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ABSTRACT

Reconstructing the sound field in a room is an important task
for several applications, such as sound control and augmented
(AR) or virtual reality (VR). In this paper, we propose a data-
driven generative model for reconstructing the magnitude of
acoustic fields in rooms with a focus on the modal frequency
range. We introduce, for the first time, the use of a conditional
Denoising Diffusion Probabilistic Model (DDPM) trained in
order to reconstruct the sound field (SF-Diff) over an extended
domain. The architecture is devised in order to be conditioned
on a set of limited available measurements at different fre-
quencies and generate the sound field in target, unknown, lo-
cations. The results show that SF-Diff is able to provide accu-
rate reconstructions. We conduct a comparative analysis with
two state-of-the-art baseline methods, one relying on kernel
interpolation and the other on deep learning.

Index Terms— sound field reconstruction, diffusion neu-
ral network, space-time processing

1. INTRODUCTION

Sound field reconstruction is a relevant problem in the field
of acoustic signal processing, especially when considering
the modal frequency range, due to its importance in applica-
tions such as sound field control and room compensation [1].
Applications include, for example, the navigation of acous-
tic scenes [2]. The goal is to estimate the acoustic field over
an extended area starting from the information provided by
a limited set of sensors. In the literature, several techniques
tackling the reconstruction of sound field can be found. Most
solutions rely on either a parametric description [3–6] of the
acoustic scene, or on models based on the solutions of the
wave equations [7, 8] including plane waves [9], spherical
waves [10–12] or equivalent sources [13, 14]. In [7, 8] and
variations [15, 16], the reconstruction of the acoustic field is
achieved using a kernel-interpolation based approach which
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exploit the solution of the Helmholtz equation as a physically
motivated kernel.

A different class of techniques is based on deep learn-
ing, which has been widely applied in the field of acous-
tics [17, 18]. The main advantage of deep learning solutions
is to adopt more sparse and irregular microphone array se-
tups for the sound field reconstruction. The first learning-
based approach was proposed in [19] and consisted of a U-
Net architecture, which was applied in order to reconstruct
the magnitude of the sound field with an approach similar to
image inpainting. Similarly, in [20], the authors proposed
a deep-prior approach to RIR reconstruction following the
deep prior paradigm introduced for image inpainting [21].
This approach assumes that the structure of the CNN intro-
duces an implicit prior regularizing the estimation of RIRs.
Other solutions instead [22, 23], rely on the physical equa-
tion governing the sound propagation i.e., the wave equa-
tion as an alternative approach for improving the reconstruc-
tion. In [22], the authors introduce a physics-informed neu-
ral newtwork for the reconstruction of acoustic fields in the
time domain. The model employed a SIREN architecture [24]
trained with a physics-informed loss function including the
wave equation. The model has been tested on time-domain
sound fields captured through a uniform linear microphone
array. Although effective, this techniques require to perform
per-element training.

More recently, also generative models such as Generative
Adversarial Networks (GANs) have been applied to sound
field reconstruction problems [25]. In particular, in [25]
three different generative models based on GANs are con-
sidered: a compressive sensing model, a conditional-GAN
and a High-fidelity-GAN. The results in [25] proved that
generative neural networks provide an effective approach
for the reconstruction of acoustic field. Nonetheless, among
generative models, Denoising Diffusion Probabilistic Models
(DDPMs) [26] have recently gained interest, due to their en-
hanced synthesis capabilities and more stable training process
with respect to GANs in different tasks [27,28]. As such, they
have been applied to a variety of sound-related problems such
as speech enhancement [29], speech super-resolution [30],
vocoders [31] and audio inverse problems in general [28].

In this paper, motivated by the superior performance of
DDPMs in different fields, we propose a DDPMs approach
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for the reconstruction of room transfer functions (RTFs). We
consider the sound field reconstruction as an image-to-image
translation problem, where DDPMs have already been suc-
cesfully applied [32]. Specifically, we focus on the sound
field measured on a 2D plane using irregular microphone ar-
rays. We give as input to the DDPM the magnitude of the
computed sound field and inject noise where no microphones
are deployed. Moreover, we condition the model on the em-
bedding that encodes a considered frequency. Through a sim-
ulation campaign, we compare the performance of the pro-
posed method with a kernel interpolation-based signal pro-
cessing technique [8] and a learning-based approach [19], for
configurations with different numbers of microphones, and
demonstrate the benefits of applying DDPMs to the sound
field reconstruction task.

The rest of the paper is organized as follows: in Sec. 2
we present the adopted data model and formalize the sound
field reconstruction problem. In Sec. 3 we present the condi-
tional DDPM for sound field reconstruction, while in Sec. 4
we present results aimed at demonstrating the effectiveness
of the proposed technique. Finally, in Sec. 5, we draw some
conclusions.

2. PROBLEM FORMULATION

2.1. Data model

Following the approach proposed in [19], let us consider a
three-dimensional rectangular room R = [0, lx] × [0, ly] ×
[0, lz], where {lx, ly, lx} ∈ R3

>0 denote the length, width,
and height of the room, respectively. The complex-valued
frequency-domain sound field in position r ∈ R, can be com-
puted using the Fourier transform as

P (r, ω) =

∫
R
p(r, t)e−jωt dt, (1)

where ω ∈ R is the angular frequency, and p(r, t) denotes the
acoustic sound field measured at position r at time t. More-
over, for the purpose of this article, we focus on the magnitude
|P (r, ω)| of the sound fields. In practice, room R is sam-
pled using a regular rectangular grid Do, with fixed height
zo ∈ [0, lz] and defined as

Do =

{(
i

lx
I − 1

, j
ly

J − 1
, zo

)}
i,j

, (2)

where i = 0, 1, . . . , I − 1, and j = 0, 1, . . . , J − 1 are the
indexes of the sampled points in the grid, with I, J ≥ 2.

2.2. Problem definition

We assume that a limited subset of room measurements
So ⊆ Do are available. Sound field magnitude reconstruc-
tion can be defined as the problem of recovering the missing
data {|P (r, ω)|}r∈Do\So

, by exploiting the information in

the available observations {|P (r, ω)|}r∈So obtained using a
limited number of irregularly deployed microphones.

Various techniques have been proposed in the literature
to address sound field reconstruction from an under-sampled
measurement set [7, 14, 19, 22, 23]. In general, this task can
be interpreted in the framework of inverse problems, and a
solution to the following minimization problem

θ∗ = argmin
θ

J (θ) =

E
(
fθ({|P (r, ω)|}r∈So), {|P (r, ω)|}r∈Do\So

)
,

(3)

where fθ({|P (r, ω)|}r∈So
) is a function that generates the

estimated sound field using parameters θ having access to
available measurements, and E(·) is a data-fidelity term,
e.g., the mean squared error (MSE), between the estimated
data and the observations. It is worth noting that in (3), the
evaluation of the reconstruction error is performed in the
observed locations {r} ∈ So. However, f must be able
to provide a meaningful estimate also in locations different
from the available ones, i.e., {r} ∈ Do \ So. Therefore,
the solution to the ill-posed problem (3) is constrained using
regularization strategies. Typical techniques include com-
pressed sensing frameworks based on assumptions about the
signal model [14], such as plane and spherical wave expan-
sions [13] or the RIRs structure [33], as well as deep learning
approaches [19, 23].

3. PROPOSED SOLUTION

3.1. Diffusion Model for RTF reconstruction

In this work, we aim at solving the sound field reconstruction
problem (3) in order to provide an estimate of the magnitude
of a sound field as

|P̂ (r, ω)| = fθ ({|P (r, ω)|}r∈So
) , (4)

where the function f(·) represents a neural network. In
particular, we exploit the power of diffusion models, which
have recently emerged as the cutting-edge technology in the
field of deep learning-based generation, becoming the new
state-of-the-art [26]. In particular, these are quickly replacing
Generative Adversarial Networks (GANs) and Variational
Autoencoders across various tasks and domains, thanks to
their straightforward training process and the higher genera-
tion accuracy. Diffusion models employ an iterative denois-
ing process to transform samples generated from a standard
Gaussian distribution into samples that align with an empiri-
cal data distribution. In particular, we employ Palette [32], a
conditional denoising diffusion model of the form p(y|x), in
which the denoising process is conditioned by an input signal.
For example, in the case of the proposed method, x would be
the under-sampled sound field, while y the reconstructed one.
Palette proved to be effective in many image-to-image trans-
lation tasks (e.g., inpainting, colorization, uncropping, etc.),
outperforming already existing state-of-the-art methods.
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Fig. 1. Normalized Mean Squared Error (NMSE) for different number of microphones m measured over the reconstructed
magnitude using the proposed method (a), Ueno et al. [8] (b) and Lluis et al. [19] (c).

The training process of Palette is carried out by optimiz-
ing an objective function in the form

E(x,y)Eϵ∼N (0,I)Eγ∥fθ(x,
√
γy +

√
1− γϵ︸ ︷︷ ︸

ỹ

, γ)− ϵ∥22, (5)

where y is a training output sample, ỹ is its noisy version and
ϵ a noise vector. We train a neural network f with parameters
θ to denoise ỹ given y and a noise level indicator γ [32].

3.2. Architecture

Palette exploits the U-Net architecture [34], which was orig-
inally proposed for multimodal medical image segmentation.
In particular, the network has been enhanced with modifica-
tions proposed in recent works and is based on the 256× 256
class-conditional U-Net model used in [35]. However, for the
purpose of the task we are addressing and following the ap-
proach proposed [32], the architecture we are employing does
not present class-conditioning but rather an additional condi-
tioning of the input data via concatenation [36].

Even though, in principle, the method is able to recon-
struct any arbitrary sound field, we focus on the reconstruc-
tion of the magnitude of room transfer functions (RTFs),
which correspond to the Fourier transform of the impulse
response of a room, measured in positions r ∈ Do and com-
puted as in (1). The input to the network is composed by
the concatenation of the RTFs magnitude matrix P and a
frequency embedding F.

Similarly to the approach proposed in [32], in correspon-
dence of the unknown data points in P, the RTF magnitude
value is replaced with noise coming from a Gaussian distri-
bution N (0, 1). The role of F is to provide the extra condi-
tioning, needed for the diffusion model to consistently learn
how to reconstruct the magnitude of a room transfer function
at a certain frequency, starting from a noisy version of it. Dur-
ing the training phase, we restrict the computation of the loss
function, i.e., the MSE, only to the the available measures of
the RTFs.

4. EXPERIMENTAL VALIDATION

4.1. Setup

Following the approach proposed in [19], we trained the
proposed architecture using a simulated data set of 10000
randomly generated rectangular rooms, considering one fre-
quency out of forty in the range 30 − 300Hz for each room.
In particularly, we sample each room into a grid of 32 × 32
uniformly-spaced points (independently of the room dimen-
sions). Thus, the RTFs are in the form P ∈ R32×32. For
each room, we then randomly generated a binary mask
M ∈ {0, 1}32×32, in order to select the number of micro-
phones placed in the room. In particular, during training we
considered masks selecting a number of microphones in the
range 64− 512, which corresponds to the 6.25− 50% of the
total sound field. It is worth noting that, as in [32], we do not
directly provide the mask M as input to the network. Instead,
we fill the masked measures with random Gaussian noise.
Similarly to the training dataset, the test dataset is composed
of 250 rooms randomly simulated rooms, considering forty
different frequencies in the range 30− 300Hz for each room.
RTFs are approximated by using Green’s function, which rep-
resents the solution as an infinite summation of room modes
in the room [19]. The room dimensions are randomly sam-
pled, considering a floor area in the range 20 − 60m2, and
constant reverberation time T60 = 0.6 s.

We trained the model for 1000 epochs, which we empir-
ically verified to sufficient for the employed architecture to
converge, using the Adam optimizer with a fixed 5 × 10−5

learning rate. During training, a linear noise schedule ranging
from 1e−6 to 0.01 is applied over 2000 time-steps. Similarly,
2000 refinement steps are employed at inference, considering
a linear noise schedule from 1e−4 to 0.09.

4.2. Results

We assessed the performance of the proposed sound field re-
construction method in terms of normalized mean squared er-
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Fig. 2. Magnitude of the sound field in a randomly generated [3.7 m × 7 m × 26.1 m] room with a 98 Hz active source s
positioned at [0.9 m, 0.3 m, 2.4 m]T , obtained using the proposed method (c), using the 64 active microphone configuration
depicted in (a). Ground truth magnitude is shown in (b).

ror (NMSE) between ground truth and reconstructed RTFs. In
particular, we computed the NMSE as

NMSE = 10 log10

(
1

N

N∑
i=0

∥P̂i(r, ω)− Pi(r, ω)∥22
∥Pi(r, ω)∥22

)
(6)

where N is the number of samples in the testing dataset. The
performances of the method are computed with respect to the
number of microphones placed in each room. Thus, for each
room we consider 64, 128, 256, 512 microphones, randomly
arranged in space.

Figure 1(a) shows the NMSE value with respect to fre-
quency, for reconstructions performed using the proposed SF-
Diff method and following the setup described in Section 4.1.
As expected, the number of available measurements highly
affects the reconstruction error, which ranges from a mini-
mum value of −8.35 dB in the 64 mics configuration, to a
minimum value of −45.39 dB in the 512 mics configuration.
Having access to more information about the RTF in a cer-
tain room, the model is able to better reconstruct the pressure
values in the unknown positions. Also, in all configurations,
the error increases with the frequency value. This is due to
the fact that RTFs at higher frequencies present complicated
magnitude patterns, graphically, which are more difficult to
reconstruct. In fact, the spatial distribution of room modes
becomes more intricate, resulting in peaks and nulls in the
RTF at specific locations. At lower frequencies, instead, the
room response is more uniform and thus easier to reconstruct.

Figure 2(c) shows an example of RTF reconstruction per-
formed using SF-Diff, considering the measurement setup
represented in Figure 2(a) and ground-truth RTF represented
in Figure 2(b). As it can be seen, the method is able to pro-
vide a coherent reconstruction, in which most characteristics
of the ground-truth image are present, leading to an NMSE
value of −11.72 dB.

As a comparison, we performed RTF reconstruction us-

ing the methods proposed in [8] and in [19], leveraging the
same dataset employed in our testing procedure. Specifically,
the approach proposed in [8] addresses the problem by ex-
ploiting the kernel ridge regression with the constraint of the
Helmholtz equation. On the other hand, [19] exploits a super-
resolution approach based on deep learning.

Results are shown in Figure 1(b) and Figure 1(c), re-
spectively. In scenarios where 64 measurements are avail-
able, both baseline methods demonstrate superior recon-
struction performance, with respect to SF-Diff. In particu-
lar, [8] achieves a minimum NMSE of −15.78 dB at 34Hz,
while [19] obtains a minimum NMSE of −22.13 dB at the
same frequency. However, when evaluating setups with an
increased number of available measurements (128, 256 and
512 microphones), the reconstruction error does not diminish
as prominently as observed in the case of SF-Diff, indicating
a limited performance characteristic under varying measure-
ment conditions.

5. CONCLUSION

In this paper we have, to the best of our knowledge, pro-
posed the first application of Denoising Diffusion Proba-
bilistic Models to the problem of sound field reconstruction.
Specifically, we consider a pre-existing architecture used for
image-inpainting and adapt accordingly. We consider sound
fields on a grid positioned on a two-dimensional plane, where
measurements are available only for a limited number of
arbitrarily positioned microphones. Following the DDPM
procedure, we inject noise in the positions for which no mea-
surements available and through the proposed model, we
learn to denoise them in order to reconstruct the ground truth
sound field. Through an experimental simulation campaign
we compare the performance of the proposed technique with
a signal processing-based kernel interpolation method and
a learning-based method, demonstrating the effectiveness of
the DDPM-based approach. The obtained results encourage
us to further develop the application of DDPMs to the prob-
lem of sound field reconstruction by adapting the technique
in order to perform in more challenging scenarios.
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