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Non-line-of-sight snapshots and background
mapping with an active corner camera
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The ability to form reconstructions beyond line-of-sight view could be trans-
formative in a variety of fields, including search and rescue, autonomous
vehicle navigation, and reconnaissance. Most existing active non-line-of-sight
(NLOS) imaging methods use data collection steps in which a pulsed laser is
directed at several points on a relay surface, one at a time. The prevailing
approaches include raster scanning of a rectangular grid on a vertical wall
opposite the volume of interest to generate a collection of confocal mea-
surements. These and a recent method that uses a horizontal relay surface are
inherently limited by the need for laser scanning. Methods that avoid laser
scanning to operate in a snapshot mode are limited to treating the hidden
scene of interest as one or two point targets. In this work, based on more
complete optical response modeling yet still without multiple illumination
positions, we demonstrate accurate reconstructions of foreground objects
while also introducing the capability ofmapping the stationary scenery behind
moving objects. The ability to count, localize, and characterize the sizes of
hidden objects, combined withmapping of the stationary hidden scene, could
greatly improve indoor situational awareness in a variety of applications.

The challenge of both active and passive NLOS imaging techniques is
that measured light returns to the sensor after multiple diffuse
bounces1. With each bounce, light is scattered in all directions, elim-
inating directional information and attenuating light by a factor pro-
portional to the inverse-square of the path length. Particularly in the
passive setting, where no illumination is introduced, occluding struc-
tures that limit possible light paths have been used to help separate
light originating from different directions in the hidden scene2–10.
Useful structures include the aperture formed by an open window2 or
the inverse pinhole11 created when a once-present object moves
between measurement frames. Unlike other occluding structures,
whose shapes must be estimated or somehow known4,5,7,8,12, vertical
wall edges have a known shape and are often present when NLOS
vision is desired. An edge occluder blocks light as a function of its
azimuthal incident angle around the corner and, as a result, enables

computational recovery of azimuthal information about the hidden
scene. This was first demonstrated in the passive setting3,13, where 1D
(in azimuthal angle) reconstructions of the hidden scene were formed
from photographs of the floor adjacent to the occluding edge; 2D
reconstruction was demonstrated in a controlled static environment,
although the longitudinal information present in the passive mea-
surement was found to be weak14. Robust longitudinal resolution with
passive measurement has required a second vertical edge3,15.

In the active setting, most of the approaches proposed to date
scan a pulsed laser over a set of points on a planar Lambertian relay
wall and perform time-resolved sensing with a single-photon detector
to collect transient information16–25. To reconstruct large-scale scenes,
these approaches generally require scanning a large area of the relay
wall and thus a large opening into the hidden volume. To partially
alleviate these weaknesses, edge-resolved transient imaging (ERTI)26

Received: 8 July 2022

Accepted: 2 June 2023

Check for updates

1Electrical and Computer Engineering, Boston University, 8 St. Mary’s Street, Boston, MA 02215, USA. 2Charles Stark Draper Laboratory, 555 Technology
Square, Cambridge, MA 02139, USA. 3Computer Science, Universidad Industrial de Santander, Carrera 29 Calle 7, Bucaramanga, Santander 680002,
Colombia. 4Dip. Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, Milano I-20133, Italy. 5These authors con-
tributed equally: Sheila Seidel, Hoover Rueda-Chacón. e-mail: v.goyal@ieee.org

Nature Communications |         (2023) 14:3677 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-1239-3003
http://orcid.org/0000-0002-1239-3003
http://orcid.org/0000-0002-1239-3003
http://orcid.org/0000-0002-1239-3003
http://orcid.org/0000-0002-1239-3003
http://orcid.org/0000-0002-6763-8629
http://orcid.org/0000-0002-6763-8629
http://orcid.org/0000-0002-6763-8629
http://orcid.org/0000-0002-6763-8629
http://orcid.org/0000-0002-6763-8629
http://orcid.org/0000-0001-9251-7231
http://orcid.org/0000-0001-9251-7231
http://orcid.org/0000-0001-9251-7231
http://orcid.org/0000-0001-9251-7231
http://orcid.org/0000-0001-9251-7231
http://orcid.org/0000-0002-9840-0269
http://orcid.org/0000-0002-9840-0269
http://orcid.org/0000-0002-9840-0269
http://orcid.org/0000-0002-9840-0269
http://orcid.org/0000-0002-9840-0269
http://orcid.org/0000-0003-1715-501X
http://orcid.org/0000-0003-1715-501X
http://orcid.org/0000-0003-1715-501X
http://orcid.org/0000-0003-1715-501X
http://orcid.org/0000-0003-1715-501X
http://orcid.org/0000-0001-8471-7049
http://orcid.org/0000-0001-8471-7049
http://orcid.org/0000-0001-8471-7049
http://orcid.org/0000-0001-8471-7049
http://orcid.org/0000-0001-8471-7049
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39327-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39327-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39327-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39327-2&domain=pdf
mailto:v.goyal@ieee.org


combines the useof an edge occluder frompassiveNLOS imagingwith
the transient measurement abilities of active systems. ERTI scans a
laser on the floor along an arc around a vertical edge, incrementally
illuminating more of the hidden scene with each scan position. Dif-
ferences between measurements at consecutive scan positions are
processed together to reconstruct a large-scale stationary hidden
scene. Like with the earlier methods, the laser scanning requirement is
still a limiting constraint. An earlier work using the floor as a relay
surface shortens acquisition timeby using a 32 × 32 pixel SPAD array in
conjunction with a stationary laser27. Simultaneous measurements
from the 1024 pixels and reference subtraction are used to track the
horizontal position of a hidden object in motion, modeled as a point
reflector. Conceptually, almost all methods that achieve more than
point-like reconstruction treat the hidden scene as static during a scan.
A notable method for moving objects requires rigid motion, while
maintaining a fixed orientationwith respect to the imaging device, and
a clutter-free environment28.

In this work, we maintain ERTI’s parameterized reconstruction
capability and its strength of requiring only a small opening into the
hidden volume while eliminating ERTI’s scanning requirement and
creating a new background mapping capability. We use similar hard-
ware as in ref. 27 and also use a floor as a relay surface. As illustrated in
Fig. 1A, our desire for NLOS vision is caused by an occluding wall;
unlike in ref. 27, the edge of the wall is explicitly modeled and
exploited to enable reconstruction of moving objects in the hidden
scene. Like in passive corner-camera systems3,13–15, we position the
SPAD field of view (FOV) adjacent to the wall edge, as shown in Fig. 1A,
to derive azimuthal resolution from the occluding edge. As in ref. 26,
we derive longitudinal resolution from the temporal response to the
pulsed laser. However, our proposed system acquires data for each
frame in a single snapshot without scanning, allowing us to track
hidden objects in motion. The foreground reconstructions are inde-
pendent across frames, with no requirement of morphological con-
tinuity. Consider Fig. 1A and note that a moving target not only adds
reflected photons to the measurement, but also reduces photons due
to the shadow it casts on the stationary scene behind it. Through
additionalmodeling of occlusionwithin the hidden scene itself, we use
these changes to reconstruct occluded background regions for each
frame (Fig. 1B). As an object moves through the hidden scene, recon-
structions of occluded background regions may be accumulated to
form a map of the hidden scene (Fig. 1C). In contrast to refs. 27, 29,

where x and y coordinates are estimated for a hidden target in motion
at an assumed height, our algorithm counts hidden objects in motion
and reconstructs their shape (i.e., height and width), location, and
reflectivity while simultaneously mapping the stationary hidden
scenery occluded by them.

Results
Acquisition methodology
In our setup, the measurement rate at the nth spatial pixel in the kth
time bin is Poisson distributed

xn,k ∼Poisson bn,k + sn,kfg ðψfgÞ � sn,koc ðψfg,ψocÞ
� �

, ð1Þ

where b 2 RN ×K is the rates due to stationary scenery, sfg 2 RN ×K is
the response of the foreground object, and soc 2 RN ×K is the response
of the occluded background region, before the object enters. We
assume that b is approximately known through a reference measure-
ment acquired before moving objects enter the hidden scene or
through other means. Conceptually, this measurement of b allows us
to subtract the counts due to an arbitrary and unknown stationary
environment; the actual computations are more statistically sound
than simple subtraction. Vectors ψfg and ψoc contain parameters that
describe the foreground objects and corresponding occluded back-
ground regions. We seek to recover the parameters ψfg and ψoc from
the measurement x, for each measurement frame.

As shown in Fig. 2A for a single moving object, we model moving
objects and their occluded background regions each as a single ver-
tical, planar, rectangular facet resting on the ground.We assume there
are M moving objects with parameters
ψfg = fðθm,am

fg, r
m
fg,h

mÞ, m= 1, . . . ,Mg. Marked in Fig. 2A, am
fg is the

albedo, rmfg is range, and hm is height of the mth object. Angles
θm = ðθmmin,θ

m
maxÞ are the minimum and maximum polar angles of the

foreground facet, measured around the occluding edge in the plane of
the floor. The mth occluded region is described by range rmoc and
albedo am

oc parameters ψoc = fðam
oc, r

m
ocÞ, m= 1, . . . ,Mg. The height of

the occluded region is not a separate parameter; it depends upon its
range roc and the corresponding moving object’s range rfg and height
h.When parametersψfg andψoc have been estimated for a sequenceof
measurement frames, each processed separately, the vertical lines
running through the centers of estimated occluded background
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Fig. 1 | Sketch of an active corner camera use case with background mapping.
AThe imaging equipment is on the near side of the grayoccludingwall, close to the
wall, and line-of-sight view ends at the extension of this wall. A pulsed laser pointed
at the floor illuminates the hidden scene while a SPAD camera adjacent to the
occluding wall measures the temporal response of returning light. An initial
reference measurement is acquired to characterize the response of the stationary

scene. When the moving object enters, the new measurement includes added
photon countsdue to theobject and reducedphoton counts atmoredistant ranges
due to the occluded background region behind it. B Using these changes, we
reconstruct foreground objects in motion as well as the occluded background
regions behind them. C By accumulating frames as an object moves through the
hidden scene, we form a map of the stationary background of the hidden scene.
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regions (light red) are joined by planar facets (blue) to form a con-
tiguous map of the background, as shown in Fig. 2B.

Fast computation of light transport
A method to quickly compute the rates due to a planar rectangular
facet resting on the ground (i.e., sfg(ψfg) and soc(ψfg,ψoc)) is a key part
of our inversion algorithm. Take pl to be the position of the laser
illumination and pf to be a point on the floor in the area of the nth
camera pixel Pn. The flux during the kth time bin at the nth camera
pixel due to hidden surface S is

sn,k =
R kΔt
ðk�1ÞΔt

R
Pn

R
S vðps,pf ÞaðpsÞ Gðps ,pl ,pf Þ

kpl�psk2kpf�psk2

w t � t0 � kpl�psk+ kpf�psk
c

� �
dps dpf dt,

ð2Þ

where a(ps) is the surface albedo at point ps, w( ⋅ ) is the pulsed illu-
mination waveform, Δt is the duration of a time bin, t0 is the time the
pulse hits the laser spot, and c is the speed of light. The factorG( ⋅ , ⋅ , ⋅ )
is the Lambertian bidirectional reflectance distribution function
(BRDF) and is the product of foreshortening terms (i.e., the cosine of
the angle between the direction of incident light and the surface nor-
mal), as described in Supplementary Note 1. The factor v(ps,pf) is the
visibility function that describes the occlusion provided by the
occluding edge between hidden scene pointps and SPADFOVpointpf.
As shown in the bird’s eye view of Fig. 3, point pf is located at angle γ
measured from the occluding wall in the plane of the floor. Point ps is
at azimuthal angle α, in the plane of the floor, measured around the
corner from the the boundary between hidden and visible sides of the
wall. Thus, point pf is only visible to ps if γ ≥ α:

vðps,pf Þ=
1, if γ ≥α

0, otherwise:

�
ð3Þ

The yellow region in the SPAD FOV is the collection of all points pf not
occluded from point ps by the wall, where v(ps,pf) = 1. In the green
region, light fromps is blockedby thewall and v(ps,pf) = 0. This fan-like
pattern is the penumbra exploited by the passive corner camera3,13–15.

In somepreviousworks, computation time is reducedbymaking a
confocal approximation22,26 (i.e., assuming the laser and detector are
co-located). Under this assumption, the set of points ps in the scene
that correspond to equal round-trip travel time frompl, tops, and back

to pf, lie on a sphere. In contrast, as in ref. 27, we seek to exploit the
spatial diversity of our sensor array and thus require a more general
ellipsoidal model that arises when pl andpf are not co-located.When S
is a vertical, rectangular, planar facet, the intersection of a given round
trip travel time (the ellipsoid) and the plane containing our facet is an
ellipse. Using a method from ref. 30, we write that ellipse in transla-
tional form, enabling us to perform the integration in (2) in polar
coordinates. This method, described further in Supplementary Note 1,
allows us to compute sfg(ψfg) and soc(ψfg,ψoc) quickly enough to
implement our inversion algorithm.

Reconstruction approach
Before estimating parameters ψfg and ψoc for a given frame, we esti-
mate the number of moving objects M. The passive corner camera
processing of ref. 13 is applied to the temporally integrated difference
measurement (e.g., Fig. 4B) to produce a 1D reconstruction of change
in the hidden scene as a function of azimuthal angle α. The intervals
where this 1D reconstruction is above some threshold are counted to
determine M. Parameters ψfg and ψoc are then estimated from time-
resolved measurement x using a maximum likelihood estimate (MLE)
constrained over broad, realistic ranges of ψfg and ψoc. To approx-
imate the constrained MLE, the Metropolis-Hastings algorithm is
applied in two stages: first to estimate foreground parameters ψfg,
assuming no occlusion of the background, and second to estimate the
parameters of the occluded background region ψoc, assuming
ψfg = ψ̂fg. Further details about our procedure for estimating N,ψfg,
and ψoc are included in Supplementary Note 2.

Since our method is not dependent on a confocal approximation,
it is not important for pl to be close to the base of the vertical edge

Fig. 2 | Foreground and background facet parametrization. Our facet-based
model describes moving objects and the occluded background regions behind
them as edge-facing, rectangular, planar facets characterized by the parameters
shown in (A). When parameters have been estimated for a sequence of frames,

estimates are post-processed together to form a map reconstruction (B). The
vertical lines going through the centers of estimated occluded regions (light red)
are connected to form the map reconstruction (blue).

Fig. 3 | A bird’s eye viewof the vertical edge occluder.The edge blocks light from
scene pointps as a functionof its azimuthal angle α, measured around the corner. A
point pf in the SPAD FOV at angle γ is illuminated by ps if γ ≥ α.
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occluder. The imaged volume is determined by where light can reach
from pl, as discussed in Supplementary Note 3. When neglecting the
thickness of the occluding wall for simplicity, placing pl at the base of
the vertical edge allows the laser to illuminate the entire volume on the
opposite side of the occluding wall. The placement of the SPAD FOV
near the base of the vertical edge occluder is more fundamental. It
enables the passive corner camera processing to be effective and
greatly impacts object localization performance (ref. 31, Sect. 5.5).

Experimental reconstructions
In Fig. 4, we show reconstruction results for eightmeasurement frames
acquired as two hidden objects move along arcs toward and then past
each other as shown in Fig. 4A. In this demonstration, the integration
time (i.e., the total time over which the camera collects meaningful
data) used for each new frame was 0.4 s. Integration time for the
reference measurement was 30 s. The acquisition time (i.e., the total
time required to collect, accumulate, and transfer data)was longer; see
Supplementary Note 3. Measurements averaged spatially over all pix-
els are shown in Fig. 4C. The top plot shows the stationary scene
measurement (red) with the measurement acquired after objects
have moved into the scene in Frame 1 (blue); their difference is shown
on the axis below. A peak in the difference around 3 meters is due to
the additional photon counts introduced by the twomoving objects; a
dip at 6meters is due to their occluded background regions. Although
it is impossible to separate the contributions from each target in this
spatially integrated view of the data, the vertical edge occluder casts
two distinct shadows in the temporally integrated measurement
shown in Fig. 4B. Our processing exploits spatiotemporal structure of
the data that is not apparent from the projections in Fig. 4B and C.

Single-frame reconstruction results are shown for three different
frames in Fig. 4D. In Frames 1 and 7, two targets are resolved with
accurate heights, widths, and ranges. The reconstructed occluded
background regions are placed accurately in range. In Frame 6, the

closer target passes in front of the more distant one, and the single
reconstructed target is placed at the range of the front-most object.
Two views of the reconstructed maps (blue), accumulated over all
eight measurement frames, are shown in Fig. 4E to closely match the
true wall locations (green).

In Fig. 5, we demonstrate that our reconstruction algorithmworks
with dimmer moving objects as well as with objects that do not match
our rectangular, planar facet model. Single-frame reconstruction
results are shown for thewhite facet, a darker gray facet, amannequin,
and a staircase shaped object. In all four cases, the reconstructed
foreground object is correctly placed in range. Although our model
does not allow us to reconstruct the varying height profile of the stairs,
we correctly reconstruct it to be wider and more to the right than the
other hidden objects. In Supplementary Note 4, we demonstrate that
our algorithm works under a wide range of conditions, including dif-
ferent hidden object locations, frame lengths, and lighting conditions.

Discussion
In this work, we present an active NLOS method to accurately recon-
struct both objects in motion and a map of stationary hidden scenery
behind them. This innovation is made possible through careful mod-
eling of occlusion due to the vertical edge andwithin the hidden scene
itself. The algorithm presented in ref. 27 attempts only to identify a
single occupied point in the hidden scene, making detailed modeling
of the scene response unnecessary. In this work, we also make no
assumptions about light returning from the visible scene, allowing
arbitrary visible scenery to be placed at the same ranges as the hidden
objects of interest. This is true in ref. 26 aswell, however in their setup,
with the single-element SPAD fixed in position and a very small laser
scan radius, the contribution to themeasurement from the visible side
may be assumed constant across all measurements. In our configura-
tion, the SPAD array has a non-negligible spatial extent resulting in a
visible-side contribution that varies across themeasurements. Our use

Fig. 4 | Processing example. A Sample measurements and reconstruction results
for a scenario where two objects move through the hidden scene. Temporally
integratedmeasurements in (B) show thepenumbrapattern,with adistinct shadow
due to each of the two hidden objects. Spatially averaged measurements for the
stationary scene (red) andonemotion frame (blue) are shownon the topaxis of (C),

with their difference shown below. The peak near 3m is due to themoving objects;
the dip near 6 m is due to the background occlusion. Selected single-frame
reconstructions are shown in (D). Two views of the map reconstructions, accu-
mulated over 8 frames, are shown in (E).
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of a stationary scenemeasurement allows us to effectively remove the
contribution due to unknown visible-side scenery; our modeling of
occlusion within the hidden scene itself allows us to perform this
background subtraction without losing all information about the sta-
tionary hidden scenery.

Although we have successfully demonstrated our acquisition
method, various aspects of our system and algorithm could be
improved upon. Our current algorithm processes each frame inde-
pendently, using only broad constraints on the unknown parameters.
An improved system could jointly process frames and benefit from
inter-framepriors. Suchpriors could incorporate continuity ofmotion,
the fact that object height, width, and albedo are unlikely to change
between frames, and the fact that that walls in the hidden scene are
typically smooth and continuous. In our demonstration, we use a thin
occluding wall and do not model wall thickness. The thin-wall
assumption is illustrated in Fig. 3, where the angle α is measured
around the same point regardless of the location of ps. When the the
wall has appreciable thickness, cases α∈ [0,π/2) and α∈ [π/2,π]
require different modeling. One could incorporate wall thickness into
the model or estimate wall thickness as an additional unknown para-
meter. A methodmight also be designed to produce higher resolution
reconstructions of each moving target. Each target could be divided
horizontally into several vertical segments, each with an unknown
albedo and height to be estimated. This type of algorithmmight better
resolve the staircase object in Fig. 5. Through further analysis, it might
also be possible to optimize certain parameters in our setup. For
example, certain FOV sizes and positions or laser locations might
produce a better balance between the different sources of information
in the data.

The demonstrations in this work employed a sensor with 32 × 32
SPAD pixels, 390 ps timing resolution, 3.14% fill factor, and ~ 17 kHz
frame rate, limited by the USB 2.0 link32. A frame length of 10μs and a
gate-on period of 800ns yielded a duty cycle of 8%. Particularly, the
spatial and temporal resolution limit the precision of the estimated
facet parameters, whereas the fill factor and frame rate limit the signal-
to-noise ratio for a given acquisition time and, thus, the ability to track

faster or farther objects. We expect the results reported in this manu-
script will improve by orders of magnitude with new SPAD technology,
as reviewed in refs. 33, 34,where someworkshavedemonstratedup to 1
megapixel SPAD arrays35, greater than 100 kHz frame rates36, fill factors
greater than 50%36,37, and time resolution finer than 100 ps36,38.

Methods
Setup
Illumination is provided using a 120mW master oscillator fiber
amplifier picosecond laser (PicoQuant VisUV-532) at 532 nm operating
wavelength. The laser has an ~ 80 ps FWHM pulse width and is trig-
gered by the SPAD with a repetition frequency of 50MHz. The SPAD
array consists of 32 × 32 pixels with a fill factor of 3.14%, with fully
independent electronic circuitry, including a time-to-digital converter
per pixel32. At the 532 nm laser wavelength and room temperature, the
average photon detection probability is ~ 30% and the average dark
count rate is 100Hz. The array has a 390 ps time resolution set by its
internal clock rate of 160.3MHz. Attached to the SPAD is a lens with
focal length of 50mm, which yields a 25 × 25 cm field of view when
placed at around 1.20m above the floor.We set each acquisition frame
length to 10 μs, with a gate-on time of 800 ns, thus yielding an 8% duty
cycle. During the 800 ns gate-on timeof each frame, 40pulses (800 s *
50MHz) illuminate the scene. The SPAD array has a theoretical frame
rate of 100 kHz, set by the 10 μs readout per frame, but experimentally
we observed just ~ 17 kHz, which was mainly limited by the USB 2.0
connection to the computer.

Data acquisition
For our demonstrations, we set up a hidden room 2.2m wide, 2.2 m
deep and 3m high, as shown in Fig. 4A. Assuming the coordinate
system origin is at the bottom of the occluding edge, the left wall is
at x = − 1.20m, the right wall is at x = 1 m, the back wall is at y = 2.2m,
and the ceiling is at z = 3m. The walls are made of white foam board
and the ceiling is black cloth. The SPAD array is positioned on the
side of the wall, looking down at the occluding edge origin,
allowing half of the array to be occluded. The laser is positioned so

Fig. 5 | Single-frame reconstruction results. Four hidden objects are used: a white target, a less reflective gray target, a non-planar mannequin, and a non-rectangular
staircase. In all cases, our model allows us to accurately locate both the object and the stationary scene in the background.
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that it shines close to the origin. To reject the strong ballistic
contribution (first bounce) of light reflected from the origin, we
punched a hole in the occluding wall and shined the laser through
the hole. The true location of the laser spot on the floor is slightly
off the origin, by 6 cm to the right side. The latter was found by
cross-checking and minimizing the number of ballistic photons
measured by the SPAD array. More recent SPAD arrays incorporate
a fast hard gate to rapidly enable and disable the detector with few
hundreds picoseconds width, which can be tuned to censor the
ballistic photons36,38.

Two test scenarios were analyzed. For the first, we used two rec-
tangular white foam board facets of size 20 × 110 cm as our moving
objects. For the second, we used four different targets: a white foam
board facet (of size 20 × 110 cm), a gray foam board facet (white foam
board painted with a gray diffuse spray paint), a fabric mannequin of
size 30 × 80 cm, and a stair-like facet of size 75 × 75 cm. These objects
were used to test ourmethod on targets of different shape, height and
albedo. All tests were conducted with the objects facing the occluding
edge. Beforemoving objects enter the hidden room, a 30 s acquisition
was collected to form an estimate of b, the response of the stationary
scene. Then, new measurement frames were collected with moving
objects fixed at discrete points along their trajectories during 0.4 s. In
Supplementary Note 4, we demonstrate that these measurements can
be acquired over amuch shorter period of timewith little effect on the
reconstruction quality.

Data availability
Data to reproduce the results of this paper are available on Zenodo:
https://doi.org/10.5281/zenodo.790547539.

Code availability
Code to reproduce the results of this paper, including a description of
tuning parameters, is available on Zenodo: https://doi.org/10.5281/
zenodo.790547539.
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