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Abstract—The capacity-achieving input distribution of non-
coherent Rayleigh fading channels with average- and peak-power
constraints is known to be discrete with a finite number of points.
We sharpen this result by deriving upper and lower bounds on
the number of amplitude levels. The upper bounds are based
on two techniques from complex analysis: counting the number
of maxima of a function that characterizes the Karush-Kuhn-
Tucker conditions and an oscillation theorem. The latter provides
a stronger bound but applies only if the average power constraint
is inactive.

I. INTRODUCTION

Rayleigh fading is often used to model multipath propa-
gation for wireless communication. Non-coherent fading has
terminals lack access to channel state information (CSI) and
is encountered with low-power devices, short-range links, and
when coherent detection is infeasible or undesirable. We study
such channels subject to average- and peak-power constraints.
Our primary goal is to provide bounds on the number of
amplitude levels of the capacity-achieving input distribution.

A. Background

The capacity-achieving input of additive white Gaussian
noise (AWGN) channels with an average power constraint is
zero-mean Gaussian [1]. The optimal input becomes discrete
under a peak power constraint, as shown by Smith [2] who
linked the support of the input to the zeros of analytical func-
tions. For Rayleigh fading channels, Richters [3] speculated
that the optimal input with an average power constraint is
discrete. This result was proved by Abou-Faycal et al. [4].

Similar results were demonstrated for other channels. Gur-
soy et al. [5] studied Rician fading with an additional fourth-
moment constraint and showed that the optimal input is
discrete with a finite number of points. Katz and Shamai
[6] studied noncoherent AWGN channels with an average
power constraint and showed that the optimal input amplitude
is discrete with infinitely many support points. Further ex-
amples include symmetric coherent vector additive Gaussian
noise channels [7]–[10], noncoherent block-independent fad-
ing AWGN channels [11], and Poisson channels [12]. Exten-
sions to additive channels appear in [13]–[16]. Generalizations
to multi-user channels, such as multiple access and wiretap

channels, are discussed in [17] and [18]–[20], respectively.
Please see [21] for a summary of discreteness results.

The proofs in the above papers are nonconstructive, relying
on arguments by contradiction [2]. Such proofs cannot limit
the optimal input’s support size, location, and probabilities. We
recently developed alternative tools. In [22], we used Karlin’s
oscillation theorem and complex analysis for root counting to
establish upper and lower bounds on the optimal input support
size of AWGN channels with a peak-power constraint. In [23],
we introduced two new tools, one of which relies on the strong
data-processing inequality, to bound the support size of the
optimal input for Poisson noise channels. Another method
to bound the values of probabilities appears in [24]. These
techniques were extended to wiretap channels in [20].

Bounds on non-coherent channel capacity can be found in
[25]–[27]; see also [28], [29]. The capacity scales linearly with
the input power P as P → 0 and as log logP as P → ∞.

B. Organization

The paper is organized as follows. Sec. II defines notation,
specifies the channel model, and reviews the Karush-Kuhn-
Tucker (KKT) conditions and an oscillation theorem. Sec. III
presents upper and lower bounds on the number of mass points
of the capacity-achieving input. Sec. IV provides a proof; other
proofs are relegated to the extended version of the paper [30].
Sec. V concludes the paper.

II. PRELIMINARIES

A. Notation

All logarithms are to the base e. Deterministic scalar quan-
tities are denoted by lower-case letters and random variables
are denoted by uppercase letters. For a random variable X and
every measurable subset A ⊆ R the probability distribution is
written as PX(A) = P[X ∈ A]. The support set of PX is

supp(PX) = {x : PX(D) > 0 for every open set D ∋ x }.
(1)

When X is discrete, we write PX(x) for PX({x}), i.e., PX

is a probability mass function (pmf). The relative entropy of
the distributions P and Q is D (P ∥Q).



Given a function f : C 7→ C and a set A ⊆ C, define the
set of zeros of f in A as

Z (A; f) = {z : f(z) = 0} ∩ A. (2)

We denote the cardinality of Z (A; f) by N (A; f).

B. Channel Model

The output of a Rayleigh fading channel with AWGN is

V = HU +W (3)

where H ∼ CN (0, σ2
H), W ∼ CN (0, σ2

W ), and the input U
are mutually statistically independent. Neither the transmitter
nor receiver knows the realization of H , but both know the
statistics of H . The input is subject to both average-power and
peak-power constraints given by

E
[
|U |2

]
≤ P̃, (4)

P
[
|U | ≤ Ã

]
= 1

(
or equiv. |U | ≤ Ã a.s.

)
(5)

for 0 ≤ P̃, Ã ≤ ∞. The capacity of the channel is

CR(P̃, Ã) = max
PU : E[|U |2]≤P̃, |U |≤Ã

I(U ;V ). (6)

An optimal input U⋆ has a discrete amplitude and uniform
phase [4]. Moreover, the capacity is not reduced by amplitude
modulation, scaling, and square-law detection with output

Y =
∣∣∣H̃X + W̃

∣∣∣2 (7)

where Y = |V |2/σ2
W , H̃ ∼ CN (0, 1), X = |U |σH/σW ,

and W̃ ∼ CN (0, 1). Another channel model with the same
capacity of (3) is the exponential model with

Y =
1

S
T (8)

where T ∼ Exp(1) (i.e., exponential with mean one) and S
are independent. It was demonstrated in [4] that

CR(P̃, Ã) = CE(P,A) = max
PS :S∈( 1

1+A2
,1],E[ 1

S ]≤1+P
I(S;Y )

(9)
where P ≜ σ2

H

σ2
W
P̃ and A ≜ σ2

H

σ2
W
Ã. Moreover, the mapping

between the optimal distribution in (6) and the optimal distri-
bution in (9) is given by

S⋆ =
1

1 + (X⋆)2
. (10)

In this paper, we use the exponential model (8). The results
can be mapped to the original model via (10).

C. Benefits of a Peak Power Constraint

For non-coherent channels subject only to the average-
power constraint, the so-called flash signaling is necessary to
achieve the capacity slope of P → 0 [31]. Flash signaling is
not peak-power limited and has obvious practical limitations.
For instance, at low power the maximum amplitude support
point x⋆

max approaches infinity as P approaches zero.

Proposition 1. Let PX⋆ be the capacity-achieving input dis-
tribution, and let

x⋆
max(P,A) = argmax{supp(PX⋆)} (11)

be its largest amplitude. Then flash signaling is optimal, i.e.,

lim
P→0

lim
A→∞

x⋆
max(P,A) = ∞, lim

P→0
lim

A→∞
PX⋆(x⋆

max) = 0.

(12)

A similar behavior is observed numerically for the P’s at
which a new mass point appears in PX⋆ : the new mass point
has a large amplitude. A peak power constraint is thus benefi-
cial in several ways. First, the constraint defines a physically
reasonable channel. Second, the model is more general: for
large enough A, it is almost identical to having only the
average-power constraint while being mathematically more
tractable. However, many derived results hold for A = ∞.

D. KKT Conditions

We review the KKT conditions for an optimal input distri-
bution PS⋆ that induces the output density fY ⋆ .

Lemma 1. The input distribution PS⋆ achieves capacity for
the model (8) if and only if there exists λ ≥ 0 such that

ΞE(s; fY ⋆) ≤ 0, s ∈
[

1

1 + A2
, 1

]
, (13)

ΞE(s; fY ⋆) = 0, s ∈ supp(PS⋆) (14)

where, for s > 0, we have

ΞE(s; fY ⋆) ≜ D
(
fY |S(·|s)

∥∥ fY ⋆

)
− C − λ

(
1

s
− 1− P

)
= −E [log(Y fY ⋆(Y )) + γ + 1 + C

+ λ (Y − 1− P) | S = s] (15)

Proof. See [4]. The Lagrange multiplier λ accounts for the
average-power constraint and is equal to λ = ∂

∂PC(P,A)
which is a function of P and A.

E. Oscillation Theorem

To upper bound the support size of PX⋆ or PS⋆ , we follow
steps in [22]. The key tool is the variation-diminishing based
on Karlin’s oscillation theorem [32]. To state this theorem, we
need the following definition.

Definition 1 (Sign Changes of a Function). The number of
sign changes of a function ξ : X → R is

S (ξ) = sup
m∈N

{
sup

y1<···<ym⊆X
N {ξ(yi)}mi=1

}
(16)

where N {ξ(yi)}mi=1 is the number of sign changes of the
string {ξ(yi)}mi=1 where a zero is treated as a positive number.

The following theorem from [32, Thm. 3] (see also [33,
Thm. 3.1, p. 21]) provides a key step in our proof.



Theorem 1 (Oscillation Theorem). Given domains I1 and
I2, let p : I1 × I2 → R be a strictly totally positive kernel.1

For an arbitrary y, suppose p(·, y) : I1 → R is an n-times
differentiable function. Assume that µ is a regular σ-finite
measure on I2, and let ξ : I2 → R be a function with
S (ξ) = n. For x ∈ I1, define

Ξ(x) =

∫
ξ(y) p(x, y) dµ(y). (17)

If Ξ: I1 → R is an n-times differentiable function, then either
N(I1,Ξ) ≤ n, or Ξ ≡ 0.

The above theorem says that the number of zeros of a func-
tion Ξ(x), which is the output of integral transformation, is less
than the number of sign changes of the function ξ(y), which
is the input to the integral transformation. In our setting, µ is
the Lebesgue measure, x = s, p(s, y) = fY |S(y|s) = se−sy

for y ≥ 0 and s ≥ 0, and

Ξ(s) =

∫ ∞

0

ξ(y)fY |S(y|s)dy. (18)

III. MAIN RESULTS AND DISCUSSION

The next theorem states our main results. Let x⋆
max =

max supp(PX⋆), K = |supp(PX⋆)|, and ζ =
E[(1+(X⋆)2)−1]
E[(1+(X⋆)2)−2] .

Theorem 2. Consider P ∈ (0,∞] and A ∈ (0,∞], and let
PX⋆ be the capacity-achieving input distribution.

(i) Lower bound: For PA = min{P,A2} ≥ 0, we have

K ≥ K = max

{
2,

⌈√
(e−γ−1 log(PA + 1))

2
+ 1

⌉}
.

(19)
(ii) Upper bound:

K ≤ K =

 log
(
(2a+ 1)2(2a+ 1 + 2λaζ)

)
log

(
1 + 1

a−1

) + 2

 ,

(20)
where a = (1 + (x⋆

max)
2)/ζ. Moreover, if the average-

power constraint is inactive, then the bound can be
sharpened:

K ≤
⌊
log

(
e(1 + A2) + 1

)
+ e(1 + A2) + 1

⌋
. (21)

Observe that λ ≤ 1 from [4] and, since 0 ≤ x⋆
max ≤ A and

ζ ≥ 1, it holds a ≤ 1 + A2. Therefore, we have

K ≤ K2 =

⌊
log

(
(2A2 + 3)2(4A2 + 5)

)
log

(
1 + 1

A2

) + 2

⌋
. (22)

We thus have K ∼ logPA for PA → ∞, while K2 ∼ A2 logA
for A → ∞. Fig. 1 shows a heatmap of log2 K and also a plot
of log2 K2.

1A function f : I1 × I2 → R is said to be a strictly totally positive kernel
of order n if det

(
[f(xi, yj)]

m
i,j=1

)
> 0 for all 1 ≤ m ≤ n, and for all

x1 < · · · < xm ∈ I1, and y1 < · · · < ym ∈ I2. If f is a strictly totally
positive kernel of order n for all n ∈ N, then f is a strictly totally positive
kernel.
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Fig. 1. For −50 dB ≤ P,A2 ≤ 150 dB and axes resolution of 0.2 dB,
logarithm of the: a) lower bound; and b) upper bound on the support size.

IV. PROOF OF THEOREM 2

For the lower bound (19), for discrete X⋆ we may write

C(P,A) = I(X⋆;Y ⋆) = H(X⋆)−H(X⋆ |Y ⋆)

≤ H(X⋆) ≤ log |supp(PX⋆)|. (23)

Now apply the capacity lower bound in [30, Appendix I].
For the upper bound (20), the KKT conditions imply

supp(PS⋆) ⊆ Z ((0, 1]; ΞE(·; fY ⋆)) (24)

or

|supp(PS⋆)| ≤ N( (0, 1]; ΞE(·; fY ⋆) ) . (25)

We use two approaches to evaluate (25): directly count the
number of zeros of the function ΞE , and apply the oscillation
theorem to ΞE . In both cases, we must upper bound the
number of zeros of a function. A key tool is the following.

Lemma 2 (Tijdeman’s Number of Zeros Lemma [34]). Let
R, v, t be nonnegative numbers such that v > 1. For the
complex-valued function f ̸= 0 which is analytic on |z| ≤
(vt + v + t)R, its number of zeros N(DR; f) within the disk
DR = {z : |z| ≤ R} satisfies

N(DR; f) ≤
1

log v
log

max|z|≤(vt+v+t)R |f(z)|
max|z|≤tR |f(z)|

. (26)



1) Direct Counting of the Zeros of ΞE: By noting that 1 ∈
supp(PS⋆) and by using the result s⋆ ≤ R =

E[(S⋆)2]
E[S⋆] , ∀s⋆ ̸=

1 from [35, Lemma 4], we can count the zeros of the function
s 7→ ΞE(s; fY ⋆) in the interval [r,R], where r = s⋆min. We
have

|supp(PS⋆)| ≤ N( [r,R]; ΞE(·; fY ⋆) ) + 1

(a)

≤ N( [r,R]; Ξ′
E(·; fY ⋆) ) + 2

(b)
= N

(
[r,R];

1

s
E [1− Y E [S⋆ | Y ] | S = s] +

λ

s2

)
+ 2

(c)
= N( [r,R]; E [1− Y E [S⋆ | Y ] + λY | S = s] ) + 2

(d)
= N

( [
−R− r

2
,
R− r

2

]
;

E
[
1− Y E [S⋆ | Y ] + λY

∣∣∣∣ S = s+
R+ r

2

] )
+ 2,

(27)

where (a) follows by Rolle’s theorem (see, [22, Lemma 3]);
(b) follows by [30, Proposition 3]; (c) is because multiplying
the function by s does not change the number of zeros and
because E [Y | S = s] = 1

s ; and (d) follows from the change
of variable s → s+ R+r

2 which centers the interval at s = 0.
Now consider the complex analytic extension z 7→ ğ(z) of the
real function

s 7→ g(s) = E
[
1− Y E [S⋆ | Y ] + λY

∣∣∣∣ S = s+
R+ r

2

]
(28)

which is analytic on |z| < R+r
2 .

To apply Tijdeman’s lemma, we must bound the maximum
value of ğ in a disk of radius B. This is done in the next
lemma, which is proved in [30, Lemma 3].

Lemma 3. For B < R+r
2 , we have

max
|z|≤B

|ğ(z)| ≤
(R+r

2 + B)(R+r
2 − B+ R+ λ)(

R+r
2 − B

)2 (29)

and for R
2 ≤ B < R+r

2 we have

max
|z|≤B

|ğ(z)| ≥ 1 +
λ

R+ r
2

− R

R+ r
2

≥ 1

2R
r + 1

. (30)

We can now apply Tijdeman’s lemma with t = 0:

N
(
D R−r

2
; ğ

)
≤ min

1<v< R+r
R−r


log

( R+r
2 +v R−r

2 )( R+r
2 −v R−r

2 +R+λ)

( R+r
2 −v R−r

2 )
2 − log 1

2 R
r +1

log v


≤

log
( R+r

2 + R
2 )(

R+r
2 − R

2+R+λ)(2 R
r +1)

( R+r
2 − R

2 )
2

log R
R−r

(31)

=

log
(R+ r

2 )(R+
r
2+λ)(2 R

r +1)

( r
2 )

2

log R
R−r

(32)

=
log

(
(2R

r + 1)2(2R
r + 1 + 2λ

r )
)

log
(
1 + 1

R
r −1

) , (33)

where in (31) we have chosen v = R
R−r = 1 + r

R−r . Defining
a := R/r and collecting the results, we have

|supp(PS⋆)| ≤ N

([
−R− r

2
,
R− r

2

]
; g

)
+ 2 (34)

≤ N
(
D R−r

2
; ğ

)
+ 2 (35)

≤
log

(
(2a+ 1)2(2a+ 1 + 2λa

R )
)

log
(
1 + 1

a−1

) + 2, (36)

which grows as a log (a) for a → ∞. This concludes the proof.
2) Application of the Oscillation Theorem: For λ = 0

we improve the upper bound on |supp(PS⋆)| by using the
oscillation theorem. We can write

|supp(PS⋆)| ≤ N( (0, 1]; ΞE(·; fY ⋆) )

(a)
= N( (0, 1]; E [log(Y fY ⋆(Y )) + γ + 1 + C | S = s] )

(b)

≤ N( (0,∞); − log(yfY ⋆(y))− γ − 1− C )

(c)

≤ N
(
(0,∞); E [S⋆ | Y = y]− y−1

)
+ 1

(d)
= N( (0,∞); yE [S⋆ | Y = y]− 1 ) + 1 (37)

where in (a) we used (15); (b) follows from the oscillation the-
orem (Th. 1); (c) follows from Rolle’s theorem [22, Lemma 3]
and [30, Lemma 5]; and (d) holds because multiplying the
function by y does not change the number of zeros. Next,
note that

yE [S⋆ | Y = y]− 1 ≥ ys⋆min − 1 (38)

which is positive for y > R := 1
s⋆min

. Similarly,

yE [S⋆ | Y = y]− 1 ≤ y − 1 (39)

which is negative for y < 1. Hence, we have

|supp(PS⋆)| ≤ N( [1,R] ; yE [S⋆ | Y = y]− 1 ) + 1

(a)
= N

(
[1,R] ; yE

[
(S⋆)2e−S⋆y

]
− E

[
S⋆e−S⋆y

] )
+ 1

≤ N(DR; ğ(z) ) + 1, (40)

where (a) follows from E [S⋆ | Y = y] =
E
[
(S⋆)2e−S⋆y

]
E[S⋆e−S⋆y]

and

from multiplying the function by E
[
S⋆e−S⋆y

]
; and where

ğ(z) is the complex analytic extension of

g(y) = yE
[
(S⋆)2e−S⋆y

]
− E

[
S⋆e−S⋆y

]
(41)

which is analytic on z ∈ C. To apply Tijdeman’s lemma, we
must bound the maximum value of ğ in a disk of radius B.
For the upper bound, we have

max
|z|≤B

|ğ(z)| = max
|z|≤B

∣∣∣E [
((S⋆)2z − S⋆)e−S⋆z

]∣∣∣
(a)

≤ max
|z|≤B

E
[
|(S⋆)2z − S⋆|e−S⋆ℜ{z}

]



(b)

≤ E
[
((S⋆)2B+ S⋆)eS

⋆B
]
. (42)

where (a) follows by Jensen’s inequality; and (b) follows from
the triangle inequality and |z| ≤ B. For the lower bound, we
have

max
|z|≤B

|ğ(z)| ≥ |ğ(−B)| =
∣∣∣E [

(−(S⋆)2B− S⋆)eS
⋆B
]∣∣∣

= E
[
((S⋆)2B+ S⋆)eS

⋆B
]
. (43)

Comparing (42) and (43), we obtain

max
|z|≤B

|ğ(z)| = E
[
((S⋆)2B+ S⋆)eS

⋆B
]
. (44)

We can now apply Tijdeman’s lemma. We compute

max|z|≤(vt+v+t)R |ğ(z)|
max|z|≤tR |ğ(z)|

(a)
=

E
[
((S⋆)2(vt+ v + t)R+ S⋆)eS

⋆(vt+v+t)R
]

E [((S⋆)2tR+ S⋆)eS⋆tR]
(b)

≤ max
s∈[ 1

1+A2
,1]

(s2(vt+ v + t)R+ s)es(vt+v+t)R

(s2tR+ s)estR

= max
s∈[ 1

1+A2
,1]

(s(vt+ v + t)R+ 1)esv(t+1)R

(stR+ 1)

(c)
=

((vt+ v + t)R+ 1)ev(t+1)R

(tR+ 1)
, (45)

where (a) follows from (44); (b) follows from the bound on
a moment ratio derived in [30, Appendix III] and from the
peak-power constraint s ≥ 1

1+A2 ; and (c) gives the maximum
value obtained for s = 1. By choosing t = 0, we have

N(DR; ğ(z) ) ≤ min
v>1, t≥0

 log
max|z|≤(vt+v+t)R |ğ(z)|

max|z|≤tR |ğ(z)|

log v


≤ min

v>1

{
log(vR+ 1) + vR

log v

}
(a)

≤ log (eR+ 1) + eR

(b)

≤ log
(
e(1 + A2) + 1

)
+ e(1 + A2) (46)

where in (a) we have used v = e; and in (b) we used R =
1

s⋆min
≤ 1 + A2. Putting everything together, we obtain

|supp(PS⋆)| ≤ log
(
e(1 + A2) + 1

)
+ e(1 + A2) + 1. (47)

V. CONCLUSION

This work investigated non-coherent Rayleigh channels
and presented new results on the structure of the capacity-
achieving input based on the Karush-Kuhn-Tucker (KKT)
conditions. We considered both average and peak-power con-
straints to make the model more general and practical.

We provided bounds on the number of amplitude levels
of the capacity-achieving input. Specifically, the upper bound
was based on bounding the number of maxima of a function
characterizing the KKT conditions. In the limit of a large peak-
power A2, the upper bound scales as A2 log(A). Furthermore,

we used the oscillation theorem to refine this bound to scale
as A2 when the average power constraint is inactive.

The asymptotic growth rate of the optimal number of ampli-
tude levels remains open, however, given that the asymptotic
order of the lower bound is log(A). We expect that both the
lower and upper bounds need further refinement.
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