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Abstract. In recent years, deep learning has gained increasing popularity in
the fields of Partial Differential Equations (PDEs) and Reduced Order Mod-

eling (ROM), providing domain practitioners with new powerful data-driven

techniques such as Physics-Informed Neural Networks (PINNs), Neural Oper-
ators, Deep Operator Networks (DeepONets) and Deep-Learning based ROMs

(DL-ROMs). In this context, deep autoencoders based on Convolutional Neu-

ral Networks (CNNs) have proven extremely effective, outperforming estab-
lished techniques, such as the reduced basis method, when dealing with com-

plex nonlinear problems. However, despite the empirical success of CNN-based
autoencoders, there are only a few theoretical results supporting these archi-

tectures, usually stated in the form of universal approximation theorems. In

particular, although the existing literature provides users with guidelines for
designing convolutional autoencoders, the subsequent challenge of learning the

latent features has been barely investigated. Furthermore, many practical ques-

tions remain unanswered, e.g., the number of snapshots needed for convergence
or the neural network training strategy. In this work, using recent techniques

from sparse high-dimensional function approximation, we fill some of these

gaps by providing a new practical existence theorem for CNN-based autoen-
coders when the parameter-to-solution map is holomorphic. This regularity

assumption arises in many relevant classes of parametric PDEs, such as the

parametric diffusion equation, for which we discuss an explicit application of
our general theory.

1. Introduction. Scientists and engineers rely on Partial Differential Equations
(PDEs) to model and describe physical phenomena characterizing the behavior of
systems, materials, and processes. In tandem with efficient numerical solvers, PDE
modeling allows engineers to generate robust simulations of physical systems, effec-
tively providing them with reliable tools for forecasting, design, and optimization.

In practical applications, PDE models often involve multiple parameters, which
here we denote as µ ∈ Rp, that describe the physical properties of the system and/or
specify the scenario under consideration. We can think of, e.g., the viscosity coeffi-
cient in a fluid flow simulation [47], the morphology of a vascular network in a bio-
physical model [53], or the permeability coefficient in a heat-transfer simulation [9].
When these parameter values remain constant, traditional numerical solvers based
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on, e.g., finite elements, finite differences, or finite volumes, can provide precise and
reliable approximations at a computationally feasible expense. However, there are
also applications where the model parameters are allowed to change and thus neces-
sitate multiple—fast—simulations. Examples include optimal control (i.e., find the
µ minimizing a given cost functional), inverse problems (i.e., retrieve µ from sensor
measurements), and uncertainty quantification (i.e., µ is uncertain). For all such
many-query scenarios, the computational cost entailed by classical solvers becomes
prohibitive and constitutes a major limitation.

A popular solution to these issues is provided by Reduced Order Models (ROMs).
They are suitable model surrogates that seek to alleviate the computational burden
associated with the aforementioned tasks by constructing low-dimensional repre-
sentations that are rich enough to capture the essential features of the system. By
learning from high-quality samples generated by classical solvers, ROMs can offer
precise and efficient predictions, effectively restoring the feasibility of real-time sim-
ulations and their applicability to many-query scenarios. However, depending on
the problem at hand, constructing accurate and reliable ROMs can be a challenging
task. In fact, complex model features such as high-dimensional parameter spaces,
strong nonlinearities and singular behaviors, pose significant challenges. This is well
illustrated by all those problems facing the so-called Kolmogorov barrier [6, 7, 45].

Recently, motivated by the impressive success of deep learning in a variety of
fields including image recognition, natural language processing, and scientific com-
puting, researchers have attempted to leverage this methodology to construct effec-
tive ROMs, leading to the development of Deep Learning-based ROMs (DL-ROMs)
[21, 24, 48]. Experimentally, these techniques have obtained quite remarkable re-
sults. If provided with enough data and properly trained, DL-ROMs can accurately
simulate fluid flows [25], as well as complex biological [22, 53] and mechanical phe-
nomena [50]. Furthermore, if complemented with suitable ad hoc strategies, they
can incorporate some key physical properties of the underlying system such as local
mass conservation [8].

In general, this research line is part of a broader trend concerning the develop-
ment of deep learning algorithms for operator learning in high-dimensional spaces:
in fact, a surrogate model can be interpreted as an approximation of the parameter-
to-solution map of a given PDE. In this sense, there is a close connection between
DL-ROMs and techniques such as DeepONets [39] and (Fourier) Neural Opera-
tors [31, 37]. For instance, the DeepONet algorithm can be regarded as a space-
continuous version of the so-called POD-NN ROM [28], a predecessor of the POD-
DL-ROM [25]. Similarly, the architectures implemented in some DL-ROMs can be
traced back to discrete equivalents of certain Neural Operators [19, 22]. Here, how-
ever, we shall limit our attention to the case of DL-ROMs, adopting a perspective
commonly accepted in the ROM literature.

At first, the success of deep learning in reduced order modeling was mostly em-
pirical (see, e.g., [24, 28, 36]). However, with new mathematical insights on neural
network approximation theory, such as the seminal paper [54] and subsequent de-
velopments (see, e.g., [16] and references therein), DL-ROMs are now starting to
develop theoretical foundations. Relevant contributions in this direction include
[32, 40, 51], which are theoretical works characterized by a major focus on approxi-
mation theory (practical details concerning networks type or training strategies are
not addressed), research on DeepONets [34] and Neural Operators [30], and recent
results on autoencoder-based ROMs (see, e.g., [9, 19, 21, 38]).
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Here, we shall focus on the latter class of DL-ROMs, i.e., deep learning-based
surrogate models that reduce the problem complexity by leveraging deep convolu-
tional autoencoders [10]. This choice is motivated by the fact that, despite being
extremely popular among researchers, ROMs based on convolutional autoencoders
are still lacking a comprehensive theoretical foundation. While issues like the role
of convolutional blocks [20] or the choice of the latent dimension [19, 21] are rela-
tively well-understood, some key practical questions are still open, especially when
it comes to the actual training of these architectures. Our purpose for this work
is to take a step further and extend the existing literature by offering additional
insights on DL-ROM training, with a particular focus on the challenge of learning
convolutional features. To this end, we propose a new analysis of these architec-
tures based on the framework of practical existence theorems. This new paradigm
was recently introduced in [1, 5] for scalar- and Hilbert-valued approximation and
further extended to Banach-valued functions in [2] (see also the recent review paper
[3]). It leverages recent advances in sparse high-dimensional polynomial approxima-
tion theory [4] and complements existence results for neural networks (commonly
referred to as universal approximation theorems) with more practical insights on
model training, regularization and sampling.

1.1. Main contributions. Let Ω ⊂ Rd be a bounded domain, and let

Θ ∋ µ 7→ uµ ∈ Hs(Ω)

be the parameter-to-solution map of a parametrized PDE, where Θ ⊂ Rp is the
parameter space andHs(Ω) denotes a suitable Sobolev space with smoothness index
s ∈ N. A classical numerical solver based on, e.g., finite elements or finite differences,
provides access to pointwise approximations of the PDE solution over a collection
of nodes x1, . . . ,xNh

∈ Ω, with Nh being the total number of vertices constituting
the spatial grid.

Therefore, we can think of the numerical solver, also referred to as Full Order
Model (FOM) in the reduced order modeling literature, as a map

Θ ∋ µ 7→ [uµ(x1), . . . , uµ(xNh
)]⊤ ∈ RNh .

The purpose of DL-ROMs is to construct a Deep Neural Network (DNN) model
Φ : Rp → RNh such that Φj(µ) ≈ uµ(xj), where Φj denotes the jth output neuron
of Φ. In the case of autoencoder-based approaches, the construction of Φ relies on
three neural network models, namely,

Ψ′ : RNh → Rm, Ψ : Rm → RNh ,

ϕ : Rp → Rm.

The first two models, the encoder and the decoder, respectively, are trained such
that

Ψ(Ψ′([uµ(x1), . . . , uµ(xNh
)]⊤)) ≈ [uµ(x1), . . . , uµ(xNh

)]⊤.

In this way, by leveraging the autoencoder Ψ◦Ψ′, the spatial features characterizing
the solutions to the PDE can be synthesized using a smaller number of degrees of
freedom, known as the “latent” variables. In fact, each discrete vector uµ :=
[uµ(x1), . . . , uµ(xNh

)]⊤ can now be represented as Ψ′(uµ) ∈ Rm, with a substantial
reduction in complexity whenever m≪ Nh.

Conversely, the third network, ϕ, sometimes also referred to as reduced network,
is trained to learn the parameter-to-latent-variables map,

ϕ(µ) ≈ Ψ′([uµ(x1), . . . , uµ(xNh
)]⊤).
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Once all DNN modules have been trained, the encoder block Ψ′ can be discarded
and the DL-ROM constructed by composition, i.e.,

Φ := Ψ ◦ ϕ.

Given a new parametric instance µ ∈ Θ, the reduced network computes the cor-
responding latent solution, namely ϕ(µ), which is then expanded by the decoder
to retrieve the final output. In other words, methods based on autoencoders are
grounded on the idea of splitting the complexity of the problem into two compo-
nents. On the one hand, we have the spatial complexity of PDE solutions, tackled
by Ψ′ and Ψ. On the other hand, there is the inherent complexity associated with
the parameter dependence of PDE solutions, addressed by ϕ.

The existing literature provides insights on the choice of the latent dimension m
(see, e.g., [21]) and on the type of architectures, favoring the use of Convolutional
Neural Networks (CNNs)—whenever possible—for the decoder module (see, e.g.,
[20]). It is worth mentioning that, while the works [20, 21] are purely theoretical,
their conclusions are perfectly aligned with empirical evidence. In fact, researchers
had long conjectured that autoencoders could compress solutions to their intrinsic
dimension, dictated by the number of parameters [24, 36]. Similarly, by leveraging
the heuristic observation that discrete signals defined over hypercubic domains are
roughly equivalent to RGB images, several authors had suggested the use of CNNs
for the autoencoder module [24, 43]. Nonetheless, little is know about the training
of these architectures, in terms of, e.g., sample size and choice of the loss function.
Our main contribution, which is fully detailed in Theorem 1, goes precisely in this
direction.

Given a probability distribution ϱ over the parameter space, for each of the three
architectures, ϕ, Ψ and Ψ′, we identify a specific class of neural network models,
with the decoder Ψ being convolutional, such that, with high probability, the trained
DL-ROM satisfies an error bound of the form

E1/2
µ∼ϱ

[
sup

j=1,...,Nh

|uµ(xj)−Ψj(ϕ(µ))|2
]
≤ C

(
√
me

− 1√
2
γÑ1/(2p)

+

√
2m1−2s

2s− 1

)
,

where m is (proportional to) the latent dimension, Ñ is the sample size (up to log
factors), whereas γ > 0 and C > 0 are two constants related to the regularity and
the magnitude of the solution operator, respectively; finally, we recall, that p and
s are the number of parameters and the smoothness of the PDE solutions, respec-
tively. In doing so, we also specify the sampling and the optimization procedure
associated with the reduced network ϕ, identifying a specific loss function and a
corresponding regularization criterion, thus making our existence result practical.
Note that, although based on the same ideas presented in [1], our result is somewhat
stronger. In fact, with respect to the space variable x, it provides a uniform error
bound, as opposed to a space-averaged one.

At its core, our derivation leverages the theory of sparse polynomial approxima-
tion of high-dimensional, holomorphic maps, and thus relies on the assumption that
the parameter-to-solution map admits a suitable holomorphic extension. However,
as we will explore later, this assumption is not overly restrictive. In fact, there are
numerous practical cases where this condition holds true, such as the parametric
diffusion equation, for which an application of Theorem 1 is explicitly discussed in
Section 3.1. Finally, we mention that our analysis is limited to the one-dimensional
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case, d = 1. Generalizations to higher-dimensional domains are in order but out of
the scope of this work.

1.2. Outline. The paper is organized as follows. First, in Section 2, we set the
notation and introduce some of the basic mathematical concepts upon which our
analysis in constructed, such as holomorphic extensions and neural network models.
Then, in Section 3 we present our main result, Theorem 1, and its application to
the parametric diffusion equation. The proof of the theorem, which is comprised of
multiple steps, is postponed to Section 4, together with some auxiliary results that
are necessary for our construction (only some of them: the most technical ones are
deferred to Appendix A and B). Lastly, Section 5 is dedicated to a final discussion
of our findings and potential avenues for future research.

2. Preliminaries and notation. In this section we introduce the main notions
and definitions needed to carry out our analysis. In Section 2.1, we introduce
the concepts of holomorphic extension and of hidden anisotropy. Section 2.2, in-
stead, provides the essential background on feedforward and convolutional neural
networks.

2.1. Holomorphic regularity assumption. One of the key ingredients of our
study is the notion of holomorphic extension. Let Θ′ ⊆ Cp be an open set and let
V be a Hilbert space. We denote by Hol(Θ′,V ) the set of holomorphic maps from
Θ′ to V . More precisely, f ∈ Hol(Θ′,V ) if and only if the following limit exists for
all z ∈ Θ′ and all directions j = 1, . . . , p:

lim
h∈C
h→0

f(z+ hej)− f(z)

h
∈ V ,

where ej = (δi,j)
p
i=1 and δi,j denotes the Kronecker delta.

Definition 1. (Holomorphic extension) Let (V , ∥ · ∥) be a Hilbert space and
let Θ ⊆ Rp be a set. Let K ⊆ Cp be a closed set such that Θ ⊆ K. We say that
a map f : Θ → V admits a holomorphic extension to K if there exists an open set
Θ′, K ⊆ Θ′ ⊆ Cp, and a holomorphic map f̃ ∈ Hol(Θ′,V ) such that f̃|Θ = f. In
this case we also set

∥f∥L∞(K,V ) := inf
{
∥f̃∥L∞(Θ′,V ) s.t. Θ′ open, K ⊆ Θ′ ⊆ Cp, (1)

f̃ ∈ Hol(Θ′,V ), f̃|Θ = f
}
.

Specifically, we are interested in maps that admit holomorphic extensions to
so-called Bernstein polyellipses.

Definition 2. (Bernstein polyellipse) Let ρ = (ρi)
p
i=1 ∈ (1,+∞)p. We call the

set
Eρ := Eρ1

× · · · × Eρp
⊂ Cp

a Bernstein polyellipse of parameter ρ, where Eρ := { z+z−1

2 : z ∈ C, 1 ≤ |z| ≤ ρ}.

This setting is justified by the fact that several families of parametric models
based on differential equations have parameter-to-solution maps admitting holo-
morphic extensions to Bernstein polyellipses. These include parametric diffusion
problems, parametric parabolic problems, PDEs over parametrized domains, and
parametric initial-value problems. For further discussion, we refer to, e.g., [4, Chap-
ter 4] and [11].
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If a map f admits a holomorphic extension to a polyellipse Eρ, the parameter ρ
acts as a measure of its anisotropy, i.e., it gauges the smoothness of f with respect
to each input variable, and it may or may not be known a priori. Here, we focus
on the more realistic case of unknown or hidden anisotropy (cf. [1, Definition 4]).

Definition 3. (Hidden anisotropy) Let V be a Hilbert space, Θ = [−1, 1]p ⊂
Rp, γ > 0 and ϵ > 0. We write HAγ,ϵ(Θ;V ) for the set of Hilbert-valued maps
f : Θ → V which admit a holomorphic extension to a Bernstein polyellipse Eρ ⊃ Θ
whose parameter ρ = (ρj)

d
j=1 satisfies

p!

p∏
j=1

log(ρj) ≥ γp(p+ 1)p(1 + ϵ)−1. (2)

Although the definition of hidden anisotropy might seem obscure or somewhat
arbitrary, there is a clear rationale for it. If a map f : Θ = [−1, 1]p → V admits a
holomorphic extension to a Bernstein polyellipse Eρ, then its best n-term approxi-
mation fn with respect to Legendre orthogonal polynomials on L2(Θ;V ) satisfies
the following exponential decay rate for any ϵ > 0 (see, e.g., [4, Theorem 3.15]):

∥f − fn∥L2(Θ;V ) ≤ exp
(
−Cϵ,p,ρ · n1/p

)
,

for n large enough (more precisely, for n ≥ n̄ where n̄ = n̄(ϵ, p,ρ)) and where

Cϵ,p,ρ =
1

p+ 1

(
p!
∏p

j=1 log(ρj)

1 + ϵ

)1/p

.

Condition (2) of Definition 3 simply ensures a uniform control of the constant Cϵ,p,ρ

via the inequality Cϵ,p,ρ ≥ γ. In other words, all functions f ∈ HAγ,ϵ(Θ;V ) satisfy

the same best n-term exponential decay rate ∥f −fn∥L2(Θ;V ) ≤ exp
(
−γ · n1/p

)
, for

n large enough. For further details we refer to [1, Section 3] and references therein.
Since our main focus will be on solution operators to parametrized PDEs, we find

it convenient to introduce a short-cut notation for maps taking values in Sobolev
spaces. We report it below.

Definition 4. (Hidden anisotropy for Sobolev-valued maps) For Ω = (0, 1),
Θ = [−1, 1]p ⊂ Rp, γ > 0, ϵ > 0 and s ∈ N, we set

HAγ,ϵ,s(Θ) = HAγ,ϵ(Θ;Hs(Ω)).

In practice, Definition 4 simply sets V := Hs(Ω). Here, following usual conven-
tions, we equip Hs(Ω) with the energy norm

∥u∥Hs(Ω) :=

√√√√∫ 1

0

|u|2dx+

s∑
k=1

∫ 1

0

∣∣∣∣dkudxk

∣∣∣∣2 dx.
We point out that, while Definition 4 allows for s = 0, our attention will be devoted
to smoother scenarios, namely s ≥ 1.

2.2. Background on neural networks. We now recall the mathematical defini-
tion of some of the most classical neural network architectures. We start with (feed-
forward) Deep Neural Networks (DNNs) implementing “standard” layers. Hereon,
we adopt the usual convention according to which scalar functions are allowed to op-
erate on vectors by acting componentwise on their entries. That is, given σ : R → R,
we let

σ([v1, . . . , vl]) := [σ(v1), . . . , σ(vl)].
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Definition 5. (Standard layer) Let n,m be positive integers. A standard layer
with activation function σ : R → R is a map L : Rm → Rn of the form

L(v) = σ (Wv + b) ,

where W ∈ Rm×n and b ∈ Rn are the layer parameters, referred to as the weight
matrix and the bias vector, respectively. The layer is said to be affine if σ is the
identity map.

A classical choice for the activation function σ is the Rectified Linear Unit
(ReLU). Given a scalar input a ∈ R, the latter acts as

σ(a) := max{0, a}.
Architectures based on ReLU activations are very popular, as they reproduce the
same expressivity of free-knot splines [13]. As specified below, ReLU networks are
just compositions of multiple layers with ReLU activation.

Definition 6. (ReLU network) Let m,n be positive integers. We say that a map
Φ : Rm → Rn is a ReLU network if it can be written as

Φ = Lℓ+1 ◦ Lℓ ◦ · · · ◦ L1

for some ℓ ≥ 0 and some L1, . . . , Lℓ+1, where Li : Rni−1 → Rni are standard layers
with ReLU activation for i = 1, . . . , ℓ, n0 := m, and Lℓ+1 : Rnℓ → Rn is an affine
layer. The layers L1, . . . , Lℓ are called hidden layers, whereas Lℓ+1 is referred to as
the output layer.

In general, a tuple of layers (Lℓ+1, Lℓ, . . . , L1) naturally defines a composite ar-
chitecture of depth ℓ and size

size :=

ℓ+1∑
j=1

(∥Wj∥0 + ∥bj∥0) ,

where Wj and bj are the weight matrix and the bias vector of Lj , while ∥A∥0
denotes the number of nonzero entries in the tensor A.

We note that, in principle, a ReLU network Φ : Rm → Rn may admit multiple
representations, possibly referring to layer tuples of different depth and size. For
instance, the map Φ : R1 → R1 defined as Φ(a) := σ(a) can be equivalently re-
written as Φ(a) = σ(σ(a)). The first representation has depth 1 and size 2, whereas
the second one has depth 2 and size 3. This ambiguity comes from the fact that depth
and size are properties of layer tuples, rather than properties of their composition.
These considerations bring us to the following.

Definition 7. (Depth and size) We say that a ReLU network has depth ≤ ℓ and
size ≤ S if it can be realized through a tuple of layers with depth ≤ ℓ and size ≤ S.

With this clarification, we can now continue our summary by moving to con-
volutional layers and, thus, Convolutional Neural Networks (CNNs). Historically,
convolutional architectures were first introduced to handle time series and RGB im-
ages [35], which were commonly stored in data structures orgnanized into channels.
For instance, in the case of 1D convolutions, CNNs are designed to accept inputs
of dimension Rm×n and return outputs of dimension Rm′×n′

. Thus, they can only
be connected to standard DNNs up to introducing suitable reshape operations.

Compared to standard architectures, CNNs are more effective in handling high
dimensional data, as, by leveraging their spatial structure, they can carry out com-
plex computations with few degrees of freedom. Indeed, it can be shown that a
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Figure 1. A 2D convolutional layer acting on a given input (sim-
plified setting: 1 channel at input/output, no activation nor bias).
The action of the convolutional layer can be visualized either in
terms of a moving filter (A) or using the equivalent matrix repre-
sentation (B): in both cases, despite mapping from R9 onto R4, the
layer only comes with 4 learnable parameters, instead of 9 · 4 = 36.

convolutional layer operating from Rm×n to Rm′×n′
is formally equivalent to a

standard layer Rmn → Rm′n′
whose weight matrix is sparse and contains shared

entries [46] (see Figure 1 for an illustration).
We provide a more rigorous definition of these architectures below. In what

follows, we make use of the following notation, which is rather helpful when dealing
with tensor objects. Given A ∈ Rn1×···×nd , we write Ai1,...,ip for the np+1×· · ·×nd
subtensor obtained by fixing the first p dimensions along the specified axis, where
1 ≤ ij ≤ nj .

Definition 8. (1D Convolutional layer) Let m,m′, s, t, d be positive integers
and let g be a common divisor of m and m′. For any input size n ∈ N, n > 0, let

nout :=

⌊
n− d(s− 1)− 1

t
+ 1

⌋
A 1D Convolutional layer with m input channels, m′ output channels, grouping
number g, kernel size s, stride t, dilation factor d and activation function σ : R → R,
is a map of the form

L : Rm×n → Rm′×nout

whose action on a given input V ∈ Rm×n is defined as

L(V)k′ = σ

(∑
k∈K

Wk′,k ⊗t,d Vk +Bk′

)
,

where 1 ≤ k′ ≤ m′, while

K = {⌊g(k′ − 1)/m⌋m/g + 1, . . . , (⌊g(k′ − 1)/m⌋+ 1)m/g} .

Here, W ∈ Rm′×(m/g)×s and B ∈ Rm′×nout are the weight tensor and the bias
matrix, respectively, whereas ⊗t,d is the cross-correlation operator with stride t and
dilation d. The latter is defined so that, for any w ∈ Rs and v ∈ Rn, one has
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w ⊗t,d v ∈ Rnout , where

(w ⊗t,d x)j :=

s∑
i=1

wiv(j−1)t+(i−1)d+1.

The default values for the stride and the dilation factor are t = 1 and d = 1,
respectively. For this reason, with a slight abuse of notation, one says that Φ has
no stride and no dilation when t = d = 1. Similarly, we assume g = 1 whenever the
grouping number is not declared explicitly.

Definition 9. (1D transposed convolutional layer) Letm,m′, s, t, d be positive
integers and let g be a common divisor of m and m′. For any input size n ∈ N,
n > 0, let

nout := (n− 1)t+ d(s− 1) + 1.

A 1D transposed convolutional layer with m input channels, m′ output channels,
grouping number g, kernel size s, stride t, dilation factor d and activation function
σ : R → R, is a map of the form

L : Rm×n → Rm′×nout

whose action on a given input V ∈ Rm×n is defined as

L(V)k′ = σ

(∑
k∈K

Wk,k′ ⊗⊤
t,d Vk +Bk′

)
,

where 1 ≤ k′ ≤ m′, while

K = {⌊g(k′ − 1)/m⌋m/g + 1, . . . , (⌊g(k′ − 1)/m⌋+ 1)m/g} .

Here, W ∈ R(m/g)×m′×s and B ∈ Rm′×nout are the weight tensor and the bias
matrix, respectively, whereas ⊗⊤

t,d is the transposed cross-correlation operator with
stride t and dilation d. The latter is defined so that, for any w ∈ Rs and v ∈ Rn,
one has w ⊗⊤

t,d v ∈ Rnout , where(
w ⊗⊤

t,d v
)
j
:=
∑
i∈I

w⌊(i−1)t/d+(1−j)/d⌋+1vi,

with I =
{⌊

j−1
t + 1

⌋
, . . . ,

⌊
(s−1)d+j−1

t + 1
⌋}

.

As we mentioned, it is also useful to define reshaping operations. We provide a
rigorous definition below.

Definition 10. (Reshape) Let m and n be positive integers. Let Rm,n : Rmn →
Rm×n be the bijective linear map defined as

Rm,n : x 7→


x1 . . . xn
xn+1 . . . x2n
. . . . . . . . .
x(m−1)n+1 . . . xmn

 .
The map Rm,n and its inverse, R−1

m,n, are called reshape operations.

Definition 11. (Convolutional Neural Network) We say that a map Ψ is a
Convolutional Neural Network (CNN) if it can be realized as the composition of
(transposed) convolutional layers and reshape operations.
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It is important to note that, by including reshape operations, CNNs can accept
both vectors and matrices. In fact, any CNN Ψ̃ : Rm×n → Rm′×n′

comes with
its vectorized counterpart Ψ := R−1

m′,n′ ◦ Ψ̃ ◦ Rm,n. Note in fact that, although Ψ
operates on vectors, it can be considered a CNN according to Definition 11.

The concepts of depth and size can be easily generalized to CNNs in the natural
way. We mention that, in doing so, reshape modules are typically ignored. Finally,
in what follows, we will say that a CNN has at most q channels per layer if it can
be realized without relying on convolutional layers that have more than q channels
(either at input or output). Similarly, when stating that a CNN has depth ≤ ℓ,
size ≤ S, number of channels per layer ≤ q, and kernel size per layer ≤ K, we
intend that there exists a representation of such architecture satisfying all those
requirements simultaneously.

3. Main result. We are now ready to present our main result. However, before
coming to the actual statement of the Theorem 1, it is worth recapping the general
context. Let p ∈ N, p ≥ 1, Ω = (0, 1) and Θ = [−1, 1]p. Let {x1 < x2 < · · · <
xNh

} ⊂ Ω be a fixed spatial grid, and let ϱ be the uniform probability distribution
over Θ. DL-ROMs aim at approximating the map

Θ ∋ µ 7→ [uµ(x1), . . . , uµ(xNh
)]⊤ ∈ RNh ,

where uµ := G(µ) is the solution to some parametrized PDE, with G : Θ → Hs(Ω)
taking values in a suitable Sobolev space, s ≥ 1.

In the DL-ROM paradigm, such approximation is provided by a neural network
architecture

Φ : Rp → RNh ,

obtained via the composition of a reduced module, ϕ : Rp → Rm, and a decoder
module, Ψ : Rm → RNh . During training, these architectures are supplemented by
an auxiliary encoder module, Ψ′ : RNh → Rm, which effectively turns the interme-
diate state space, Rm, onto a latent space. In fact, the idea is that

Φ(µ) := Ψ(ϕ(µ)) ≈ [uµ(x1), . . . , uµ(xNh
)]⊤,

while, at the same time, ϕ(µ) ≈ Ψ′([uµ(x1), . . . , uµ(xNh
)]⊤).

Recently, the theory underlying DL-ROMs has evolved significantly, see, e.g. [9,
19, 20, 21]. However, practical insights on the implementation and training of these
architectures are far from being exhaustive. For this reason, domain practitioners
often rely on suitable rules of thumb, deduced from empirical evidence. Some of
these include:

i) in practice, althought certain studies suggest otherwise [42], ReLU networks
are particularly expressive compared to other architectures that rely on dif-
ferent nonlinearities, such as the sigmoidal activation [44]. Thus, the ReLU
activation, together with its smooth variants (softplus, SeLU, GeLU, etc.),
can be a good choice when constructing DL-ROMs. Here, for the sake of
simplicity, we shall focus on the “standard” ReLU;

ii) convolutional layers can significantly enhance the performances of the decoder
module. In fact, given the high dimensionality of the output, classical layers
would be prohibitive to train [36, 43];

iii) the number of convolutional layers in the decoder module should be propor-
tional to the resolution of the spatial grid [20];
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iv) the encoder block does not need to be as complex as the decoder, nor it
benefits as much from the use of convolutional layers [21];

v) ideally, it should be possible to use the same autoencoder for different problems
simultaneously [41, 52], without the need for re-training (a practice also known
as transfer learning). In fact, classical compression techniques based on, e.g.,
Fourier transform, or wavelets, are somewhat universal. Similarly, we should
be able to find problem-agnostic autoencoders that do not require a specific
training routine;

vi) the reduced map should be trained by taking the encoder outputs as a ground
truth reference, i.e., by minimizing

1

N

N∑
i=1

∥ϕ(µi)−Ψ′([uµi
(x1), . . . , uµi

(xNh
)]⊤)∥22,

where {µi}Ni=1 ⊂ Θ is an independent identically distributed (i.i.d.) random
sample, generated according to ϱ;

vii) to avoid overfitting and ensure a proper generalization, DL-ROMs can benefit
from suitable regularization strategies [24], especially at the latent level [49];

As we shall see in a moment, by embedding convolutional neural networks within
the novel framework of practical existence theorems, we can finally derive a compre-
hensive theory supporting these heuristics. We report our main result, Theorem 1,
right below. For the sake of better readability, the proof is postponed to Section 4.
In what follows, given random variable X, we shall write E1/2[X] as a short-hand
notation for (E[X])1/2.

Theorem 1. There are universal constants c0, c1, c2, c3, c4 > 0 such that the fol-
lowing holds. Let p ∈ N, p ≥ 1, and ϵ, γ > 0. Let ϱ be the uniform probability
distribution over Θ := [−1, 1]p. Let Ω = (0, 1) and

G : Θ ∋ µ → uµ ∈ Hs(Ω)

be a (nonlinear) map belonging to HAγ,ϵ,s(Θ), where s ≥ 1 (see Definition 4). Fix
a training size N ≥ 1 and a probability of failure 0 < ε < 1. Define

Ñ := N · (c0 log(2N)(log(2N)min{log(2N) + p, log(2N) log(2p))}+ log(1/ε))−1

∆ := min

{
2p/2+1Ñ3/2, e2(Ñ/2p)1+

1
2 log2 p,

Ñ1/2(log Ñ + (p+ 1) log 2)p−1

2p/2−1(p− 1)!

}
.

Let {xj}Nh
j=1 ⊂ Ω be an equispaced grid of stepsize h = 2−k for some k ∈ N. Fix a

latent dimension m ≥ 1 and let m̃ := 2m+ 1. Then, there exist

a) a class of ReLU networks F from Rp → Rm̃ with

depth ≤ c1(1 + p log p)(1 + log Ñ)
(
(Ñ/2p)1/2 + log(∆) + γÑ1/(2p)

)
,

size ≤ c2p
(
pÑ/2p +

(
(Ñ/2p)1/2 + p∆

)(
log(Ñ∆) + γÑ1/(2p)

))
+ m̃∆,

b) a latent regularization function R : F → [0,+∞), equivalent to a certain

norm of the trainable parameters, and a regularization parameter λ = λ(Ñ , p),

c) a ReLU convolutional neural network, Ψ : Rm̃ → RNh , whose architecture
only depends on G through s, with

depth ≤ c3 log(1/h), size ≤ c3m log(1/h),
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channels per layer ≤ 8m, kernel size per layer ≤ 2,

acting as a decoder,

d) a ReLU network, Ψ′ : RNh → Rm̃, whose architecture only depends on G
through s and ∥G∥L∞(Eρ,Hs(Ω)), operating as an encoder,

such that the following holds with probability 1− ε. Let {µi}Ni=1 be an i.i.d. random
sample, uniformly drawn from the parameter space Θ. Denote by P the function-

to-grid operator, P : u 7→ [u(x1), . . . , u(xNh
)]. Every minimizer ϕ̂ ∈ F of

min
ϕ∈F

√√√√ 1

N

N∑
i=1

∥ϕ(µi)−Ψ′(Puµi
)∥22 + λR(ϕ) (3)

satisfies

E1/2
µ∼ϱ

[
sup

j=1,...,Nh

|uµ(xj)−Ψj(ϕ̂(µ))|2
]

≤ c4

(
√
me

− 1√
2
γÑ1/(2p)

+

√
2m1−2s

2s− 1

)
∥G∥L∞(Eρ,Hs(Ω)),

(4)

for all Ñ ≥ N0, where N0 = N0(ϵ,G,m, p, s) and Eρ is as in Definition 3.

Theorem 1 has multiple implications. First of all, it shows clearly how the dif-
ferent properties of the problem affect the design of the neural network architec-
tures. For instance, the complexity of the decoder, both in terms of depth and
size, scales logarithmically with the grid resolution, h. In contrast, the reduced
network, ϕ, does not depend on h, but on p. Notably, thanks to the regularity of
the parameter-to-solution map, the reduced network is only mildly affected by the
curse of dimensionality: its size grows at most quadratically in p (up to logarithmic
factors).

Another interesting fact concerns the latent dimension,m, which directly appears
in the error bound (4). On the hand, increasing m can improve the accuracy of the
model (at a rate that depends on the smoothness of the PDE solutions, s). However,
in order to generalize properly, DL-ROMs with a larger latent space necessitate of
more training data, as clearly depicted by the term

√
m exp(−Ñ1/(2p)/

√
2). More

specifically, in order to achieve a prescribed target accuracy level τ > 0 it is sufficient
for m to scale polynomially in 1/τ and for Ñ to scale polynomially in log(1/τ) (this
can be seen by bounding the two main terms in the right-hand side of (4) from
above with τ and rearranging the corresponding inequalities).

In general, Theorem 1 shows that the error of a trained DL-ROM can be bounded
by two terms: a sampling error, which—asymptotically—decays exponentially with
respect to the training set size, and an approximation error, driven by the architec-
ture design and the output smoothness. Interestingly, our result confirms most of
the heuristics adopted by domain practitioners: from the use of ReLU networks and
convolutional autoencoders, to the introduction of latent regularization techniques.
On this note, we also observe that Theorem 1 implicitly supports the use of transfer
learning. In fact, looking back at the proof, our result suggests that, for a fixed
degree of smoothness, there exists a universal autoencoder performing equivalently
well for all operators G (up to a norm factor). In practice, such autoencoder could
be initialized and trained a priori, by relying on synthetic data.
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The regularizer R is an important component of Theorem 1. Recalling the nota-
tion introduced in Definition 6, the latter can be explicitly characterized using the
matrix ℓ2,1-norm as

R(ϕ) = ∥Wℓ+1∥2,1 :=

nℓ∑
j=1

∥Wℓ+1ej∥2,

where Wℓ+1 ∈ Rm̃×nℓ is the weight matrix associated with the last (linear) layer
of ϕ, while ej ∈ Rnl is the jth vector of the canonical basis. The presence of this
regularization term is essential to prove the practical existence theorem in [1] (upon
which Theorem 1 relies). In fact, it allows one to rigorously connect deep neural
network training with sparse polynomial approximation via compressed sensing.
For a more detailed discussion, we refer the reader to [3].

In relation to this, an inspection of the proof of Theorem 1 reveals that ϕ̂ consists
mostly of sparsely connected layers. This sparsity is further promoted by the regu-
larizer R, whose action naturally favors compressibility (i.e., approximate sparsity)
of the last layer’s weights; keeping only the absolute largest weights of this layer
would yield improved network size bounds (see [3, Section 9.4] for further details).
These observations suggests that adopting network pruning in this context might
be an effective strategy (see [23]); notably, this is coherent with recent empirical
evidence in the reduced order modeling literature, see, e.g., [22, 26].

Clearly, despite offering several insights, Theorem 1 comes with its own limita-
tions: we provide a detailed discussion on the matter in Section 5.

3.1. Application to a parametric diffusion model. To showcase the applicabil-
ity of Theorem 1, we consider a parametric diffusion equation with affine parametric
dependence on the diffusion term. This model is often used as a case study in the
parametric PDE literature (see, e.g., [4, Chapter 4], [11, 40], and references therein).

We consider the physical domain Ω = (0, 1), a forcing term F ∈ H−1(Ω), and
functions a0 ∈ L∞(Ω), {ψj}pj=1 ⊂ L∞(Ω) defining an affine parametric diffusion
term

aµ(x) = a0(x) +

p∑
j=1

µjψj(x), x ∈ Ω, µ ∈ Θ. (5)

Then, we consider the following parametric weak problem: for any µ ∈ Θ, find
uµ ∈ H1

0 (Ω) such that∫
Ω

aµ
duµ
dx

dv

dx
dx =

∫
Ω

Fv dx, ∀v ∈ H1
0 (Ω). (6)

In order to apply Theorem 1, we need to (i) find sufficient conditions ensuring that
the map G : µ 7→ uµ belongs to HAγ,ϵ,1(Θ) and (ii) estimate ∥G∥L∞(Eρ,H1(Ω)).

First, we assume the parametric problem (6) to be uniformly elliptic, i.e., such
that

p∑
k=1

|ψk(x)| ≤ a0(x)− r, (7)

for some r > 0. This implies, in particular, that ess infx∈Ω aµ(x) ≥ r for every
µ ∈ Ω (and, hence, that (6) is elliptic for every fixed µ ∈ Θ). In addition, for some
fixed γ, ϵ > 0 and ξ > 0 we assume the functions {ψk}pk=1 to be such that

p∑
k=1

(
ρk + ρ−1

k

2
− 1

)
∥ψk∥L∞ ≤ ξ, (8)
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for every ρ satisfying condition (2). In this setting, [4, Proposition 4.9] immediately
implies that G ∈ HAγ,ϵ,1. Note that a holomorphic extension of G to Eρ is the map
ζ 7→ uζ , where uζ is the (thanks to uniform ellipticity, unique) solution to the weak
problem associated with the complex-valued diffusion coefficient

aζ(x) = a0(x) +

p∑
j=1

ζjψj(x), x ∈ Ω, ζ ∈ Eρ.

In addition, we see that

∥G∥L∞(Eρ,H1(Ω)) ≤
√

1 +
1

π2
· ∥G∥L∞(Eρ,H1

0 (Ω)) ≤
√

1 +
1

π2
·
∥F∥H−1(Ω)

r − ξ
,

where the first inequality hinges on the Poincaré inequality, while the second one
is a consequence of [4, Proposition 4.9]. Here, H1

0 (Ω) is equipped with its classical
energy (semi)norm

∥u∥H1
0
:=

√∫
Ω

∣∣∣∣dudx
∣∣∣∣2 dx.

We are then allowed to apply Theorem 1 to problem (6), in which case the error
bound (4) reads

E1/2
µ∼ϱ

[
sup

j=1,...,Nh

|uµ(xj)−Ψj(ϕ̂(µ))|2
]
≤ c

(
√
me

− 1√
2
γÑ1/(2p)

+

√
2

m

)
∥F∥H−1(Ω)

r − ξ
,

for some universal constant c > 0.
We conclude by noting that Theorem 1 could also be applied to problem (6) for

s > 1. Indeed, if F ∈ Hs−2(Ω) and aµ ∈ Cs−1(Ω), then standard regularity theory
results for PDEs imply that uµ ∈ Hs(Ω) (see, e.g., [17, Section 6.3, Theorem 2]).
However, finding precise sufficient conditions on the parametric coefficient aµ able
to ensure that G ∈ HAγ,ϵ,s and bounding ∥G∥L∞(Eρ,Hs(Ω)) requires an extension of
[4, Proposition 4.9] and a careful analysis that is outside the scope of this paper.

4. Proof of theorem 1. We subdivide the proof into several steps. In particular,
we shall state, and prove, a few claims that eventually lead to the full proof. Before
diving into the details, we recall the definition of operator norm. Given a linear
map T : (A , ∥ · ∥A ) → (B, ∥ · ∥B) between two normed spaces, we set

|||T ||| := sup
a∈A

∥a∥A=1

∥Ta∥B.

Equivalently, due linearity, |||T ||| is nothing but the (best) Lipschitz constant of T .

Step 1. Without loss of generality, the function-to-grid operator, P , can be assumed
to be injective over G(Θ) ⊂ Hs(Ω).

Proof. Assume that we are able to prove Theorem 1 whenever P is injective over
G(Θ) ⊂ Hs(Ω). Let us now consider an operator G̃, satisfying all the hypotheses of

the Theorem, but for which P is not injective over the image set G̃(Θ). Then, the
idea is to exploit the following Lemma, which, essentially, is just a re-writing of [14,
Theorem 5.1].

Lemma 1. Let Ω, s and x1, . . . , xNh
, be as in Theorem 1. There exists a bounded

linear operator Q : Hs(Ω) → Hs(Ω) such that
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i) (Qf)(xj) = f(xj) for f ∈ Hs(Ω) and all j = 1, . . . , Nh;

ii) if f, g ∈ Hs(Ω) and f(xj) = g(xj) for all j = 1, . . . , Nh, then

∥Qf∥Hs(Ω) ≤ ∥g∥Hs(Ω).

In practice, Q is a projection operator that maps Hs(Ω) onto a suitable subspace
of smooth splines. Most importantly, Q acts as an interpolator with minimum
norm: see (i) and (ii), respectively. Furthermore, it is straightforward to see that
P is injective over Q(Hs(Ω)). In fact, by letting g ≡ 0 in (ii), and by exploiting (i),
we see that

P (Qf) = 0 =⇒ Pf = 0 = Pg =⇒ ∥Qf∥Hs(Ω) ≤ ∥g∥Hs(Ω) = 0 =⇒ Qf ≡ 0.

With this in mind, let Q be as in Lemma 1, and let G̃Q := Q◦ G̃. Since Q is both
linear and continuous, it is holomorphic, and, furthermore,

G̃ ∈ HAγ,ϵ,s(Θ) =⇒ G̃Q ∈ HAγ,ϵ,s(Θ).

In particular, since G̃Q satisfies all the properties in Theorem 1 and P is injective

over G̃Q(Θ) ⊆ Q(Hs(Ω)), we are allowed to invoke Theorem 1 with G := G̃Q, thus
obtaining the error bound in Eq. (4) (recall that we assumed the Theorem to hold
true whenever the additional hypothesis of injectivity is satisfied). However, since

(G̃Qµ)(xj) = (G̃µ)(xj) = uµ(xj) for all j = 1, . . . , Nh, and

∥G̃Q∥L∞(E,Hs(Ω)) ≤ ∥G̃∥L∞(E,Hs(Ω))

due to (ii), it is evident that (4) also holds for G := G̃, thus proving our claim.

Step 2. There exists a linear operator T : Hs(Ω) → Rm̃ and a CNN Ψ : Rm̃ → RNh

satisfying (d), such that

sup
j=1,...,Nh

|u(xj)−Ψj(Tu)| ≤
√

2

2s− 1
m1/2−s∥u∥Hs(Ω) ∀u ∈ G(Θ) ⊂ Hs(Ω), (9)

and |||T ||| ≤ 2.

Proof. By [20, Theorem 1] there exists a continuous linear operator T : Hs(Ω) →
C2m+1 and a linear CNN (no activations nor biases at any level) Ψ : C2m+1 → RNh ,
whose depth, size and number of channels satisfy the complexity bounds in (d), such
that (9) holds1. The operator T only depends on s, and its operator norm can be
bounded as |||T ||| ≤ 2: we refer the reader to the Appendix, Lemma A.2, for a
rigorous description of T and its properties.

We note, however, that we cannot readily use such T and Ψ, as they take values
(respectively, inputs) in Cm̃ ∼= R2m̃. To fix this, for any k ∈ N, let B : Cm̃ → Rm̃

be the linear map

B ([a−m + ib−m, . . . , a0 + ib0, . . . , am + ibm]) = [a0, a1, b1, . . . , am, bm]

(recall that m̃ = 2m+ 1), and let B† : Rk → Ck be its pseudo-inverse, acting as

B† ([a0, a1, b1, . . . , am, bm]) = [am − ibm, . . . , a0, . . . , am + ibm].

By diving deeper into the definition of T , cf. Eq. (27) in the Appendix, we see that
for all u ∈ Hs(Ω) the image vector

Tu = [z−m, . . . , z0, . . . , zm] ∈ Cm̃

1[20, Theorem 1] does not mention the bound on the kernel size explicitly; however, this is a
direct consequence of [20, Lemma 3], upon which the previous Theorem is built.
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satisfies z0 ∈ R and zk = z−k for all k ∈ {1, . . . ,m}. Consequently, it is straightfor-
ward to see that

Ψ(B†BTu) = Ψ(Tu)

for all u ∈ Hs(Ω). In light of this, we are allowed to replace T with B ◦ T and Ψ
with Ψ ◦ B†, so that the two maps operate on the right spaces (i.e., Rm̃ and not
Cm̃). In this concern, note also that |||B||| ≤ 1: in particular, the bound on the
operator norm is preserved. To keep the notation lighter, the presence of B and B†

will be omitted.
Note: with this construction, Ψ is linear. However, since T (G(Θ)) is compact, we

can easily turn Ψ onto a ReLU CNN (without changing its outputs) by including
suitable biases within the layers of the architecture. We refer to Lemma B.1 and
Corollary B.1 in the Appendix for a detailed explanation. Once again, in order to
simply the notation, we shall directly assume Ψ to be a ReLU CNN and avoid the
introduction of auxiliary architectures.

Step 3. For every δ > 0, there exists a ReLU encoder Ψ′ : RNh → Rm̃ such that

sup
µ∈Θ

∥Tuµ −Ψ′(Puµ)∥2 < δ. (10)

Proof. In light of Step 1, we assume P to be injective over G(Θ). Since the latter
is compact (recall that G is continuous) and P is continuous, this suffices to show
that P admits a continuous inverse

P−1 : P (G(Θ)) → G(Θ),

which we may readily extend to a broader map from RNh onto Hs(Ω) (see, e.g.,
Dugundji’s extension Theorem [15]): with little abuse of notation, we shall still
denote this extension by P−1. Let E := T ◦ P−1, so that E : RNh → Rm̃, and fix
any tolerance δ > 0. Then, there exists a ReLU network Ψ′ : RNh → Rm̃ such that

sup
v∈P (G(Θ))

∥E(v)−Ψ′(v)∥2 < δ. (11)

The existence of such Ψ′ is guaranteed by the compactness of P (G(Θ)) and by the
continuity of E, as ReLU networks are known to be dense in the space of continuous
maps over compact subsets [29]. Since, by definition, we also have

E(Puµ) = TP−1P (uµ) = Tuµ, (12)

for all µ ∈ Θ, it is clear that (11) is nothing but (10).

Remark 2. In what follows, we let R : F → [0,+∞) be the regularization func-
tional in [1, Theorem 5], so that, for any ϕ ∈ F , the penalty term R(ϕ) corresponds
to the ℓ1 norm of the weights in the output layer of the network ϕ.

Step 4. Having fixed any δ > 0 and Ψ′ as in Step 3, for every rescaling factor η > 0
one has

argmin
ϕ∈F

√√√√ 1

N

N∑
i=1

∥ϕ(µi)−Ψ′(Puµi
)∥2 + λR(ϕ)

=
1

η
· argmin

ϕ∈F

√√√√ 1

N

N∑
i=1

∥ϕ(µi)− ηΨ′(Puµi
)∥2 + λR(ϕ).

(13)
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Proof. By definition, R(ηϕ) = |η|R(ϕ) for all η ∈ R. In fact, ϕ ∈ F =⇒ ηϕ ∈ F ,
as the latter is easily obtained by multiplying all the terminal weights in ϕ by the
scalar value η. Then, it is straightforward to see that, for all η > 0,

argmin
ϕ∈F

√√√√ 1

N

N∑
i=1

∥ϕ(µi)−Ψ′(Puµi
)∥2 + λR(ϕ)

= argmin
ϕ∈F

√√√√ 1

N

N∑
i=1

∥ηϕ(µi)− ηΨ′(Puµi
)∥2 + λR(ηϕ)

=
1

η
· argmin

ϕ∈F

√√√√ 1

N

N∑
i=1

∥ϕ(µi)− ηΨ′(Puµi
)∥2 + λR(ϕ).

(14)

Step 5. Let η∗ := (4∥G∥L∞(E,Hs(Ω)))
−1. For every δ > 0, and a corresponding

choice of Ψ′, one has

E1/2
µ∼ϱ∥Tuµ − ϕ̂(µ)∥22 ≤ η−1

∗ c4 exp

(
− 1√

2
γÑ1/(2p)

)
+ c4δ, (15)

where ϕ̂ ∈ F is any minimizer of (3).

Proof. For any η > 0, let us consider the rescaled minimization problem in Step 4,
and let

ϕ̂η := argmin
ϕ∈F

√√√√ 1

N

N∑
i=1

∥ϕ(µi)− ηΨ′(Puµi
)∥2 + λR(ϕ). (16)

Let fη : Θ → Rm̃ be defined as fη(µ) := ηTuµ = ηTG(µ). Let Eρ be the Bernstein
polyellipse in Definition 3 corresponding to G ∈ HAγ,ϵ,s(Θ). Since T is linear, and
thus entire, it is clear that fη admits a holomorphic extension to Eρ. Furthermore,
by composition,

∥fη∥L∞(Eρ,Rm̃) ≤ η|||T ||| · ∥G∥L∞(Eρ,Hs(Ω)) ≤ 2η∥G∥L∞(Eρ,Hs(Ω)).

In light of this, hereon we shall fix the rescaling parameter to

η∗ :=
1

4∥G∥L∞(Eρ,Hs(Ω))
,

so that f := fη∗ satisfies ∥f∥L∞(Eρ,Rm̃) ≤ 1/2. We now recall that, thanks to (10),
we also have

sup
µ∈Θ

∥f(µ)− η∗Ψ
′(Puµ)∥2 < η∗δ.

This allows us to interpret η∗Ψ
′(Puµi

) as perturbations of f(µi), and thus consider
Problem (16) as the training of a neural network model with ground truth f and
noisy samples η∗Ψ

′(Puµi
) ≈ f(µi). In particular, by applying [1, Theorem 5] to f

and (16) with η = η∗, we see that the loss minimizer ϕ̂η∗ satisfies

E1/2
µ∼ϱ∥f(µ)− ϕ̂η∗(µ)∥22 ≤ c4 exp

(
− 1√

2
γÑ1/(2p)

)
+ c4η∗δ, (17)

with probability 1 − ε, for all Ñ ≥ N0, where N0 = N0(γ, p, f) is a lower bound
on the size of the training set. Let now ϕ be (any of) the original minimizer in the
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Theorem. As noted in (14), we have ϕ̂ = ϕ̂η∗ · η−1
∗ for some minimizer ϕη∗ of the

rescaled problem (16). Thus,

E1/2
µ∼ϱ∥Tuµ − ϕ̂(µ)∥22
= η−1

∗ E1/2
µ∼ϱ∥η∗Tuµ − ϕ̂η∗(µ)∥22

≤ η−1
∗ c4 exp

(
− 1√

2
γÑ1/(2p)

)
+ c4δ,

(18)

as f(µ) = η∗Tuµ.

Step 6. The error bound in (4) holds true.

Proof. Let ∥ · ∥1 denote the 1-norm on Rm̃, so that ∥a∥1 :=
∑m̃

i=1 |aj |. We recall
that the following hold

∥a− b∥1 ≤
√
m̃∥a− b∥2, |Ψj(a)−Ψj(b)| ≤ ∥a− b∥1. (19)

For the interested reader, we refer to [20], Pag. 7, for a detailed proof of the second
inequality. We also note that, by definition,

∥uµ∥Hs(Ω) ≤ ∥G∥L∞(Eρ,Hs(Ω)). (20)

To ease notation, let

E := E1/2
µ∼ϱ

[
sup
j

|uµ(xj)−Ψj(ϕ̂(µ))|2
]

Since

E ≤ E1/2
µ∼ϱ

[
sup
j

|uµ(xj)−Ψj(Tuµ)|2
]
+ E1/2

µ∼ϱ

[
sup
j

|Ψj(Tuµ)−Ψj(ϕ̂(µ))|2
]
,

combining (9), (18), (19) and (20), ultimately yields

E ≤
√

2m1−2s

2s− 1
∥G∥L∞(Eρ,Hs(Ω)) + E1/2

µ∼ϱ∥Tuµ − ϕ̂(µ)∥21

≤
√

2m1−2s

2s− 1
∥G∥L∞(Eρ,Hs(Ω)) +

√
m̃E1/2

µ∼ϱ∥Tuµ − ϕ̂(µ)∥22,

and thus,

E ≤

(√
2m1−2s

2s− 1
+ 4

√
m̃c4 exp

(
− 1√

2
γÑ1/(2p)

)
+ c4

√
m̃g−1δ

)
g (21)

where, for better readability, we have set g := ∥G∥L∞(Eρ,Hs(Ω)). Let us now fix the
value of δ > 0 such that

δ ≤ g

c4

√
2m1−2s

(2s− 1)m̃
. (22)

Then, (21) can be simplified to

E ≤

(
2

√
2m1−2s

2s− 1
+ 4

√
m̃c4 exp

(
− 1√

2
γÑ1/(2p)

))
g.

Since
√
m̃ ≤

√
4m, it follows that,

E ≤ max{2, 8c4}

(√
2m1−2s

2s− 1
+

√
m exp

(
− 1√

2
γÑ1/(2p)

))
g. (23)
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In particular, up to re-naming the universal constant as c′4 := max{2, 8c4}, Eq. (23)
immediately yields the desired conclusion.

5. Conclusion. Motivated by the empirical success of deep-learning-based reduced
order models for parametric PDEs, we proposed a new practical existence theorem
(Theorem 1). Our analysis focuses on models relying on deep autoencoders, where
two networks, Ψ′ and Ψ are used to compress the output, whereas a third network,
ϕ, is used to learn the parameter-to-latent-variables map; the parameter-to-solution
operator G is then approximated via composition, G ≈ Ψ ◦ ϕ. Focusing on the case
of deep convolutional autoencoders, our theorem provides an explicit error bound
for trained models in which the decoder Ψ is constructed explicitly and the reduced
network ϕ is trained via regularized empirical loss minimization. In doing so, the
theorem also provides a list of sufficient conditions on the overall complexity of the
reduced order model, Ψ ◦ ϕ, as well as detailed information concerning the training
phase of the reduced network ϕ (sample size, sampling strategy, choice of the loss
function). Notably, our theorem validates several heuristic observations from previ-
ous numerical studies, hence reducing the gap between theory and practice in this
fast-growing area.

We conclude by mentioning some limitations of our theory, whose study is left
to future work. First, our theory only covers the case of one-dimensional physical
domains. Generalizing the theory to higher dimensions is an important open ques-
tion. In this regard, there are two main obstacles that hinder the extensibility of
our analysis to d > 1. The first one is a technicality regarding the operator T in
the proof of Theorem 1 (see also Lemma A.2). Simply put, the latter consists of a
periodicization operator, mapping arbitrary functions onto smooth periodic signals,
composed with the truncated Fourier transform for data compression. Adapting
this idea for d > 1 is nontrivial since domains can have arbitrary shapes. One idea
could be to embed Ω onto a suitable hypercube [−1, 1]d and, depending on the
smoothness of ∂Ω, leverage well-known estimates of Sobolev extension operators,
see, e.g., [18]. The second issue, instead, is merely practical. Our construction
relies on a convolutional architecture that can replicate the performances of the
Fourier transform. In higher-dimensions, this requires a very careful adaptation of
[20, Lemma 1-4].

Aside from this, another interesting line of future work is the study of further
parametric PDEs with holomorphic parametric dependence, such as elliptic prob-
lems with higher regularity (s > 1), parabolic problems, or PDEs over parametrized
domains (see, e.g., [12]). Here, in fact, we only discussed the application of our the-
ory to the parametric diffusion equation (see Section 3.1).

As we mentioned previously, it is worth remarking that Theorem 1 only addresses
the training of the reduced network ϕ. The encoder Ψ and the decoder Ψ′, instead,
are constructed either using universal approximation theorems (encoder), or explic-
itly (decoder), that is, by hard-coding all weights and biases in the architecture. In
addition, the fact that ϕ has standard as opposed to convolutional is inherited from
[1, Theorem 5], upon which Theorem 1 relies.

We conclude with some comments on the curse of dimensionality. First, we ob-
serve that the sample complexity is affected by the curse in Theorem 1. In fact,
considering the term involving Ñ in (4), for a given target accuracy τ > 0, one has√
m exp(−γÑ1/(2p)/

√
2) ≤ τ if anly only if Ñ ≥ (

√
2 log(

√
m/τ)/γ)2p, which leads

to an exponential dependence of Ñ on p. Moreover, our results lose significance if
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p ≈ Nh, mainly due to the curse of dimensionality affecting the reduced network
ϕ : Rp → Rm̃. In fact, our complexity bounds include the exponential term Ñ1/(2p).
In principle, this issue could be addressed in—at least—three ways. The first one
could be to focus on a smaller class of operators, that is, analytic parameter-to-
solution maps enjoying suitable summability properties in their power series ex-
pansion, as in [34, 51]. Second, one could consider proving a practical existence
theorem using algebraic as opposed to exponential best s-term decay rates (see [4,
Chapter 3]) in the spirit of [3, Theorem 8.1]. This would also have to be combined
(similarly to the first strategy) with higher regularity assumptions involving infinite-
dimensional analyticity and would require an adaptation of the argument in [3] to
the Hilbert- or, at least, vector-valued setting. A third approach could rely on in-
corporating an additional compression phase at input, either through autoencoders
or linear projections; see, e.g., [19, 27, 33]. Nevertheless, adapting these ideas to our
context is challenging due to the need for a theory describing the implementation
and training of a (convolutional) encoder; as we mentioned previously, this is, in
general, highly nontrivial.
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Appendix A. Hermite polynomials and signal periodicization. This Ap-
pendix presents two supplementary results, both of which are essential for our con-
struction. In particular, we expand on the definition of the operator T appearing
in the proof of Theorem 1, while simultaneously deriving some useful inequalities.

Following [20], our approach involves employing a periodicization operator that
leverages on Hermite interpolation: see Fig. 2 for a visual representation. Thus, we
first derive some preliminary results related to Hermite polynomials (Lemma A.1),
and then proceed with a synthetic discussion about the definition and the analytical
properties of the operator T (Lemma A.2).

Lemma A.1. Let s ∈ N, s ≥ 1. For any 0 ≤ j ≤ s − 1, let ps,j and qs,j be the
unique polynomials of degree 2s− 1 for which the following hold true

p
(k)
s,j (0) = δj,k p

(k)
s,j (1) = 0

q
(k)
s,j (0) = 0 q

(k)
s,j (1) = δj,k,

Then, ∥qs,j∥L2(0,1) = ∥ps,j∥L2(0,1). Furthermore, ∥ps,j∥L2(0,1) ≤ (
√
1/2)j+1.

Proof. Since qs,j(x) = (−1)jps,j(1 − x), the first statement is obvious. As for the
second one, we shall proceed in three steps.
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Step 1. We prove that ps,j(x) ≥ 0 ∀x ∈ [0, 1].

We note that, since ps,j has a zero of order s at 1, we have

ps,j(x) = g(x)(1− x)s

for some polynomial g of degree s − 1, which depends on s and j. We now notice
that, since g(x) = ps,j(x)(1− x)−s, one has

g(k)(x) =

k∑
l=0

(
k

l

)
p
(k−l)
s,j (x)(1− x)−s−l (s+ l)!

s!
.

Let ak be the kth coefficient in the polynomial expansion of g. Then, the above
implies

ak =
1

k!
g(k)(0) =

1

k!

k∑
l=0

(
k

l

)
p
(k−l)
s,j (0)

(s+ l)!

s!
≥ 0,

since p
(l)
s,j(0) ≥ 0 for all 0 ≤ l ≤ k ≤ s− 1. In particular, all the coefficients in g are

positive, implying g ≥ 0 on [0,+∞), and thus ps,j ≥ 0 on [0, 1], as claimed.

Step 2. We prove that ∥ps,0∥L2(0,1) ≤
√
1/2.

Using the definition, it is straightforward to verify that the polynomial ps,0 can be
written in closed form as

ps,0(x) = 1−
∫ x

0
ys−1(1− y)s−1dy∫ 1

0
ys−1(1− y)s−1dy

. (24)

In fact, the right-hand-side of (24): i) is a polynomial of degree (s−1)+(s−1)+1 =
2s − 1; ii) vanishes at x = 1, while it equals 1 at x = 0; iii) its derivative is
proportional to xs−1(1− x)s−1, which vanishes at x = 0, 1 with all its higher order
derivatives (up to degree s−2). Since the polynomial ps,0 is uniquely characterized
by such conditions, this proves that the identity in (24) holds true.

We now note that, since the integrand y 7→ ys−1(1− y)s−1 is positive, the poly-
nomial ps,0 happens to be monotone nonincreasing in [0, 1]. Consequently,

0 ≤ ps,0(x) ≤ ps,0(0) = 1,

for all x ∈ [0, 1], and thus

∥ps,0∥2L2(0,1) =

∫ 1

0

p2s,0(x)dx ≤
∫ 1

0

ps,0(x)dx (25)

Furthermore, due symmetry, it is straightforward to see that

ps,0(x) = 1− ps,0(1− x),

from which, up to a simple change of variables, it follows that∫ 1

0

ps,0(x)dx = 1−
∫ 1

0

ps,0(1− x)dx = 1 +

∫ 0

1

ps,0(z)dz = 1−
∫ 1

0

ps,0(z)dz

=⇒
∫ 1

0

ps,0(x)dx =
1

2
,

which in turn implies ∥ps,0∥L2(0,1) ≤
√

1/2 due to (25).

Step 3. We prove that ∥ps,j∥L2(0,1) ≤ (
√

1/2)j+1.
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To prove the remaining cases, we shall exploit the following recursive formula,

ps,j(x) =

∫ x

0

ps−1,j−1(y)dy + (ps,0(x)− 1)

∫ 1

0

ps−1,j−1(y)dy,

which can be easily verified by hand. We re-write the above as

ps,j(x) = ps,0(x)

∫ 1

0

ps−1,j−1(y)dy −
∫ 1

x

ps−1,j−1(y)dy. (26)

Since all polynomials in the form ps̃,j̃ are positive (cf. Step 1), we have

0 ≤ ps,j(x) ≤ ps,0(x)

∫ 1

0

ps−1,j−1(y)dy,

implying that,

∥ps,j∥L2(0,1) ≤ ∥ps,0∥L2(0,1)

∫ 1

0

ps−1,j−1(y)dy ≤ ∥ps,0∥L2(0,1)∥ps−1,j−1∥L2(0,1).

Finally, iterating the above and applying the result at Step 2, yields

∥ps,j∥L2(0,1) ≤ ∥ps,0∥L2(0,1) · ∥ps−1,0∥L2(0,1) · . . . · ∥ps−j,0∥L2(0,1) ≤ (
√
1/2)j+1.

Lemma A.2. Let Ω := (0, 1). Let s,m ∈ N, s,m ≥ 1. For any f ∈ Hs(Ω), let pf
be the polynomial of degree 2s− 1 given by

pf (x) :=

s−1∑
j=0

[f (j)(1)− f (j)(0)] · [ps,j(x)− qs,j(x)] ,

and let f̃ ∈ Hs(Ω) be the periodicized version of f , which we define as (cf. Fig. 2)

f̃(x) :=

{
f(2x) + pf (2x) 0 ≤ x ≤ 1/2

f(2x− 1) 1/2 < x ≤ 1.
(27)

Define the linear operator T : Hs(Ω) → C2m+1 as

T : f 7→
[∫ 1

0

f̃(x)e2πimxdx, . . . ,

∫ 1

0

f̃(x)e−2πimxdx

]
.

Then, |||T ||| ≤ 2.

Proof. Let f ∈ Hs(Ω). For any j = 0, . . . , s− 1 we have

|f (j)(1)− f (j)(0)| =
∣∣∣∣∫ 1

0

f (j+1)(x)dx

∣∣∣∣ ≤ ∥f (j+1)∥L2(Ω).

By Lemma A.1, we have

∥pf∥L2(Ω) ≤ 2

s−1∑
j=0

|f (j)(1)− f (j)(0)| · ∥ps,j∥L2(Ω) ≤ 2

s−1∑
j=0

(
√
1/2)j+1∥f (j+1)∥L2(Ω).

Then, by the Cauchy-Schwarz inequality,

∥pf∥L2(Ω) ≤ 2

√√√√s−1∑
j=0

(
1

2

)j+1
√√√√s−1∑

j=0

∥f (j+1)∥2L2(Ω)
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Figure 2. Visualization of the transformation f 7→ f̃ used in
Lemma A.2. The signal f is duplicated and a polynomial per-
turbation is added to ensure (smooth) periodicity.

≤ 2

√√√√+∞∑
j=0

(
1

2

)j+1

∥f∥Hs(Ω) = 2∥f∥Hs(Ω).

Consequently,

∥f + pf∥L2(Ω) ≤ ∥f∥L2(Ω) + ∥pf∥L2(Ω) ≤ 3∥f∥Hs(Ω).

We now note that a simple change of variables yields

∥f̃∥2L2(Ω) =
1

2
∥f + pf∥2L2(Ω) +

1

2
∥f∥2L2(Ω),

implying that

∥f̃∥L2(Ω) ≤
3

2
∥f∥Hs(Ω) +

1

2
∥f∥L2(Ω) ≤ 2∥f∥Hs(Ω).

Finally, we note that T maps f onto the truncated Fourier coefficients of f̃ . In
particular, for ∥ · ∥2 the Euclidean norm,

∥Tf∥2 ≤ ∥f̃∥L2(Ω) ≤ 2∥f∥Hs(Ω),

as claimed.

Appendix B. Auxiliary results on ReLU networks. This Appendix contains
some technical details about the interplay between linear networks and ReLU net-
works. As noted in the proof of Theorem 1, these considerations are fundamental,
as they allow us to adapt [20, Theorem 1] to our setting.

Lemma B.1. Let Ψ : Rm → RN be a linear network (no activations nor biases at

any level). For every compact set C ⊂ Rm, there exists a ReLU network Ψ̃ having

the same architecture (and the same weights), such that Ψ̃(c) = Ψ(c) for all c ∈ C.

Proof. In plain words, the idea is to introduce suitable biases at the internal layers
that can shift neuron entries to nonnegative values (which would be unaffected by
ReLUs). Then, a terminal bias is used to shift the output back to the desired value.
We shall now discuss the whole idea in a more rigorous way. Let ℓ be the number
of hidden layers in Ψ. Since Ψ is linear, it must be of the form

Ψ(c) = Wℓ+1 · · · · ·W1c,
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where Wi, i = 1, . . . , l+1, are the matrices representing the action of the ith layer,
respectively. Let us introduce the following notation

Wi→j :=

j∏
k=i

Wk,

defined for all pairs 1 ≤ i ≤ j ≤ ℓ+1.We construct a sequence of biases b0, . . . ,bℓ+1,
via the iterative scheme below,

b0 = 0,

bi = −min
c∈C

(
W1→ic+

i−1∑
k=0

Wk+1→ibk

)
, i = 1, . . . , ℓ,

bℓ+1 = −
ℓ∑

k=0

Wk+1→ℓ+1bk

(28)

the minimum being defined entrywise (note that all minima are well-defined due
compactness of C). For σ the ReLU activation function, consider the layers

Li : x 7→ σ (Wic+ bi) ,

defined for i = 1, . . . , ℓ. We claim that the ReLU network

Ψ̃ := Wℓ+1(Lℓ ◦ · · · ◦ L1)(c) + bℓ+1

coincides with Ψ over C. To see this, we start by noting that for all c ∈ C, due to
(28), we have

b1 ≥ −W1→1c−�����
W1→1b0 = −W1c,

implying that W1c+ b1 has nonnegative entries. Consequently,

L1(c) = σ (W1c+ b1) = W1c+ b1.

Similarly,

b2 ≥ −W1→2c−�����
W1→2b0 −W2→2b1 = −W2W1c−W2b1,

implying that

W2W1c+W2b1 + b2,

has nonnegative entries, and thus

L2(L1(c)) = L2(W1c+b1) = σ (W2W1c+W2b1 + b2) = W2W1c+W2b1+b2.

Iterating the above argument, one can easily see that

(Lℓ ◦ · · · ◦ L1) (c) = Wℓ · · · · ·W1c+Wℓ · · · · ·W2b1 +Wℓ · · · · ·W3b2 + · · ·+ bℓ

= W1→ℓc+

ℓ−1∑
k=0

Wk+1→ℓbk + bℓ,

for all c ∈ C. Then,

Ψ̃(c) = Wℓ+1W1→ℓc+
ℓ−1∑
k=0

Wℓ+1Wk+1→ℓbk +Wℓ+1bℓ + bℓ+1

= W1→ℓ+1c+

ℓ−1∑
k=0

Wk+1→ℓ+1bk +Wℓ+1bℓ + bℓ+1
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= W1→ℓ+1c+

���
���

��
ℓ∑

k=0

Wk+1→ℓ+1bk +���bℓ+1 = W1→ℓ+1c = Ψ(c).

In particular, Ψ̃|C ≡ Ψ|C , as wished.

Corollary B.1. Let Ψ : Rm → RN be a linear CNN (no activations nor biases at

any level). For every compact set C ⊂ Rm, there exists a ReLU CNN Ψ̃ having the

same architecture (and the same weights), such that Ψ̃(c) = Ψ(c) for all c ∈ C.

Proof. This is a direct consequence of Lemma B.1. In fact, convolutional layers
are uniquely characterized by the fact of having a linear component that acts as a
convolution operator. Since, in the lemma, the transformation Ψ → Ψ̃ preserves
the linear part of each layer, the conclusion follows.
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