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ANALYSIS AND OPTIMIZATION OF ROBUST TRAJECTORIES IN
CISLUNAR ENVIRONMENT WITH APPLICATION TO THE LUMIO

CUBESAT

Carmine Giordano*, and Francesco Topputo†

Nowadays, the space exploration is going in the direction of exploiting small plat-
forms to get high scientific return at significantly lower costs. However, miniatur-
ized spacecraft pose different challenges both from the technological and mission
analysis point of view. While the former is in constant evolution due to the manu-
facturers, the latter is an open point, since it is still based on a traditional approach,
not able to cope with the new platforms’ peculiarities. In this work, a revised pre-
liminary mission analysis approach, merging the nominal trajectory optimization
with a complete navigation assessment, is formulated in a general form and three
main blocks composing it are identified. Then the integrated approach is special-
ized for the transfer trajectory of the LUMIO CubeSat, showing the advantage of
this methodology for miniaturized platforms in a chaotic environment.

INTRODUCTION

Since the beginning of the space era, satellites have always been equipped with chemical propul-
sion engines, characterized by a high value of thrust and a good control authority. For traditional
spacecraft, nominal trajectories are designed and optimized in order to satisfy only scientific re-
quirements as well as to comply with system constraints. Although, the nominal path will unlikely
be followed by the spacecraft in real-life scenarios due to uncertainty in dynamic model (e.g., grav-
itational parameters or radiation pressure noisy profiles), navigation (i.e. imperfect state knowl-
edge or approximations in measurement model), and command actuation (i.e., thrust magnitude
and pointing angles error),1 the correction maneuvers needed to compensate deviations are consid-
ered to be a minor problem, since changing the trajectory is relatively easy with a single, short burn.
Robustness and feasibility assessment of the nominal trajectory against uncertainty are performed
a-posteriori through a navigation analysis, with the aim to perform a covariance analysis and com-
pute the achievable state knowledge, and to estimate the correction maneuvers. Thus, the nominal
trajectory and the uncertainty assessment are decoupled and their analysis and optimization are done
in two separate phases. This approach can lead to sub-optimal solutions. For large spacecraft, this
procedure is acceptable since they can produce high thrust levels and they can store relevant propel-
lant quantities; hence, sub-optimal trajectories are not critical.
However, in recent times, the space exploration is going in the direction of exploiting small plat-
forms, such as SmallSat or CubeSat, in order to get scientific and technological return at significantly
lower costs.2, 3 In this kind of probes, the low control authority poses challenges in maneuvering,
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since a long burn is needed, even for paltry deviations. Therefore, orbit determination and the
subsequent correction maneuvers cannot be considered a minor problem and preliminary trajectory
design should take them into account.
A clear indication of this phenomenon can already be found in missions exploring small satellites,
as Lisa PathFinder (LPF) proposed mission extension,4 where the best solution requires a determin-
istic ∆v = 0.657m/s, but the navigation ∆v distribution for the given trajectory gives a value of
4.533m/s for a 95% confidence level. A similar behavior can be found also in the LUMIO Phase
0 study.5 In this case, the deterministic cost for the transfer amounts to 89.97m/s, while the 3σ
stochastic cost sums up to 97.9m/s. Hence, the nominal and navigation ∆vs have the same order of
magnitude. In such cases, a procedure embedding uncertainty in the preliminary mission design can
be useful in cutting down the overall mission costs and produce more robust and feasible solutions.
In the last decades, optimal control and optimization theory have been extensively exploited for the
nominal design of space trajectories.6, 7 However, only in the last ten years, some stochastic-optimal
approaches, embedding uncertainty in their core, have been developed.8–12

Although uncertainties in the early stages of the trajectory design are considered in recent works to
devise robust optimal trajectories, an integrated approach, considering the navigation assessment as
part of the trajectory design and optimization, using classical techniques, is still missing. Never-
theless, the paradigm shift proposed in this work can be beneficial in terms of propellant mass con-
sumption. Indeed, it can overtake the natural sub-optimality of the traditional approach by surfing
solutions with lower dispersion and better stochastic properties, thus reducing both the navigation
costs and the final state scattering with respect to the target. Hence, robust low-cost trajectories
in the preliminary mission analysis can increase the scientific return for small satellites either by
giving access to nowadays-impossible mission profiles or by expanding the nominal operative life.

PROBLEM STATEMENT

Sequential Approach

In this work, the approach followed nowadays to compute a nominal trajectory, evaluate its sta-
tistical properties and retrieve the navigation costs is labeled as sequential or traditional approach.
Detailed information about this process can be found in several sources.5, 13 In this case, the whole
procedure is subdivided into two sequential and independent steps (Figure 1):

1. Trajectory Design and Optimization: nominal trajectory, connecting the initial point to the
target, while minimizing the propellant mass, is sought (Figure 1a). Thus, generally speaking,
an optimal control problem is set up, having the aim to determine the state x(t), the control
u(t) and, possibly, the initial and final times, t0 and tf , that minimize the total control effort

J =

∫ tf

t0

∥u∥ dt

subject to the ordinary differential equation

ẋ = f(x,u, t)

and to the boundary constraints

x(t0) = x0

x(tf ) = xf
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The function f represents the acceleration vector field associated to the spacecraft dynamics.
Some additional terminal and path constraints are normally added, considering the character-
istics of the specific orbital problem.

2. Navigation Assessment: the nominal trajectory “flyability” in a real scenario is evaluated by
simulating the orbit determination (OD) process and estimating the trajectory correction ma-
neuvers (TCM) along the whole mission. Thus, the Navigation Assessment can be split into
two (independent) sub-phases: i. Knowledge analysis: a covariance analysis is performed to
estimate the achievable level of accuracy in the spacecraft state knowledge; ii. Navigation
cost estimation: a stochastic analysis is performed in order to estimate the navigation cost
needed to allow the spacecraft to reach the target (Figure 1c), computing also the trajectory
dispersion, i.e., the deviation of the true spacecraft state with respect to its nominal value.
Knowledge analysis and navigation cost estimation are usually performed independently in
the preliminary mission analysis. However, in principle, they cannot be considered totally
separate: both sub-phases should share a common timeline and the navigation costs are de-
pendent on the knowledge level.

Figure 2 shows the general architecture for the traditional approach.

Integrated Approach

A procedure able to comprehend the whole navigation assessment inside the optimization pro-
cess has to be designed. This method will be tagged as integrated or revised approach. It aims to
1) evaluate and minimize deterministic and stochastic cost, 2) estimate the knowledge, 3) and com-
pute the dispersion, at the same time. In order to achieve these objectives, the approach depicted in
Figure 3 is devised. The initial nominal state is given together with the associated initial dispersion.
For each state belonging to the initial dispersion, an initial knowledge is considered. These three
quantities (nominal state, knowledge and dispersion) are propagated forward. At some prescribed
times, an OD process is performed in order to estimate the true trajectory and reduce the knowledge
covariance. The estimated trajectory is then used to feed a guidance scheme, compute the correction
maneuver and reduce the dispersion. At the end, the final nominal state and the final dispersion can
be retrieved. For sake of simplicity, considering a Monte Carlo fashion, the revised approach can be
summarized as:

For each step of the optimization algorithm:

1. An initial nominal state x0 (blue dot in Figure 3) and initial dispersion (blue ellipse) are given;

2. The initial state is propagated up to the final time, in order to generate the nominal trajectory
(black line) and compute the nominal cost;

3. A number of samples in the initial dispersion xi
0 (orange dot) are generated;

4. For each sample:

(a) The initial state xi
0 and the associated initial knowledge are propagated forward (orange

line) up to the first OD time;

(b) In a give time span t ∈
[
tOD
0 , tOD

f

]
, the OD is performed (gray thick line) to improve

the knowledge (black ellipses);
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Figure 1: Traditional approach for preliminary mission analysis: (a) Trajectory design and opti-
mization; (b) Knowledge analysis; (c) Navigation cost evaluation. Nominal trajectory is indicated
with a black line, true trajectory as an orange line, OD with a grey thick line. Ellipses represent the
instantaneous (b) knowledge (c) or dispersion. Steps (b)–(c) form the navigation assessment.

(c) An estimated state (magenta dot) is retrieved at the end of the OD and pushed forward
in time, in order to compute the TCM (green arrow) through a guidance law;

(d) The real trajectory is propagated up to the correction maneuver time tTCM , when the
navigation impulse is applied;

(e) Steps 4a–4d are repeated for each OD and correction maneuver time up to the final time
tf .

5. From the Monte Carlo-like simulation, statistics for the navigation cost can be computed and
the final dispersion (red ellipse) can be estimated.
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Figure 2: Traditional approach architecture
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Figure 3: Revised approach for the preliminary mission analysis. Nominal trajectory is indicated
with a black line, a true possible trajectory with an orange line, estimated trajectory with a magenta
line. The OD process is the gray thick line. Black ellipses represent the instantaneous knowledge;
colored ellipses represent the dispersion.

6. The total propellant mass, given by deterministic plus stochastic ∆v is optimized, while im-
posing a constraint on the final state.

Generally speaking, the general fuel-optimal problem of a spacecraft flying in a perturbed envi-
ronment under the revised approach can be formalized as:

Definition 1 (Fuel-Optimal General Problem) Find the nominal state x∗(t), the nominal control
history u∗(t) and, possibly, the initial and final times, t0 and tf , such that

J =

∫ tf

t0

∥u∗∥ dt+Q(∆vs) (1)

with Q(∆vs) a measure of the stochastic cost, is minimized, while the state is subjected to a simpli-
fied Itô stochastic differential equation14

ẋ = f (x,u, t) + ω (x,u, t) (2)

with f being the deterministic part of the dynamics and ω the process noise associated to uncertainty
in dynamics and in maneuver execution.
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Moreover, the state is subjected to initial constraints on dispersion{
E [x∗(t0)] = x0

E
[
(x∗(t0)− x0) (x

∗(t0)− x0)
T
]
= P d

0

(3)

and on knowledge
E
[
(x(t0)− x0) (x(t0)− x0)

T
]
= P k

0 (4)

and a final constraint
E (x (tf ) , tf ) ⊆ Êδ (tf ) (5)

with E indicating a generalized uncertainty ellipsoid and Êδ the desired ellipsoid.
The navigation costs are estimated through a guidance law, fed by the OD scheme. It means

∆vs = GL (x∗, x̂, tTCM ) (6)

and
x̂
(
tOD
f

)
= OD

(
x, x̂, tOD

0 , tOD
f

)
(7)

with GL and OD being the guidance law and orbit determination procedures respectively, x̂ is the
estimated state, x the real state and x∗ is the nominal state.

For the integrated approach, three main building blocks can be identified and they are: 1) a
procedure to propagate uncertainty and to evaluate the stochastic measures, 2) a OD scheme, and 3) a
guidance law, that can vary and should be selected properly, depending on the analyzed scenario.

TEST CASE SCENARIO

A comprehensive method for robust stochastic mission analysis seems to be unfeasible: deep-
space exploration missions have diverse characteristics and mission profiles vary so widely that a
single technique will be never able to produce a good solution for each situation. In fact, Problem
1 provides a general framework with its building blocks, that should be adapted to the scenario of
interest. In this work, the LUMIO transfer phase, from a low lunar orbit (LLO) to a halo orbit, is
considered. This scenario provides a relevant environment to test the revised approach and assess
its performances.
LUMIO15 is a 12U form-factor CubeSat, flying a halo orbit at Earth–Moon L2. The spacecraft
is equipped with the LUMIO-Cam, a novel miniaturized optical instrument capable of detecting
light flashes in the visible spectrum produced by meteoroid impacts. Indeed, LUMIO shall observe,
quantify, and characterize meteoroid impacts on the lunar farside by detecting their flashes, com-
plementing Earth-based observations on the Lunar nearside, to provide global information on the
lunar meteoroid environment and contribute to lunar situational awareness.16 The whole mission
profile is summarized in Figure 4. During the parking phase, LUMIO is released on a low lunar
orbit by the carrier. A 600 km×20 000 km LLO parking orbit is chosen out. Angular parameters
are considered free to vary. LUMIO operative orbit is quasi-periodic halo orbit about Earth–Moon
L2 characterized by a Jacobi constantCj = 3.09.5 According to the timeline of the mission, defined
during Phase A, the operative phase is expected to start on 21 March, 2024, and to end on 22 March,
2025. In this work, the operative orbit serves as a moving target on a prescribed trajectory.
During the transfer, LUMIO is brought from the low lunar orbit to the operative orbit. Free trans-
port mechanisms are leveraged to reach the target halo. Specifically, intersection in the configuration
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Figure 4: LUMIO mission profile (from5).

space has to be sought between the halo stable manifolds and a selenocentric transition orbit. Since
the sought intersection occurs only in physical space, a maneuver is necessary for orbital continuity.
This maneuver places the spacecraft on the stable manifold of the target halo and is thus called sta-
ble manifold injection maneuver (SMIM) and it will be indicated with ∆vSMIM. After the transfer,
the halo injection maneuver (HIM), ∆vHIM, eventually injects the CubeSat into the final operative
orbit. A detailed study of the TCM problem for several LPOs, exploiting simple dynamical systems
concepts, has shown that two TCMs provide sufficient degrees of freedom.17 Thus, two TCMs are
scheduled to occur during the transfer along the stable manifold in order to compensate trajectory
deviations related to control and dynamics uncertainties. In order to correctly estimate their mag-
nitude an OD phase is foreseen before each TCM, with the first allocated just after the SMIM and
the second one scheduled to start after 6 days. Nominally, the first maneuver has to occur at least
two days after the SMIM, while the second 8 days after ∆vSMIM. The maneuver time is selected in
order to give enough time at the ground segment to perform orbit determination, compute correction
maneuvers and send commands to the spacecraft. Indeed, at least one day for the OD and one day
cut-off time between the end of the OD phase and the application of the TCM should be considered
in order to be compliant with ESOC guidelines. A timeline for the transfer phase is given in Fig-
ure 5. Usually, the nominal trajectory does not have impulses when the correction maneuvers are
applied. However, a non-null maneuver can be foreseen at each TCM time in order to broaden the
feasible transfer trajectories set.
LUMIO transfer phase, as presented in Figure 5, can be subdivided into three sub-phases:

1. OD phase (between days 0 and 1, or between days 6 and 7 after t0): during this phase, a
visibility window is identified (see Section ), and the OD algorithm is exploited within it;

2. Cut-off phase (between days 1 and tTCM1 , or between days 7 and tTCM2 after t0): in this
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phase the Differential Guidance is exploited to compute the correction maneuver, which is
applied at the end of the phase;

3. Ballistic phase (between days tTCM1 and 6, or between days tTCM2 and tf after t0): in this
phase, the spacecraft undergoes a ballistic flight.

Figure 5: LUMIO transfer trajectory timeline. The grey bars represents the OD phases, while the
green arrows mark the TCMs points. Time in days after the SMIM.

In this work, the transfer trajectory is the main topic and it is analyzed carefully in the remainder.

Dynamics

The motion of the CubeSat in the transfer phase can be described by using the roto-pulsating
restricted n-body problem (RPRnBP),4 in order to have a high-fidelity dynamics, able to correctly
represent the highly non-linear trajectory of LUMIO. The use of an adimensional roto-pulsating
frame (RPF) eases the motion description both for the transfer trajectory and for the operative orbit,
since they are the generalization of trajectory existing in the restricted 3-body problem.
Equations of motion are written in a non-uniformly rotating, barycentric, adimensional reference
frame with its center placed at the primaries barycenter (i.e., Earth–Moon barycenter). More details
can be found in Dei Tos.4

Coordinates transformation The initial LLO is provided using Keplerian elements, i.e., a con-
stant semi-major axis a = 12 037.1 km and a constant eccentricity e = 0.65848 plus a set of free
angular parameters α0 = [i0,Ω0, ω0, θ0], containing the inclination i0, the right ascension of the
ascending node Ω0, the argument of the pericenter ω0 and the true anomaly θ0. Keplerian param-
eters are given in Moon-centered Moon-equatorial at date (MCME2000) reference frame. In this
frame, the z-axis is aligned with the Moon’s spin axis on January 01, 2000, the x-axis is aligned
with the Earth mean equinox (First point of Aries) and y-axis completes the right-handed reference
frame. Thus an additional transformation is needed to go from the MCME2000 Keplerian elements
to the cartesian coordinates in the J2000 reference frame, before being converted in RPF. Indeed,
the Keplerian elements are converted into cartesian coordinates xMCME

18

rMCME = T1

 p cos θ0
1+e cos θ0
p sin θ0

1+e cos θ0
0

 , vMCME = T1


−
√

µM
p sin θ0√

µM
p (e+ cos θ0)

0

 (8)

with p = a
(
1 + e2

)
the semi-latus rectum, where the matrix T1 = Rz (ω0)Rx (i0)Rz (Ω0) is

defined through 3-dimensional rotation matrices. Then, the state is rotated in the Moon-Centered
J2000

xJ2000 =

[
rJ2000
vJ2000

]
= T2

[
rMCME

vMCME

]
(9)
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with

T2 =

1 0 0
0 cos(iM ) − sin(iM )
0 sin(iM ) cos(iM )


where iM = 24deg is the lunar axial tilt with respect the Earth’s equator.19 Eventually, the position
on the LLO is written in the solar barycentric J2000 by translation of the center from the Moon to
the Solar System Baricenter, i.e.

x0 = xJ2000 + xM (10)

Then, the J2000 initial state x0 is converted in the RPF one χ0. The SMIM is applied on top of this
initial state.

Uncertainty

In this test case, uncertainties are considered to be related only to the navigation and command
errors. Errors generated by uncertainties in the dynamic model (e.g., solar radiation pressure or
residual accelerations) affect the transfer trajectory to a limit extent, due to the short-time propaga-
tion, and are dominated by the other errors. Thus, they are not considered in the model.
Navigation errors are taken into account as measurement model deviations in the OD phase and
through an imperfect state knowledge at the initial time. The latter leads the initial state to be
modeled as a Gaussian random variable with mean as the nominal initial state, i.e.

χ(t0) ∼ N (χ0, Pχ) (11)

where Pχ = diag
([
σ2ρI3, σ

2
νI3

])
is the 6-dimensional diagonal covariance matrix, with σ2ρ and σ2ν ,

the initial position and velocity covariances respectively.
Command actuation errors in the nominal impulses are considered, while TCMs are assumed free
from uncertainties. Since uncertainty in the HIM does not affect the transfer phase and can be
compensated with the station keeping algorithm foreseen in the operative orbit, the only significant
uncertain maneuver is the SMIM. Thrust magnitude and direction are both modeled as Gaussian
variables with a standard deviations σ∆v in magnitude and σδ in pointing angle. The magnitude
error is defined as a fraction of the nominal value, i.e., σ∆v = u∆vSMIM, with u ≪ 1. The
covariance matrix computation for the uncertainty on the SMIM requires retrieving SMIM vector
in spherical coordinates, thus

∆v =
√

∆v2x +∆v2y +∆v2z (12a)

α = atan2 (∆vy,∆vx) (12b)

ϵ = atan2
(
∆vz,

√
∆v2x +∆v2y

)
(12c)

where ∆v is the magnitude, and α and ϵ are the Azimuth and Elevation respectively. Then, the
associated spherical covariance, i.e. P s

∆v = diag
(
σ2∆v, σ

2
δ , σ

2
δ

)
, is transformed in Cartesian coordi-

nates
P∆v = JP s

∆vJ
T (13)

with J the Jacobian matrix of the cartesian-to-spherical conversion

J =

cos ϵ cosα −∆v cos ϵ sinα −∆v sin ϵ cosα
cos ϵ sinα ∆v cos ϵ cosα −∆v sin ϵ sinα

sin ϵ 0 ∆v cos ϵ

 (14)
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The total initial covariance can be computed as a combination of the initial state error, plus the
maneuver error

P0 = Pχ +

[
03 03
03 P∆v

]
(15)

In doing so, the number of random variables can be reduced from 9, i.e., the 6-dimensional initial
state plus the 3 SMIM components, to only 6 stochastic states, reducing the probabilistic space.
Characteristics of the random variables are reported in Table 1.

Table 1: Stochastic characteristics of system uncertainty.

σρ [km] σν [m/s] σ∆v [%] σδ [deg]

1 0.01 1 1

METHODOLOGY

In order to deal with the revised approach for the LUMIO transfer phase case, a proper method-
ology should be devised, taking into account its peculiarities. It is of paramount importance to
clarify: i) which is the method used for the uncertainty propagation and how stcohastic variables are
estimated, ii) how the trajectory correction maneuver are computed, iii) and how the orbit determi-
nation is performed. Moreover, the simplifying assumptions are presented as a preliminary for the
optimization problem statement.

Uncertainty propagation

Polynomial Chaos Expansion in its non-intrusive fashion is used to propagate the uncertainties.
Polynomial Chaos Expansion (PCE) is a nonlinear technique, in which the input uncertainties and
the solution are approximated using a series expansion based on some orthogonal polynomials, thus
the approximated solution can be written as20

x̂(t, ξ) =
∑

α∈Λp,d

cα(t)ψα(ξ) (16)

where Λp,d is a set of the multi-index of size d and order p defined on nonnegative integers,
ξ = [ξ1, . . . , ξd] is the set of input random variables, in which each element ξi is an indepen-
dent identically distributed variable. The basis functions {ψα(ξ)} are multidimensional spectral
polynomials, orthonormal with respect to the joint probability measure ρ (ξ) of the vector ξ∫

Γd

ψα(ξ)ψβ(ξ)ρ (ξ) dξ = δαβ (17)

with Γd representing the d-dimensional hypercube where the random variable ξ are defined and
δαβ is the Kronecker delta function. Thus, the basis functions choice depends only on ρ (ξ). For
instance, Hermite polynomials are the basis for normal random variables, while Legendre orthogo-
nal polynomials are bases for the uniform distribution.21

Generation of a PCE means computing the generalized Fourier coefficients cα(t) by projection of
the exact solution x(t, ξ) onto each basis function ψα(ξ), truncated at the total order p

cα(t) = E [x(t, ·)ψα(·)] =
∫
Γd

x(t, ξ)ψα(ξ)ρ(ξ)dξ (18)
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The statistics of x(t, ξ) can be approximated by those of x̂(t, ξ) from the coefficients cα(t).22 In
fact, the mean is given by

x̄(t) = E[x(t, ·)] = c0(t) (19)

because ψ0 = 1 and E[ψα] = 0 for α ̸= 0. The covariance can be computed as

P (t) = E
[
(x(t, ·)− x̄(t, ·)) (x(t, ·)− x̄(t, ·))T

]
=

∑
α∈Λp,d

α̸=0

cα(t)c
T
α(t) (20)

where the orthonormality of the polynomial basis is exploited.
In order to keep low the number of collocation points needed to evaluated the stochastic integral in
Eq. (18) conjugate unscented transformation (CUT)23 is exploited. CUT is the natural extension of
unscented transformation, but, instead of employing only sigma-points on the principal axes of the
initial distribution function, it propagates sigma-points chosen on some peculiar non-principal axes,
giving the possibility to correctly estimate higher order moments of stochastic integrals.24 Thus, it
can be used to efficiently compute the generalized Fourier PCE coefficients exploiting Eq. (18). So,
CUT can be seen as just another way to compute the stochastic integral given in Eq. (18). This hy-
brid technique, using CUT to estimate PCE coefficient, is unimaginatively labeled PCE-CUT. This
approach exhibits several advantages over the standard sparse grid interpolation techniques, such as
positive quadrature weights and fewer quadrature points.
The use of PCE-CUT4 (i.e., PCE with CUT up to the forth order momentum) requires the propa-
gation of 77 samples in order to compute the quantity of interest. The equivalent full grid tensor
product would require 36 = 729 samples, while Smolyak’s grid needs 85 points. Thus a 10% sav-
ing is expected in the computational times. Moreover, the positive quadrature weights improve the
numerical stability, giving more accurate and fast results.25

CUT4 results are computed by considering normalized Gaussian variables. If the random variables
are represented by a generic multivariate Gaussian distribution with mean χ̄ and covariance matrix
P , the generic quadrature point ζq can be retrieved by exploiting the affine transformation

χq = Sξq + χ̄ (21)

with S being the Cholesky decomposition of P , i.e., P = STS.

Stochastic variables estimation Once the PCE coefficients cα at a given time τ are retrieved by
means of the 4th-order CUT, the stochastic state at a given time can be estimated as (Eq. (16))

χ(τ, ξ) =
∑

α∈Λp,d

cα(τ)ψα(ξ) (22)

This solution is expected to be strongly non-Gaussian. For this reason, the final stochastic state and
the functions depending on it cannot be described employing only mean and covariance, but the
full probability density function (PDF) has to be estimated and then used to evaluate probabilities.
In order to do that, kernel density estimation (KDE)26 is used. In this technique, the surrogate
model is exploited to inexpensively produce a number n of samples of the quantity of interest
qj = q

(
χ(τ, ξj)

)
, depending on n random variables ξj , with j = {1, . . . , n}. Then they are used

to estimate the PDF as

ρ̂ (q) =
1

nh

n∑
j=1

K

(
q − qj
h

)
(23)
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where h is the bandwidth, and K is the kernel function. The kernel function is selected as the
Gaussian PDF, i.e K(z) = 1√

2π
exp

[
− z2

2

]
. The cumulative distribution function (CDF) can be

computed as

F̂ (q) =

∫ q

−∞
ρ̂ (q) dq =

1

n

n∑
j=1

G

(
q − qj
h

)
(24)

where G(q) =
∫ q
−∞G (q) dq. In the case of Gaussian kernel, G(q) = 1

2

[
1 + erf

(
q√
2

)]
.

The selection of the bandwidth is tricky and different algorithms exist. In this work, the Silverman’s
rule of thumb27 is considered: the value of h is selected as the bandwidth minimizing the mean
integrated squared error for a Gaussian distribution. In this case,

h =

(
4σ̂5

3n

) 1
5

(25)

where σ̂ is the standard deviation of the n samples. Using KDE is preferred with respect to a simple
counting method, since a smooth C∞-class CDF is obtained and this is helpful in the optimization.
In order to estimate the population quantiles, a similar technique called kernel quantile estimation
(KQE) is employed. The quantile function is the left-continuous inverse of the CDF

Q(p) = inf{q : F (q) ≤ p} with 0 ≤ p ≤ 1 (26)

i.e., the function returning the threshold value of q, such that the probability variable being less than
or equal to that value equals the given probability p. Using the KQE, the quantile function can be
computed as28

Q(p, q) =
n∑

j=1

1

nh
K

[
1

h

(
j

n
− p

)]
q̃j (27)

where q̃j , j = {1, . . . n} is the sorted set of qj and K is the kernel function. The use of this linear
KQE formula give the possibility to obtain reliable estimation for the desired quantile value, while
having a C∞-class function.

Orbit Determination process

In order to determine the spacecraft state knowledge along the transfer phase, a covariance anal-
ysis is performed and the knowledge is estimated by means of an orbit determination algorithm.
In this scenario, radiometric tracking is selected as navigation technique. Thus, the spacecraft state
is estimated by means of radiometric data processed by a ground station. Radiometric data for range
and range-rate are simulated, generating pseudo-measurements as

γ =
√
γTγ, γ̇ =

γTη

γ
(28)

where γ is the range, γ̇ is the range rate, γ = r− rGS is the relative distance between LUMIO and
the ground station, while η = v − vGS is the relative velocity. The filter embedded in the orbit
determination process is an Ensemble square root filter (EnSRF).29, 30 This method exploits the
capability of PCE to generate inexpensively huge ensembles of samples. Moreover, EnSRF does
not require perturbed observations; thus, no sampling error is introduced in Kalman gain matrix,
improving the accuracy of the filter.
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Guidance law

In this work, closed-loop control, i.e., tracking the nominal trajectory, is used as control strat-
egy. Maneuvers are computed at a prescribed time, in order to comply with on-ground segment
requirements. The differential guidance (DG), a commonly used guidance method for deep-space
missions,13, 31 is exploited. Under this framework, the TCM at time tj can be computed as13

∆vs
j = −

(
ΦT
rvΦrv + qΦT

vvΦvv

)−1 (
ΦT
rvΦrr + qΦT

vvΦvr

)
δrj − δvj (29)

where deltarj and δvj are the estimated deviations from the nominal state.

STATEMENT OF THE PROBLEM

Once the building blocks are established, Problem 1 has to be adapted to cope with the test
case scenario, represented by LUMIO transfer phase and the general optimal control problem is
converted into a non-linear programming problem. The optimization problem for the test case
scenario under the revised approach can be stated as

Definition 2 (Fuel-Optimal Problem) Find the initial and final time, τ0 and τf , the two TCM
times, τTCM1 and τTCM2 , the angular parameter vector α0, the SMIM vector ∆vSMIM, and the
nominal trajectory impulse at TCM times, ∆vTCM1 and ∆vTCM2 , such that

J =
∑
i

∥∆vi∥ = ∥∆vSMIM∥+ ∥∆vTCM1∥+ ∥∆vTCM2∥+ ∥∆vHIM∥+
2∑

j=1

Q(.99, ∆vsj ) (30)

with Q(0.99, ∆vsj ) representing the 99-percentile of the stochastic cost computed through Eq. (27),
is minimized, while the state is subjected to the RnBP-RPF dynamics. The HIM is computed as

∆vHIM = ν∗ (τf )− νδ (τf ) (31)

with ν∗ the nominal velocity and ρδ is the target halo velocity.
The state is subjected to initial constraints{

E [χ∗(τ0)] = ˆ[χ
∗
(τ0) = χ0 (τ0,α0) + ∆vSMIM

E
[
(χ∗(τ0)− χ0) (χ

∗(τ0)− χ0)
T
]
= P0

(32)

and
E
[
(χ(τ0)− χ0) (χ(τ0)− χ0)

T
]
= P0 (33)

and a final constraint

c = F̂d(30 km) > 0.99 (34)

with d = ∥ρ (τf )− ρδ (τf )∥, being a measure of the distance of the real trajectories from the halo
at τf , where ρδ is the target halo.
In order to be compliant with on-ground operation requirements, some linear constraints are added

2 d ≤ (τTCM1 − τ0) ≤ 8 d (35)

5.5 d ≤ (τTCM2 − τ0) ≤ τf − 3 d (36)

13



The navigation costs and the final dispersion are estimated through the comprehensive navigation
assessment. It means

∆vs = GL (χ∗, χ̂, τTCM ) (37)

and
χ̂
(
τOD
f

)
= OD

(
χ∗, χ̂, τOD

0 , τOD
f

)
(38)

with GL and OD being the Differential Guidance (Eq. (29)) and orbit determination on the nominal
trajectory respectively, χ̂ is the estimated state, χ the real state and χ∗ is the nominal state.

The procedure used is summarized in Algorithm 1.

Table 2: Decision vector bounds. τ0 is the first guess departure date.

Dep. date τf [d] τTCM1 [d] τTCM2 [d] ∆vTCMj [m/s]

Upper Bound τ0 + 7d 28 8 τf − 3 d 10
Lower Bound τ0 − 7 d 15 2 5.5 -10

Problem 2 is solved by exploiting a simple shooting technique.32 This method is selected as
the most suitable to solve the optimization problem, since i) the trajectory lasts only few days and
nominally no middle correction is enforced, so low numerical noise is expected in the derivatives,
ii) number of variables is strongly reduced, iii) and Algorithm 1 can be implemented easily.

RESULTS

The trajectories listed in Table 3, taken from LUMIO Phase A study, are used as first guesses
for Problem 2. The NLP is solved for each of them. The average computational time for the
optimization algorithm on a quad-core Intel i7 2.80 GHz processor is about 20 minutes. Since CUT
samples can be propagated forward independently, the runtime can be easily reduced by exploiting
parallelization on a multi-core workstation.
Results are summarized in Table 4. Surprisingly, the solution having the best deterministic value
(i.e., #64) is not the one having the best performances when stochastic costs are considered, neither
in the non-optimized or in the optimized case, and this can lead to an unnecessary waste of propellant
mass. However, this choice will be sub-optimal when the stochastic costs are considered. Indeed,
Solution #53 needs less propellant in the first guess comprehensive approach, allowing to save about
6% of fuel. This figure increases to 8% in the optimized solution under the integrated approach.
This feature is mainly related to have to possibility to fly a lower dispersion trajectory. Indeed,
although the position dispersion (Figure 6) shows a similar trend for both Solution #53 and #64, the
velocity dispersion (Figure 7) is lower when Solution #53 is considered and this helps the trajectory
to have smaller navigation costs. Moreover, a final lower dispersion is beneficial since it allows to
satisfy the final constraint with less effort.
The solution #53 has the minimum overall ∆v both considering the first guess and the optimized
trajectory. Thus, solution #53 would have been selected as the best-performing solution even in
the sequential approach. However, solution #289 results show that a great improvement (about the
25%) can be obtained under the stochastic optimization. This feature indicates that, considering
a different time-frame or a different operational orbit, it could be possible that the sequential and
the integrated approach give different results, leading to a wrong choice of the nominal orbit if the
stochastic optimization is not performed.
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Algorithm 1: Integrated approach algorithm for test cast scenario
Procedure INTEGRATED APPROACH

Define spacecraft and navigation settings;
Define the uncertainty properties; ▷Table 1
Function INITIALIZATION

Evaluate the initial CUT samples χq
k+1 ; ▷See Eq. (11)

Compute the random basis function for KDE-KQE;
Function KNOWLEDGE ANALYSIS

Consider the nominal trajectory;
for i = 1 to nP ▷Loop through nP sub-phases

switch sub-phase
case OD phase

Function ORBIT DETERMINATION
Find the visibility windows;
Retrieve the nM measurement times tk;
for k = 1 to nM ▷Loop through nM meas. times

Get the pseudo-measurement; ▷See Eq. (28)
Apply the EnSRF; ▷See Sec.
Get estimated states from the filter;
Propagate the estimated state samples to tk+1;

end
Propagate the estimated samples up to tOD

f ;
Result: Average error at each OD final time

otherwise
Propagate the states up to the final sub-phase time;

end
end

Result: Kwowledge time evolution
Function NAVIGATION COSTS & DISPERSION

for i = 1 to nP ▷Loop through nP sub-phases
switch sub-phase

case Cut-off phase
Propagate the CUT samples up to the TCM time;
Estimate the correction maneuvers ∆vs,qj ;
Apply the maneuvers to each sample;

case OD phase
Propagate the CUT samples up to the final OD time;
Estimate the mean error; ▷See ORBIT DETERMINATION
Evaluate the estimated samples;

otherwise
Propagate the samples up to the final sub-phase time;

end
end

Result: Navigation cost estimate; Final dispersion
Result: Cost function (Eq. (30)); Dispersion statistic (Eq. (34))
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Table 3: First guess optimal solutions whit ∆v ≤ 120m/s.

# Departure date ToF [d] ∆vTOT [m/s]

53 28 JAN 2024 16.62 74.00
64 30 JAN 2024 15.56 67.33
164 11 FEB 2024 16.71 83.11
289 27 FEB 2024 15.92 68.65

Table 4: Integrated approach optimal solutions. Subscript D stay for deterministic, while S is
stochastic. The asterisk is used for the value after the optimization.

# ∆vD [m/s] ∆v0D+S [m/s] ∆v∗D+S [m/s]

53 74.00 102.60 100.14
64 67.33 108.8 108.75
164 83.11 111.88 111.75
289 68.65 125.47 101.91

Table 5: Solution #53 maneuvers magnitude.

∆vSMIM [m/s] ∆vHIM [m/s] Q(.99, ∆vs1) Q(.99, ∆vs2) Total [m/s]

68.73 3.50 25.24 2.66 100.14

CONCLUSIONS

In this work, an integrated approach for preliminary mission analysis is devised. This technique
has the aim to reduce the propellant mass needed to fly a trajectory by embedding in the trajectory
design and optimization the navigation assessment and the associated stochastic costs directly in the
preliminary mission analysis. This method can be fundamental in future space mission exploiting
limited-capability small spacecraft, where high navigation costs may jeopardize the mission feasi-
bility. In order to assess the performances against the traditional technique, the revised approach
has been applied in a test case scenario, representing the transfer from a low lunar orbit to the op-
erational halo orbit of the CubeSat LUMIO. For this scenario, a new technique, using conjugate
unscented transformation to compute the polynomial chaos expansion coefficients, labeled PCE-
CUT, is devised and used to propagate the uncertainties and estimate both the dispersion and the
stochastic costs, while the knowledge analysis is performed by a combination of this technique with
an ensemble square-root filter. This method is inserted in the optimization scheme. Four trajectories,
coming from a grid search algorithm, are used as educated initial guesses. After the optimization
is found that the solution with the best deterministic value is not the one with the minimum overall
cost and the 8% of the propellant mass is saved by the integrated approach optimal solution.
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