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A B S T R A C T

Calibration of models and data structures is recurring in a large number of cross-cutting applications from
finance to engineering. Even though there are numerous and well-established specific calibration techniques
for each application sector, using Neural Networks (NNs) can improve performance. For instance, Tapped
Delay-Line Time-to-Digital Converters (TDL-TDCs) implemented in Field Programmable Gate Arrays (FPGAs)
are increasingly being used in a variety of research applications, such in the time-resolved spectroscopy or in
medical imaging mainly for their high-precision and flexibility. Specific decoding on the sampled information
from the TDL, together with calibration to compensate for non-idealities, (i.e., Bubble Errors, BEs, and Process–
Voltage–Temperature fluctuations, PVTs) are carried out for generating the conversion of digital codes to time
units. In this fundamental process, the impact of Machine Learning (ML) usage has not yet been investigated.
In this paper, focusing on advanced FPGA devices (i.e., 28-nm, 20-nm, and 16-nm), we propose an approach
based on NNs running in Python on a standalone PC to identify the optimal conversion from digital codes to
timestamps, comparing it with the classical fully FPGA-based solution c literature. The experimental validations
are performed on Artix-7 (XC7A100TFG256-2) and Kintex UltraScale (XCKU040-FFVA1156-2-E) in 28-nm and
20-nm technology nodes, achieving precision of 12.9 ps r.m.s. and 4.85 ps r.m.s., respectively. These results are
in line with the state-of-the-art, demonstrating that in 28-nm technology, the bubble compression algorithm is
sufficient to achieve high-precision, while reordering mechanism is crucial to compensate for BEs within the
16/20-nm technology node.
. Introduction

In many industrial and research fields, such as laser range-finders
1], time-mode Analog-to-Digital Converters (ADCs) [2], time-resolved
pectroscopy [3–6], Phase-Locked Loops (PLLs) [7], Time-Correlated
ingle Photon Counting (TCSPC) [8,9], and Time-of-Flight Positron
mission Tomography (TOF-PET) [10–12] just to name a few, Time-
nterval-Meters (TIMs) are key elements of implementations. Numerous
esigns of TIMs have been developed using various technologies [13].
he Time-to-Amplitude Converter (TAC) [14], the first TIM proposed
istorically, converts the time interval under measurement in a voltage
evel by storing charge in a capacitor for the interval duration. In
omparison to analog and mixed-signal TIMs, fully-digital TIMs like
ime-to-Digital Converters (TDCs) have gained favor in the digital age.
pplication Specific Integrated Circuits (ASICs) or Programmable Logic
evices (PLDs), including Field Programmable Gate Arrays (FPGAs)
nd System-on-Chip (SoC), can be utilized to implement TDCs [15,16].

∗ Corresponding author.
E-mail addresses: fabio.garzetti@polimi.it (F. Garzetti), nicola.lusardi@polimi.it (N. Lusardi).

FPGAs offer the fastest prototyping and most efficient research solu-
tions [17,18], providing huge flexibility, low Non-Recurring Engineer-
ing (NRE) costs, and performance on par with cutting-edge ASIC-based
TDCs [19].

Various FPGA-based architectures are present in the literature,
with the most common ones being the Tapped Delay-Line TDC (TDL-
TDC) [16], Vernier Delay-Line TDC [20], Ring-Oscillator TDC [21,22],
Gray Counter Oscillator TDC (GCO-TDC) [23], Multi-Phase and Single-
Phase Shift Clock Fast Counter TDC (SCFC-TDC) [24], just to mention
a few of the main ones. Each of these architectures matches at best
to a set of resolution, conversion rate, and area specifications. For
instance, SCFC-TDC and GCO-TDC are small area options with high
conversion rates but limited resolution while Ring-Oscillator TDC (RO-
TDC) offers high-precision within low area occupancy but an extremely
high dead-time. Vernier Delay-Line TDC (VDL-TDC), on the other hand,
uses more space but offers a greater resolution at slower conversion
rates. The TDL-TDC is the most balanced and practical choice when
looking for the optimum compromise between resolution, area, energy
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Fig. 1. Schematic structure of the TDL-TDC with 𝑁 = 4 taps with propagation delay
𝑡𝑝[𝑖] = 20 ps, 𝑖 ∈ [0; 3].

consumption, and conversion rate. This is the reason a TDL-TDC was
chosen to contextualize the novel decoding method that is proposed.

In TDL-TDCs, a digital low-to-high step signal (referred as START)
goes through a chain of 𝑖 ∈ [0;𝑁 − 1] buffers (known as taps or
bins) with propagation delay 𝑡𝑝[𝑖], which stores the high value of the
propagating step in D-type Flip-Flops (DFFs), one for each buffer and
initialized to low logic level. The values at the input of DFFs are sam-
pled when another digital low-to-high step signal (referred to as STOP)
occurs. In this way, the length of time interval beginning at START edge
and ending at STOP one (Fig. 1) is measured as a series of consecutive
high-logic values, known as thermometric code. Least Significant Bit
(LSB), which represents the resolution of the measurement, is fixed
by the propagation delay of each buffer. This output of the chain of
buffers, called Tapped Delay-Line (TDL), is transformed into the final
time value, known as a timestamp.

The primary criticalities in this processing flow, when taking into
account the FPGA implementation, are the Bubble Errors (BEs) [25],
a switching effect in the thermometric code, and the value dispersion
of the tap propagation delays [26,27]. Regarding BEs, DFFs and their
connections have a variety of non-idealities and mismatches, which
could lead to some inconsistencies in the output rather than being
a continuous string of high levels typical of a correct thermometric
code [28,29]. These errors, known as BEs, manifest as one or more
zeros appearing as interruptions (i.e., like bubbles) in the continu-
ity of ones. For example, the output might be ‘‘11111010’’ instead
of ‘‘11111110’’ (where the position of 1 and 0 represent the prop-
agation over the TDL from left to right as represented in Fig. 1).
These BEs may be due to stochastic processes (e.g., sampling errors
caused by violations of setup and hold times) or actual deterministic
non-linearities present in TDL propagation. A standard thermometric-
to-binary converter (a.k.a., decoder or in some papers also called
encoder) will produce an inaccurate value (i.e., the result will be close
to the expected, only that shifted by the number of bits on which
the bubble error occurred) when fed this faulty sequence since it
expects to receive only a thermometric code as input. Therefore, when
BEs are present, actual decoders are employed to convert the output
‘‘pseudo thermometric code’’ containing BEs into a code with a sharp
change from ones to zeros. As a result, there is a merging of TDL bins
(e.g., ‘‘11111010’’ is interpreted as ‘‘11111100’’ or ‘‘11111110’’) with
the possibility that more (pseudo) thermometric codes (where pseudo
in brackets means that the BEs could or not be preset) correspond to a
single timestamp increasing the quantization error [30]. So, the ther-
mometer code represents the propagation order within a TDL. In case of
BE, we have a pseudo-thermometer code, and therefore, we are unable
to define the propagation order a priori, whether 11111010 is actually
a 11111100 (6 taps propagated) or 11111110 (7 taps propagated). By
removing the BEs, it is possible to perform the measurement without
increasing the quantization error [31]. Furthermore, since Process–
Voltage–Temperature (PVT) fluctuations can cause variations in the
2 
Fig. 2. Comparison between the standard approach of decoding and calibration
sequence versus the proposed ML-based approach.

nominal features of the taps, a calibration procedure is required to
account each tap’s actual propagation delay [32]. This results in the
estimation of a characteristic curve that links each decoded (pseudo)
thermometric code into the corresponding real time value.

Therefore the process of synthesis of the time information involves
two phases, the first of decoding and the second of calibration working
as a bijective function that maps one and only one (pseudo) ther-
mometric code to one and only one final timestamp in time units
(e.g., picoseconds).

The aim of this work, never been previously explored in the litera-
ture, is to implement the conversion function (i.e., from digital codes
to timestamps) in Python on a standalone PC with the presence of BEs
using a Machine Learning (ML) approach [33]. The ML approach is sim-
ply the tool employed. Due to the absence of prior experiments, the NN
was constructed based on the hardware structure of the decoders and
calibrators, optimizing it with a standard Adaptive Moment Estimation
algorithm.Our goal is to minimize the quantization error by addressing
BEs and compare the results with fully FPGA-based solutions available
in the scientific literature (Fig. 2). The ML output can function as a
verification element, aiding in the selection of decoding solutions from
the various options available in the scientific literature. Moreover, it
is been highlighted the presence of the ‘‘bin merging’’ phenomena that
negatively impact on the TDL-TDC’s precision.

Main decoding and calibration standards addressing non-idealities
affecting the TDL of TDL-TDC are introduced in Section 2. Section 3
describes how the ML approach has been applied to the TDC prob-
lem. Finally, experimental validations on modern technology nodes,
the 28-nm high-k metal gate (HKMG) and the 16/20-nm Fin Field-
Effect Transistor (FinFET), are carried out on 28-nm 7-Series Artix-7
(XC7A100TFG256-2) and 20-nm Kintex UltraScale
(XCKU040-FFVA1156-2-E) in Sections 4 and 5. The results are consis-
tent with the state-of-the-art, with a precision of 12.9 ps r.m.s. and 4.85
ps r.m.s. for the 28-nm and 20-nm technological nodes, respectively.
Moreover, thanks to the ML approach, it was demonstrated that in the
28-nm technology node, the bubble compression algorithm alone is ad-
equate to achieve high precision, whereas in the 16/20-nm technology
node, a reordering mechanism becomes essential to mitigate BEs.

2. Decoding and calibration procedures

We start from the ideal TDL (described in Section 2.1) to get to
its realization (discussed in Section 2.2), because the decoding issues
are dependent on the non-linearities that come along with the TDL
implementation.

2.1. Ideal Tapped Delay-Line

In the ideal TDL case, there are no BEs and all the propagation
times of the buffers that make up the line are equal (i.e., 𝑡𝑝). The
system needs a decoder just to compress the thermometric information
to pure binary. In particular, the length in time 𝑇 of the interval
𝑚𝑒𝑎𝑠
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Fig. 3. Example of 90 ps-long interval measured by a TDL-TDC with ideal 4-tap TDL.
DFFs are the flip-flop outputs.

under measurement is obtained by multiplying the number 𝐵𝑖𝑛𝐴𝑑𝑑𝑟𝑒𝑠𝑠
of buffers, whose output is high (i.e., the thermometric code decoded
into binary one), by the ideally constant propagation delay 𝑡𝑝. The
propagation delay 𝑡𝑝 is also the LSB of the measurement. The map
converting digital information in time units is called 𝐵𝑖𝑛𝑉 𝑎𝑙𝑢𝑒[𝑖], where
𝑖 ∈ [0;𝑁 − 1] is the 𝐵𝑖𝑛𝐴𝑑𝑑𝑟𝑒𝑠𝑠 and 𝑁 is the total number of buffers
constituting the TDL. Just for having 𝑇𝑚𝑒𝑎𝑠 zero average value and,
consequently, 𝐿𝑆𝐵∕

√

12 as standard deviation (i.e., precision) [34,35],
the 𝐵𝑖𝑛𝑉 𝑎𝑙𝑢𝑒, the 𝐵𝑖𝑛𝐴𝑑𝑑𝑟𝑒𝑠𝑠 (i.e., 𝑖 in equations) and 𝑡𝑝 are related as

{

𝐵𝑖𝑛𝑉 𝑎𝑙𝑢𝑒[0] = 𝑡𝑝
2 𝑖 = 0

𝐵𝑖𝑛𝑉 𝑎𝑙𝑢𝑒[𝑖] = 𝐵𝑖𝑛𝑉 𝑎𝑙𝑢𝑒[𝑖 − 1] + 𝑡𝑝
2 𝑖 ∈ [1;𝑁 − 1]

(1)

So, if the TDL is ideal, the decoder is simply a thermometric-to-binary
converter that counts the number of ones in the TDL, compressing
the information from 𝑁 to 𝑙𝑜𝑔2(𝑁) bits. Fig. 3 shows the schematic
flow, through timing diagrams, of the measurement system that consists
of 4-tap TDL, decoder (from thermometer-code to 𝐵𝑖𝑛𝐴𝑑𝑑𝑟𝑒𝑠𝑠) and
calibration stage (from 𝐵𝑖𝑛𝐴𝑑𝑑𝑟𝑒𝑠𝑠 to 𝐵𝑖𝑛𝑉 𝑎𝑙𝑢𝑒).

This basic version of the TDL-TDC is usually accompanied by Nutt-
Interpolation to extend the Full-Scale Range (FSR) of the measurement
without making the number of buffers of the TDL diverge [36]. This
consists in splitting the measurement 𝑇𝑚𝑒𝑎𝑠 in a coarse part performed
by a coarse counter (i.e., 𝑇𝑐𝑜𝑎𝑟𝑠𝑒), and a fine part (i.e., 𝑇1,𝑓 𝑖𝑛𝑒 and 𝑇2,𝑓 𝑖𝑛𝑒)
calculated by the TDL-TDC. The coarse counter counts the number
𝛥𝑁 of whole periods 𝑇𝐶𝐿𝐾 contained between START and STOP edges
(i.e., 𝑇𝑐𝑜𝑎𝑟𝑠𝑒 = 𝛥𝑁 ⋅ 𝑇𝐶𝐿𝐾 ) [37]. The TDL-TDC evaluates the distances
𝑇1,𝑓 𝑖𝑛𝑒 and 𝑇2,𝑓 𝑖𝑛𝑒 of the START and STOP instants respectively from the
edges of the clock signal closest to them.

𝑇𝑚𝑒𝑎𝑠 = 𝑇𝑐𝑜𝑎𝑟𝑠𝑒 − 𝑇2,𝑓 𝑖𝑛𝑒 + 𝑇1,𝑓 𝑖𝑛𝑒 (2)

The larger the dimension of the coarse counter, the more extended
the FSR is.

2.2. Real Tapped Delay-Line

Due to the physical implementation, the TDL in an FPGA device
experiences the effect of BEs [25] and PVT fluctuations [38]. Let us
look at the resources of the devices utilized to realize the TDLs to see
where these issues originate. As native resources with configurable TDL
are not available in FPGA devices [15], these must be implemented
as structures made up of elements having different purposes such
as logic blocks [39], routing arrays [40], Digital Signal Processing
(DSP) blocks [41], and belonging to the FPGA fabric. Among these
choices, the carry propagation resources (a.k.a., CARRY1), which in
Xilinx technology are the CARRY4 (28-nm 7-Series) and the CARRY8

1 The nomenclature CARRY is to be referenced to the AMD/Xilinx ven-
dor upon which the experimental data in the manuscript is based, while
for Intel/Altera devices, different nomenclature is utilized. Carry-chains in
Intel/Altera FPGAs are built by connecting in series the carry logic of Logic
Array Blocks (LABs). In Cyclone I, II, and IV, each LAB contains either 10 (in
the case of Cyclone I) or 16 (in the case of Cyclone II and IV) Logic Elements
3 
Fig. 4. Simplified representation of a CLB that highlights the key components involved
in the TDL implementation.

(20-nm UltraScale and 16-nm UltraScale+), are the most suitable given
the abundant availability in the devices as parts of the Configurable
Logic Blocks (CLB) [43,44]. Among other things, they also prove to
be the best compromise between linearity, speed and uniformity of
propagation delay values, 𝑡𝑝[𝑖]. The simplified illustration of the CLB
in Fig. 4 puts in evidence the CARRY blocks that implement the taps
(MUX with Sel at ‘1’) and DFFs, which are the TDL’s building blocks.

One issue emerges from the fact that these CARRY stages have
not the necessity of propagation delays that are equal and stable with
regard to PVT fluctuations [26] for the function they must perform.
The non-uniformity of the individual delays results in the non-linearity
of the propagation time, which consequently needs a real-time ‘‘bin-
by-bin’’ calibration in order to know at all times during the operation
the better estimation, called 𝐵𝑖𝑛𝑊 𝑖𝑑𝑡ℎ[𝑖], of the real propagation delay
𝑡𝑝[𝑖] of the 𝑖th buffer (Section 2.2.1).

Instead, the BEs are derived from the DFFs’ hardware limitations
and the CARRY blocks’ variations in layout and routing (Section 2.2.2).
As evidence of how important the dispersion of propagation delay
values and BEs are, also in relation to the chosen device, Table 1 reports
the mean value (a.k.a., mean-bin) and the maximum value (a.k.a.,
ultra-bin) of the 𝑡𝑝[𝑖], and the length/depth of the BE (a.k.a., Max
Bubble Depth [45], MBD) measured in TDLs implemented in various
AMD/Xilinx and Intel/ALTERA FPGAs.

2.2.1. Delay values dispersion and calibration
Given the dispersion of delay values that cannot be eliminated, it

is necessary to best estimate the real values of each one of them to be
used in calculating the timestamp. For doing this bin-by-bin calibration,
we resorted to the Code Density Test (CDT) technique [61] to estimate
for each 𝑖th buffer the 𝐵𝑖𝑛𝑊 𝑖𝑑𝑡ℎ[𝑖] value to be used in (1) in place of
the nominal 𝑡𝑝, that is

⎧

⎪

⎨

⎪

⎩

𝐵𝑖𝑛𝑉 𝑎𝑙𝑢𝑒[0] = 𝐵𝑖𝑛𝑊 𝑖𝑑𝑡ℎ[0]
2

𝐵𝑖𝑛𝑉 𝑎𝑙𝑢𝑒[𝑖] = 𝐵𝑖𝑛𝑉 𝑎𝑙𝑢𝑒[𝑖 − 1]
+ 𝐵𝑖𝑛𝑊 𝑖𝑑𝑡ℎ[𝑖]

2

𝑖 = 0
𝑖 ∈ [1;𝑁 − 1]

(3)

(LEs), each of which has one tap of the carry chain, resulting in 10 or 16
taps per LAB respectively. Additionally, in Cyclone V and Arria 10, each LAB
contains 10 Adaptive Logic Modules (ALMs), each of which has two elements
of the carry chain, resulting in 20 taps per LAB. ‘‘Furthermore, in modern
FPGAs (Intel/Altera series V and 10, or Xilinx UltraScale and UltraScale+),
each tap of the carry chain can be connected to two flip-flops, allowing
the dual-sampling technique [42]. However, this technique is not taken into
account in this contribution.
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Table 1
Comparison of TDLs implemented in various AMD/Xilinx and Intel/ALTERA FPGAs in terms on non-idealities
(all the information listed in the table is available in the documents cited in the last column).

FPGA Vendor Tech.
Node

Bin MBD Tap per
CARRY or LAB

Ref

Mean Max
[nm] [ps] [ps] [–] [–]

Cyclone I Intel/Altera 130 70 170 0 10 [46]
Cyclone II Intel/Altera 90 45 155 0 16 [47]
Cyclone-IV Intel/Altera 60 58 86 2 16 [48]
Virtex-4 AMD/Xilinx 90 45 100 1 2 [49]
Virtex-5 AMD/Xilinx 65 34 110 2 4 [50]
Cyclone V Intel/Altera 28 5.98 32.2 3 20 [51]
Spartan-6 AMD/Xilinx 45 25.57 75.76 >1 4 [52]
Virtex-6 AMD/Xilinx 40 10 20.9 2 4 [53]
Artix-7 AMD/Xilinx 28 22.2 47 4 4 [54]
Kintex-7 AMD/Xilinx 28 10.35 25 2 4 [55]
Virtex-7 AMD/Xilinx 28 23 40 4 4 [56]
Cyclone 10 Intel/Altera 20 10 80 High 20 [57]
Arria 10 Intel/Altera 20 9.1 70 High 20 [58]
Kintex UltraScale AMD/Xilinx 20 4.18 60 16 8 [59]
Zynq UltaScale+ AMD/Xilinx 16 1.9 23.18 16 8 [60]
The CDT entails taking a sufficiently large 𝐾 number of measurements
of intervals with uniformly distributed random lengths between 0 and
𝑇𝐶𝐿𝐾 , where 𝑇𝐶𝐿𝐾 is the basic TDL-TDC’s FSR under Nutt-Interpolation,
or maximum interval length. The 𝐾 measurements are stored in a
histogram (i.e., 𝐶𝐷𝑇ℎ𝑖𝑠𝑡[𝑖]) that bined the range 0 − 𝑇𝐶𝐿𝐾 into the
𝑖 ∈ [0;𝑁−1] taps of the TDL. From the 𝐶𝐷𝑇ℎ𝑖𝑠𝑡[𝑖] histogram, the 𝑖th bin
width results to be 𝑏𝑖𝑛𝑊 𝑖𝑑𝑡ℎ[𝑖] = 𝐶𝐷𝑇ℎ𝑖𝑠𝑡[𝑖]

𝐾 · 𝑇𝐶𝐿𝐾 . The thus calculated
bin widths are saved in a Look-Up Table (LUT) named Calibration Table
(CT). It can be demonstrated that the 𝛿𝑡𝐶𝐴𝐿 error between the real 𝑡𝑝[𝑖]
and the statistically estimated 𝑏𝑖𝑛𝑊 𝑖𝑑𝑡ℎ[𝑖] is on the order of 𝑇𝐶𝐿𝐾∕𝐾.
As a result, if 𝐾 is sufficiently large, the error can be ignored [62,63].

When considering working under calibrated conditions, from the
value of each 𝐵𝑖𝑛𝑊 𝑖𝑑𝑡ℎ[𝑖] (with 𝑖 ∈ [0;𝑁 − 1]), it becomes pos-
sible to estimate the so-called Equivalent LSB (a.k.a., 𝐿𝑆𝐵𝐸𝑄) (4),
from which it is possible to extract the quantization error (i.e.; 𝜎𝑄 =
𝐿𝑆𝐵𝐸𝑄∕

√

12) [34,64].

𝐿𝑆𝐵𝐸𝑄 =

√

√

√

√
1

∑𝑖=𝑁−1
𝑖=0 𝐵𝑖𝑛𝑊 𝑖𝑑𝑡ℎ[𝑖]

⋅
𝑖=𝑁−1
∑

𝑖=0
𝐵𝑖𝑛𝑊 𝑖𝑑𝑡ℎ3[𝑖] (4)

2.2.2. Bubble errors and decoding
Discriminating between deterministic and stochastic causes of BEs

is necessary.
About deterministic factors, the former one is related to the routing

of connections between buffers and DFFs with different propagation
delays and to the skew associated with the clock signal that synchro-
nizes the DFFs, whose effects, at least theoretically, might be corrected.
As seen in Fig. 5, the signal experiences a delay as it travels from the
output of each CARRY tap to the corresponding DFF’s input and from
one CARRY block to the next one [65]. Additionally, the clock skew,
which is the arrival of the clock at various components at different
times, is a major cause of the issue [27]. The clock signal is distributed
hierarchically throughout the FPGA to reduce the skew, beginning with
the clock regions in which the device is divided. To ensure a very low
skew (i.e., below picosecond), the clock is routed to all CLBs before
being distributed to the DFF. However, skews are not negligible when
different clock regions are used by the implementation (i.e., tens of
picoseconds). Fig. 6 depicts possible effects of the presence of the clock
skew on the generation of the thermometric code. The architecture of
FPGAs does not minimize routing concerns because they solely impact
asynchronous signals. Simply put, they alter each buffer’s apparent
delay, which raises delays dispersion.

If the delay introduced by skew and routing is small compared to
the propagation delay of the buffers 𝑡𝑝[𝑖], no matter occurs, in particular
no BEs. Differently, if the propagation delay of the buffers, 𝑡 [𝑖], is
𝑝

4 
Fig. 5. Real 4-tap long TDL-TDC architecture. The orange rectangles represent extra
delays due to routing of the step signal, while the yellow rectangles represent the
clock skew due to the distribution network. The dotted rectangles covering the buffers
represent the CARRY blocks with 2 taps per block.

Fig. 6. Example of the clock skew’s effect on a 4-tap TDL where only the third bin
suffers from clock skew (top). The effect of positive skew is indicated in red, while the
effect of negative skew is indicated in blue (bottom) causing BEs.

shorter than the delay caused by skew and routing, the switching
order of the corresponding outputs may vary, introducing the BEs in
the thermometric code and making decoders fail. The two decoding
techniques known as ‘‘sum1s’’ [31] (a.k.a., bubble compression), which
counts the number of 1s in the code string, and ‘‘Log2’’ [62] (a.k.a.,
one-hot),2 which looks for the transition from 1 to 0 in the code

2 The names Log2 and one-hot have been derived from this type of decoder
because this decoding scheme resembles the operation of base 2 logarithm
and the one-hot code; over the TDL only (pseudo) thermometric codes are
propagated.
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string,3 are the two that are most frequently used in the literature when
ealing with FPGA-based implementation. So, for instance, referring to
ig. 5, ideally the four measurable lengths (i.e., STOP occurring when
TART reaches buffer 1, 2, 3 or 4) correspond to thermometric codes
‘1000’’, ‘‘1100’’, ‘‘1110’’ or ‘‘1111’’ respectively. Both decoding algo-
ithms work properly. In presence of BEs, for the same interval lengths
he (pseudo) thermometric codes could be ‘‘0010’’, ‘‘1010’’, ‘‘1011’’
r ‘‘1111’’ respectively. If this were the case, algorithm sum1s would
ork correctly (i.e, ‘‘1’’, ‘‘2’’, ‘‘3’’, and ‘‘4’’) while algorithm Log2 would
ot (i.e., ‘‘0010’’ and ‘‘1010’’ are decoded as ‘‘3’’, while ‘‘1011’’ and

‘1111’’ as ‘‘4’’). If instead the generated (pseudo) thermometric codes
ere ‘‘1000’’, ‘‘1100’’, ‘‘0110’’ or ‘‘0011’’ respectively, only algorithm
og2 (i.e., ‘‘1’’, ‘‘2’’, ‘‘3’’, and ‘‘4’’) would works while sum1s fails (i.e,
‘1100’’, ‘‘0110’’, and ‘‘0011’’ are decoded as ‘‘2’’). If neither of the two
lgorithms could be applied without faults, it would be necessary for
he decoder to also swap reordering the content of the code strings to
eturn to one of the favorable cases. This could be extremely complex
ut feasible as the effects of skew and routing are deterministic and
herefore correctable [30].

However, in addition to deterministic skew and routing errors,
here are statistical errors due to metastability phenomena that can
enerate BEs but cannot be predicted and consequently corrected.
ndeed, since the TDL is asynchronous, if the sampling of the buffer
utput violates the timing parameters (i.e., setup and hold times) of
he DFFs, these can enter a metastable state [28] and therefore, as is
nown, resolve the respective outputs randomly as 0 or 1, thus being
ble to introduce BEs in the thermometric sequence. Considering a 2-
ap TDL without skew and routing issues but in presence of random
etup and/or hold time violations, one different pseudo thermometric
ode, ‘‘01’’, might be statistically generated between the deterministic
equences (with no timing violation) ‘‘00’’, ‘‘10’’, and ‘‘11’’, which
nly depends on the START-STOP distance with no timing violation.
eferring to Fig. 7, the ideal case corresponds to deterministic codes

‘00’’, ‘‘10’’, or ‘‘11’’ with 100% probability. In presence of random
iming violations, the DFFs’ outputs Q[0] and Q[1] can be either ‘‘0’’ or
‘1’’, resulting in different codes with different probabilities depending
n how metastability is resolved. Due to this, the introduced error is
tatistical and, unlike the deterministic BE caused by skew and routing
ssues, cannot be corrected a priori. Returning to the 4-tap TDL and
o the possible (pseudo) thermometric codes ‘‘0000’’, ‘‘0010’’, ‘‘1010’’,
‘1011’’ or ‘‘1111’’ that in presence of deterministic BEs can be decoded
y the sum1s algorithm, adding DFFs timing violations could generate
ith a certain probability, for instance, the sequence ‘‘1000’’, ‘‘1010’’,

‘1010’’, ‘‘1011’’, ‘‘1111’’, with which the sum1s decoding would no
onger work. So, the main problem with BEs presence is essentially the
ncrease in the number of measurable pseudo thermometric sequences,
hose occurrence is statistical.

Fig. 8 shows sum1s and Log2 decoding approaches adopted on the
eal TDL of Fig. 5 in presence of both routing and skew issues and
etup and hold time violations. Both methods merge bins reduced from

(pseudo) thermometric codes (i.e., “0000’’, “0010”, “1010”, “1000”,
“1100”, “1110”, and “1111”) to 5 (i.e., “0”, “1”, “2”, “3”, and “4”),
increasing the quantization error of the TDL-TDC. It can also be seen
that the Log2 algorithm may produce a zero width bin (i.e., “2”), due
o the change of Q[2]’s order in time with respect to the physical
rder in the TDL due to the skew and routing issues. To solve this, a
lock that reorders the bits of the pseudo thermometric code should be
ositioned between the TDL output and the decoder input [30,66,67],

3 As can be seen in Fig. 5, and as is generally represented in the scientific
iterature, the propagation occurs from left to right. Usually (as has been done
n this paper), this convention is maintained in (pseudo) thermometric code
trings as well. Consequently, the least significant bit is on the left while the
ost significant bit is on the right (e.g., ‘‘1000’’ represents the decimal number

, while ‘‘0001’’ represents the decimal number 8).

5 
Fig. 7. Waveforms showing the statistical effect on the generated (pseudo) thermo-
metric code due to timing violations in the couple of DFFs constituting a 2-tap
TDL.

Fig. 8. The timing diagram shows all cases on a 4-tap TDL with the decoding
algorithms Log2 (bin address is the position of the first 1) and sum1s (bin address
is the sum of the ones), which are respectively the one that ignores the BE (Log2) and
the one that considers all BE (sum1s). Furthermore, it also represents the ‘‘reordered
leading one’’ [30] (a.k.a., reord Log2), that is the reordering of the taps to compensate
deterministic BEs and successive Log2 decoding. The output of decoders is represent
as decimal number in ordinate.

giving rise to the ‘‘reordered leading one’’ algorithm (i.e., reordering of
bins and decoding with Log2). To decide the reordering, someone uses
tools to simulate the clock skew in the TDL implementation (meaning
that the reordering has to be done by hand), while others iteratively
reorder the pseudo thermometric code’s bits until no zero width bins
appear. Instead, the sum1s algorithm is intrinsically quite resistant to
the disordering caused by the skew and routing issues, and does not
need additional reordering.

Other decoding techniques exist, like merging sub-TDL [59,68]
(Fig. 9). Let us suppose that the sources of BE occur only inside a MBD.
In this case, the TDL can be divided into smaller sub-TDLs free of bubble
errors (each tap of each MBD forms part of a sub-TDL, as shown in
Fig. 9), which can be decoded as if they were ideal TDLs. Separating
the TDL into sub-TDLs, determines greater quantization error that can
be reduced if the sub-TDLs are merged. The most common way to
merge the decoded sub-TDLs is using a simpler adder in a similar way
as sub-Interpolated multi-chain TDL-TDC in Super Wave Union [69].
The decoding obtained from the sub-TDL algorithm will be identical
to the sum1s (i.e., also in sub-TDL, an output equal to the number of
‘1’s present in the pseudo thermometric code is produced), therefore,
they are two different hardware circuits that produce the same result. It
follows that the choice between sub-TDL and sum1s decoder is purely
implementation-based, meaning that the one that best fits in terms of
area, timing, and power dissipation is used for the architecture of the
FPGA being utilized. For this reason, we can assume that the output
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Fig. 9. Example of merged sub-TDLs decoding.

obtained with the sub-TDL decoder is consistent with that of the sum1s
decoder; thus, for our purposes, they are equivalent solutions.

The conclusion is that in presence of deterministic and stochastic
causes it is unfeasible to identify the best decoding mechanism to solve
the BEs. Moreover, timing violations increase the entropy of the system,
making its solution even more challenging. These considerations open
the way to the ML approach.

3. Machine learning approach

In Section 3.1, an overview on what concerns with ML and Neural
Networks (NNs) preparatory to the following discussion is carried
out. Section 3.2 summarize the adopted NN; then, in Section 3.3
a novel thermometric-to-time training procedure addressed to Nutt-
Interpolated TDL-TDCs based on supervised learning is proposed. All
the algorithms developed in Sections 3.2 and 3.3 have been imple-
mented in Python.

3.1. Overview

Machine Learning (ML) [33] generates algorithms from observation
of experimental data. The principal learning methods are the super-
vised learning, unsupervised learning and reinforcement learning [70].
Supervised learning uses a set of samples and the corresponding desired
output, a.k.a label, to approximate a function that generalizes for
unknown inputs. Compared to unsupervised learning and reinforce-
ment approaches, supervised learning is simpler and more straightfor-
ward when you have a dataset where both the input and output are
known [71]. Supervised learning can be divided into classification and
regression problems [72]. Classification problems map an input to one
6 
Fig. 10. Example of a NN. Nodes A and B form part of the input layer, node E forms
part of the output layer, and nodes C and D form part of the hidden layer. A NN must
always have one input and output layers, but may have any number of hidden layers.

category from a set of 𝑘 classes, producing a function 𝑓 (⋅) that maps
R𝑛 → [1,… , 𝑘]. An example is to decide if an image depicts a cat, a
dog, or neither. In regression problems, a numerical value is predicted
from an input, producing a function 𝑓 (⋅) that mapsR𝑛 → R. An example
is to predict the future value by using preceding data. The problem
at hand is clearly a regression, as a numerical value of time must be
predicted from a (pseudo) thermometric code. For regression, due to
the complexity of this problem a NN approach has been selected [73].

The NNs [33] are complex functions that consist of a network of
interconnected nodes, as Fig. 10 shows. Each node has a set of inputs,
weights, and an activation function and its output is defined by 𝑦 =
𝑓 (𝑥 ⋅ 𝜃), where 𝑥 is an array of the node’s inputs 𝑥 = [𝑥1, 𝑥2,… , 𝑥𝑛],
𝜃 is an array of each input’s weight 𝜃 = [𝜃1, 𝜃2,… , 𝜃𝑛]𝑇 , and 𝑓 (⋅)
is the activation function; e.g., Rectified Linear Unit (ReLU), Leaky
ReLU, Sigmoid [74]. The NN’s behavior depends on the number of
layers, number of nodes on each layer, class of activation functions and
values of the weights. The values of the weights can be chosen through
the learning process (e.g., supervised, unsupervised, reinforced) with
a proper strategy. Back-propagation is the most common one used in
supervised learning consists of a series of forward and backward steps
through the NN. The forward step presents an input to the NN and waits
for the output predicted by the NN. Afterwards, each layer is trained
through supervised learning, starting with the last layer and finishing
with the first one (Fig. 11). The predicted output is compared with the
label through a loss function; e.g., Mean Squared Error (MSE), Mean
Absolute Error (MAE), Huber Loss. The weights are initialized using
a proper initialization algorithm (e.g., He, Xavier) and then modified
during the supervised leaning by using an optimization algorithm,
e.g., Adaptive Moment Estimation (ADAM), Nesterov-accelerated Adap-
tive Moment Estimation (NADAM), Root Mean Square Propagation
(RMSprop), usually based on minimizing or maximizing the loss func-
tion through the partial derivative of the loss function with respect to
each weight [75]. Once the weights of the last layer are changed, the
label which is at the output is passed backwards to the input of the
last layer and the penultimate layer is then trained with the modified
label. The procedure is repeated until all layers are trained. NNs have
lots of settings, a.k.a hyperparameters [33], to be selected: number
of layers, number of nodes per layer, number of connections between
the nodes of two layers, activation functions of the nodes, choice of
optimization algorithm, number of passes through the training data,
etc. To select the hyperparameters, cross-validation is usually used. The
training data is split in two sets, a training set and a validation set; the
neural network is trained with the training set, and then the trained NN
is used to predict the results of both the training and validation sets.
If the NN has not enough parameters to represent the chosen function,
then the loss function of both sets will be poor. This effect is referred as
underfitting in literature [33]. Conversely, if the NN fits data too well to
the training set, losing the generalization property, the loss function on
the validation set is much worse than the loss function on the training
set. This effect is referred as overfitting in literature [33]. The NN
hyperparameters are selected by iterative trimming and observing the
results on the training and validation sets, although a final test with
previously unseen data needs to be done to check the NN’s usefulness.
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Fig. 11. Back-propagation algorithm.

Fig. 12. 𝐵𝑖𝑛𝑊 𝑖𝑑𝑡ℎ (left) and the corresponding distribution (right) acquired
respectively in Xilinx 28-nm Artix-7 (XC7A100TFG256-2).

Fig. 13. 𝐵𝑖𝑛𝑊 𝑖𝑑𝑡ℎ (left) and the corresponding distribution (right) acquired
respectively in Xilinx 20-nm XCKU040-FFVA1156-2-E Kintex UltraScale.

3.2. Proposed NN

It was chosen to opt for an NN because the goal is to identify
the optimal conversion curve between (pseudo) thermometric code
and picoseconds; consequently, in order to be conservative, the most
comprehensive calculation system was chosen, namely an NN-based
approach. This choice was also dictated by the fact that the 𝐵𝑖𝑛𝑉 𝑎𝑙𝑢𝑒
curves produced by classical TDL-TDCs present in the scientific liter-
ature and implemented in FPGA are highly non-linear [69]. This is
induced by a strong dispersion of propagation times of the various
taps, resulting in very dispersed 𝐵𝑖𝑛𝑊 𝑖𝑑𝑡ℎ values. In reference to
the size of the TDL, for technological reasons related to the size of
FPGAs and the maximum clock they can support, referring to Table 1,
TDLs implemented on 28-nm 7-Series FPGAs are characterized by
approximately 180–220 taps [37,54], while those on 20-nm UltraScale
FPGAs by approximately 800–1000 [59]. In Figs. 12 and 13, the
𝐵𝑖𝑛𝑊 𝑖𝑑𝑡ℎ (left) and the corresponding distribution (right) acquired
respectively in Xilinx 28-nm Artix-7 (XC7A100TFG256-2) and Xilinx
20-nm XCKU040-FFVA1156-2-E Kintex UltraScale are depicted.

Regarding the decoders, according to the scientific literature,
whether they are Log2 [62] or sum1s types [31], they are always
pipeline structures that proceed dichotomously, with an input stage
having a number of single-bit inputs equal to the size of the TDL. This
means 256 single-bit inputs for Xilinx 28-nm 7-Series FPGAs and 1024
for 20-nm UltraScale.
7 
Fig. 14. Log2 (left) and sum1s (right) decoder’s topologies for a 8-bit (pseudo)
thermometric code.

Fig. 15. Structure of the NN used for Xilinx 28-nm Artix-7 (XC7A100TFG256-2) (left)
and Xilinx 20-nm XCKU040-FFVA1156-2-E Kintex UltraScale (right); note that the 10
hidden layers and the output layer are the same, while only the input layer changes,
characterized by 256 and 896 nodes respectively.

The internal stages, in the case of Log2 decoders, are generally
characterized by 𝑀 inputs and 𝑀∕2 outputs that propagate to the next
stage the portion of the TDL where the 1-0 transition occurred. On
the other hand, sum1s decoders are usually organized as tree adders,
where each intermediate stage has 𝑀 inputs of 𝑚 bits and 𝑀∕2 outputs
of 𝑚 + 1 bits. A sketch is reported in Fig. 14. Each white block of
Fig. 14 represents the basic engine element that the hardware uses to
compute the Log2 or the sum1’s from the 𝑀 inputs and 𝑀∕2 outputs.
The sole function of this element is to propagate the binary input
information to output in order to extract the 𝐵𝑖𝑛𝐴𝑑𝑑𝑟𝑒𝑠𝑠 from the
(pseudo) thermometric input code; it will then be the calibrator’s task
to convert the 𝐵𝑖𝑛𝐴𝑑𝑑𝑟𝑒𝑠𝑠 (binary-type information) into time.

The basic structure of the proposed NN, identical in the hidden and
output layers for both the 28-nm and 20-nm cases, closely follows the
topology described above. Therefore, it consists of 10 fully connected
hidden layers (since 1024 = 210 and 10 are the pipeline stages request
for decoding a 1024-long TDL) where the 𝑖th layer, with 𝑖 ∈ [1; 10],
is composed by 210−𝑖+1 nodes (e.g., 1024 for the first, 512 for the
second, and 2 for the tenth). The input layer is composed by one node
for each bit of the (pseudo) thermometric code; i.e., 256 nodes for
the 28-nm technology node (Section 4) and 896 nodes for the 20-
nm technology node (Section 5); this solution is chosen to adapt the
(pseudo) thermometric code with different length at the same internal
structure. The fully connected layers are used to emulate the reordering
functionality reported in [30,66,67]. The output layer consists of only
one node and is interchanged with the 2 nodes of the 10th hidden
layer. The graphical representation of the proposed NNs are reported
in Fig. 15.

Considering the absence of this topic in scientific literature and
the multitude of degrees of freedom in NN design (e.g., number of
layers, number of nodes per layer, node connectivity, weights, and
activation function), it was chosen to mimic the hardware structure of
the decoding mechanism in the topology of the NN illustrated above.
This is clearly visible when comparing Figs. 14 and 15, where it can be
seen how the engine for computing Log2 and sum1s has been replaced
by a node with the corresponding activation function and weights. A
leaky ReLU activation function was chosen because the task of the
hardware engine is to propagate or not the binary information to the
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output, similar to ReLU. The choice of leaky ReLU was made to avoid
potential convergence issues. In hardware, each engine manages binary
input and output information, deciding whether to propagate it forward
or not. Meanwhile, the calibration task involves converting this binary
information into time. In the proposed NN, since the input is a (pseudo)
thermometric code (i.e., 0 or 1), it is the weights that contribute to
transforming this information into time, thus serving as a distributed
calibrator. For this reason, overly abrupt activation functions were not
considered. In this context, as an activation function, a compromise
between simplicity and performance was chosen [74], relying on the
widely used leaky ReLU activation function (Deep) with an alpha value
of 0.01. Moreover the weight are initialized using He algorithm with a
uniform distribution.

The choice fell on Leaky ReLU rather than simple ReLU to address
the Dying ReLU problem [76]. Since the neural network (NN) will
act as a decoder and a distributed bin-by-bin calibrator, the nodes
of the NN will need to replace the logical/mathematical operations
performed by logic gates in the FPGA-implemented decoder logic.
ReLU, as highlighted in [77], using the example of an XOR (i.e., a
basic element of addition and thus of the sum1’s decoder), suffers from
the Dying ReLU problem in this scenario, which is resolved with Leaky
ReLU.

The purpose of the NN is to perform the thermometric-to-time
conversion recognizing stochastic BEs from deterministic ones and
compensate for them improving the precision of the TDC. In this way,
it will be possible to compare the precision achieved through NN with
that of the main conversion algorithms known in the literature and
presented in Section 2.2.2.

3.3. Proposed NN supervised learning training algorithm

The principal metric to characterize TDCs is the precision
(i.e., 𝜎𝑇𝐷𝐶 ), which measures the consistency and repeatability of a
measurement [78]. One way to measure the precision is the START vs.
STOP Precision (SSP),4 which consists of the combination of standard
deviations obtained averaging measures of a fixed time interval 𝑇𝑚𝑒𝑎𝑠
characterized by an intrinsic jitter 𝜎𝑇𝑚𝑒𝑎𝑠 between the START and STOP
signals

𝑆𝑆𝑃 =
√

𝜎2𝑇𝑚𝑒𝑎𝑠 + 𝜎2𝑇𝐷𝐶 (5)

In this sense, we can express the precision (𝜎𝑇𝐷𝐶 ) as function of
different contribution obtaining,

𝑆𝑆𝑃 =
√

𝜎2𝑇𝑚𝑒𝑎𝑠 + 𝜎2𝑁𝐼 + 𝜎2𝑄,1 + 𝜎2𝑄,2 + 𝜎2𝐸𝐿𝑁 (6)

where 𝜎𝑁𝐼 is the uncertainty associated to the coarse contribution in
Nutt-Interpolation due to the jitter of the clock; 𝜎𝑄 is the contribution
due to quantization errors [79] of the fine parts, i.e., due to the
TDL-TDC; and 𝜎𝐸𝐿𝑁 is the total electronic jitter related to electronic
components on the START and STOP channels (that can be consider
negligible if high-speed electronic is used) [80]. Actually, the jitter
contributions composing 𝜎𝐸𝐿𝑁 may be due to random jitter phenomena
of the circuitry interposed between the START/STOP signals and the
TDC, and to threshold jitter phenomena, defined as the ratio between
the electronic voltage noise affecting the circuit (𝑣𝑛) and the slope of
the signals (𝑆𝑙); that is, i,e. 𝜎𝐸𝐿𝑁 = 𝑣𝑛∕𝑆𝑙. Among these contributions,
only 𝜎𝑄,1 and 𝜎𝑄,2 can be modified at the TDL-TDC’s design stage, by
selecting the best combination of decoder and calibration procedures,
if the classical approach is adopted, or, as suggest in this paper, using
a ML-based approach. The Eq. (5) does not account for the impact of
TDL non-linearities on SSP, as it is assumed to work with calibrated

4 The single-shot precision is the precision contribution offered by the single
registration of one of the two START and STOP events that define 𝑇𝑚𝑒𝑎𝑠. In the
case where the two measurement channels for START and STOP events offer
the same precision, it corresponds to 𝑆𝑆𝑃∕

√

2.
8 
Fig. 16. Waveform of the Nutt-Interpolation considering a single TDL-TDC for the
fine measurements (i.e., 𝑇1,𝑓 𝑖𝑛𝑒 and 𝑇2,𝑓 𝑖𝑛𝑒) plus a coarse counter for the coarse part
(i.e., 𝑇𝑐𝑜𝑎𝑟𝑠𝑒).

systems. Consequently, such non-idealities are included for in 𝜎𝑄,1 and
𝜎𝑄,2 through the 𝐿𝑆𝐵𝐸𝑄 presented in (4).

Aim of the proposed algorithm is approximating a function 𝑓 (𝑋, 𝜃)
that maps (pseudo) thermometric codes to time values (𝐵𝑖𝑛𝑉 𝑎𝑙𝑢𝑒),
where 𝑋 refers to the (pseudo) thermometric code, and 𝜃 to the
parameters of the NN. A supervised learning method can build 𝑓 (𝑋, 𝜃),
but an array of inputs with corresponding desired outputs (labels) is
also needed. This list of inputs and desired outputs is called training
list. The selected training method is the bin inference through SSP
minimization by repeating 𝐿 times the measurement of the same time
interval 𝑇𝑚𝑒𝑎𝑠.

It was decided to focus on a specific scenario to determine 𝑓 (𝑋, 𝜃)
by utilizing data from the period measurement of a single channel
of the Nutt-Interpolator, aiming to minimize computational overhead
(i.e., only one NN is required because only one thermometric-to-time
converting function is requested). In this context, as represented in
Fig. 16, 𝑇𝑚𝑒𝑎𝑠 denotes the period of a signal measured by a single TDL-
TDC (as fine) plus a coarse counter; in this context, the START or
STOP signals that define the time interval under measurement are two
consecutive rising edges, while 𝜎𝑇𝑚𝑒𝑎𝑠 represents cycle-to-cycle jitter.
With reference to (2) and Fig. 16, 𝑇2,𝑓 𝑖𝑛𝑒 and 𝑇1,𝑓 𝑖𝑛𝑒 are the fine part
of the measurement produced by the same TDL-TDC (i.e., 𝑇2,𝑓 𝑖𝑛𝑒 and
𝑇1,𝑓 𝑖𝑛𝑒 are derived from the same thermometric-to-time function, with
𝑇2,𝑓 𝑖𝑛𝑒 taking as input the thermometric code of the STOP edge, and
𝑇1,𝑓 𝑖𝑛𝑒 taking as input that of the START edge.) with a contribution 𝜎𝑄
(i.e., 𝜎𝑄,1 = 𝜎𝑄,2), while 𝑇𝑐𝑜𝑎𝑟𝑠𝑒 represents the distance in clock cycles
with precision 𝜎𝑁𝐼 .

Under this condition (6) can be written as follow,

𝑆𝑆𝑃 =
√

𝜎2𝑇𝑚𝑒𝑎𝑠 + 𝜎2𝑁𝐼 + 2𝜎2𝑄 + 𝜎2𝐸𝐿𝑁 (7)

From (7) knowing that 𝜎𝑄 = 𝐿𝑆𝐵𝐸𝑄∕
√

12 we obtain,

𝑆𝑆𝑃 =
√

𝜎2𝑇𝑚𝑒𝑎𝑠 + 𝜎2𝑁𝐼 +
2
12

𝐿𝑆𝐵2
𝐸𝑄 + 𝜎2𝐸𝐿𝑁 (8)

Reverting (8) we have the following inequality that become an
identity only if jitters are negligible.

𝐿𝑆𝐵𝐸𝑄 ≤
√

12
2

⋅ 𝑆𝑆𝑃 ≃ 2.45 ⋅ 𝑆𝑆𝑃 (9)

The SSP of the collected data set can be expressed as multivariate
function expressed in matrix form as

𝐷𝐿,1 = 𝑆𝐿,𝑇ℎ𝑒𝑟𝑚 ⋅ 𝐹𝑇ℎ𝑒𝑟𝑚,1 + 𝐶𝐿,1 (10)

where 𝐷𝐿,1 is a (𝐿, 1)-vector containing the data-set of 𝐿 values 𝑇𝑚𝑒𝑎𝑠;
𝐶𝐿,1 is a (𝐿, 1)-vector of the coarse values 𝑇𝑐𝑜𝑎𝑟𝑠𝑒 of each one of the 𝐿
samples; 𝐹𝑇ℎ𝑒𝑟𝑚,1 a (𝑇ℎ𝑒𝑟𝑚,1)-vector that represents the thermometric-
to-time function that assigns to each (pseudo) thermometric code in the
data-set (i.e., 𝑇ℎ𝑒𝑟𝑚) a time value (i.e., 𝐵𝑖𝑛𝑉 𝑎𝑙𝑢𝑒[𝑖] with 𝑖 ∈ [0; 𝑇ℎ𝑒𝑟𝑚−
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1]). In this sense, 𝐹𝑇ℎ𝑒𝑟𝑚,1 represents decoding plus calibration product.
Finally, the 𝑆𝐿,𝑇ℎ𝑒𝑟𝑚 is a (𝐿, 𝑇ℎ𝑒𝑟𝑚)-matrix filled with +1, −1, and 0,
where each row is one of the 𝐿 samples and each column corresponds
o the contribution of each (pseudo) thermometric code in each sample
eferring to 𝑇1,𝑓 𝑖𝑛𝑒 and 𝑇2,𝑓 𝑖𝑛𝑒.

For example, in case of 4-tap TDL (without BE) with only 𝑇ℎ𝑒𝑟𝑚 =
possible different thermometric codes (‘‘0000’’, ‘‘1000’’, ‘‘1100’’,

‘1110’’, and ‘‘1111’’), (10) becomes

⎡

⎢

⎢

⎢

⎢

⎣

𝑇𝑚𝑒𝑎𝑠[0]
𝑇𝑚𝑒𝑎𝑠[1]

⋯
𝑇𝑚𝑒𝑎𝑠[𝐿 − 1]

⎤

⎥

⎥

⎥

⎥

⎦

=

1 0 0 −1 0
0 1 0 0 −1
⋮ ⋮ ⋮ ⋮ ⋮
0 −1 0 1 0

⎤

⎥

⎥

⎥

⎥

⎦

⋅

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐵𝑖𝑛𝑉 𝑎𝑙𝑢𝑒[0]
𝐵𝑖𝑛𝑉 𝑎𝑙𝑢𝑒[1]
𝐵𝑖𝑛𝑉 𝑎𝑙𝑢𝑒[2]
𝐵𝑖𝑛𝑉 𝑎𝑙𝑢𝑒[3]
𝐵𝑖𝑛𝑉 𝑎𝑙𝑢𝑒[4]

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

𝑇𝑐𝑜𝑎𝑟𝑠𝑒[0]
𝑇𝑐𝑜𝑎𝑟𝑠𝑒[1]

⋯
𝑇𝑐𝑜𝑎𝑟𝑠𝑒[𝐿 − 1]

⎤

⎥

⎥

⎥

⎥

⎦

This means that, if we take the measurement with index 0, 𝑇𝑚𝑒𝑎𝑠[0],
s an example, it will have produced a certain number of counts by
he coarse counter equal to 𝑇𝑐𝑜𝑎𝑟𝑠𝑒[0], and a pair of thermometric codes
e.g., ‘‘0000’’ and ‘‘1110’’ on the START and STOP signals respectively),
orresponding to 𝑇𝑓𝑖𝑛𝑒,1 = 𝐵𝑖𝑛𝑉 𝑎𝑙𝑢𝑒[0] and 𝑇𝑓𝑖𝑛𝑒,2 = 𝐵𝑖𝑛𝑉 𝑎𝑙𝑢𝑒[3],
esulting in a total fine contribution of 𝑇𝑓𝑖𝑛𝑒,1 − 𝑇𝑓𝑖𝑛𝑒,2.

The mean value 𝑇 𝑚𝑒𝑎𝑠 of the 𝑇𝑚𝑒𝑎𝑠 time interval measurements, can
e calculated by multiplying the vector 𝐷𝐿,1 by a (1, 𝐿)-vector of ones

(i.e., 1𝑠1,𝐿 = [1, 1,… , 1]) and normalizing by 𝐿,

𝑇 𝑚𝑒𝑎𝑠 = (1𝑠1,𝐿 ⋅𝐷𝐿.1) ⋅
1
𝐿

(11)

The 𝑀𝑒𝑎𝑛𝐷𝑖𝑓𝑓𝐿,1 = 𝑇𝑚𝑒𝑎𝑠 − 𝑇 𝑚𝑒𝑎𝑠 results an (𝐿, 1)-vector of all the
samples and can be written as 𝑀𝑒𝑎𝑛𝐷𝑖𝑓𝑓𝐿,1 = 𝐷𝐿,1−1𝑠𝑇1,𝐿 ⋅𝑇 𝑚𝑒𝑎𝑠 where

represent the operation of transposed.
Finally, the SSP can be expressed as

𝑆𝑃 =

√

𝑀𝑒𝑎𝑛𝐷𝑖𝑓𝑓𝑇
𝐿,1 ⋅𝑀𝑒𝑎𝑛𝐷𝑖𝑓𝑓𝐿,1
𝐿 − 1

(12)

The SSP of a set of samples is a function that depends only on
the thermometric-to-time conversion, on vector 𝐹𝑇ℎ𝑒𝑟𝑚,1. In fact, the
array 𝑆𝐿,𝑇ℎ𝑒𝑟𝑚 (fine data) and the vector 𝐶𝐿,1(coarse data) are fixed in
the training set. In the SSP, each variable is the 𝐵𝑖𝑛𝑉 𝑎𝑙𝑢𝑒 assigned to
each (pseudo) thermometric code represented by 𝐹𝑇ℎ𝑒𝑟𝑚,1. Therefore,
the SSP is a multivariate function of 𝑇ℎ𝑒𝑟𝑚 number of variables. The
SSP has different contributions, Eq. (7), if the thermometric-to-time
values of (10) (i.e., 𝐹𝑇ℎ𝑒𝑟𝑚,1) are changed, the only contribution that
affects the SSP is the quantization error (𝜎2𝑄) so the 𝐿𝑆𝐵𝐸𝑄. The
minimum SSP (SPPmin) should correspond to the best thermometric-to-
time conversion, being possible that the optimized 𝐹𝑇ℎ𝑒𝑟𝑚,1 is different
from the 𝐵𝑖𝑛𝑉 𝑎𝑙𝑢𝑒 used in the initialization phase. In addition, to
avoid generating of ‘‘non-acceptable solutions from a physical point of
view’’ for the 𝐹𝑇ℎ𝑒𝑟𝑚,1 (e.g.; a constant vector 𝐹𝑇ℎ𝑒𝑟𝑚,1 = 𝐾 ∀𝑇ℎ𝑒𝑟𝑚), an
additional constraint has been added; namely, the joint minimization
between SSP and the 𝐿𝑆𝐵𝐸𝑄 obtained from the vector 𝐹𝑇ℎ𝑒𝑟𝑚,1. Indeed,
we need to prevent the case in which the algorithm reduces the SSP
to zero, caused by the fact that all measurements 𝐷𝐿,1 take the same
value; i.e., 𝐷𝐿,1 = 𝐶𝐿,1 + 𝐾. The resulting vector 𝐹𝑇ℎ𝑒𝑟𝑚,1 from the NN
algorithm, from a physical perspective, corresponds to the 𝐵𝑖𝑛𝑉 𝑎𝑙𝑢𝑒 of
a classic TDL-TDC composed of a decoder and a bin-by-bin calibrator.
Ergo, by reversing (3), considering that 𝐹𝑇ℎ𝑒𝑟𝑚,1 is 𝐵𝑖𝑛𝑉 𝑎𝑙𝑢𝑒[𝑖] with
𝑖 ∈ [0; 𝑇ℎ𝑒𝑟𝑚 − 1], it is possible to deduce the temporal duration
and the order of (pseudo) thermometric codes (i.e., 𝐵𝑖𝑛𝑊 𝑖𝑑𝑡ℎ[𝑖] with
9 
𝑖 ∈ [0; 𝑇ℎ𝑒𝑚− 1]), and thus the CT. Now, using Eq. (4), it is possible to
calculate the 𝐿𝑆𝐵𝐸𝑄.

Indeed, in the extreme case where 𝐹𝑇ℎ𝑒𝑟𝑚,1 results a constant vector,
the curve 𝛥𝐹𝑇ℎ𝑒𝑟𝑚,1 presents a peak for 𝑇ℎ𝑒𝑟𝑚 = 0, maximizing 𝐿𝑆𝐵𝐸𝑄.

In summary, to train the NN, these steps should be followed.

(1) Measure a fixed time interval 𝑇𝑚𝑒𝑎𝑠 with the same TDL 𝐿 times.
The acquired (pseudo) thermometric codes compose the training
set.

(2) Use an optimization algorithm to minimize the output of the
loss function (Section 3.1 and Fig. 11) calculated as the Mean
Squared Error (MSE) between the desired output 𝑇𝑚𝑒𝑎𝑠 and the
output of the NN. There are many ways of multivariate function
minimization [81–84]. Some use the gradients of the objective
function, others use bounds for the variables, others perform
local instead of global optimization, and so on. We have opted
for the Adaptive Moment Estimation (ADAM) choosing beta1 =
0.9, beta 2 = 0.999, mini-batch = 64, and epoch = 20. MSE and
ADAM have been chosen because they are the more common
solutions in NN.

(3) The vector 𝐹𝑇ℎ𝑒𝑟𝑚,1 obtained by minimizing the training set’s
SSP contains the expected time value assigned to each (pseudo)
thermometric code. Now, add to a training list the (pseudo)
thermometric codes as inputs, and their bin values in 𝐹𝑇ℎ𝑒𝑟𝑚,1
as labels.

(4) Repeat steps 1 through 3 as many times as the amount of samples
in the training list is sufficient high to recognize patterns caused
by deterministic BEs and to distinguish between deterministic
and stochastic BEs. We considered the training process to be
concluded when the SSP values were comparable to the state-
of-the-art, i.e., 10 ÷ 20 ps r.m.s. for the 28-nm solution [30]
and 5 ÷ 10 ps r.m.s. for the 20-nm one [66]. Since 𝐿𝑆𝐵𝐸𝑄 is
physically linked to SSP via (9), we considered the learning
process concluded when the SSP entered the above-mentioned
ranges with 𝐿𝑆𝐵𝐸𝑄 at least 2.7 times the SSP (i.e., 2.45 + 10%
tolerance).

(5) Perform supervised learning. The NN trained with the train-
ing list is subsequently employed to predict time values from
(pseudo) thermometric codes instead of the traditional decoding
plus calibration procedure. Indeed, if the training, as described
in steps 1 and 4, is executed successfully, the NN will be able
to recognize repetitive patterns caused by deterministic BEs,
compensating for them and minimizing the SSP as intended,
without being negatively influenced by stochastic BEs in terms
of SSP.

(6) Compare the result obtained in step 5 with the solutions from
state-of-the-art classic decoders plus bin-by-bin calibration avail-
able in scientific literature.

For the learning phase, given the novelty of the subject with limited lit-
erature, and considering the various degrees of freedom (e.g., learning
type and algorithm, loss function, choice of optimizer, and parameter
selection), we opted for supervised learning. The ADAM optimizer
was chosen because it is a common and effective optimizer that is
well-suited to noisy gradients (i.e., primarily due, in our case, to the
presence of electronic noise 𝜎𝐸𝐿𝑁 in the SSP) and complex models
(i.e., BE distribution) [85]. Its effectiveness in general-purpose appli-
cations is confirmed by several publications [86,87]. Various guides
and tools on the selection of ADAM hyperparameters are available [88–
90], and both agree on the default values for the hyperparameters
alpha (i.e., 0.001), beta1 (i.e., 0.9), beta2 (i.e., 0.999), and epsilon
(i.e., 10−8), which is why these values have been maintained. Instead,
we worked with a mini-batch size of 64 to achieve a good compro-
mise between gradient accuracy and computational efficiency, without
focusing on convergence time in this initial investigative paper [91].

The decision for supervised learning was driven by its simplicity
compared to unsupervised and reinforcement learning, but also by the
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fact that, with the measurement interval 𝑇𝑚𝑒𝑎𝑠 known through (10),
it was possible to assign an expected value in time to each input
(pseudo) thermometric code. The same learning model was applied to
both technology nodes.

4. Test and comparison in 28-nm Artix-7 FPGA

For experimental validation, the suggested method has been imple-
mented in a Xilinx 28-nm Artix-7 (XC7A100TFG256-2) FPGA device
that is hosted in an instrument (FELIX) for timing measurements [92]
provided by TEDIEL S.r.l. [93] that guarantee a voltage noise 𝑣𝑛 lower
than 18 mV r.m.s. Moreover, each channel of the FELIX system has a
threshold comparator characterized by a random jitter of 2 ps r.m.s.
For the purpose of the paper, the FELIX system was programmed with
firmware different from those stock ones advertised in the commercial
product brochures. The reference TDL-TDC is a 256-taps TDL based
on CARRY4 (i.e., 𝑁 = 256) and the Nutt-Interpolation is performed
with clock of a period of 2.4 ns and a jitter lower than 90 fs r.m.s.,
this make the 𝜎𝑁𝐼 negligible [62]. The sum1s followed by a bin-by-bin
calibrator is clearly the best decoding method, according to an analysis
of the scientific literature on the 7-Series, and is thus adopted as the
benchmark for the traditional approach.

In these context, two firmware were produced; one, used as a
reference, with a classic TDL-TDC followed by a sum1s decoder and
bin-by-bin calibrator instantiated in FPGA; the other, used as a test, in
which (pseudo) thermometric codes generated by the TDL-TDC, along
with the coarse measurement, were sent and stored on a PC via USB
2.0. Subsequently, offline, the data acquired by the test firmware were
processed by the NN algorithm described in Section 3.2; then, once the
conversion function from (pseudo) thermometric code to picoseconds
was obtained, relying on Eq. (10), the timestamps were extracted for
comparison with the reference firmware.

The measurement signal, a 0 V–2 V square wave, was generated
using an Arbitrary Waveform Generator (AWG) series 5000 provided by
ACTIVE Technologies characterize by a slope 𝑆𝑙 of 12.5 mV∕ps (i.e., an
amplitude of 2 V with a rise time of 160 ps). In these conditions it
is possible to estimate the 𝜎𝐸𝐿𝑁 equal to 3.49 ps r.m.s. considering a
contribution of 2.83 ps r.m.s. for the random jitter (i.e., 2 ps r.m.s. for
both START and STOP) and a contribution of 2.04 ps r.m.s. for the
threshold (i.e., 18 mV∕12.5 mV∕ps for both START and STOP). Referring
to (7), AWG-5000 was used to generate the periodic signal with period
𝑇𝑚𝑒𝑎𝑠 characterized by a jitter 𝜎𝑇𝑚𝑒𝑎𝑠 < 2 ps r.m.s., and supplied to the
various firmware; so following (5), the precision offered by the two
TDL-TDCs (references vs test) from the SSP is extracted. A scheme of the
measurement setup is reported in Fig. 17. Given that the periodic signal
generated by AWG-5000 is entirely uncorrelated with the clock of the
FELIX used in the Nutt-Interpolation, it follows that the distribution of
fine measurements, hence the thermometric codes acquired by the TDL,
tends towards a uniform distribution [61]; this allowed us to have an
appropriate dataset to use in the neural network (NN).

4.1. Experimental results

Firstly, the test firmware is used to estimate the number of samples,
denoted as 𝐿, for setting up the trending list of the NN. For this purpose,
a continuous number of 𝑇𝑚𝑒𝑎𝑠 measurements were performed until satu-
ration of the (pseudo) thermometric codes uniqueness, number marked
as 𝑇ℎ𝑒𝑟𝑚, was observed. Green curve in Fig. 18 (with ordinate on the
left axis) shows that 𝑇ℎ𝑒𝑟𝑚 saturates at 1705 with a number of about

5 The total number of (pseudo) thermometric codes does not saturate at
the maximum bin value of the bins (i.e., 256) because, in order to ensure
proper synchronization between the TDL-TDC and the coarse counter, the
implemented TDL introduces a slightly longer delay than the 2.4 ns clock
period used to clock the coarse counter.
10 
Fig. 17. Graphic representation of the measurement setup, (top) reference firmware
connected to the PC for data readout, and (bottom) test firmware with the proposed
NN algorithm onboard on the PC.

𝐿 = 3 ⋅ 105 performed measurements; this means that the statistics of
collecting (pseudo) thermometric codes can be considered exhaustive.
Subsequently, the reference firmware (i.e., real-time fully FPGA-based
system with sum1s decoder followed by bin-by-bin calibrator) was
running in the device and we noticed that the univocal 𝐵𝑖𝑛𝐴𝑑𝑑𝑟𝑒𝑠𝑠
values at calibrator input saturated at 154, due to BEs and merging
effect of the sum1s decoder (red curve in Fig. 18 with ordinate on
the left axis). The gap of 170 − 154 = 16 between univocal (pseudo)
thermometric codes and decoded ones means that, due to BEs, at least
16 codes over 170 (i.e., 9.4%) are confused with others during the
sum1s decoding process, resulting in errors of the estimation of the
𝐵𝑖𝑛𝑊 𝑖𝑑𝑡ℎ thus an increase in quantization error with respect to the
optimal case.

Moreover, the standard deviation of the measurement performed
in real-time by the reference firmware (blue curve in Fig. 18 with
ordinate on the right axis) stabilized at the constant value 13.3 ps r.m.s.
corresponding to 𝑇ℎ𝑒𝑟𝑚 and 𝐵𝑖𝑛𝐴𝑑𝑑𝑟𝑒𝑠𝑠 saturation. In conditions of
saturation of both these values, we have thus confirmed 𝐿 = 3 ⋅ 105 to
be the minimum number of measurements necessary for training the
NN. In this way, the NN was trained using 10 measured sets of about
3 ⋅ 105 samples.

The output of NN is the thermometric-to-time conversion function
from the 170 (pseudo) thermometric codes, acquired with the test
firmware, to picoseconds. This conversion function was used to plot
Figs. 19 and 20.

To highlight the extent of ‘‘bin merging’’, the BEs frequency of
the (pseudo) thermometric code acquired with the test firmware was
investigated. Fig. 19 shows that MBD was at most 3 and only a minimal
percentage of the codes is affected, less than 10%, to be compared with
the 9.4% of the BE merging effect observed in Fig. 18.

The scatter plot in Fig. 20 was created by comparing the
thermometric-to-time conversion map of the 170 (pseudo) thermo-
metric codes, acquired with the test firmware, with respect to the
𝐵𝑖𝑛𝑊 𝑖𝑑𝑡ℎ estimated by the referenced firmware and used to generate
the 𝐵𝑖𝑛𝑉 𝑎𝑙𝑢𝑒 curve. In this sense, such a scatter plot can be considered
as a comparison metric between the test firmware and the reference
one, namely between the proposed ML approach (NN described in
Section 3) and the classical one (sum1s with bin-by-bin real-time
calibrator in FPGA present in the state-of-the-art).

The scatter plot represents a mapping between the 154 𝐵𝑖𝑛𝐴𝑑𝑑𝑟𝑒𝑠𝑠
outputs from the sum1s decoder of the reference firmware and the
170 (pseudo) thermometric codes acquired by the test firmware and
fed into the NN. In this context, each 𝐵𝑖𝑛𝐴𝑑𝑑𝑟𝑒𝑠𝑠 that has undergone
a ‘‘bin merging’’ effect is decomposed into its corresponding 2, 3, or
4 components of (pseudo) thermometric code. Additionally, for each
𝐵𝑖𝑛𝐴𝑑𝑑𝑟𝑒𝑠𝑠 that has undergone ‘‘bin merging’’ as depicted in the figure,
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Fig. 18. Number of univocal (pseudo) thermometric codes (green) acquired with the
test firmware, 𝑏𝑖𝑛𝐴𝑑𝑑𝑟𝑒𝑠𝑠 obtained by sum1s decoding (red), and SSP after bin-by-bin
calibration (blue) on the reference firmware. The 𝑥-axis represents the 𝐿 number of
performed measurements. The left 𝑦-axis represents the number of codes reached by
the test/reference firmware, while the right 𝑦-axis indicates the SSP values in ps r.m.s.
achieved by the reference firmware.

Fig. 19. Histograms of bubble error length values measured in the generated (pseudo)
thermometric codes on the test firmware in 28-nm 7-Series Xilinx Artix-7 (CARRY4
primitive).

the quantization contribution offered by the two slowest (pseudo)
thermometric codes (i.e., bigger in therm of propagation delay) subject
to ‘‘bin merging’’ has been represented on the x and 𝑦 axes of the plot.

We positioned the slowest contribution (BiggestBin in the figure),
expressed in picoseconds, on the 𝑥-axis, and the secondary contribution
(secondBiggestBin in the figure) on the 𝑦-axis. As evident from the
scales on both axes, each 𝐵𝑖𝑛𝐴𝑑𝑑𝑟𝑒𝑠𝑠 has a second contribution that
is 10 times faster (i.e., smaller in therm of propagation delay) than the
first slowest one. Therefore, in terms of quantization error, the (pseudo)
thermometric code responsible for the second contribution is negligible.

The SSP achieved by the test firmware was then compared to
that of the reference firmware (i.e., 13.3 ps r.m.s. as shown in blue in
Fig. 18) by comparing the histograms and their respective standard
deviations obtained from a set of 𝐿 = 3 × 105 samples, as depicted
in Fig. 21. With the NN, we achieved a very similar and better SSP
value (i.e., 13.1 ps r.m.s.). The 𝐾 samples used to evaluate the SSP in the
test and reference firmwar are obviously different from the 10×𝐿 used
for training the NN to demonstrate that no underfitting and overfitting
issues are present.

From a purely mathematical standpoint, since the mechanism of
coarse attribution is common to both, the only difference in the mea-
sured value between the test firmware and the reference firmware,
as referred to in (10), lies in the calculation of the fine component
(i.e., 𝑆𝐿,𝑇ℎ𝑒𝑟𝑚 ⋅ 𝐹𝑇ℎ𝑒𝑟𝑚,1). Indeed, concerning the test firmware, 𝐹𝑇ℎ𝑒𝑟𝑚,1
corresponds to the thermometric-to-time conversion function resulting
from the NN, while for the reference firmware, 𝐹𝑇ℎ𝑒𝑟𝑚,1 corresponds to
the 𝐵𝑖𝑛𝑉 𝑎𝑙𝑢𝑒 values extracted from the sum1s decoder and bin-by-bin
calibration mechanism residing in the FPGA.
11 
Fig. 20. Scatter plot of the merged bin’s width composition observed on the 28-nm
7-Series Xilinx Artix-7 (CARRY4 primitive).

Fig. 21. SSPs obtained with the reference firmware 13.3 ps r.m.s. (left) and the test
firmware 13.1 ps r.m.s. (right); in blue, the histogram of the actual data centered at
zero, and in red, the corresponding fitting.

In order to prevent the presence of underfitting and overfitting
issues dependent on 𝑇𝑚𝑒𝑎𝑠, SSP measurements were repeated on both
the reference and test firmware (without retraining the NN), varying
the frequency of 𝑇𝑚𝑒𝑎𝑠 for 6 different values (i.e., from 775 kHz to
800 kHz with a step of 5 kHz), yielding identical results. This allowed
us to verify that the above-mentioned performances are independent
of the fine contribution value (i.e., 𝑇1,𝑓 𝑖𝑛𝑒 − 𝑇2,𝑓 𝑖𝑛𝑒). Indeed, from
(2), considering the contribution coarse (i.e., 𝑓𝑙𝑜𝑜𝑟(𝑇𝑚𝑒𝑎𝑠∕𝑇𝐶𝐿𝐾 ) where
𝑇𝐶𝐿𝐾 is the 2.4 ns period that feeds the Nutt-Interpolation), resulting in
536, 534, 530, 527, 523, 520 clock pulses for the coarse part, we can
extract also the fine contribution (i.e., 𝑇1,𝑓 𝑖𝑛𝑒 − 𝑇2,𝑓 𝑖𝑛𝑒 = 𝑇𝑚𝑒𝑎𝑠 − 𝑇𝑐𝑜𝑎𝑟𝑠𝑒)
which results in 63%, 19%, 79%, 43%, 11%, 83% of 𝑇𝐶𝐿𝐾 for the 6
different values tested above.

4.2. Discussions

From the SSP results obtained in Section 4.1 on the test firmware
(i.e., 13.1 ps r.m.s) and the reference firmware (i.e., 13.3 ps r.m.s), con-
sidering the sample jitter 𝜎𝑇𝑚𝑒𝑎𝑠 equal to 2 ps r.m.s., it was possible to
extract the precision 𝜎𝑇𝐷𝐶 of the two TDCs, resulting in 12.9 ps r.m.s.
(i.e.,

√

13.12 − 22 ps r.m.s.) and 13.1 ps r.m.s. (i.e.,
√

13.32 − 22 ps r.m.s.)
respectively. Moreover, considering the contributions 𝜎𝐸𝐿𝑁 and 𝜎𝑁𝐼
negligible, it was possible to extract, using (7), the quantization con-
tribution offered by the TDL (i.e., 𝜎𝑄 =

√

(𝑆𝑆𝑃 2 − 𝜎2𝑇𝑚𝑒𝑎𝑠 )∕2) and then

derive the 𝐿𝑆𝐵𝐸𝑄 using the definition (i.e., 𝐿𝑆𝐵𝐸𝑄 =
√

12𝜎𝑄) that
result be 31.7 ps and 32.2 ps respectively. By comparing these two
√

12𝜎𝑄 values (i.e., 𝐿𝑆𝐵𝐸𝑄 derived from (7)), it is possible to notice a
difference of only 0.5 ps (or 5.65 ps r.m.s.), attributable to the reduced
‘‘bin merging’’ phenomenon (9.4%) detected in the reference firmware.
This reduced phenomenon explains the similar precision obtained by
the two approaches.
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Table 2
Comparison of the SSP, 𝜎𝑇𝐷𝐶 , 𝜎𝑄, 𝐿𝑆𝐵𝐸𝑄 derived from (7) (i.e.,

√

12𝜎𝑄) and 𝐿𝑆𝐵𝐸𝑄
computed using (4) obtained with the reference firmware (i.e., sum1s plus bin-by-
bin calibrator) versus test one (i.e., ML-based thermometric-to-time conversion). An
overestimation of the term

√

12𝜎𝑄 compared to 𝐿𝑆𝐵𝐸𝑄 is justified by neglecting 𝜎𝐸𝐿𝑁
(9).

Method SSP 𝜎𝑇𝐷𝐶 𝜎𝑄
√

12𝜎𝑄 𝐿𝑆𝐵𝐸𝑄 (4)

sum1s+bin-by-bin [ps r.m.s] 13.3 13.15 9.30 32.2 32.1
ML-based [ps r.m.s] 13.1 12.95 9.16 31.7 31.6

Table 3
Comparison of the 𝜎𝑇𝐷𝐶 obtained with the classical FPGA approach (i.e., sum1s or
reordering followed by Log2 decoders plus bin-by-bin calibrator) versus ML-based
thermometric-to-time conversion.

Method 𝜎𝑇𝐷𝐶 Ref.

sum1s+bin-by-bin [ps r.m.s] 13.1 This work
reorder+Log2+bin-by-bin [ps r.m.s] 12.7 [30]
ML-based [ps r.m.s] 12.9 This work

The substantial difference between the test firmware and the refer-
ence firmware is the mechanism of thermometric-to-time conversion.
From Fig. 18., it is inferred that for the test firmware, 170 (pseudo)
thermometric codes are identified at the TDL output, and thanks to the
NN mechanism, we achieve a thermometric-to-time conversion curve
that utilizes all these codes, resulting in an 𝐿𝑆𝐵𝐸𝑄 (i.e., computed
using (4)) of 31.6 ps. Conversely, for the reference firmware, the sum1s
decoder manages to extract only 154 unique codes out of the 170
available, and after the calibration process, we obtain a bin width curve
characterized by an 𝐿𝑆𝐵𝐸𝑄 (i.e., computed using (4)) of 32.1 ps. Also
in this case, a small difference of only 0.5 ps (or 5.64 ps r.m.s.) between
the two 𝐿𝑆𝐵𝐸𝑄 is present. The 16 missing codes in the reference
firmware underwent a ‘‘bin merging’’ phenomenon, where the decoder
mistakenly interpreted two or more different pseudo thermometric
codes with the same number of 1s due to the BE (Fig. 20.). The
phenomenon is mitigated in terms of SSP since the BE is small (Fig. 19)
to plot Figs.

Results are summarized in Table 2.
In addition, the results obtained in this study are directly compara-

ble to the precision of 12.7 ps r.m.s. reported in the scientific literature,
which was achieved using reordering, Log2 decoding, and bin-by-bin
calibration in Xilinx 28-nm FPGA [30]. This indicates that employing
a sum1s decoder followed by a bin-by-bin calibrator for the conversion
of (pseudo) thermometric code to time measurements is the optimal
approach for implementing the TDL based on the primitive CARRY4.
Furthermore, the significant disparity in the sizes of contributions sug-
gests that merging occurs as a consequence of BEs caused by statistical
effects, which are indeed rare events (see Table 3).

5. Test and comparison in 20-nm Kintex UltraScale FPGA

The same characterization road map has been carried out with
the implementation in a Xilinx 20-nm XCKU040-FFVA1156-2-E Kintex
UltraScale of a KCU105 evaluation kit for high-speed processing (i.e., 𝑣𝑛
lower than 10 mV r.m.s.). The implemented TDL-TDC, provided by TE-
DIEL S.r.l. [93], consists of a TDL based on CARRY8 fabric primitives,
with 1024 taps (𝑁 = 1024) sampled with the same clock of 2.4 ns
and jitter lower than 90 fs (i.e., negligible 𝜎𝑁𝐼 ). The measurement
signal, a 0 V–2 V square wave, was generated using the AWG-5000 with
a slope 𝑆𝑙 of 12.5 mV∕ps and applied directly to the FPGA. Under
these conditions, it is possible to estimate the 𝜎𝐸𝐿𝑁 of 1.13 ps r.m.s.
due only to the threshold jitter (i.e., 10 mV∕12.5 mV∕ps for both
START and STOP). The period under measure is always characterize
by a cycle-cycle jitter of 2 ps r.m.s. For experimental validation, we
followed the same approach outlined in Section 4. The KCU105 was
programmed with two different firmwares: one served as a reference,
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Fig. 22. Number of univocal (pseudo) thermometric codes (green) acquired with the
test firmware, 𝐵𝑖𝑛𝐴𝑑𝑑𝑟𝑒𝑠𝑠 obtained by sum1s decoder (red), and SSP after bin-by-bin
calibration (blue) on the reference firmware. The 𝑥-axis represents the 𝐿 number of
performed measurements. The left 𝑦-axis represents the number of codes reached by
the test/reference firmware, while the right 𝑦-axis indicates the SSP values in ps r.m.s.
achieved by the reference firmware.

Fig. 23. Histogram of bubble error length observed on the raw thermometric codes
on the test firmware in 20-nm Xilinx Kintex UltraScale (CARRY8 primitive).

implementing a classic TDL-TDC followed by a sum1s decoder and bin-
by-bin calibrator, while the other was used as a test, where the (pseudo)
thermometric codes generated by the TDL-TDC, along with the coarse
measurement, were transmitted and stored on a PC via USB 3.0.

5.1. Experimental results

Fig. 22 is the equivalent of Fig. 18. The (pseudo) thermometric
codes of test firmware saturate at 𝑇ℎ𝑒𝑟𝑚 = 590 and the 𝐵𝑖𝑛𝐴𝑑𝑑𝑟𝑒𝑠𝑠
of reference one at 505, showing a gap of 85 bins, which means
a ‘‘bin merging’’ due to the BEs equal to 14.4%, decidedly higher
than the 9.4% obtained in the case of the use of the CARRY4. The
overall saturation of 𝑇ℎ𝑒𝑟𝑚 and 𝐵𝑖𝑛𝐴𝑑𝑑𝑟𝑒𝑠𝑠 occurs for 𝐿 = 4.5 ⋅ 105

measurements. The SSP of the reference saturates at 21.0 ps r.m.s.
The output of the NN is the thermometric-to-time conversion func-

tion from the 590 (pseudo) thermometric codes, acquired with the
test firmware, to picoseconds. This conversion function was used to
plot Figs. 23 and 24, which clearly show the severity of the BE effect
compared to the 7-Series and how the sum1s decoder is not effective.

In details, Fig. 23 shows a MBD equal to 17 that is 5.67 times more
with respect to the MBD of 3 in Fig. 19.

Instead, unlike what happens for the Artix-7, using the data adopted
to generate Figs. 20 and 24, we have computed that almost the 30% of
the 𝐵𝑖𝑛𝐴𝑑𝑑𝑟𝑒𝑠𝑠 (i.e., 152 over the total 505) of the reference firmware
is affected by ‘‘bin merging’’; moreover almost the 40% of the merged
bins (i.e., 62 over 152) offer a contribution of the second biggest bin
that no more negligible (i.e., being bigger than 1/10 of the principal
one). This is due to the fact that the sum1s algorithm is not optimal to
solve deterministic BEs in this technology.
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Fig. 24. Scatter plot of bin width between merged bins observed in the 20-nm Xilinx
Kintex UltraScale (CARRY8).

Fig. 25. Histogram of bubble error length after reordering.

Fig. 26. Scatter plot of bin width between merged bins after reordering.

Analyzing the thermometric-to-time function obtained from NN, it is
possible to observe a benefit on MBD obtained by reordering the taps
as proposed in [66], whose results are illustrated in Figs. 25 and 26.
In Fig. 25, it is possible to observe that the MBD is reduced up to 3
and only the 10% of pseudo thermometric codes are affected by BE.
Similarly, from the scatter plot of Fig. 26, it is possible to see that
the BE effect becomes negligible thanks to reordering, as in Artix-7.
In this term, we have demonstrated that the better choice to real-time
processing in FPGA invoke the use not only of the sum1s decoder and
the bin-by-bin calibrator but also to a reordering mechanism followed
by Log2 decoder to compensate the BE due to deterministic issues (i.e,
routing and clock skew).

The SSP achieved by the test firmware was then compared to that
of the reference firmware (i.e., 21.0 ps r.m.s. as shown in blue Fig. 22)
by comparing the histograms and their respective standard deviations
obtained from a set of 𝐿 = 4.5 × 105 samples, as depicted in Fig. 27.
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With the NN, we achieved a better SSP of 5.24 ps r.m.s. which is very
similar to the SSP of 5.28 ps r.m.s. achieved with reordering mechanism
followed by Log2 decoder. The 𝐿 samples used to evaluate the SSP
in the test firmware are obviously different from the 10 × 𝐿 used for
training the NN to demonstrate that no underfitting and overfitting
issues are present.

Similarly, here, since the mechanism of coarse attribution is com-
mon to both, the only difference in the measured value between
firmwares, as referred to in (10), lies in the calculation of the fine com-
ponent (i.e., 𝑆𝐿,𝑇ℎ𝑒𝑟𝑚 ⋅ 𝐹𝑇ℎ𝑒𝑟𝑚,1). Indeed, concerning the test firmware,
𝐹𝑇ℎ𝑒𝑟𝑚,1 corresponds to the thermometric-to-time conversion function
resulting from the NN, while for the sum1s and reordering followed by
Log2 decoders plus bin-by-bin calibrator, 𝐹𝑇ℎ𝑒𝑟𝑚,1 corresponds to the
𝐵𝑖𝑛𝑉 𝑎𝑙𝑢𝑒 values extracted from the decoders and calibration mecha-
nisms residing in the FPGA.

The SSP measurements were repeated for different values of 𝑇𝑚𝑒𝑎𝑠
(i.e., from 775 kHz up to 800 kHz with a step of 5 kHz) in order to
expose fine contributions of varying values (i.e., 63%, 19%, 79%, 43%,
11%, 83% of 𝑇𝐶𝐿𝐾 ) obtaining similar results.

5.2. Discussions

From the SSP results obtained in Section 5.1 on the test firmware
(i.e., 5.24 ps r.m.s), the reference firmware (i.e., 21.0 ps r.m.s) and the
reference firmware where the sum1s decoder is replaced with reorder-
ing followed by Log2 (i.e., 5.28 ps r.m.s), considering the sample jitter
𝜎𝑇𝑚𝑒𝑎𝑠 equal to 2 ps r.m.s., it was possible to extract the precision 𝜎𝑇𝐷𝐶

of the three TDCs, resulting in 20.9 ps r.m.s. (i.e.,
√

21.02 − 22 ps r.m.s.),
4.89 ps r.m.s. (i.e.,

√

5.282 − 22 ps r.m.s.), and 4.85 ps r.m.s. (i.e.,
√

5.242 − 22 ps r.m.s.) respectively. Moreover, considering the contri-
butions 𝜎𝐸𝐿𝑁 and 𝜎𝑁𝐼 negligible, it was possible to extract, using
(7), the quantization contribution offered by the TDL (i.e., 𝜎𝑄 =
√

(𝑆𝑆𝑃 2 − 𝜎2𝑇𝑚𝑒𝑎𝑠 )∕2) and then derive the 𝐿𝑆𝐵𝐸𝑄 using the definition

(i.e., 𝐿𝑆𝐵𝐸𝑄 =
√

12𝜎𝑄) that result be 51.3 ps, 12.0 ps, and 11.9 ps
respectively. By comparing these three

√

12𝜎𝑄 (i.e., 𝐿𝑆𝐵𝐸𝑄 derived
from (7)), it is possible to notice a difference of only 0.1 ps (or
1.55 ps r.m.s.) between reordering followed by Log2 and the ML
approach, attributable to the reduced ‘‘bin merging’’ phenomenon. This
reduced phenomenon explains the similar precision obtained by the
two approaches. Unlike what happens between sum1s and the ML-
based approach where a difference between

√

12𝜎𝑄 of 39.4 ps (or 49.9
ps r.m.s.) is observed.

Also in the UltraScale the substantial difference between firmwares
is the mechanism of thermometric-to-time conversion. From Fig. 22., it
is inferred that for the test firmware, 590 (pseudo) thermometric codes
are identified at the TDL output, and thanks to the NN mechanism, we
achieve a thermometric-to-time conversion curve that utilizes all these
codes, resulting in an 𝐿𝑆𝐵𝐸𝑄 (i.e., computed using (4)) of 11.5 ps.
Conversely, for the sum1s decoder manages to extract only 505 unique
codes out of the 590 available, and after the calibration process, we
obtain a bin width curve characterized by an 𝐿𝑆𝐵𝐸𝑄 (i.e., computed
using (4)) of 51.1 ps. Also in this case, a difference of 39.6 ps (or 49.8
ps r.m.s.) between the two 𝐿𝑆𝐵𝐸𝑄 is present. The 85 missing codes
underwent a ‘‘bin merging’’ phenomenon, where the sum1s decoder
mistakenly interpreted two or more different pseudo thermometric
codes with the same number of 1s due to the high BEs (Figs. 23 and
24) ruining the SSP. On the other hand, BEs are mitigated thanks
to reordering followed by Log2 decoder (Fig. 25) reducing the ‘‘bin
merging’’ phenomena (Fig. 25.) achieving an 𝐿𝑆𝐵𝐸𝑄 (i.e., computed
using (4)) of 11.7 thus a state-of-the-art SSP. Also in this case, a
difference of 0.2 ps (or 2.15 ps r.m.s.) between the two 𝐿𝑆𝐵𝐸𝑄 is
present.

Results are summarize in Table 4.
Furthermore, we have compared the precision of 4.85 ps r.m.s ach-

ieved with reordering followed by Log2 plus bin-by-bin calibrator with
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Fig. 27. SSPs obtained with the reference firmware 21 ps r.m.s. (left), reordering 5.28 ps r.m.s. (center), and the test firmware 5.24 ps r.m.s. (right); in blue, the histogram of
the actual data centered at zero, and in red, the corresponding fitting.
Table 4
Comparison of the SSP, 𝜎𝑇𝐷𝐶 , 𝜎𝑄, 𝐿𝑆𝐵𝐸𝑄 derived from (7) (i.e.,

√

12𝜎𝑄), and 𝐿𝑆𝐵𝐸𝑄
obtained with the reference firmwares (i.e., sum1s or reordering followed by Log2
decoders plus bin-by-bin calibrator) versus test one (i.e., ML-based thermometric-to-time
conversion). An overestimation of the term

√

12𝜎𝑄 compared to 𝐿𝑆𝐵𝐸𝑄 is justified by
neglecting 𝜎𝐸𝐿𝑁 (9).

Method SSP 𝜎𝑇𝐷𝐶 𝜎𝑄
√

12𝜎𝑄 𝐿𝑆𝐵𝐸𝑄 (4)

sum1s+bin-by-bin [ps r.m.s] 21.0 20.9 14.8 51.3 51.1
reorder+Log2+bin-by-bin [ps r.m.s] 5.28 4.89 3.46 12.0 11.7
ML-based [ps r.m.s] 5.24 4.85 3.43 11.9 11.5

Table 5
Comparison of the 𝜎𝑇𝐷𝐶 obtained with the classical FPGA approach (i.e., sum1s or
reordering followed by Log2 decoders plus bin-by-bin calibrator) versus ML-based
thermometric-to-time conversion.

Method 𝜎𝑇𝐷𝐶 Ref.

sum1s+bin-by-bin [ps r.m.s] 20.93 This work
reorder+Log2+bin-by-bin [ps r.m.s] 4.89 This work
reorder+Log2+bin-by-bin [ps r.m.s] 4.7÷5.6 [66]
ML-based [ps r.m.s] 4.85 This work

that reported in the scientific literature [66] on the same hardware
that is in the range from 4.7 ps r.m.s up to 5.6 ps r.m.s confirming the
coherence with respect to the state-of-the-art. Thus, thank to the ML
we have demonstrated a significantly reduction of the quantization
error induced by deterministic BEs due to the reordering approach (see
Table 5).

6. Future developments

Not finding anything similar in the scientific literature and con-
sidering the numerous degrees of freedom in the design of an NN
and in the training process (Section 3.1), we decided to emulate the
hardware topology in the software NN structure (Section 3.2) and
to follow a classic supervised learning approach (Section 3.3). This
decision led us to the structure described above and used. While
aware that the NN structure does not necessarily have to mirror the
topology of the hardware decoding and calibration mechanism, we
chose to use the proposed NN because, by analyzing the thermometric-
to-time conversion curve, we found a consistent explanation for the
phenomenon of ‘‘bin merging’’ and BE present in TDL, as illustrated
in Sections 4 and 5, thus achieving our goal. Further analysis and
optimizations of the NN will be carried out in future developments.
In addition to redesigning the NN and varying the activation function,
other noteworthy future developments include the evaluation of other
optimization algorithms as replacements for ADAM [94], the tuning of
the dropout parameter [95], and the use of algorithms for automatic
hyperparameter tuning [96].
14 
7. Conclusions

FPGAs do not have tunable delay-lines as native resources and,
consequently, FPGA-based TDL-TDC must be implemented with al-
ternative structures, such as the CARRY primitive, devoted to carry
look-ahead implementation. Because these elements cannot be finely
tuned, they suffer from non-idealities and other effects, such as BEs
(i.e., deterministic and statistic) and PVT. In a real-time implementation
on modern FPGAs, PVT variations can be compensated for through bin-
by-bin calibration of the binary code obtained by appropriate decoding
of the thermometric code recorded by the TDL. Unfortunately, BEs
produce pseudo thermometric codes that can cause the ‘‘bin merging’’
effect, where different (pseudo) thermometric codes are translated into
the same binary, resulting in an increased quantization error. Moreover,
due to statistical contributions to BEs, it is unfeasible to determine a
priori the best choice from those available in scientific literature of
decoding that minimize this effect.

The main contribution of this work lies in the strategy for decoding
and calibrating the TDL using a NN. To the best of our knowledge,
this approach has not been previously explored in the literature and
has achieved results comparable to the state-of-the-art. Specifically, the
paper demonstrates that the decoding technique, due to BEs, leads to
‘‘bin merging’’ phenomena identified through the NN. The ML approach
was simply the tool employed.

It was decided to address the problem by developing a solution
using a NN (run in Python on a PC) trained through supervised learn-
ing, minimizing the SSP (i.e., quantization error) with a fast-converging
gradient method (SSPmin). Due to the absence of prior experiments, the
NN was constructed based on the hardware structure of the decoders
and calibrators, optimizing it with an ADAM algorithm. This approach
was applied to two case studies involving 28-nm HKMG Artix-7 and
20-nm FinFET Kintex UltraScale FPGAs using a 10 fully connected
hidden layers all with the leaky ReLU activation function (Deep),
with 256 nodes for the Artix-7 and 896 nodes for the UltraScale. The
purpose of the NN is to perform the thermometric-to-time conversion
recognizing stochastic BEs from deterministic ones and compensate for
them improving the precision.

The proposed methodology has been tested on the two main hard-
ware primitives used for TDL implementation in Xilinx FPGAs, the
CARRY4 and CARRY8 available in the 28-nm 7-Series and 16/20-
nm UltraScale/UltraScale+ respectively; thus, the results have been
compared to state-of-the-art fully FPGA-based solutions where de-
coders and calibrators are directly implemented in FPGA. The Artix-7
XC7A100TFG256-2 was chosen as the test FPGA for the 7-Series,
and the Kintex XCKU040-FFVA1156-2-E for the UltraScale series. For
TDLs based on CARRY4, a minimal number of BEs (i.e., MBD of
3) and a low ‘‘bin merging’’ rate (i.e., < 10%) were observed. This
observation indicates that the decoding approach based on sum1s,
followed by bin-by-bin calibration, achieves nearly the same precision
(i.e., 13.1 ps r.m.s.) as NN approach (i.e., 12.9 ps r.m.s.), with a negligible
deviation, thus validating its correctness. Moreover, the NN achieve a
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precision comparable to the state-of-the-art on the same technological
node [30] (i.e., 12.7 ps r.m.s.) where the deterministic BEs are corrected
using reordering. The only notable difference lies in a sub-picosecond
error, which, for certain applications with low area and/or high chan-
nel counts, does not justify the increased complexity associated with
the reordered approach.

On the other hand, for TDLs based on CARRY8, a significant number
of BEs (i.e., MBD of 17) was observed, leading to a non-negligible
‘‘bin merging’’ rate (i.e., 30%). This renders the decoding based on
sum1s ineffective, providing a precision of 20.93 ps r.m.s. instead of the
4.85 ps r.m.s. achieved with NN. However, it has been demonstrated
that reordering the bins before decoding allows reducing the MBD to
3, limiting the effects of BEs only to stochastic ones and achieving a
precision of 4.89 ps r.m.s. in line with NN and the state-of-the-art on
the same technological node [66] (i.e., 4.7 ÷ 5.6 ps r.m.s.). In this case,
the reordered approach is fundamental to guarantee high-precision.

There is nothing to prevent loading the thermometric conversion
curve processed by the NN into FPGA (specifically, only its output
rather than the entire NN) instead of the 𝐵𝑖𝑛𝑉 𝑎𝑙𝑢𝑒 curve. However, this
step was not performed in the paper. In such a case, an area occupation
comparable to the classical full-FPGA approach (i.e., decoder plus
bin-by-bin calibration) would be expected.
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