ≤ βr
j and αr

j ≤ bri ,

δ + αr
j − bri , if bri < αr

j .

Using δ(i, j,r), condition (2) is updated as follows.

t p(i, j,r) − t p
′

(i ′, j ′,r) ≥ δ(i, j,r) if t p(i, j,r) > t p
′

(i ′, j ′,r)

t p
′

(i ′, j ′,r) − t p(i, j,r) ≥ δ(i ′ j ′r) if t p(i, j,r) < t p
′

(i ′, j ′,r)

∀(i, j, r)p, (i ′, j ′, r)p′ ∈ Ar : (i, j, r)p 	= (i ′, j ′, r)p′

(37)

It can be shown that properties 1 and 2 also hold in this
extended case.

4.1.1 Extension of the formulation

In order to adapt the formulation to the case where the robots
may hold an item during a mission, we explicitly distinguish

the case where δ(i, j,r) = δ (i.e., the holding case) from the
case where δ(i, j,r) > δ. We replace constraints (14)–(15)
with the following ones:

ari ≤ �r
i, j ≤ min(bri , β

r
j ) + M(1 − yri, j )

∀i ∈ I , j ∈ C, r ∈ R
(38)

max(ari , α
r
j ) ≤ �r

i, j

∀i ∈ I , j ∈ C, r ∈ R : δ(i, j,r) = δ

(39)

�r
i, j ≤ min(bri , β

r
j ) − δ(1 − xri, j ) + M(1 − yri, j )

∀i ∈ I , j ∈ C, r ∈ R : δ(i, j,r) = δ

(40)

�r
i, j = bri ∀i ∈ I , j ∈ C, r ∈ R : δ(i, j,r) > δ

(41)

xri, j ≤ 1 ∀i ∈ I , j ∈ C, r ∈ R : δ(i, j,r) > δ

(42)

Constraints (38) enforce the feasibility of t1(i, j,r). Con-
straints (39)–(40) enforce the feasibility of all missions
(i, j, r) when δ(i, j,r) = δ. We observe that δ(i, j,r) > δ

implies that in a feasible scheduling xri, j ≤ 1. Constraints
(41)–(42) enforce xri, j ≤ 1 when δ(i, j,r) > δ and fix the
starting time of those missions to bri .
We update constraint (17) to consider the variable mission
duration.

�r
i, j + δ(i, j,r)y

r
i, j ≤ �r

i ′, j ′ + M(1 − yri, j )

∀i, i ′ ∈ I , j, j ′ ∈ C, r ∈ R, i ′ > i, j ′ ≥ j (43)

4.1.2 Extension of feasibility check

We adjust the time feasibility check to account for item hold-
ing by updating the computation of the starting time of the
missions (27) as follows.

t p(i, j,r) =
{
max(ari , α

r
j , ψ

p
(i, j,r)) if δ(i, j,r) = δ;

max(bri , ψ
p
(i, j,r)) otherwise

(44)

Additionally, the computation of the ready time of the robots
is updated to use δ(i, j,r) in place of δ.

4.1.3 Extension of the generated constraints

When the item holding is allowed, the earliest starting time
of the first mission of a section is only bounded by the avail-
ability of the items, t1 = al . However, any mission that
starts before the first container is available will have to wait.
Thus, the earliest starting time of the second mission in the
section is t2 = max(a f , αF ) + δ, and the earliest starting
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time of the p-th mission is tp = max(arl , α
r
F ) + (p − 1)δ.

In general, if (min(brl , β
r
L) − max(arf , α

r
F )) > 0, the

capacity of a section Er ( f , l,L,F) follows the same for-
mula as the non-holding case (28). On the other hand, if
(min(brl , β

r
L) − max(arf , α

r
F )) ≤ 0, we need to distinguish

two cases, βr
L − arf ≤ 0, and brl − αr

F <= 0. In the first
case, the first item of the section becomes available after the
last container is no longer within reach of the robot. There-
fore, the capacity of the section is ur ( f , l,L,F) = 0. In the
second case, the robot may pick up an item and wait for the
first container of the section to become available; thus, the
capacity of the section is ur ( f , l,L,F) = 1.

Lastly, we discuss the choice of the section on which
to impose the generated constraints. We recall that when
generating constraints, we consider the section Ēr =
Er (i ′, j ′, i ′′, j ′′), and later expand it using (31)–(34). Where
mission (i ′′, j ′′, r) is the infeasible mission detected in the
current solution, and (i ′, j ′, r) is the last mission before
(i ′′, j ′′, r) in Âr such that:

t(i ′, j ′,r) = max(ari , α
r
j ).

So that all missions in Er (i ′, j ′, i ′′, j ′′) are performed with
no idle time.

We update the choice of mission (i ′, j ′, r) to account for
the possibility of holding the items, as the last mission before
(i ′′, j ′′, r) ∈ Âr such that:

t p
(i ′, j ′,r) =

{
max(ari , α

r
j ) if δ(i, j,r) = δ;

bri otherwise.

4.2 Controllable output conveyor

We now consider the possibility of varying the output con-
veyor speed. We adapt the exact algorithm of Sect. 3 to this
case.

4.2.1 Representation of the conveyor speeds

To represent the speed dimension, we apply a discretization
of the conveyor length into fixed steps. Let {1, . . . , S} be the
set of steps of length l dividing the conveyor space.Wedenote
by τs the time the conveyor takes to move along step s ∈
{1, . . . , S}, we refer to this quantity as “ step time ”. During
that time, we assume that the conveyor maintains a constant
speed given by vs = l

τs
. See an example of discretization and

speed profile in Fig. 5.
Using this representation, we can rewrite any distance d

on the conveyor as d = γ l+σ l, with γ ∈ {0, . . . , S−1} and
σ ∈ [0, 1). Meaning that to cover distance d, the conveyor
needs to make γ steps of length l and then cover a portion σ

Fig. 5 An example of the resulting motion that can be obtained decod-
ing of the speed profile. On the left the position of the conveyor over
time, on the right the speed of the conveyor

of the next step. Consequently, the time needed to cover d is:

t =
{

στ1, if γ = 0;
∑γ

j=1 τ j + στγ+1, otherwise

Using the position of the containers on the line, it is possible
to rewrite the availability interval of a container as a function
of the conveyor speed. Let the quantities γ r

j , γ
r
j , γ

r
j , and γ r

j
describe the position of the containers on the conveyor. We
express αr

j and βr
i as follows.

αr
j =

γ r
j∑

j=1

τ j + σ r
jτnrj+1 (45)

βr
j =

γ r
j∑

j=1

τ j + σ r
jτnrj+1 (46)

4.2.2 Extension of the method

To adapt the model and the solution method to the variable
conveyor speed case, we redefine the parameters α and β

depending on variables τs using (45) and (46).
For each generated constraint, we introduce an additional

binary helper variable z, which equals one if the constraint
is deactivated and zero otherwise. The generated constraints
are modified as follows.

∑

(i, j,r)∈Ẽr

xri, j ≤ u + Mz ∀i (47)

xri, j ≤ ni (1 − z) ∀ f ≤ i ≤ l,F ≤ j ≤ L (48)

Where M is an arbitrarily large constant. To generate
the modified constraints, we follow the same procedure
described in the fixed speed case. Let β̃r

j ′′ and α̃r
j ′ be equal

to the values that βr
j ′′ and αr

j ′ assume under the optimal con-
veyor speed at the moment of the constraint generation. The
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parameters that define the constraint are set as follows:

u =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(br
i ′′−ar

i ′ )
δ

, if (bri ′′ < β̃r
j ′′) ∧ (ari ′ ≥ α̃r

j ′).
(br

i ′′−αr
j ′ )

δ
, if (bri ′′ < β̃r

j ′′) ∧ (ari ′ < α̃r
j ′).

(βr
j ′′−ar

i ′ )
δ

, if (bri ′′ ≥ β̃r
j ′′) ∧ (ari ′ ≥ α̃r

j ′).
(βr

j ′′−αr
j ′ )

δ
, if (bri ′′ ≥ β̃r

j ′′) ∧ (ari ′ < α̃r
j ′).

(49)

and Ẽr = Er ( f , l,F ,L) with:

f =
{
i ′, if ari ′ ≥ α̃r

j ′

f r , otherwise
(50)

F =
{
j ′, if ari ′ < α̃r

j ′

Fr , otherwise
(51)

l =
{
i ′′, if bri ′′ ≤ β̃r

j ′′

lr , otherwise
(52)

L =
{
j ′′, if bri ′′ > β̃r

j ′′

Lr , otherwise
(53)

These constraints have been modified to handle three issues.
Firstly, the section Er ( f , l,F ,L) of constraints (35) is

dependent on α and β. We use (50–53) to resolve the out-
comes of (31–34) at the generation of the constraints.

Secondly, the expression of the capacity of a section (28)
is nonlinear in the availability interval of the containers. We
use (49) to resolve the outcome of the min andmax operators
in (28) beforehand.

Lastly, the capacity of a section can be a function of
the availability of the containers. Therefore, the capacity
of the constraints can become negative under some veloc-
ity profiles, which would make the problem infeasible. The
constraint (47) can be deactivated to account for this occur-
rence and guarantee feasibility. In this case, the constraint
(48) guarantees that no mission in the section is performed.

Finally, M is set to the maximum negative value that the
capacity of the constraint can assume, that is:

M = max(0,− min
τs ,s∈{i ...S} u)

5 An ILS based heuristic

The real-time nature of the problem and its complexity
requires timely solution approaches that are not compati-
ble with the exact ones. To cope with the requirements of a
rolling horizon approach, we develop a metaheuristic algo-
rithm for the problem based on an Iterated Local Search
(ILS) approach (Lourenço et al. 2019). The advantage of

using a metaheuristic is twofold. Firstly, metaheuristic algo-
rithms are generally much faster than exact ones, making
them generally more suited to real-time applications. Sec-
ondly, iterated heuristics can be terminated early and still
provide a feasible solution, whereas this is not guaranteed to
be the case for exact algorithms. The ILS alternates a local
improvement phase and a perturbation phase to escape local
optima. The algorithm terminates after NI LS iterations of
perturbation and local improvement. The basic framework
of Iterated Local Search is detailed in Algorithm 3.

Algorithm 3: The ILS framework.
s0 ← ini tialSolution();
sbest ← s∗ ← improve(s0);
for i 1 to NI LS do

sn ← perturb(s∗);
ŝn ← improve(sn);
if acceptanceCriterion(ŝn) then

s∗ ← ŝn ;

if f (ŝn) > f (sbest ) then
sbest ← ŝn ;

return sbest ;

In the following sections, we will detail the components of
the implemented ILS.

5.1 Solution representation

In the ILS, the solutions are represented as a separate alloca-
tion of items and slots to the robots. For each robot r ∈ R,
vector I r stores the number of items allocated to robot r for
each column i ∈ I . Vector Cr stores the number of slots
allocated to robot r for each container j ∈ C . To evaluate
the solutions, we need to translate vectors I r and Cr into a
feasible assignment and scheduling.

This decoding can be computed as the solution of the fol-
lowing optimization problem. Given the vector sets: I r and
Cr ∀r ∈ R, find the assignment A and scheduling TA that
minimizes the number of lost items and that satisfies the fol-
lowing condition.

I r [i] ≥
∑

j∈C
Ar
i, j ∀i ∈ I , r ∈ R,

Cr [ j] ≥
∑

i∈I
Ar
i, j ∀ j ∈ C, r ∈ R.

The decoding is carried out separately for each robot r con-
structing Ar and T r

A iteratively. At each iteration, we select
mission (i ′, j ′, r) as a candidate to be added to the assign-
ment, where i ′ = min{i : I ri > 0} and j ′ = min{ j : Cr

j >

0}. We attempt to generate a starting time for mission t(i ′, j ′,r)
following (27). If the generated starting time is compatible
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with (1), we addmission (i ′, j ′, r) to A and t(i ′, j ′,t) to T r
A and

decrease both I r [i ′] and Cr [ j ′] by one. Otherwise, the can-
didate mission is infeasible. When this is the case, either the
current column or the current container has to be discarded
and considered lost. If bri ′ > βr

j ′ , we discard the current con-
tainer j ′ and we set Cr [ j ′] ← 0. Otherwise we discard the
current column i ′ and set I r [i ′] ← 0. The process is iterated
as long as both I r and Cr have at least one nonzero element.

The pseudocode of the decoding procedure is presented
in Algorithm 4.

Algorithm 4: The procedure to decode the solution of
robot r ∈ R
i ← minI r [i ′]>0(i ′);
j ← minCr [ j ′]>0( j ′);
p ← 1;
nextIdle ← −∞;
Ar ← {};
T r
A ← {};

while ∃i ′ : I ri ′ > 0 and ∃ j ′ : Cr
j ′ > 0 do

if I r [i] = 0 then
i ← minI r [i ′]>0(i ′);
p ← 1;

if Cr [ j] = 0 then
j ← minCr [ j ′]>0( j ′);
p ← 1;

t ← max(nextIdle, ari , α
r
j );

if t > min(bri , β
r
j ) then

if bri < βr
j then

I r [i] ← 0;
continue;

else
Cr [ j] ← 0;
continue;

t p(i, j,r) ← t ;

Ar ← Ar ∪ (i, j, r)p;
T r
A ← T r

A ∪ (i, j, r)p ;
I r [i] ← I r [i] − 1;
Cr [ j] ← Cr [ j] − 1;
p ← p + 1;

return Ar , SrA;

5.2 Local improvement phase

The local improvement phase of the Iterated Local Search is
carried out through a Local Search strategy. The move of the
Local Search consists of moving a single element from the
allocation of one robot to another. We define two moves:

– moveI (i, r1, r2) :
I r1[i] ← I r1[i] − 1, I r2[i] ← I r2[i] + 1

– moveC( j, r1, r2) :
Cr1[ j] ← Cr1[ j] − 1, Cr2[ j] ← Cr2[ j] + 1

Note that moving a single element from one robot to another
does not guarantee to produce an improvement in the objec-
tive function. Instead, to observe an improvement, it is
frequently necessary to concatenate multiple moves. Thus,
we accept all moves that do not decrease the objective. This
strategy incurs the risk of making the Local Search rather
ineffective and prone to cycling. To overcome this issue,
we utilize heuristic information to guide the Local Search.
Specifically, we estimate the benefit of all moves before
attempting them so that only the most promising moves are
considered.

5.3 Estimation of themove impact

The estimation of the move impact is carried out in three
steps. First, we gather a set of local features of the schedul-
ing, describing how each item and container relates to the
rest of the current solution. Afterward, the gathered features
are combined to describe a more general set of aggregated
features, describing the status of the system at each point of
the scheduling. Lastly, the features are evaluated to give an
estimate of the quality of each available move. After hav-
ing estimated the impact of the moves, we use a random
approach to determine which move to be attempted, coupled
with a short tabu list to prevent the method from cycling.

5.3.1 Computation of the local features

The first step of the evaluation computes the local features for
the items and containers.All features are computed in relation
to the current solution s and associated assignment A and
scheduling TA. These features account for the contribution
of the individual items and containers to the overall workload
of the robots.

In the following discussion, for the sake of brevity, wewill
only present the local features associated with the items.

The information we gather is summarized by a set of
binary features for each robot-column pair (r , i), r ∈ R, i ∈
I with at least one item allocated, i.e., I r [i] ≥ 1.

– wr
1[i] = 1 if there is a mission (i, j, r) in A, such that

t(i, j,r) = ari ; zero otherwise.
– wr

2[i] = 1 if there is a mission (i, j, r) in A, such that
t(i, j,r) = αr

j ; zero otherwise.
– wr

3[i] = 1 if during the decoding of s, item i has been
discarded due to a mission (i, j, r) not being feasible,
with αr

j < bri ; zero otherwise.
– wr

4[i] = 1 if during the decoding of s, item i has been
discarded due to a mission (i, j, r) not being feasible,
with αr

j > bri ; zero otherwise.
– wr

5[i] = 1 if there is a mission (i, j, r) in A such that
ari > ψ(i, j,r) + δ; zero otherwise.
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– wr
6[i] = 1 if it is possible to add another item i to the

allocation of r without violating the feasibility; zero oth-
erwise.

– wr
7[i] = 1 if it is possible to remove one item i from the

allocation of r without delaying the rest of the scheduling;
zero otherwise.

wr
1[i],wr

2[i],wr
3[i],wr

4[i], andwr
5[i] are easily computeddur-

ing the decoding of the solutions. On the other hand, features
wr
6[i] andwr

7[i] require more considerations to be computed.
In the case of wr

6[i], let us consider the neighboring solution
ŝ, which corresponds to solution s with one more item i
assigned to robot r . In this case, the addition of another item
might have one of two effects. Either the added item i is dis-
carded, and the decoded solution of ŝ corresponds with the
decoded solution of s, or the item is not discarded, and the
two decoded solutions differ. If the item is discarded, wr

6[i]
equals zero, otherwise it equals one. In the case of wr

7[i], let
us consider the neighboring solution ŝ, which corresponds
to solution s with one less item i assigned to robot r . In this
case, the removal of one item can have several possible out-
comes. If an item i was discarded in the decoding of s, the
decoded solutions of ŝ and s correspond and wr

7[i] equals
one. If no item i was discarded, the last item i associated to
robot r in s is part of a mission (i, j, r)p. In ŝ, slot j is either
lost, or part of a different mission (i ′, j, r) with i ′ > i . If
slot j is lost, wr

7[i] equals zero. If slot j is part of a different
mission (i ′, j, r)p′

we further distinguish two cases: either

t p(i, j,r) < t p
′

(i ′, j,r) or t
p
(i, j,r) = t p

′
(i ′, j,r). In the first case wr

7[i]
equals zero, otherwise it equals one.

The local features w̄r
1−7[i] of the containers are computed

in a similar way.

5.3.2 Computation of the aggregated features

We now describe how the heuristic features discussed earlier
can be aggregated into higher-level features, which describe
the condition of the scheduling from a higher-level point of
view. Those aggregated features are computed propagating
the information obtained at the local level, to neighboring
items, when it can be applied. They are evaluated iteratively,
starting from the last items on the conveyor. For the pur-
poses of the computation, we considerWr

1−5[n+1] = 0 and
Wr

6 [n + 1] = 1.

Wr
1 [i] = 1 if wr

1[i] = 1

or (Wr
1 [i + 1] = 1 and wr

6[i] = 1),

Wr
2 [i] = 1 if wr

2[i] = 1

or (Wr
2 [i + 1] = 1 and Wr

1 [i + 1] = 0),

Wr
3 [i] = 1 if wr

3[i] = 1

or (Wr
3 [i + 1] = 1 and wr

7[i] = 1),

Wr
4 [i] = 1 if wr

4[i] = 1

or (Wr
4 [i + 1] = 1 and wr

7[i] = 1),

Wr
5 [i] = 1 if wr

5[i] = 1

or (Wr
5 [i + 1] = 1 and wr

6[i] = 1),

Wr
6 [i] = 1 if ∃ j ∈ C : ((i, j, r) ∈ Er and w̄r

4[ j] = 1).

5.3.3 Evaluation of the moves

After the features of the items and slots have been computed,
the impact of moveI (i, r1, r2) or moveC(i, r1, r2) on the
solution value is estimated.

Let us define Vr1− [i] and Vr2+ [i] as the heuristic value
assigned to the removal of item i from robot r1 and the addi-
tion of an item i to robot r2, respectively. They are computed
as follows:

Vr1− [i] ← −∞ if I r1[i] = 0,

Vr1− [i] ← l1 if Wr1
i [4] = 1,

Vr− ← l2 if Wr1
i [5] = 1,

Vr1− [i] ← 0 otherwise.

Vr2+ [i] ← −g1 if (I r2[i] > 0 and Wr2
i [1] = 0),

Vr2+ [i] ← g2 if Wr2
i [3] = 1,

Vr2+ [i] ← g3 if Wr2
i [2] = 1,

Vr2+ [i] ← g4 if Wr2
i [6] = 1,

Vr2+ [i] ← 0 otherwise.

where l1, l2, g1, g2, g3, and g4 are positive constants.
Formally, the heuristic evaluation of MoveI (i, r1, r2) is
Vr1,r2[i] = Vr1− [i] + V r2+ [i].

5.4 Move selection scheme

To select the moves to be applied in the search, we system-
atically apply the move evaluation scheme presented in the
previous section. The selection is performed iterating over
the columns i ∈ I . For each iteration step, we compute the
heuristic evaluation of all moves MoveI (i, r1, r2), for all
r1, r2 ∈ R. A move is attempted if its evaluation Vr1,r2[i]
exceeds a move selection threshold th. If none of the moves
is attempted, we decrease the threshold by one and iterate to
the next column.

At the start of the search and whenever a move is
attempted, the move selection threshold th is initialized to
a random value in the interval [0, thmax ]. If the attempted
move was accepted, th is also increased by the current itera-
tion number. This is done to encourage the method to explore
moves uniformly.

To discourage cycling of the moves, we also implement
a simple tabu mechanism in the search. When a move
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moveI (i, r1, r2) is successful, for the next tabu_length iter-
ations of the search we mark as tabu any move where an item
i is added in the scheduling of robot r1, or where an item
i is removed from the scheduling of robot r2. On the other
hand, if a move is rejected, we mark as tabu any move where
an item i is added in the scheduling of robot r2, or where
an item i is removed from the scheduling of robot r1. The
moves that are marked as tabu are penalized by a factor of
tabu_penalty in the heuristic evaluation of the move.
The approach is summarized in algorithm 5.

Algorithm 5: The move selection process to select and
apply the next moveI to the solution.
Data: The initial threshold thini t
i ← n ;
k ← 0 ;
th ← thini t ;
while i > 0 do

for r1 ∈ R do
for r2 ∈ R : r1 	= r2 do

V ← V r1− [i] + V r2+ [i];
if V ≥ th then

apply moveI (i, r1, r2);
if moveI (i, r1, r2) is accepted then

th ← rand(thmax ) + k;
return th;

else
revert moveI (i, r1, r2);
th ← rand(thmax );

else
th ← th − 1 ;

k ← k + 1 ;

i ← i − 1 ;

return;

The Local Search is stopped after NLS iterations without
an improvement in the objective function.

5.5 Initial solution

The initial solution of the ILS is provided by a greedy con-
structive heuristic. Starting from an empty allocation, we
construct the solution iteratively, building the solution of one
robot at a time. For each robot, we generate the optimal sin-
gle robot solution, with the remaining item and containers
that are not part of the scheduling.

Practically, this is achieved starting from an empty allo-
cation. For each robot, we temporarily allocate to it all the
currently unallocated items and slots, compute the missions
of the allocation, and remove all items and slots that are not
assigned to any mission. The procedure is iterated until all
robots have been processed.

5.6 Perturbation phase

The perturbation phase is used to escape the local optima
reached at the end of the local improvement phase. To perturb
the solution, we utilize a strategy to destroy a portion of
the current solution, surrounding a critical item or container.
Specifically, we select an item or a slot that is not assigned
to any mission in the current solution. We remove from the
allocation of the robots the selected element (column i ∈ I
or container j ∈ C) and all items i ′ ∈ I or slots j ′ ∈ C
such that |i ′ − i | ≤ PI | j ′ − j | ≤ PC , where PI and PC are
parameters of the search.

We evaluate the perturbed solution and remove from the
allocation all items and containers that did not fit in any
mission. We then reconstruct the solution by applying the
constructive heuristic presented in Sect. 5.5. To introduce
additional diversification in the procedure, we reconstruct
the allocation of the robots in a random order, instead of
proceeding sequentially.

To explore uniformly the solution space, in our approach,
we will alternate between applying the perturbation to items
and to containers.

5.7 Extensions of the ILS

The metaheuristic approach we described so far is only able
to handle the fixed speed version of the scheduling problem.
In the next sections, we will discuss how to extend the meta-
heuristic method to handle the variable speed case and the
item holding case.

5.7.1 Variable speed

Wewill use the same representationweproposed for the exact
methods in Sect. 4.2.1. In addition, we define the following
move as far as the speed is concerned.

inc(μ, i, h) : τi+ j ← τi+ j + μ ∀ j ∈ [−h, h].

In case themove reaches the minimum ormaximum speed of
the conveyor, we will limit the corresponding τ to that value.
To avoid making moves with no effect on the speed profile,
when this happens, we increase h by one.

The search for an effective speed profile for the problem
is conducted using an iterative improvement strategy. At the
start of the algorithm, we initialize the speed profile to a
uniform speed across the planning horizon, with the speed
set to the steady-state speed of the line. We then use a Local
Search strategy to improve the initial speed profile.

To evaluate the quality of a speed profile, a high-quality
assignment for that speed profile is required. Therefore, at
each iteration we greedily generate an allocation for the line,
and improve the assignment using the local improvement
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strategy presented in Sect. 5.4. We use the generated allo-
cation to evaluate the quality of the current conveyor speed
profile. All moves that do not deteriorate the solution are
accepted.

We select the moves attempted in the search according to
a greedy randomized heuristic. Let s be the incumbent speed
profile. Additionally, let A be the assignment that has been
generated for s. On A, we select a random lost item i and
a random lost slot j . We note that if the current assignment
does not have any lost item or slot, the current generated
solution is already optimal, and the search may terminate.

Depending on the selection of i and j , two cases may
occur, either ari < αr

j or a
r
i ≥ αr

j , for a given reference robot
r ∈ R. In the first case, we can hypothesize that the speed of
the output conveyor may be increased, so as to move closer
the availability intervals of i and j . In the second case, the
speed of the output conveyor may be decreased to obtain
the same effect. Therefore, in the first case we apply move
inc(x,−μ, h), where x ∈ {1, . . . , k} : ∑x

j=1 τ j < ari .
In the second case, we apply move inc(x, μ, h), where x ∈
{1, . . . , k} : ∑x

j=1 τ j < αr
j .

The Local Search strategy is stopped after a total of NS1+
NS2 iterations. During the first NS1 iterations, we setμ = μ1

and h = h1. Afterward, we set μ = μ2 and h = h2. With
μ1 < μ2 and h1 > h2, doing so causes the initial moves
to apply broad corrections to the speed profile and move
the solution away from the steady-state solution, and later

focus on finer adjustments of the profile. After NS1 + NS2

total iterations, we fix the speed profile and apply the ILS
algorithm to obtain a final solution.

5.7.2 Item holding

The developed ILS can be easily adapted to allow for item
holding. The adaptation does not require any structural
change of the heuristic. The only change needed is to adjust
the solution decoding procedure to account for the variable
mission time.

6 Computational results

We performed a series of computational tests to evaluate
the performance of the proposed approach and compare
it to the more direct modeling approach used in Ferrari
et al. (2015). The authors of Ferrari et al. (2015) provided
us with data from three 4-manipulators plant configura-
tions, representative of the characteristics of real-world lines
where a dynamic scheduling approach could be applied.
We report in Table 1 the parameters of the three consid-
ered lines are details. For each line, the table reports the
column distance(di ) and the maximum number of items
in each column(ni ), the container distance(d j ) and the
number of slots in each container(m j ), the velocity of

Table 1 The parameters used
for the three configurations for
our testing

# Items Containers Input conveyor Output conveyor

di ni d j n j vi v j_min v j_max v j_nom

0 0.25 m 3 0.45 m 9 20 m/min 10 m/min 20 m/min 12 m/min

1 0.24 m 3 0.18 m 9 20.8 m/min 4 m/min 7.5 m/min 5.2 m/min

2 0.092 m 3 0.3 m 3 8 m/min 12 m/min 40 m/min 26 m/min

Table 2 Row generation,
synthetic results

Instace Base Holding One speed n speeds

Config I C #S obj t(s) #S obj t(s) #S obj t(s) #S obj t(s)

0 15 5 11 3.1 0.8 11 2.1 1.4 11 0.1 3.8 11 0.1 2.8

0 30 10 11 3.3 7.6 11 2.1 10.9 8 – 171.3 11 0.3 63.7

0 45 15 11 3.9 50.6 11 2.6 74.4 0 – 250.0 0 – 250.0

0 60 20 9 – 181.8 4 – 236.2 0 – 250.0 0 – 250.0

1 15 5 11 23.4 0.8 11 21.4 0.6 11 17.4 1.2 11 17.4 1.1

1 30 10 11 35.9 15.5 11 34.8 28.5 11 19.1 46.8 11 19.1 35.3

1 45 15 11 36.2 127.5 11 35.1 135.3 11 18.3 119.7 11 18.3 97.0

1 60 20 0 – 250.0 0 – 250.0 1 – 248.7 1 – 245.2

2 15 15 11 19.3 2.8 11 19.3 2.1 11 0.0 4.4 11 0.0 3.6

2 30 30 11 21.9 99.4 11 21.8 54.6 8 – 185.0 10 – 139.6

2 45 45 0 – 250.0 2 – 245.2 0 – 250.0 0 – 250.0

2 60 60 0 – 250.0 0 – 250.0 0 – 250.0 0 – 250.0
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the input conveyor(vi ), and the minimum(v j_min), max-
imum(v j_max) and nominal(v j_nom) velocity of the output
conveyors.

For each line configuration, we generated three instances
with 15, 30, 45, and 60 columns of items, simulating the
start-up conditions of the systems. Additionally, each of the
generated instances was used as the basis for ten additional
instances where some of the items are missing from the input
conveyor and some slots are already filled at the start of the
planning horizon.

The exact methods presented in this section were imple-
mented with the AMPL and solved using CPLEX on a
2.00GHz Intel Xeon Processor L5335. The CPLEX solver
uses 1 core, and the time limit has been set to 250 seconds.
The metaheuristic developed have been written in C++ and
ran on a 3.20GhzAMDRyzen 5 1600, in single-threadmode.
The tuning parameters of the Iterated Local Search have been
determined experimentally (Schettini 2017) and are reported
in Table 9, in the “Appendix.”

6.1 Exact methods

In Table 2, we report the summary of the results of the
row generation approach in the basic version of the prob-
lem (base) and using the two presented extensions (holding,
one speed, n speeds). For each line configuration and instance
size, we report the number of instances solved to optimality
(#S), the average number of lost items(obj), and the average
solution time(t(s)). Note that the developed row generation
algorithm does not provide a feasible solution when termi-
nated early. Indeed, the developed cut generation algorithm
solves a relaxed version of the problem and iteratively adds
violated inequalities until a feasible solution is found. When
the optimal solution to the relaxed problem is feasible, that
solution is optimal by construction. Conversely, when the
instance is not solved to optimality due to early termination,
the solution of the relaxed problem is still not feasible; there-
fore, the algorithm only provides lower bound. Thus, for sake
of fairness, we report its average objective onlywhen all aver-
aged instances are solved to optimality; when this is not the
case, the value is reported as “-”.

In the controllable conveyor case, twoversions of the prob-
lem are considered, the case where the speed of the output
conveyor can be controlled but can assume one value for the
entire scheduling, and the case of a more finely controllable
speed profile.

In practical terms, the first case (one speed) corresponds to
having a speed profile composed of exactly one section, i.e.,
l = ∞. In the second case (n speeds), we consider sections of
unitary length, i.e., l = 1. All versions of the problem were
comparable in terms of computational time and instances
solved.

Both extensions of the problem caused an improvement of
the objective function. However, the benefits of the control-
lable conveyor strategy significantly outperform the holding
strategy. The resolution of the speed profile did not affect the
quality of the computed solutions, nor the difficulty of the
problems, despite the increased freedom of the system.

The full experimental results are provided in the
“Appendix” on Tables 6 and 7. Those tables, for each
instance, report the best known lower bound of the optimal
solution for each version of the problem, the computational
time used to compute the solution, and the optimality of the
solution (∗ denotes solutions solved to optimality).

6.2 Comparison with Ferrari et al. (2015)

We compared our exact algorithm (ROW) with the model
developed by Ferrari et al. (2015) (FERR) This comparison
was carried out on the unmodified problem (base) and on the
extended problemwith controllable conveyor (one speed). In
the latter case, to align with the model presented in Ferrari
et al. (2015) we consider a constant speed velocity profile,
meaning that the velocity profile is controllable, but only one
speed can be selected for the entire planning horizon. Table 3
reports the summary of results. For each line configuration
and instance size, we report the number of instances solved
to optimality (#S), the average number of lost items(obj),
and the average solution time(t(s)). The results are reported
both for the basic problem and the controllable conveyors
extension. The gap reported in the table is computed from the
complement of the objective function, which maximizes the
number of items moved into the containers. Table 5 reports
the complete experimental results, for each instance, and for
each solution method, the table reports the objective value
and the solution time. We also report the optimality of the
solution in the case of ROW and the optimality gap in the
case of FERR.

We observe that ROW outperforms FERR in terms of
computation time, being able to solve to optimality a larger
portion of instances. However, we note that due to its nature,
when the row generation does not reach an optimal solution,
the solution provided at the end of the computation is not
feasible. Conversely, the final solution provided by FERR is
feasible, even if suboptimal. In the case of ROW, it is possible
to repair the solutions obtained at the end of the computa-
tion utilizing the decoding algorithm presented in Sect. 5.1.
However, on such occasions, it is more convenient to directly
apply the ILS heuristic on the instance.

Overall, neither ROW nor FERR provide computational
times that are compatible with a real-time application of the
algorithm on any of the lines considered. However, their
results are still useful for the purposes of understanding the
problem and evaluating the developed heuristic.

123



Journal of Scheduling (2023) 26:113–136 129

Table 3 Synthetic comparison
with Ferrari et al. (2015)

Instance FERR—base ROW–base FERR–one speed ROW–one speed

Config I C #S obj t(s) #S obj t(s) #S obj t(s) #S obj t(s)

0 15 5 5 3.2 185.5 11 3.1 0.8 11 0.1 59.2 11 0.1 3.8

0 30 10 0 4.4 250 11 3.3 7.6 1 2.7 248.4 8 – 171.3

1 15 5 11 23.4 0.5 11 23.4 0.8 11 17.4 36 11 17.4 1.2

1 30 10 8 35.9 133.7 11 35.9 15.5 0 19.6 250 11 19.1 46.8

2 15 15 11 19.3 45.8 11 19.3 2.8 11 0 51.4 11 0 4.4

2 30 30 0 22.8 250 11 21.9 99.4 0 18.5 250 8 – 185

Table 4 Iterated Local Search,
synthetic results

Instance Base Holding n speeds

Config I C obj LB t(s) obj LB t(s) obj LB t(s)

0 60 20 4.5 4.2 1.4 4.0 2.8 1.4 0.0 0.0 0.1

1 60 20 36.8 36.1 1.2 35.7 35.0 1.2 20.2 18.3 1.1

2 60 60 22.4 22.0 1.3 22.4 22.1 1.3 0.0 0.0 0.2

6.3 Metaheuristic approach

In Table 4, we report the summary of the results of the devel-
oped heuristic approach on the 60 column instances. For each
line configuration, we report the average number of items
lost(obj), the best known lower bound to the number of lost
items(LB), and the average solution time of the metaheuris-
tic approach(t(s)). The problem has been solved in its basic
version and considering the item holding and controllable
conveyors extension. From the results, we observe that the
computation time associated with the developed heuristic is
limited to a couple of seconds, maintaining a high solution
quality. Thus, the computational time achieved by the ILS is
compatible with a real-time application of the algorithm to
the considered lines.

The full experimental results are provided in the
“Appendix” in Table 8. The table, for each instance, reports
the solution obtained by the Iterated Local Search, and the
computational time utilized. We also report the best known
lower bound of the corresponding instances.

7 Conclusions and future work

In this paper, we discussed the Pick and Place Packaging
Problem for the optimization of a two-conveyor packaging
line. We presented an integer linear programming model for
the problem and an efficient exact algorithm based on row
generation. We also developed an effective and time efficient
heuristic based on Iterated Local Search. We presented two
extensions of the problem. Specifically, we consider the case
where one of the conveyors can be controlled, and the case
where the robots may hold items without immediately mov-

ing to their destination. Both the exact algorithm and the
Iterated Local Search have been extended to handle these
two extensions. The developed model and algorithms have
been tested on a series of testing instances simulating real-
istic plant configurations. Our results show the effectiveness
of the developed approaches and the utility of the optimiza-
tion of robot scheduling. Some extensions of the problem
can deserve further investigations. One is the multi-grip case
when robots can pick up more than one item at a time and
place them in multiple containers. Another case considers
items of different types mixed in the system. In both cases,
the extension of the mathematical model and of the heuristic
can be particularly interesting.
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Table 5 Comprehensive
comparison of the row
generation with Ferrari et al.
(2015)

Instance FERR—fixed ROW—fixed FERR—speed ROW—speed

config I C obj gap t(s) obj t(s) #S obj t(s) obj t(s)

0 15 5 4 2.44 250 4* 1 0 0.00 53 0* 4

2 0.00 233 2* 1 0 0.00 32 0* 4

3 0.00 5 3* 0 0 0.00 146 0* 3

3 2.78 250 3* 1 0 0.00 27 0* 4

2 0.00 88 2* 1 0 0.00 26 0* 3

2 0.00 48 2* 1 1 0.00 34 1* 2

3 2.50 250 3* 0 0 0.00 132 0* 6

4 4.98 250 4* 2 0 0.00 27 0* 4

4 5.00 250 4* 0 0 0.00 45 0* 4

5 7.36 250 4* 1 0 0.00 81 0* 5

3 0.00 164 3* 1 0 0.00 48 0* 3

3.2 2.28 185 3.1(11) 1 0.1 0.00 59 0.1(11) 4

0 30 10 6 7.14 250 4* 8 7 8.43 250 0* 214

4 5.06 250 2* 6 2 2.47 250 0* 150

3 3.70 250 3* 7 2 2.44 250 0* 137

4 2.60 250 4* 9 3 1.28 250 2* 118

3 4.00 250 2* 5 0 0.00 228 0* 70

3 4.11 250 2* 6 1 1.33 250 0* 95

5 6.02 250 3* 6 1 1.15 250 0* 197

5 4.76 250 4* 7 2 1.15 250 1 250

6 7.23 250 4* 9 2 2.30 250 0 250

5 6.02 250 4* 12 1 1.15 250 0 250

4 4.82 250 4* 9 9 11.54 250 0* 153

4.4 5.04 250 3.3(11) 8 2.7 3.02 248 0.3(8) 171

1 15 5 26 0.00 1 26* 1 20 0.00 42 20* 2

21 0.00 1 21* 1 15 0.00 61 15* 1

21 0.00 0 21* 1 15 0.00 65 15* 1

22 0.00 1 22* 1 16 0.00 26 16* 1

20 0.00 0 20* 1 14 0.00 46 14* 1

21 0.00 1 21* 0 15 0.00 27 15* 1

25 0.00 0 25* 1 19 0.00 39 19* 1

26 0.00 1 26* 1 20 0.00 14 20* 1

25 0.00 0 25* 1 19 0.00 21 19* 1

25 0.00 1 25* 1 19 0.00 32 19* 1

25 0.00 0 25* 0 19 0.00 23 19* 2

23.4 0.00 1 23.4(11) 1 17.4 0.00 36 17.4(11) 1

1 30 10 41 0.00 96 41* 17 24 18.18 250 23* 110

32 0.00 56 32* 16 16 9.23 250 16* 14

30 14.75 250 30* 24 15 9.38 250 15* 19

33 0.00 164 33* 15 17 9.23 250 17* 17

31 5.73 250 31* 15 16 12.50 250 15* 17

30 7.70 250 30* 10 17 11.48 250 16* 18

39 0.00 37 39* 14 22 16.67 250 21* 62

40 0.00 73 40* 17 22 14.93 250 22* 57

40 0.00 99 40* 15 23 16.67 250 22* 48

39 0.00 157 39* 19 21 14.93 250 21* 81

40 0.00 39 40* 9 23 16.67 250 22* 72
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Table 5 continued Instance FERR—fixed ROW—fixed FERR—speed ROW—speed

config I C obj gap t(s) obj t(s) #S obj t(s) obj t(s)

35.9 2.56 134 35.9(11) 16 19.6 13.62 250 19.1(11) 47

2 15 15 22 0.00 4 22* 3 0 0.00 46 0* 5

17 0.00 5 17* 3 0 0.00 76 0* 5

14 0.00 16 14* 3 0 0.00 74 0* 3

18 0.00 21 18* 3 0 0.00 34 0* 7

17 0.00 21 17* 2 0 0.00 49 0* 3

19 0.00 5 19* 3 0 0.00 44 0* 6

21 0.00 4 21* 2 0 0.00 158 0* 5

21 0.00 5 21* 2 0 0.00 15 0* 4

21 0.00 3 21* 4 0 0.00 36 0* 3

21 0.00 210 21* 3 0 0.00 17 0* 4

21 0.00 210 21* 3 0 0.00 16 0* 3

19.3 0.00 46 19.3(11) 3 0.0 0.00 51 0.0(11) 4

2 30 30 26 10.92 250 24* 94 23 34.33 250 0* 217

19 14.52 250 19* 101 9 12.50 250 0* 104

15 8.34 250 16* 54 18 31.58 250 0* 158

21 13.11 250 20* 97 33 65.31 250 1 250

22 11.67 250 22* 105 6 5.26 250 2 250

20 14.75 250 19* 96 2 2.53 250 0* 184

26 12.72 250 24* 107 24 36.92 250 0* 132

25 10.25 250 24* 137 15 20.55 250 0 250

25 15.91 250 25* 100 18 24.29 250 1* 125

26 12.37 250 24* 102 37 71.15 250 0* 182

26 12.37 250 24* 100 18 25.35 250 0* 183

22.8 12.45 250 21.9(11) 99 18.5 29.98 250 0.4(8) 185

Table 6 Row generation,
comprehensive results

Instance Base Holding 1 speed n speeds

config I C obj t(s) obj t(s) obj t(s) obj t(s)

0 15 5 4* 1 3* 2 0* 4 0* 3

2* 1 1* 1 0* 4 0* 3

3* 0 2* 1 0* 3 0* 3

3* 1 2* 1 0* 4 0* 2

2* 1 1* 2 0* 3 0* 4

2* 1 1* 1 1* 2 1* 1

3* 0 2* 2 0* 6 0* 3

4* 2 3* 1 0* 4 0* 3

4* 0 3* 2 0* 4 0* 3

4* 1 3* 1 0* 5 0* 4

3* 1 2* 1 0* 3 0* 2

3.1(11) 1 2.1(11) 1 0.1(11) 4 0.1(11) 3
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Table 6 continued Instance Base Holding 1 speed n speeds

config I C obj t(s) obj t(s) obj t(s) obj t(s)

0 30 10 4* 8 3* 12 0* 214 0* 53

2* 6 1* 7 0* 150 0* 48

3* 7 2* 15 0* 137 0* 75

4* 9 3* 14 2* 118 2* 68

2* 5 1* 8 0* 70 0* 43

2* 6 0* 6 0* 95 0* 58

3* 6 2* 12 0* 197 0* 53

4* 7 3* 14 1 250 1* 74

4* 9 3* 12 0 250 0* 125

4* 12 3* 11 0 250 0* 70

4* 9 2* 9 0* 153 0* 34

3.3(11) 8 2.1(11) 11 0.3(8) 171 0.3(11) 64

0 45 15 4* 72 3* 57 0 250 0 250

2* 32 1* 44 1 250 1 250

4* 85 2* 120 1 250 0 250

7* 73 6* 152 3 250 3 250

2* 35 1* 87 1 250 0 250

3* 37 0* 24 0 250 0 250

3* 30 2* 65 1 250 0 250

4* 34 3* 42 1 250 1 250

5* 48 4* 90 1 250 1 250

5* 43 4* 75 1 250 1 250

4* 68 3* 62 1 250 0 250

3.9(11) 51 2.6(11) 74 1.0(0) 250 0.6(0) 250

0 60 20 4* 170 3* 182 1 250 0 250

3* 140 2* 228 0 250 0 250

4* 228 2 250 1 250 0 250

7* 188 5 250 0 250 0 250

2* 143 1* 246 0 250 0 250

3 250 1* 192 1 250 0 250

4* 143 2 250 0 250 0 250

5* 142 4 250 0 250 0 250

5* 156 4 250 0 250 0 250

5* 190 4 250 0 250 0 250

4 250 3 250 1 250 0 250

4.2(9) 182 2.8(4) 236 0.4(0) 250 0.0(0) 250

1 15 5 26* 1 24* 0 20* 2 20* 1

21* 1 19* 1 15* 1 15* 1

21* 1 19* 0 15* 1 15* 1

22* 1 20* 1 16* 1 16* 1

20* 1 18* 0 14* 1 14* 1

21* 0 19* 1 15* 1 15* 2
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Table 6 continued Instance Base Holding 1 speed n speeds

config I C obj t(s) obj t(s) obj t(s) obj t(s)

25* 1 23* 1 19* 1 19* 1

26* 1 24* 0 20* 1 20* 1

25* 1 23* 2 19* 1 19* 1

25* 1 23* 1 19* 1 19* 2

25* 0 23* 0 19* 2 19* 0

23.4(11) 1 21.4(11) 1 17.4(11) 1 17.4(11) 1

1 30 10 41* 17 40* 30 23* 110 23* 28

32* 16 31* 26 16* 14 16* 17

30* 24 29* 15 15* 19 15* 13

33* 15 32* 31 17* 17 17* 15

31* 15 30* 35 15* 17 15* 17

30* 10 28* 18 16* 18 16* 13

39* 14 38* 29 21* 62 21* 20

40* 17 39* 29 22* 57 22* 44

40* 15 39* 40 22* 48 22* 18

39* 19 38* 38 21* 81 21* 140

40* 9 39* 23 22* 72 22* 63

35.9(11) 16 34.8(11) 29 19.1(11) 47 19.1(11) 35

Table 7 Row generation,
comprehensive results

Instance Base Holding 1 speed n speeds

config I C obj t(s) obj t(s) obj t(s) obj t(s)

1 45 15 41* 176 40* 184 21* 139 21* 104

32* 93 31* 112 16* 89 16* 55

31* 103 30* 116 15* 92 15* 83

33* 132 32* 104 17* 116 17* 115

31* 110 30* 118 15* 95 15* 73

30* 118 28* 105 16* 82 16* 55

40* 158 39* 192 20* 143 20* 117

40* 103 39* 125 21* 105 21* 88

40* 118 39* 133 20* 133 20* 88

40* 117 39* 143 20* 179 20* 161

40* 175 39* 156 20* 144 20* 128

36.2(11) 128 35.1(11) 135 18.3(11) 120 18.3(11) 97

1 60 20 41 250 40 250 21 250 21 250

32 250 31 250 16* 236 16 250

31 250 30 250 15 250 15 250

33 250 32 250 17 250 17* 197

31 250 30 250 15 250 15 250

30 250 28 250 16 250 16 250

39 250 38 250 20 250 20 250

40 250 39 250 21 250 21 250

40 250 39 250 20 250 20 250

40 250 39 250 20 250 20 250

40 250 39 250 20 250 20 250

36.1(0) 250 35.0(0) 250 18.3(1) 249 18.3(1) 245
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Table 7 continued Instance Base Holding 1 speed n speeds

config I C obj t(s) obj t(s) obj t(s) obj t(s)

2 15 15 22* 3 22* 2 0* 5 0* 4

17* 3 17* 3 0* 5 0* 3

14* 3 14* 1 0* 3 0* 3

18* 3 18* 3 0* 7 0* 6

17* 2 17* 2 0* 3 0* 3

19* 3 19* 2 0* 6 0* 2

21* 2 21* 2 0* 5 0* 5

21* 2 21* 2 0* 4 0* 5

21* 4 21* 2 0* 3 0* 3

21* 3 21* 2 0* 4 0* 4

21* 3 21* 2 0* 3 0* 2

19.3(11) 3 19.3(11) 2 0.0(11) 4 0.0(11) 4

2 30 30 24* 94 24* 48 0* 217 0* 150

19* 101 19* 42 0* 104 0* 147

16* 54 15* 38 0* 158 0* 125

20* 97 20* 37 1 250 1* 76

22* 105 22* 65 2 250 2* 101

19* 96 19* 40 0* 184 0* 147

24* 107 24* 58 0* 132 0* 217

24* 137 24* 79 0 250 0* 74

25* 100 25* 54 1* 125 1* 157

24* 102 24* 70 0* 182 0* 92

24* 100 24* 70 0* 183 0 250

21.9(11) 99 21.8(11) 55 0.4(8) 185 0.4(10) 140

2 45 45 24 250 24 250 1 250 0 250

23 250 23 250 4 250 3 250

17 250 17* 212 0 250 0 250

19 250 19* 235 1 250 0 250

21 250 21 250 2 250 1 250

21 250 21 250 1 250 0 250

23 250 23 250 1 250 0 250

24 250 24 250 1 250 0 250

24 250 24 250 1 250 0 250

23 250 23 250 0 250 0 250

23 250 23 250 0 250 0 250

22.0(0) 250 22.0(2) 245 1.1(0) 250 0.4(0) 250

2 60 60 24 250 24 250 10 250 0 250

19 250 20 250 11 250 0 250

19 250 19 250 1 250 0 250

19 250 19 250 0 250 0 250

20 250 20 250 1 250 0 250

123



Journal of Scheduling (2023) 26:113–136 135

Table 7 continued Instance Base Holding 1 speed n speeds

config I C obj t(s) obj t(s) obj t(s) obj t(s)

21 250 21 250 16 250 0 250

24 250 24 250 1 250 0 250

24 250 24 250 4 250 0 250

24 250 24 250 1 250 0 250

24 250 24 250 0 250 0 250

24 250 24 250 0 250 0 250

22.0(0) 250 22.1(0) 250 4.1(0) 250 0.0(0) 250

Table 8 Iterated Local Search,
comprehensive results

Instace Base Holding n speeds

config I C obj LB t(s) obj LB t(s) obj LB t(s)

0 60 20 4 4 2 3 3 1 0 0 0

4 3 1 4 2 1 0 0 0

5 4 1 4 2 2 0 0 0

7 7 1 6 5 0 0 0 0

3 2 1 3 1 2 0 0 0

4 3 2 4 1 1 0 0 0

4 4 1 3 2 2 0 0 0

5 5 2 5 4 1 0 0 0

5 5 1 5 4 2 0 0 0

5 5 2 4 4 1 0 0 0

4 4 1 3 3 2 0 0 1

4.5 4.2 1.4 4.0 2.8 1.4 0.0 0.0 0.1

1 60 20 41 41 2 40 40 1 25 21 1

32 32 1 31 31 1 16 16 1

34 31 0 32 30 1 16 15 1

35 33 1 34 32 1 18 17 1

32 31 1 31 30 1 16 15 1

30 30 1 29 28 1 16 16 2

40 39 1 39 38 1 22 20 1

40 40 2 39 39 2 25 21 1

41 40 1 40 39 1 22 20 1

40 40 2 39 39 2 23 20 1

40 40 1 39 39 1 23 20 1

36.8 36.1 1.2 35.7 35.0 1.2 20.2 18.3 1.1

2 60 60 25 24 2 25 24 1 0 0 0

20 19 1 20 20 2 0 0 0

20 19 1 20 19 1 0 0 0

19 19 1 19 19 1 0 0 1

20 20 2 20 20 1 0 0 0

22 21 1 22 21 1 0 0 0

24 24 1 24 24 1 0 0 0

24 24 2 24 24 2 0 0 0

24 24 1 24 24 1 0 0 0

24 24 1 24 24 1 0 0 0

24 24 1 24 24 2 0 0 1

22.4 22.0 1.3 22.4 22.1 1.3 0.0 0.0 0.2
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Table 9 The tuning parameters used in the ILS

l1 30 PI 3

l2 50 PC 1

g1 50 μ1 0.25

g2 90 μ2 0.5

g3 100 h1 3

g4 200 h2 0

NLS 50 tabu_penalty 150

NI LS 300 tabu_length 5

NS1 30 thmax 400

NS2 50
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