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Abstract— This work proposes a framework for the 

optimization of the metrological performances of a system that 
measures the relative position and orientation between two 
surfaces. The method is based on the creation of a non-linear 
measurement model of the instrument. The method uses the Monte 
Carlo method and the Design of Experiments techniques for 
determining the instrument uncertainty and the uncertainty 
sensitivity versus the geometrical and metrological instrument 
characteristics. The result of the proposed approach is a non-
linear simplified numerical model of the measurement uncertainty 
and of the bias error components, that is used for the instrument 
design and compensation. A case-study related to a misalignment 
measurement system based on a universal joint is presented. The 
measurement uncertainty computed with the proposed method  
has been compared with the one obtained in fit-to-purpose 
experiments performed with a robotic manipulator. An optimal 
calibration procedure is then used in order to identify the 
parameters of the system minimizing the overall uncertainty. 
 

Index Terms—Design of Experiments, GUM, Metrology, Monte 
Carlo Method, Robotics, Uncertainty. 

I. INTRODUCTION 
n the industrial field, sensors are employed to measure 
quantities for control, quality, and safety purposes. The 

result of a measurement process is composed by the estimate of 
the measurand and by the measurement uncertainty [1], [2], that 
are positional and dispersion indicators of the process itself. 
The de facto reference for the expression of the measurement 
uncertainty is the International Organization for 
Standardization (ISO) – International Electrotechnical 
Commission (IEC) – International Organization of Legal 
Metrology (OIML) – The International Bureau of Weights and 
Measures (BIPM) Guide to the expression of Uncertainty in 
Measurement (GUM) [3]–[7]. The formulation of the 
uncertainty analysis developed by the GUM is established upon 
the Theory of Probability (TP) [8]–[11].  
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The minimization of the measurement uncertainty is usually 
achieved during the sensor’s design phase, either via physical 
prototypes or virtual instrument models [7]. Nuccio [12] 
proposed both a numerical and an approximate theoretical 
method for estimating the uncertainty of virtual instrument 
models. Locci et al. [13] focused on the metrology of a generic 
digital signal processing (DSP)-based measurement system to 
characterize the performance of a power system. Caldara et al. 
[14] compared numerical and experimental approaches to 
evaluate the uncertainty of PC-based virtual instruments. 

Several studies are founded on the GUM [4] and its 
supplements [5], [6]. Supplement 1 [5] deals with the 
propagation of distributions with the Monte Carlo Method 
(MCM). Supplement 2 [6] extends the GUM formulation to 
multi-output measurement systems. These methodologies 
exploit the MCM for estimating the uncertainty deriving from 
the Probability Distribution Functions (PDF) of the input 
variables. By means of the MCM, Battista et al. [15] 
characterized the uncertainty of a sound localization sensor, 
based on interaural time difference. Chen [16] evaluated the 
measurement uncertainty of a perspiration measurement system 
both via the GUM and through the MCM approach, gathering 
compatible results. Cox [17] provided guidance on the 
optimization of the MCM approach for evaluating uncertainty 
and expanded uncertainty, identifying its pitfalls and indicating 
means for validating the results. Sładek [18] presented the 
conception, the implementation and the validation of MCM-
based procedure for evaluating the measurement uncertainty of 
Coordinate Measuring Machines (CMM). In fact, the 
applicability of the MCM in uncertainty characterization is 
testified by the abundant related literature [19]–[21]. 

An alternative formulation for the propagation and the 
quantification of measurement uncertainty is represented by the 
possibilistic approach. This framework is based on the Theory 
of Evidence (TE), as opposed to the Theory of Probability. 
Consistent scientific contribution within this field was produced 
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by Ferrero et al. [22]–[28] ranging from the theory of Random 
Fuzzy Variables (RFV) [22], [24], [25] to their application in 
the expression of measurement uncertainty [26], [27]. 
Researchers also focused on the comparison of  methodologies 
based on TE and TP [23], [28]. 

When the target is the evaluation of uncertainty in Multi-
Input Multi-Output (MIMO) non-linear measurement systems, 
both GUM and RFV approaches might become burdensome. In 
particular, the exploration of all the possible combinations of 
the measurement influencing factors becomes computationally 
expensive. Furthermore, the analysis of the process outputs 
becomes onerous, with the increase of the configurations to be 
compared. Moschioni et al. [29] proposed to combine the MCM 
with the Design of Experiments (DOE) [30] to overcome these 
limitations. The method identifies the factorial plane of the 
possible influence factors combinations to be processed by the 
MCM to identify a simplified uncertainty model describing 
how the measurement uncertainty depends on the influencing 
factors. The uncertainty propagation model of the measurement 
system is obtained through the DOE regression analysis. A 
systematic state of the art review evidenced limited scientific 
production on the subject [31]–[33]. 

Inspired by the work by Moschioni et al., this work focuses 
on the metrological characterization of MIMO non-linear  
measurement systems. The spotlight is set on the identification 
of the measurement model, on the regression of uncertainty 
propagation models, on the experimental assessment of 
uncertainty and on the measurement model calibration. 

The paper is structured as follows. Section II reports the 
developed method. Section III details the application of the 
method on a case study. Section IV highlights the results of the 
work. In Section V, the conclusions are drawn, and further 
investigations are hypothesized. 

II. METHOD 

A. Measurement Model Identification 
Vectorial quantities are considered to be column-wise 

arranged and are in bolded digits, functions are identified by the 
italic font. Matrices are reported with non-bolded capital letters. 

Let us consider an ideal MIMO non-linear measurement 
system. The mathematical relationship among the N-
dimensional input vector X and the M-dimensional output 
vector Y is described by the expression: 

 
Y = f (X). (1) 

 
Where f is a non-linear function of X, whose elements are the 

measured quantities and the disturbances. 

B. Uncertainty Propagation Model Regression 
The measurement model can be used to investigate the 

dependence of the uncertainty of Y from the uncertainty of the 
input variables contained in X. In presence of function non-
linearities it can be more convenient to adopt the MCM rather 
than the classical linearization described in the GUM. 
Furthermore, in order to systematically study the effect of the 

uncertainty on the elements of X on the element of Y it is 
possible to couple the DOE and the MCM as described in [29]. 
The procedure is schematically represented in Fig. 1. The DOE 
requires the identification of the number of Influence Factors 
(IF). Furthermore, all the influencing factors can assume only a 
fixed Number of Levels (NL). IF and NL identify a total 
Number of Combinations (NC) of the system’s influence 
factors equal to NLIF. The DOE generates a factorial space of 
analysis for performing the regression of models describing the 
system’s uncertainty propagation laws. The MCM is applied to 
randomly sample the uncertainty PDF affecting each input 
variable for a predefined number of replicates (NR). Therefore, 
the MCM requires the selection of the PDFs, and the definition 
of the NR of the random sampling process. 

For each of the NLIF DOE configurations, the PDFs of the 
input variables are randomly sampled NR times. The total 
number of simulations is therefore NR·(NLIF). Sampled 
deviations from the nominal value are superposed to the input 
variables to obtain the perturbed inputs X*i,j: 

 
X*i,j = X + δi,j (UX). (2)  

 
Where vector δi,j (UX) represents the input perturbations as a 

function of the input uncertainties UX. Subscript i refers to the 
i-th configuration of the DOE, subscript j to the j-th random 
sampling of the MCM. For each i-th DOE configuration, the j-
th perturbed input vector, X*i,j, is fed to the system model, f, 
obtaining the corresponding perturbed output vector Y*i,j. 
Subsequently, the propagated perturbations vector, ei,j, resulting 
from each j-th sampling process, is evaluated per each i-th DOE 
configuration. This is obtained by comparing the perturbed and 
the unperturbed output vectors: 

 
ei,j = Y*i,j – Y= f (X*i,j) - f (X). (3)  

 
Measurement uncertainty is a combination of both the 

non-compensated bias errors components and random errors 
[1], [4]. The RMS of ei,j over j leads to the identification of the 
Root Means Square Error, RMSEi, for each of the DOE 
configurations. The RMSEi is used as  a figure of merit for the 
quality of the measurement, and it accounts for both random 
and systematic error components. 

 
RMSEi = [(∑e2

i,j) /(NR-1)]1/2. (4)  
 
The dependence of  RMSEi  from the influencing factors can 

be derived by fitting MxN non-linear models to the resulting 
NLIF configurations, obtaining the relation among UY and UX. 
The uncertainty of the output variables of the model, UY, can be 
expressed as a function of the random components affecting 
input variables, UX: 

 
UY = s (UX). (5)  
 

Where s identifies the regressed non-linear uncertainty 
propagation model, UX is the N-dimensional vector of the input 
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variables uncertainty, and UY is the M-dimensional vector of 
the output measurement uncertainty. 

III. CASE STUDY 
The proposed method was applied to analyze the 

performances of a non-linear MIMO measurement system 
designed to monitor the 3D misalignments between two 
surfaces. The device is a 3D kinematic chain, composed by 
mechanically connected rigid bodies, as shown in Fig. 2. Each 
of the six kinematic joints is sensed by either rotational or linear 
potentiometers, depending on its kinematics. Five sensors 
gauge rotations, one measures linear motion (q3 in Fig. 2). 

 

 
Fig. 2 - Schematics of the MIMO measurement system.  

A. Measurement Model 
In the MIMO non-linear measurement model, the measure is 

a function of the dimensions of the rigid bodies, d, of the 
instantaneous values of the measured Degrees Of Freedom 
(DOFs), q, and of the values of the DOFs in the zeroing 

condition, q0. In the measurement model identification, one of 
the two extremities was assumed to be grounded, the other was 
considered as movable. The subsequent composition of the 
three-dimensional transformations leading from the grounded 
reference system to the movable one resulted in the definition 
of the three-dimensional kinematic model. In general, three-
dimensional transformations are represented through the 
homogeneous 3D pose matrix convention [34], [35]. 
Alternatively, their Euler formulation can be considered, 
provided that a convention is set on subsequent rotations. In the 
present study the xyz convention on rotations was selected. The 
3D pose matrix H is a 4x4 squared matrix, in which R is the 
upper-left 3x3 rotation matrix and T is the upper-right 3x1 
translation vector. The elements of the fourth row are zeroes, 
except for the rightmost one which is unitary. The equivalent 
Euler 3D pose h is a column vector, whose scalar components 
are the three translations and the three rotations with respect to 
the Cartesian axes, identified by subscripts x, y, and z. The 
following equation reports the two equivalent expressions. 

 
H = [R | T] ≡ h = [Tx Ty Tz Rx Ry Rz] T. (6)  

 
The measurement model of the system was derived by 

subsequently composing transformation matrices, resulting in 
the matrix leading from the fixed to the movable extremity. 

 

H (q0, q, d) = ∏Hr,r+1 ≡ h (q0, q, d). (7) 
 

Where subscript r ranges from 1 to the number of reference 
systems that are considered in the kinematic chain derivation. 

 
Fig. 1 - Schematic of the uncertainty propagation models regression. Each DOE configuration is sampled NR times by the MC method to perturb the system inputs. 
Perturbations of the i-th configuration are propagated through the system model. The RMS of the perturbations is calculated to obtain the output uncertainties. The 
model is then regressed considering the NLIF configurations. 
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Each 3D homogeneous matrix Hr,r+1 depends on q0, q and d. 
Consequently, the measurement model of the system is a 4x4 
3D pose matrix, H, whose elements are non-linear functions of 
q0, q, and d. The Euler form, h, was used since it allowed the 
direct definition of the translations’ and of the rotations’ values. 

B. Uncertainty Propagation Model  
The DOE-MCM allowed deriving a model for the 

measurement uncertainty Uh, being the uncertainty, a vector 
composed by three translational components and three 
rotational ones. The model expresses the dependence of  Uh  
from the sensors’ uncertainties Uq and from the links dimension 
uncertainty Ud. The latter are due to the deviation of the 
physical dimensions from the nominal dimension d and is 
supposed to be fully compensated during the calibration of the 
instrument. Its effect will be investigated in the experiments as 
a contribution of the calibration procedure. 

In a first set of experiments, the influencing factors were set 
to the number of DOF of the system (i.e., 6). Test were then 
performed supposing that all the angular potentiometers are the 
same, and IF is equal to the number of different sensors 
mounted on the system (i.e., 2: linear and angular). Each IF 
assumed four levels (i.e., NL = 4), with values ranging from 
0.001 to 1 mm or degrees, with a unitary step in log10 scale.  

In the MCM, the number of replicates were imposed to one 
thousand (i.e., NR = 1000). The PDFs were assumed to be 
Gaussian for potentiometers and rectangular for encoders. 
Gaussian PDFs were generated by considering zero mean and 
standard deviation equal to the measurement uncertainties, Uq. 
Rectangular PDFs were generated by considering zero mean 
and amplitudes equal to the least significant bit [1]. Table I 
summarizes the performed analyses. In each of the four 
configurations of Table I, for each i-th DOE configuration, the 
3D kinematic model was applied to the j-th perturbed vector of 
coordinates defined as: 

 
q*i,j = q + δi,j (Uq). (8)  
 

TABLE I – PARAMETERS OF THE DOE AND MCM THAT WERE SELECTED FOR 
THE REGRESSION OF THE UNCERTAINTY PROPAGATION MODELS. 

 
Influence 
Factors 

(IF) 

Number 
of Levels 

(NL) 

Probability 
Distribution 

Functions (PDFs) 

Number of 
Replicates 

(NR) 

Total runs 

6 4 Gaussian 1000 4’096’000 
6 4 Rectangular 1000 4’096’000 
2 4 Gaussian 1000 16’000 

2 4 Rectangular 1000 16’000 

 
Where vector δi,j represents the input measurements 

perturbation as a function of the input uncertainties Uq, whose 
elements were obtained by randomly sampling the uncertainty 
PDFs. Then, q*i,j was fed to the measurement model, resulting 
in the corresponding perturbed output vector. The difference 
between the perturbed output, h*i,j and the unperturbed output, 
h is the error ei,j. 

 
ei,j = h*i,j – h = h (q0, q*i,j, d) - h (q0, q, d). (9)  

 
As previously mentioned, under the hypothesis of the 

systematic errors not to be compensated, the RMS of ei,j over 
index j captures the joint effect of random and systematic error 
sources. The uncertainty affecting the output variables, Uh, is 
the RMSE of ei,j and can be expressed as a function of the 
uncertainty affecting the input variables, Uq: 

 
Uh = u (q0, Uq, d). (10)  
 

Where u identifies the regressed non-linear uncertainty 
propagation model, Uq is the N-dimensional vector of the input 
variables’ uncertainties, and Uh is the M-dimensional vector of 
the output measurement uncertainties. The uncertainty 
propagation models provide the relation describing the impact 
that the sensors’ uncertainty, Uq, has on the uncertainty of the 
relative 3D pose measurement, Uhth. Under the non-linear 
hypothesis, the models were chosen to be second-order ones, 
their general expression is: 

 
Uh (q0, Uq, d) = A(q0, d)∙Uq2 + B(q0, d)∙Uq + c(q0, d). (11)  
 

The combined application of the DOE and of the MCM 
resulted in the regression of the instrument’s non-linear 
uncertainty propagation models. Fig. 3 and Fig. 4 report the 
results obtained by considering two influence factors and four 
number of levels. The more general formulation, with six 
influence factors and four number of levels, provided a more 
detailed, though redundant, representation of the models. 
Hence, for the sake of conciseness, it was not reported. The 
distinction among the sensors’ measuring principles (i.e., 
potentiometers and encoders) led to analogous results, the 
choice was then to unify  their discussion. 

Fig. 3 reports the contour plot of the Tx uncertainty 
component in logarithmic scale, as a function of the linear and 
rotational sensors’ uncertainties. The foremost purpose of these 
uncertainty propagation models is their application in the 
sensors’ selection during the design phase. This kind of analysis 
allows selecting the possible configuration granting the desired 
measurement uncertainty. 

 

 
Fig. 3 - Representation of the mutual effect of the linear (Unc. Lin.) and 
rotational (Unc. Rot.) sensors’ uncertainties on the 3D pose measurement 
translational component along the x axis (Unc. Tx). 

Fig. 4 graphically depicts the sensitivity of the 3D pose 
measurement components. The left column shows the 
propagation model’s coefficients for the translational 
components of the pose measurement, their rotational 
counterpart is shown in the right column. The influence of the 
uncertainty of rotational sensors is dominant, except for the Tx 
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element. In this case, both rotational and linear sensors 
contribute to the overall coordinate measurement uncertainty. 

 

 
Fig. 4 - Translational uncertainties (Tx, Ty, Tz) as a function of the sensors’ 
uncertainties (Unc. Lin., Unc. Rot.) - Rotational uncertainties (Rx, Ry, Rz) as a 
function of the sensors’ uncertainties (Unc. Lin., Unc. Rot.). 

C. Experimental Analysis and Model Calibration 
Experiments were performed displacing the movable 

extremity of the measurement system using a Stäubli TX-60L 
anthropomorphic robot. Before performing the experiments, the 
robot was calibrated via laser tracking. The positioning 
accuracy resulted being equal to 0.1 mm within the considered 
working volume. After zeroing the sensors’ readings in a 
predefined configuration, the movable extremity was displaced 
to reach NP predefined reference positions. These were 
identified by discretizing a cubic volume, with a side length of 
50 mm. Twenty-seven points were defined by selecting the 
vertices of the cube, the midpoint of each face and side, plus the 
center point. The sensors’ readings, qp in each of the NP points 
were used to compute the 3D pose measurement, h (q0, qp, d). 
The pose in correspondence of the cube centre, denoted by h(q0, 
qp

†, d), was subtracted to every pose to compare the nominal 
motion imposed by the robot with the experimentally measured 
motion. The relative motions assigned to the device by the 
robot, Δhp

robot, was then compared to those measured by the 
system, Δhp

measured. The assessment of the uncertainty was 
carried out in terms of the RMS of each pose component. This 
led to the identification of the system’s experimental 
uncertainty Uh: 

 
Uh = [(∑(Δhp

measured - Δhp
robot)2) /(NP-1)]1/2. (13)  

 
As evidenced in equation (7), the 3D pose measurement 

depends on the physical dimensions d, on the instantaneous 

sensors’ readings, q, and on their zeroing values q0. The 
instrument calibration can be used to determine the real 
sensitivities of the linear and of the rotational sensors, s and the 
real dimensions with an optimization procedure. 

The quantity to be minimized was defined by considering the 
translational uncertainty UT between the nominal motion by the 
robot (Δhp

robot) and the measured motion (Δhp
measured). 

 
UT (Δhp

measured, Δhp
robot) = (UTx

2 + UTy
2 + UTz

2)1/2. (14)  
 

The optimization variables were subjected to the following 
physically informed constraints: 
1. The physical dimensions d, and the sensitivity update 

factors, s, were imposed to be strictly positive. 
2. The physical dimensions, d, were allowed to vary by at 

most δd, from their nominal values dn. 
3. Given the symmetric nature of the system under analysis, 

the mirrored dimensions dk and dk,D-k were constrained in 
such a way that their values could at most differ by a 
predefined threshold, δdk,D-k. 

4. The sensitivity update factors could either be optimized or 
they could be forced to be unitary, depending on the value 
of δs. The sensitivity update factors calibration could be 
enabled separately. 

5. The sensors’ readings in the zeroing pose, q0, were allowed 
a variation, δq0, with respect to their nominal values q0

n. 
 

The measurement model of the system could be calibrated 
within the considered working volume, given its initial 
formulation, the cost function to be minimized and the 
constraints of the optimization problem. Table II and Table III 
summarize the results of both the experimental uncertainty 
assessment and of the system model calibration. Table II details 
the subsequent definitions of the optimization problem, starting 
from the baseline in which the outcomes from the experimental 
assessment are provided. The identification of the physical 
dimensions and the symmetric constraint were enabled first, 
then the sensitivity update factors were introduced, eventually, 
the zeroing pose values were optimized. The cost function UT 
variations is reported in the last column of Table II.  
 
TABLE II – THE INCREMENTAL ENABLING OF CALIBRATION CONSTRAINTS AND 

THE CORRESPONDING VARIATIONS OF THE COST FUNCTION. 
 

Calibration δdk 
[mm] 

δdk,D-k 
[mm] 

δslin 
[-] 

δsrot 
[-] 

δq0,lin 
[mm] 

δq0,rot 
[°] 

UT 
[mm] 

None 0.0 0.0 0.0 0.0 0.0 0.0 4.30 

Dimensions 1.0 0.1 0.0 0.0 0.0 0.0 3.89 

Dimensions 
Sensitivities 1.0 0.1 0.5 0.5 0.0 0.0 2.11 

Dimensions 
Sensitivities 

Zeroing 
1.0 0.1 0.5 0.5 0.2 0.1 1.49 

 
The uncertainty values for each pose component are shown 

in TABLE III, bolded digits refer to the optimal calibration. FIG. 5 

graphically represents the results obtained by means of the 
measurement model calibration. The discretized cube is shown, 
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together with both the nominal points reached by the robot and 
the corresponding points that were measured by the system. 

 
TABLE III – RESULTS OF THE PERFORMED CALIBRATIONS. THE FIRST ROW 

REPORTS THE BASELINE, WITHOUT ANY CALIBRATION. 
 

Calibration 𝑼𝑼𝑻𝑻𝒙𝒙 
[mm] 

𝑼𝑼𝑻𝑻𝒚𝒚 
[mm] 

𝑼𝑼𝑻𝑻𝒛𝒛 
[mm] 

𝑼𝑼𝑹𝑹𝒙𝒙 
[°] 

𝑼𝑼𝑹𝑹𝒚𝒚 
[°] 

𝑼𝑼𝑹𝑹𝒛𝒛 
[°] 

None 0.85 2.95 3.01 0.15 0.79 0.51 

Dimensions 0.83 2.65 2.71 0.15 0.79 0.51 

Dimensions 
Sensitivities 0.83 1.32 1.43 0.19 0.89 0.57 

Dimensions 
Sensitivities 

Zeroing 
0.65 0.87 1.02 0.11 0.69 0.45 

 
Fig. 5 - Depiction of the uncertainty assessment after the system model 
calibration. The discretized cube is represented by dashed lines, points reached 
by the robot are identified by black circles. The 3D points measured by the 
calibrated system are shown by means of red squares. 

IV. DISCUSSION 
The developed method allowed the analysis of the measure 

of a non-linear 3D misalignment measurement system. Prior to 
the successive analyses, the system underwent a redesign phase 
oriented at making its parameters more certain and defined. The 
mechanical structure was modified by inserting mechanical 
references for the mounting procedure, reducing the 
measurement bias. Elastic joints and ball bearings were 
introduced to ensure superior alignments and proper structural 
stiffness, diminishing the random error contributions. 

The theoretical analysis led to the definition of the 
measurement model and to the regression of  uncertainty 
propagation models. The regression models were obtained 
through the application of the joint DOE-MCM methodology. 
The models could be exploited while designing the system, 
depending on the specific application it is meant to work in. 
Namely, the a priori knowledge of the desired system precision 
(UX) can be translated into the required sensors’ precision (UY) 
by means of the derived non-linear model. The most adequate 
sensors typology and characteristics could then be properly 
selected. The metrological characteristics of the measurement 
model could also be assessed ex ante, through the graphical 
representation of the coverage regions of the propagated 
perturbances in Fig. 6, as per the GUM indications [5], [6]. 

 

 
Fig. 6 - Elliptic coverage regions on XY, XZ and YZ planes. These 
distributions result from the propagation of the perturbed inputs via the 
measurement model of the system. 

The possibility to design and optimize the system is of 
foremost importance, especially in the industrial field. The 
calibration procedure permitted the diminution of the 
systematic errors affecting the measurement. Hypothetically, 
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various measurement accuracies could be accomplished 
through the introduction of more and more strict requirements 
and procedures for the calibration process. 

V. CONCLUSIONS 
This work focused on the metrological characterization of a 

non-linear MIMO 3D misalignment measurement instrument. 
The measurement model was derived by analyzing the 3D 
kinematics of the instrument. Uncertainty propagation models 
were derived by the joint application of the Design of 
Experiments and of the Monte Carlo Method. The experimental 
uncertainty of the instrument was assessed by means of the 
implementation of a robotic manipulation procedure. The 
measurement model of the system was calibrated through an 
optimization routine. 

Except for the robotic manipulation, which was implemented 
due to the very nature of the measurement instrument, the 
developed methods could be applied to other complex 
measurement chains. The joint application of the DOE and of 
the MCM could be enlarged by considering alternative 
solutions for designing the experiments, such as reduced order 
factorial analyses and Taguchi formulations. Further robotic 
manipulation procedures could be studied and developed in 
order to deepen the experimental characterization of the device. 
Furthermore, supplementary calibration routines could be 
investigated for the amelioration of the measurement model. 

In conclusion, by relying on the information granted by both 
the uncertainty propagation models and the model calibration, 
the device could be re-designed so further to mitigate both 
random and systematic measurement error components. 
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