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A B S T R A C T   

Data driven methods are the most studied fault detection and diagnostics (FDD) type in buildings HVAC systems. However, most studies rely on labeled data for 
specific faults which are hard to find and collect for real systems. While the fault-free data is easier to collect, it is still time consuming to label for large systems 
operation. Moreover, most of the studies rely on the usage of supervised learning algorithms which do not generalize well beyond the training data making unseen 
faults hard to detect. In this paper, we define a methodology to use a self-supervised learning method for HVAC systems’ FDD using a Transformer encoder, moreover, 
we tested it on a real case study. By strategically masking portions of the multivariate time-series data using Markov chain approach with two states. The model is 
trained by predicting these concealed segments. This approach, independent of labeled data, offers a scalable solution for practical HVAC applications. Anomalies are 
labeled using the Peak Over Threshold (POT) method, which dynamically determines thresholds by fitting reconstruction errors to a generalized Pareto distribution. 
Subsequent fault diagnostics emphasize features with pronounced reconstruction errors, pinpointing potential HVAC malfunctions. This methodology reduces 
dependence on labeled datasets and augments the model’s generalization, facilitating detection of unobserved faults. This approach was applied to data from a real 
building. As a results multiple faults were detected mainly due to the malfunctioning of the monitoring system. The model demonstrates the ability to detect both 
sequential and individual faults. The period from October 19th to December 23rd was detected as a fault period due to the change in the trend of the data because of 
the monitoring system.   

1. Introduction 

HVAC systems in buildings are often prone to defects which can 
result in suboptimal outcomes, such as increased energy consumption, 
elevated maintenance expenses, compromised comfort in terms of 
thermal conditions, and deteriorating air quality. These defects can arise 
from malfunctioning sensors, equipment breakdowns, or incorrect op
erations of the system. Research indicates that building system in
efficiencies and inadequate control measures can lead to energy losses 
ranging from 15 % to 30 % [1]. Consequently, the implementation of 
FDD, or AFDD as it is sometimes called, is essential for the assurance of 
dependable system functioning and the conservation of energy. Fault 
detection is primarily concerned with recognizing any improper or un
satisfactory building operations, while fault diagnostics involves pin
pointing the exact reasons for these operational failures [2]. In the U.S., 
within office spaces and institutions of higher learning, the application 
of FDD has been linked to median energy savings of about 10 % per year, 
along with a simple payback period of two years [3]. This highlights the 
FDD systems’ viability and appeal as an investment in the infrastructure 
domain. 

Numerous investigations have demonstrated the effectiveness of 

supervised machine learning in identifying and diagnosing faults in 
heating, ventilation, and air conditioning (HVAC) systems [4,5]. These 
studies leverage supervised learning algorithms to decipher the intricate 
links between various monitoring parameters (like temperature, pres
sure, and flow rates) and the operational conditions (such as normal or 
faulty operations) [6,7]. The resulting data-driven models vary in 
complexity, encompassing everything from simple linear to complex 
nonlinear equations, individual to collective models, and basic to 
advanced architectural designs [8,9]. Significant progress has been 
noted, particularly in accurately identifying issues in critical HVAC 
components, including chillers [10,11] and air handling units (AHUs) 
[12]. A fundamental assumption in supervised learning is the avail
ability of labeled data for trustworthy predictive modeling. However, 
labeling data to accurately reflect the real operational status of systems 
can be an exhaustive and labor-intensive process. Consequently, most 
operational data from buildings remain unlabeled, and only a few 
buildings can afford the application of sophisticated supervised learning 
methods for accurate fault classification in HVAC systems. 

Recent research in the building sector has concentrated on two 
learning approaches to address the scarcity of labeled data: transfer 
learning and semi-supervised learning [13,14]. Solutions based on 
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transfer learning propose using insights gleaned from data-rich build
ings to tailor models for buildings with less data [15,16]. This approach 
offers a promising way to exploit operational data from various building 
systems and conditions. However, it presumes the availability of data 
from buildings with similar characteristics, which may not always be the 
case. In focusing on the data from individual buildings, other studies 
have assessed the merits of semi-supervised learning in using unlabeled 
operational data [17]. Yan et al. examined the efficacy of various 
semi-supervised algorithms in categorizing faults in AHUs [18], finding 
that this approach can significantly enhance model performance even 
with limited labeled data. Fan et al. introduced a unique semi-supervised 
framework using artificial neural networks for diagnosing faults in 
AHUs, employing a base model trained on limited labeled data and 
iteratively updating it with high-quality pseudo labels derived from 
unlabeled data [19]. Li et al. applied semi-supervised generative 
adversarial networks to better understand the distribution of unlabeled 
data, thereby improving fault diagnosis in chillers [20,21]. Their 
approach involved training a discriminator model to classify real data 
labels while distinguishing between real and artificial data samples, thus 
facilitating the creation of a reliable fault classification model with 
minimal labeled data. A notable limitation of semi-supervised learning is 
its partial dependence on initial labeled data. For example, in the widely 
used self-training method, the quality of pseudo labels generated from 
unlabeled data can be substandard if the initial model is developed with 
an extreme scarcity of data, potentially leading to decreased perfor
mance in predictive modeling. One of the main reasons behind the lack 
of adoption of data driven FDD in the building sector is due to the fact 
that most proposed methods depend entirely or partially on labeled data 

which is inherently difficult to systematically obtain for several reasons:  

1. Expertise Requirement: Accurately labeling faults requires a deep 
understanding of building systems and operations, which necessi
tates the involvement of domain experts. This can significantly in
crease the time and cost associated with the data labeling process.  

2. Variability and Complexity: Buildings vary greatly in their design, 
usage, and maintenance, leading to a wide range of potential faults 
that are often complex and interrelated. This variability makes it 
challenging to create a comprehensive labeling schema that accu
rately represents all potential faults.  

3. Dynamic Environments: The operational conditions of buildings and 
their systems can change over time, affecting fault manifestations. 
This dynamic nature requires continuous updates to labeled data to 
remain relevant, adding to the complexity and cost of the labeling 
process. 

Self-supervised learning emerges as a promising solution, offering a 
potential means to reduce the reliance on labeled data in predictive 
modeling [22] Self-Supervised Learning (SSL) represents a segment of 
unsupervised learning that leverages internally generated tasks, known 
as pretext tasks, to extract supervisory cues from data without labels. 
These internally devised challenges enable the model to extract 
knowledge from the dataset, which in turn fosters the creation of 
meaningful representations for subsequent analytical tasks. SSL cir
cumvents the need for externally labeled data since the supervisory 
signals are intrinsically obtained from the data. Owing to the strategic 
design of these pretext tasks, SSL has marked notable advancements in 

Fig. 1. The main Architecture of the algorithm on the left figure (starting from the bottom) the steps of preprocessing and encoding of the data to the model 
dimension (d) are displayed, and on the right the modeling and reconstruction of the data to the original dimension (m). 

Table 1 
Model architecture breakdown.  

Layer name Layer type Description Number of layers 

Input normalization Preprocessing Standardizes the input data to zero mean and unit variance. 1 per feature 
Linear projection Transformation Projects normalized features into a d-dimensional model space. 1 
Positional encoding Encoding Adds learnable temporal context to input sequences. 1 
Multi head attention Self-Attention Processes sequences in parallel, focusing on different parts of the sequence simultaneously. 2 (7 attention heads each) 
Feedforward network Transformation Applies point-wise transformations to the output of the attention layer. 2 
Add & Norm Residual connection Combines the outputs of the attention and feedforward networks with layer normalization. 4 (2 per encoder layer) 
Output projection Reconstruction Maps the encoded sequence back to the original feature space for reconstruction. 1  
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the realms of Computer Vision (CV) and Natural Language Processing 
(NLP). 

In this study, we used and trained an encoder-only transformer-based 
architecture in a generative, self-supervised manner. This method was 
tested against unlabeled data from a real building equipped with a heat 
pump (HP) that is connected to air handling unit (AHU) for ventilation 
and floor heating for heating. The main contribution of this study can be 
summarized as follows:  

1. The method described does not rely on labeled data of specific faults 
which is very hard to collect and generate, especially in the building 
sector. The method can also be fine-tuned with labeled data if 
available.  

2. Fault-free data is relatively easier to obtain but time consuming to 
label manually, the method described speeds up the process of la
beling fault-free data.  

3. The method can facilitate the diagnostics of fault by pointing to the 
features that have the highest reconstruction error.  

4. Less pronounced faults can be masked by obvious faults in the mean 
squared reconstruction error curve, therefore dynamic thresholding 
technique was implemented to uncover those errors. 

2. Theoretical background 

The goal of this section is to give an overview of the original trans
former architecture as it was introduced for Natural language processing 
(NLP) purposes and all its components (positional encoding, multi head 
attention, feed forward and residual network). Then how this architec
ture was adapted to be used for time series data. 

The innovation of Transformer in deep learning [23] has brought 
great interest recently due to its excellent performances in NLP [24] 
computer vision (CV) [25], and speech processing [26]. Over the past 
few years, numerous Transformer variants have been proposed to 
advance the state-of-the-art performances of various tasks significantly. 
There are quite a few literature reviews from different aspects, such as in 
NLP applications [27], CV applications [28], and efficient Transformers 
[29]. 

2.1. Vanilla transformer 

The classic Transformer introduced by Ref. [23] is essentially built 
on an encoder-decoder framework. This structure comprises multiple 
identical layers in both the encoder and decoder. Each layer is charac
terized by two main components: a multi-head attention mechanism and 
a position-specific feed-forward network. The decoder further integrates 
a cross-attention mechanism that works in tandem with the multi-head 
self-attention and the position-wise feed-forward module. 

2.2. Encoding the input and position 

In contrast to models like LSTM and RNN, the basic Transformer 
doesn’t use a recurrent mechanism. Instead, it adds positional encoding 
to the input embeddings to capture sequential information. We briefly 
explain some prominent positional encoding methods: 

2.2.1. Absolute positional encoding 
In the standard Transformer, each sequence position, denoted as 

PE(t)i =

{
sin(ωit) i%2 = 0
cos(ωit) i%2 = 1 (1)  

ωit represents a predefined frequency for each dimension. An alternative 
approach is to learn these positional embeddings, which offers more 
adaptability, as suggested by Ref. [30]. 

2.2.2. Relative positional encoding 
The idea behind relative positional encoding is that the relationships 

between sequence positions can be more informative than their absolute 
positions. Some techniques have been devised to add relative positional 
encodings directly to the attention mechanism’s keys. Shaw and team in 
2018 provided insights into this. Additionally, there are hybrid methods 
that merge both absolute and relative positional encodings, where the 
positional information gets combined with the token embeddings 
directly. 

2.3. Multi-head attention 

With Query-Key-Value (QKV) model, the scaled dot-product atten
tion used by Transformer is given by: 

Attention(Q,K,V)= softmax
(

QKT
̅̅̅̅̅̅
Dk

√

)

V (2)  

where queries Q ∈ R N×Dk , keys K ∈ R M×Dk , values V ∈ R M×Dv , N, M 
denote the lengths of queries and keys (or values), and Dk, Dv denote the 
dimensions of keys (or queries) and values. Transformer uses multi-head 
attention with H different sets of learned projections instead of a single 
attention function as: 

Fig. 2. Pre-training step overview.  
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MultiHeadAttn (Q,K,V)=Concat ( head 1,⋯, head H)WO (3)  

where headi = Attention (QWQ
i ,KWK

i ,VWV
i ). The Attention () function 

computes the relevance of different values based on the queries and 
keys. For each query, Attention () assigns weights to the keys based on 
their similarity, and these weights are used to aggregate the corre
sponding values into a single output. This allows the model to focus on 
the most relevant parts of the input when making predictions. 

2.4. Feed-forward and residual network 

The feed forward network is a fully connected forward propagation 
module defined by the following expression: 

FFN(H′)=ReLU
(
H′W1 + b1)W2 + b2, (4)  

Where: 
H′: The output of the previous layer 
W1 ∈ R Dm×Df , W2 ∈ R Df×Dm ,b1 ∈ R Df ,b2 ∈ R Dm . 
In this formula H′ represents the output from the preceding layer. W1 

is a matrix of dimensions appropriate for mapping the input features to 
an intermediary dimension, while W2 serves to map these intermediary 
features to the desired output dimension. Similarly, b1 and b2 are bias 
vectors corresponding to each weight matrix and are subject to opti
mization during training. 

As the network depth increases, it becomes beneficial to incorporate 
a residual connection, along with layer normalization, to enhance the 
flow of gradients during training. Thus, the module can be extended as 
follows: 

H′ = LayerNorm(SelfAttn (X) + X)
H = LayerNorm(FCN(H′) + H′)

(5)  

Here SelfAttn( ) signifies the self-attention mechanism that processes the 
input X. and LayerNorm( ) denotes the process of layer normalization. 

2.5. Transformers for time series and anomaly detection 

In recent advancements, the Transformer architecture, originally 
designed for natural language processing, has been extensively modified 
to cater to the intricacies of time series data [31,32]. One pivotal 

Fig. 3. a): A picture of the building after renovation and localization at Politecnico di Milano, Bovisa Campus, b): Plan and a section of the building.  

Fig. 4. Actual system implementation. a): Top: Air handling unit, bottom: 
radiant floor, b): Indoor unit of the heat pump. 
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adaptation is the introduction of adaptive positional encoding tech
niques, moving beyond the vanilla model’s basic positional encoding. 
Research indicates dynamic embeddings derived directly from time se
ries data, such as those introduced by learning layers within the 
Transformer [33] or generated through LSTM networks [34], signifi
cantly enhance model efficacy by providing tailored flexibility and 
capturing the sequential order inherent in time series. 

Moreover, leveraging timestamps as an additional form of positional 
encoding, as seen in models like Informer [35], Autoformer [36], and 
FEDformer [37], brings forth the untapped potential of time-specific 
data points. This approach underscores the value of incorporating 
both regular intervals and significant dates to enrich the model’s tem
poral understanding. 

Addressing the computational challenges of the self-attention 
mechanism, proposals like LogTrans [38] and Pyraformer [39] have 
introduced efficient strategies through inducing sparsity and exploiting 
the self-attention matrix’s low-rank characteristics, respectively. 
Architectural innovations further include hierarchical structuring, as 
implemented by Informer [35] and Pyraformer [39], to process time 
series at varying scales, enhancing both model efficiency and data 
interpretation capabilities. 

Transitioning to anomaly detection, the transformative application 
of the Transformer architecture [40] and its integration with generative 
neural models such as VAEs [41–44] and GANs [45] have marked sig
nificant improvements in detecting time series anomalies. Adversarial 
training methods [41], multi-scale approaches [42], and graph-based 
learning frameworks [46] exemplify the broadening scope of Trans
formers in capturing complex temporal relationships and multivariate 
series characteristics. These adaptations underscore the architecture’s 
versatility in enhancing anomaly detection accuracy and addressing the 
limitations of traditional methods. 

In sum, these modifications, and applications of the Transformer 
architecture to time series analysis and anomaly detection highlight the 
ongoing innovation in adapting deep learning models to the unique 
demands of time series data, significantly improving their performance 
and applicability across various tasks. 

3. Methodology 

In this section we introduce the data preprocessing procedure, the 
model used in the study, the self-supervised training method used for the 
pretraining step and finally the dynamic thresholding technique used to 
flag the anomalies. 

3.1. Core architecture 

Central to our approach is an encoding mechanism inspired by the 
transformer architecture delineated by Ref. [23]. Our model diverges 
from this foundational design in that it eschews the decoder module, 
opting instead for an encoder-only framework The primary reason for 
employing only an encoder in this research, focusing on multivariate 
anomaly detection in time series, is due to the non-generative nature of 
the task. Unlike the original Transformer architecture, which was 
designed for language translation - a generative task requiring an 
encoder to understand one language and a decoder to generate another - 
anomaly detection in time series data involves identifying deviations 
from normal patterns within the same data context. Therefore, a decoder 
is unnecessary; the encoder alone is sufficient to model and identify 
these anomalies effectively. This approach streamlines the model and 
makes it more computationally efficient, focusing its learning capabil
ities on recognizing irregularities in the time series data. The compu
tational efficiency improvement stems from the fact that in traditional 
encoder-decoder architectures, both the encoder and decoder indepen
dently contribute to computational complexity due to the self-attention 
mechanism’s pairwise comparison of tokens, resulting in a quadratic 
relationship with the input sequence length. By adopting an 
encoder-only model, we remove the need for the decoder and its asso
ciated complexity entirely. In the context of anomaly detection, where 
the decoder’s generative function is not required, our approach effec
tively halves the self-attention computation. Therefore, for a time series 
of length (n), while an encoder-decoder model would require O(2.l.n2)

operations for l operations due to the combined processing in both the 
encoder and decoder, our encoder-only model require only O(l.n2) op
erations. This is a conservative estimate, as it does not factor in the 

Fig. 5. Schematic of the HVAC system and the positions of the sensors of the monitoring system.  
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additional computational load imposed by the autoregressive nature of 
the decoder, which cannot be parallelized across sequence positions. We 
provide an illustrative representation of our model’s universal structure 
in Fig. 1, applicable to an array of tasks. Table 1 provides a detailed 
breakdown of each layer within our model, its functionality, and the 
extent of its utilization within the core architecture. The reader is 
directed to the seminal transformer literature for a comprehensive 
elucidation of the model, whilst this discourse will focus on the modi
fications, we introduced to facilitate the processing of multivariate 
temporal sequences as opposed to linguistic token sequences. 

Each datum for training, denoted as X within the real value space 
Rw∗m , represents a multivariate temporal sequence comprising w in
stances across m distinct variables, thus forming a series of feature 
vectors xt within Rm. Prior to dimensionality transformation, the feature 
vectors xt are subjected to a normalization process—subtracting the 
mean and scaling by the variance computed across the training data
set—and subsequently projected linearly into a d dimensional vector 
space, d being the inherent dimensionality of the transformer’s internal 
sequence representation, often referred to as the model dimension: 

ut =Wpxt + bp (6) 

Herein Wp ∈ Rd∗m and bp ∈ Rd are parameter matrices and vectors 
subject to optimization, with ut ∈ Rd representing the series of model 
inputs analogous to the lexical embeddings in linguistic transformers. 
These inputs are subsequently transformed into the queries, keys, and 
values for the self-attention mechanism upon integration of positional 
encodings and subsequent application of the associated transformation 
matrices. 

The transformer, inherently a feed-forward construct, lacks innate 
sensitivity to input sequence order. To instill an awareness of temporal 
structure within the model, we introduce positional encodings Wpos ∈

Rw∗d into the input vector sequence U ∈ Rw∗d = [u1, u2….uw], thereby 
obtaining Z = U+ Wpos. 

In a departure from the fixed, sinusoidal positional encodings posited 
in the original transformer paradigm, our model utilizes a set of posi
tional encodings that are subject to optimization. This alteration is 
substantiated by empirical evidence indicating enhanced performance 

Fig. 6. Correlation between the features.  
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across all considered datasets. These learnable encodings seem to 
minimally interfere with the temporal data’s quantitative attributes. We 
postulate that this is attributable to the encodings evolving to occupy a 
vector subspace that is approximately orthogonal to that of the time 
series data, a hypothesis supported by the higher-dimensional nature of 
the embedding space which simplifies the attainment of orthogonality. 
In this study, time2vec method [47] was used to encode time stamps in 
the data. 

t2v(τ)[i] =
{

ωiτ + φi, if i = 0
F (ωiτ + φi), if 1 ≤ i ≤ k (7)  

Where t2v(τ)[i] is the ith element of t2v(τ). F is a periodic activation 
function and ωi s and φi s are learnable parameters. 

Time series data is inherently variable in length. Our architecture 
effectively addresses this heterogeneity by establishing a uniform 
maximum sequence length w for the dataset. Sequences falling short of 
this length are augmented. The model was trained on a window size of 
96 corresponding to Ine day of measurement. We used 2 layers of 
transformer encoders and 2 layers of feed forward unit of encoders. 
While 7 heads were used in the multi head attention. 

3.2. Self-supervised learning pre-training 

For the foundational self-supervised pre-training phase of our model, 
we engage an autoregressive task wherein a portion of the input data is 
occluded with zeros, compelling the model to predict the concealed 
information. This process entails the systematic obscuration of subsets of 
the input sequence—achieved through the multiplication of the input 
X ∈ Rw∗m with binary mask M, generated independently for each sam
ple. In this masking schema, a proportion r of each mask column 
(equivalent to a singular variable in the time series) oscillates between 
segments of zeros and ones, following a predetermined state transition 
probability distribution to determine the length of each obfuscated 
segment, thereby generating sequences with a geometric distribution 
characterized by a mean unmasked segment length lu and a mean 
masked segment length lm , as given by lu = 1− r

r lm with lm being set to 3 

Table 2 
The measurements from the system that is used in the training of the model.  

System 
component 

Measurement Measurement Uncertainty 

Heat pump  1 Forward temperature  
2 Forward temperature set 

point.  
3 Return temperature.  
4 Electric power 

consumption  
5 Water flow rate  
6 Modulating signal of the 

mixing valve 

Electric power ±1 % 
7. 
Water 
temperature 

±0.12 ◦C 

8. 
Dry bulb 
temperature 

±0.5 ◦C 

Air handling 
unit  

1 Forward temperature  
2 Return temperature.  
3 Electric power 

consumption  
4 Water flow rate 

Water flow rate ±2 % 

Outdoor 
conditions  

1 Dry bulb temperature  
2 Relative humidity 

Relative humidity ±2 % 

Indoor 
conditions  

1 Dry bulb temperature  
2 CO2 concentration 

CO2 

concentration 
±50 ppm  

Fig. 7. Demonstration of the fault detection process in case of both sequential and point anomalies.  
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for the conducted experiments. 
As shown in Fig. 2, we adopt this particular masking strat

egy—distinct from the “cloze” method employed in NLP models such as 
BERT—where the masked values in the time series are supplanted by 
zeros, as opposed to replacing word embeddings. This method is 
designed to incite the model to not only predict the immediate suc
ceeding values but also to integrate the temporal dependencies between 
variables. 

A linear layer with optimizable parameters WO ∈ Rm×d, bO ∈ Rm s 
applied to the terminal vector representations zt ∈ Rd at each time step, 
with the model simultaneously estimating the complete unobscured 
input vectors xt ; however, the Mean Squared Error (MSE) is computed 
solely for the predictions on the masked segments as indicated by the 
mask set M = {ti : mti= 0} where mti are the elements of the mask M. The 
MSE for each data sample is as follows: 

x̃t = WOzt + bO

LMSE =
1
|M|

∑

(t,i)∈M

(x̃(t, i) − x(t, i))2 (8) 

This pre-training objective is methodologically divergent from 
denoising autoencoders as it does not consider the entire input recon
struction but rather focuses on the masked segments. Notably, this 
approach is not reliant on assumptions of noise characteristics typically 
postulated in denoising paradigms, such as Gaussian distributions. The 
design also takes into account the distributions of the actual masked 
values and the subsequent impact on learning. 

3.3. Dynamic thresholding and fine tuning 

After the reconstruction of the multivariate time series, the anomaly 
scores are calculated using the absolute difference between the original 
and the predicted ones, multiplied by the average attention weights of 
each window averaged over multiple heads. Dynamic thresholding 
technique is then applied to the anomaly scores to flag anomalies that 
exceed the threshold. 

In this study, we implement the Peak Over Threshold (POT) method, 
which enables the automatic and dynamic selection of thresholds [48] 
and used by Ref. [41]. This technique is grounded in the principles of 
extreme value theory, facilitating the fitting of data distributions using a 

Fig. 8. Indoor temperature sensor readings, the reconstructed time series from the algorithm and the anomaly scores as a demonstration of sequential anomaly in 
the readings. 

M.A.F. Abdollah et al.                                                                                                                                                                                                                         



Building and Environment 258 (2024) 111568

9

Generalized Pareto Distribution. The first step in the POT method is to 
set an initial threshold t in a window w. This threshold is set such that 
only the most extreme values in the data set for each window are 
considered for further analysis. In this research this value was chosen as 
85th percentile with a window of 2 h. Once the threshold is set, the 
method focuses on the excesses over this threshold. These excesses are 
defined as: 

Yi =Xi − t (9)  

Where Yi is the excess over the threshold, Xi is the individual anomaly 
score at a certain time stamp and t is the initial threshold. The distri
bution of excesses over the threshold is fitted to generalized pareto 
distribution (GPD). The GPD is characterized by two parameters: scale 
parameter σ and the shape parameter γ. The cumulative distribution 

Fig. 9. Summary of the outcome for all the features. The highlighted areas are the periods labeled as faults.  
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function (CDF) of GPD is given by: 

G(y; σ, γ)=

⎧
⎪⎪⎨

⎪⎪⎩

1 −
(

1 +
γy
σ

)− 1
γ
, if γ ∕= 0

1 − exp
(
−

y
σ

)
, if γ = 0

(10) 

where y > 0, σ > 0, and y ≤ − σ
γ for γ < 0. The σ, γ are the scale and 

the shape parameters respectively. Those parameters are estimated 
using the Maximum Likelihood Estimation (MLE). In this paper we used 
the Grimshaw tricks [49] to calculate the maximum value of maximum 
likelihood function. 

Once the GPD parameters are estimated, the distribution in each 
window can be used to assess the extremeness of new observations. An 
observation is flagged as an anomaly if its excess over the threshold has a 
low probability under the estimated GPD. This is typically done by 
computing the quantile or the survival function of the GPD for a new 
observation and comparing it to a pre-defined risk level q. If the prob
ability of observing an excess over the threshold is lower than q. 

Finally, the quantiles are calculated for a given probability level 
using the inverse of the GPD’s. CDF. This quantile represents the value 
for which there is a probability q that the observed value will exceed it. 
The formula for quantile calculation under GPD is: 

zq = t+
σ
γ
((1 − q)− γ

− 1) for γ ∕= 0 (11) 

Where zq is the quantile for a probability of q. The calculated 
quantiles will be used as the calculated threshold for the anomaly scores. 
In the case of γ = 0, the quantile is calculated using the exponential 
distribution formula. This dynamic threshold is set for each feature’s 
anomaly score. An anomaly is flagged if the anomaly score of any feature 
exceeded the threshold. 

Lastly, if labeled data becomes available, the model can be fine-tuned 
to further refine its fault detection capabilities. During fine-tuning, the 
labeled data is used to adjust the encoder’s weights through back
propagation, specifically training the model to better classify instances 
as normal or faulty. This step enhances the model’s precision in iden
tifying faults by leveraging direct feedback from the labeled examples. 

4. Case study 

4.1. Building envelope and systems 

VELUXlab (see Fig. 3) stands as the pioneering Nearly Zero Energy 
Building in Italy, situated within the confines of a university campus. 
The journey of VELUXlab began in 2011 when VELUX embarked on a 
project to transform the Atika demo-house into an innovative laboratory 
under the auspices of Politecnico di Milano. Initially designed to 

exemplify a model home suitable for the Mediterranean climate, the 
building underwent significant enhancements under the expert guid
ance of Politecnico di Milano’s design team. These upgrades trans
formed it into an active prototype, offering a tangible example for the 
development of future sustainable buildings [50]. 

The retrofit process of the building involved both the improvement 
of the envelope’s layering with new and high performances materials 
that increased the technical performances of the building case (U-values 
up to 0,124 W/m2/K), and the implementation of systems. Static and 
dynamic simulations helped to calibrate the design choices to lead 
through the minimization of energy needs [50]. 

The HVAC system is comprised of air water heat pump as a genera
tion source in the system with 7 kW in heating and 6.1 in cooling. As a 
mechanical ventilation and emission system, air handling unit with 
maximum flow rate of 470 m3/h with over 90 % heat recovery. Radiant 
floor is also used as an emission system with capacity of 90 W/m2 for 
heating and 30 W/m2 for cooling. 11 m2 of photovoltaic panels are used, 
the field is capable of generating 2 kWp. HVAC system implementation 
shown in Fig. 4. 

The HVAC system undergoes continuous monitoring to evaluate the 
efficiency of its components and to optimize system control, thereby 
ensuring optimal indoor comfort. This monitoring framework in
corporates a range of sensors, including those for temperature, relative 
humidity, and CO2, as well as heat and electrical meters. Fig. 5 presents 
a schematic representation of the HVAC system, highlighting the specific 
locations of these sensors. 

4.2. Data description 

In this study, we utilized operational data from the system spanning 
October 15, 2021, to April 15, 2022. The monitoring system initially 
incorporated over 50 sensors, measuring both numerical and discrete 
variables. To ensure data integrity, sensors exhibiting more than 15 % 
missing values were excluded, effectively narrowing down the dataset to 
the most complete time series. The missing values were the results of 
sensors not logging the values either due to communication errors or 
sensors malfunction. Further refinement was achieved by evaluating 
feature correlations; in instances where feature pairs demonstrated a 
correlation exceeding 95 %, one feature from each pair was removed to 
reduce computational complexity. The data has a range of time steps 
from 1 to 10 min then later resampled to 15 min. The resampling was 
done by mean aggregation to preserve central tendency of the time se
ries. Analyzing the frequency content and probability distribution of the 
data post-resampling, we confirmed that the mean aggregation process 
did not introduce significant artifacts or biases. Fig. 6 shows the corre
lation matrix among the features. Correlated features such as AHU 
damper signal, AHU CO2 control state and AHU fan signal were detected 

Fig. 10. Original time series vs reconstructed time series vs reconstructed for AHU power consumption with average attention scores for every time step.  
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and chosen from. Moreover, features were representing the same mea
surement but from different monitoring systems -such as external 
weather station outdoor temperature reading and internal monitoring 
system reading for external temperature-were detected. This process 
resulted in the selection of 14 features for subsequent analysis, as 
detailed in Table 2. 

5. Results and discussion 

As explained previously, anomalous periods are flagged subsequent 
to the computation of anomaly scores for each feature, upon the appli
cation of Peak-Over-Threshold (POT) thresholding. A timestep is clas
sified as anomalous if it surpasses the threshold for any feature. Fig. 7 
provides a comprehensive visualization of the outcomes for each 
feature, along with the anomalies identified by the algorithm. 

Since no labeled data is available, the assessment of the method was 
done through two metrics. First how well the reconstructed time series 
matches the original in the features and the second is analyzing the 
flagged instances. In general, for time series fault instances, there are 
two types of anomalies, point and sequential. The point anomalies are 
mostly labeled correctly in the data as demonstrated in Fig. 7 where 
multiple point anomalies in the relative humidity sensor readings are 
correctly labeled. Those anomalies are quite common in sensor readings 
and easy to detect for most anomaly detection algorithms. Sequential 
anomalies on the other hand are much harder to detect and label by 
anomaly detection algorithms, since it requires identifying the under
lying trend or multiple trends in the data and detect the deviation from 
it. In Figs. 7 and 8, sequential anomalies are apparent in the data as the 
cyclical nature of the trend stops and a non-zero linear trend starts for a 
period of time. The method proposed was able to detect the change in 
the trend correctly but not for the entirety of the anomalous period. 
Since the method is primarily built on the anomaly score, which is a 
function of the reconstruction error, when the reconstruction error reach 
zero on the points where there is intersection between the reconstructed 
time series and the original one, the anomaly score reaches zero pre
venting the continuation of the detection. 

In Fig. 7, we can see that while the beginning of the fault correctly 
detected with a spike of anomaly score, the detection stopped when the 
reconstruction error reached zero and 3 h of the fault was not detected. 
In Fig. 8, the same behavior appeared in the indoor sensor readings. Four 
different anomalous periods were detected and a total of 6 h out of 50 h 
were detected. 

The highlighted intervals within Fig. 9 are instances where the 
anomaly score exceeded the designated threshold, signaling a fault. A 
notable aggregation of such faults is observable between October 19th 
and December 23rd. Upon scrutiny of this interval, a significant mal
function within the monitoring system was revealed, impacting all 
sensors with the exception of those associated with the weather station 
that records external dry bulb temperature and relative humidity. This 
malfunction led to shifting of the measurement trend to be linear instead 
of noisy cyclical. 

Since the model has a window size of 96 which represents one day, 
the model was able to reconstruct the trends well as shown previously, 
however, some peaks were not captured in the same precision due to the 
window size choice. A smaller window choice might solve this issue but 
will increase the computation cost and compromise capturing the longer 
trends in different dimensions. A future solution might be to have a dual 
encoder with different window sizes. Despite the fact that this will lead 
to increased computational cost, the results should attend to both long 
and short trends given a correct way of combining the outcome form the 
dual encoders. 

Fig. 10 visualizes the average attention weights of each window 
averaged over multiple heads. It is apparent that there is a high corre
lation between the attention weights and peaks and sudden changes in 
the time series. Analyzing the attention weights across different di
mensions it was also noticed that the model higher attention weights to 

different dimensions where the deviations are higher, allowing the 
model to specifically detect faults in each dimension individually with 
the contextual trend of the complete sequence as prior. 

6. Conclusions 

Data-driven technologies are pivotal in the efficient operation of 
smart buildings. However, the scarcity of adequately labeled data pre
sents significant obstacles in developing dependable data-driven ap
proaches for diagnosing faults in building systems. This research 
introduces an innovative self-supervised approach that leverages unla
beled operational data from buildings for the purpose of fault detection 
and aid in diagnostics, moving beyond the sole dependence on labeled 
data sources. We introduced an encoder only transformer model for fault 
detection in multi variate time series. The model has been tested against 
real data from a case study of a university building with an HVAC system 
composed of a heat pump as a generation system connected to air 
handling unit and floor heating as an emission system. The data consists 
of 14 different features from the building and from an external weather 
station. The self-supervised training was done by strategically masking 
portions of the multivariate time-series data using Markov chain 
approach with two states. The model is trained by predicting these 
concealed segments. After the pretraining task the model uses a feed 
forward neural network to reconstruct the original multi-variate time 
series back to the original dimensions and then the reconstructed results 
are compared to the original data. We implemented the Peak Over 
Threshold (POT) method, which enables the automatic and dynamic 
selection of thresholds. For the purpose of anomaly detection, we aid an 
anomaly diagnosis labeling by pointing to the feature where the 
anomaly was detected. This results in a light model since only the 
encoder is used and since the transformer architecture allows for parrel 
computation on the sequences. Also, the model does not require any 
labeled data, moreover any labeled data available can be used for fine 
tuning. Applying the model to the case study, a number of faults were 
detected mainly due to malfunctioning of the monitoring system. The 
period from October 19th to December 23rd was detected as faulty. The 
model combined with the dynamic thresholding showed the ability to 
detect both sequential and point faulty operation. Analyzing the atten
tion weights, it was found that the model gives higher attention to peaks 
and sudden changes in the data. Also, higher attention is given to the 
dimensions in the data with higher deviations. Some limitations and 
room for improvements were also noticed. Namely the model not able to 
capture the trends within a day with the same precision as for the longer 
trends which to solve we propose a dual encoder with different window 
sizing and specific concatenation of the results to capture both longer 
and shorter trends. 
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