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Abstract
Time-optimal orbital transfers with soft terminal conditions are studied in this work. First, a two-layer thrust continuation
method is devised. The unfavorable thrust continuation path is handled by switching between different solution curves.
Second, the proposed method is applied to solving time-optimal transfers under two- or three-body dynamics with Cartesian
coordinates to verify its effectiveness. The near conservation of the product between the time of flight and the thrust level
is observed for general orbital transfers. A linear variation of this quantity with eccentricity is also illustrated when the
difference in eccentricity between the initial and terminal orbits is large enough.

Keywords Low thrust · Thrust continuation · Many-revolution transfers

1 Introduction

Increasing attention has been paid on low-thrust propulsion
in recent decades due to its higher fuel efficiency compared
to chemical propulsion. The low level of the thrust produces
trajectories encompassing many revolutions before reaching
the desired orbit. The corresponding nonlinear optimal con-
trol problem (NOCP) is challenging, since the sensitivity
to the initial guess amplifies as the number of revolutions
grows (Aziz et al. 2018).

Optimal control methods dedicated to solving optimal
low-thrust trajectories are mainly categorized as direct and
indirect methods. Direct methods transform the NOCP to a
finite-dimensional nonlinear programming problem (NLP),
and then a solution fulfilling the Karush-Kuhn-Tucker con-
ditions is sought (Topputo and Zhang 2014). Direct meth-
ods can handle complicated constraints with a broad con-

vergence domain, yet a large number of variables are usu-
ally required to obtain accurate many-revolution trajectories
(Topputo and Zhang 2014). Alternatively, indirect methods
transform the NOCP to a two-point boundary value prob-
lem, then solve it as a zero-finding problem (Conway 2012).
Solutions from indirect methods are guaranteed to satisfy
first-order necessary conditions of optimality, but guessing
unknown costates is nonintuitive due to the lack of their
physical interpretation (Conway 2012).

To effectively expand the convergence domain of indi-
rect methods, homotopy continuation methods have been
widely used in low-thrust trajectory optimization (Bertrand
and Epenoy 2002; Chi et al. 2017; Pan et al. 2018; Li et al.
2021; Wang and Topputo 2023). Instead of attacking the
original problem directly, homotopy continuation methods
gradually approach the solution of the original problem by
tracking the homotopy path, which is comprised of a series
of auxiliary problems (Allgower and Georg 2003). Thrust
continuation approaches the solution by gradually reducing
the thrust level to the desired value, which is studied in this
work because: 1) it provides an easier way to search for a
difficult many-revolution solution; 2) it provides informa-
tion about how the solution varies as the thrust level varies.

However, thrust continuation may encounter unfavorable
conditions, involving limit points where the path terminates
when monotonously varying the thrust level, or the path
goes off to infinity (Pan et al. 2016). The pseudo-arclength
method (PAM) can effectively pass limit points and then
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track the homotopy path that reverses the path direction
(Wang and Topputo 2022). In Pan et al. (2016), a two-layer
continuation method was developed to handle unfavorable
conditions by tracking a discontinuous path. In Pan et al.
(2020, 2018), PAM was used to tackle limit points, and
the homotopy function was designed to find time-optimal
transfers. However, continuation procedures in Pan et al.
(2020, 2018, 2016) lack physical interpretation. In Caillau
and Farrés (2016), the continuation on the angle that de-
fines the geostationary orbit (GEO) under the Earth-Moon
Circular Restricted Three-Body Problem (CRTBP) was exe-
cuted to search multiple time-optimal GEO-L1 trajectories
with the same thrust level. In Ferella (2016), a two-layer
thrust continuation was designed to solve time-optimal geo-
stationary transfer orbit (GTO) to GEO transfers. The un-
favorable conditions were addressed by switching solution
curves, achieved by leveraging the true anomaly as the con-
tinuation parameter in the second-layer continuation. The
longitude-thrust-homotopy was used in Zhang et al. (2023)
to study the global solution space of time-optimal GTO-
GEO transfers.

The continuation of the physical angle has the follow-
ing benefits: 1) it can be used to tackle unfavorable condi-
tions of thrust continuation by switching solution curves;
2) the continuation procedure has more physical signifi-
cance. For fixed-point terminal constraints, the difference
between neighborhood local solutions with the same thrust
level in the true anomaly is 2π , which is common for dif-
ferent transfer problems. This fact can be used as the stop
condition when searching for the neighborhood solution by
continuing from the current solution. For soft terminal con-
ditions where the terminal state of the spacecraft is required
to satisfy a set of functional constraints, it is desirable to find
the common stop condition to simplify the algorithm com-
plexity. Additionally, current methods were designed specif-
ically for either two-body or CRTBP dynamics. It is neces-
sary to develop a method that can be commonly used for
different dynamics with soft terminal conditions.

Based on time-optimal solutions on the thrust continu-
ation path, the near constant of the product of the transfer
time and the thrust level was observed for GTO-GEO trans-
fers (Caillau et al. 2003; Taheri 2021; Zhang et al. 2023).
This empirical result was also illustrated in intercept and
rendezvous transfers, and it was found that this relationship
does not hold for high-thrust ranges (Yue et al. 2010). The
further study in Zhang et al. (2023) concluded that the em-
pirical result holds for the constant in a range of values. A
theoretical explanation of this empirical result was provided
in Bonnard and Caillau (2009). Although the near conserva-
tion was observed for GTO-GEO transfers, it is still not clear
the relationship between this quantity with terminal condi-
tions.

This work presents a simple two-layer thrust continu-
ation method to solve time-optimal low-thrust trajectories
with soft terminal conditions. When the thrust continuation
fails to proceed, the second-layer continuation is triggered
to search for solutions with the same thrust level but differ-
ent revolutions. The key is to augment the state by adding
an auxiliary angle that defines the revolution. The dynamic
of the auxiliary angle does not involve control variables.
Also, the corresponding costate is constant along the trans-
fer. These facts allow for defining suitable auxiliary prob-
lems for the second-layer continuation. The features of our
method are that 1) it can be applied to both two- and multi-
body dynamics; 2) the stop condition when the neighbor-
hood solution is reached by continuing from the current so-
lution can be commonly used for different transfer prob-
lems. Extensive simulations from GTO to GEO, Elliptic In-
clined Geosynchronous Orbit (EIGSO), and Halo orbit un-
der Cartesian coordinates are carried out. The conservation
of the product of the transfer time and the thrust level for
general transfer problems is observed and discussed.

The rest of this paper is organized as follows. Section 2
states the time-optimal many-revolution problem. Section 3
depicts the developed method. Section 4 presents numerical
simulations. Section 5 concludes this paper.

2 Time-optimal transfers

The equations of motion for the spacecraft under Cartesian
coordinates are

ẋ = f (x, u,α) ⇒

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ṙ = v

v̇ = g(r) + h(v) + u
Tmax

m
α

ṁ = −u
Tmax

Isp g0

(1)

where r = [x, y, z], v = [vx, vy, vz], and m are the posi-
tion vector, the velocity vector, and the mass, respectively;
x := [r,v,m] is the state vector, u ∈ [0,1] is the thrust
throttle factor, α is the thrust direction unit vector, and g0

is the gravitational acceleration at sea level; g(r) and h(v)

are vector-value functions of r and v, respectively. Both the
maximum thrust Tmax and the specific impulse Isp are as-
sumed constant.

The transfer time, fuel consumption, and their combina-
tion are the main indices to be minimized in the trajectory
design (Coverstone-Carroll et al. 2000; Niccolai 2024). The
solution of the time-optimal problem provides the minimum
time required to achieve the transfer. The developed method
in this work is designed for the time-optimal problem. The
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performance index of the time-optimal problem is

J =
∫ tf

ti

1 dt (2)

where ti and tf are the initial and terminal time, respectively.
The Hamiltonian function associated to the time-optimal

problem is

H = 1+λ�
r v+λ�

v

(

g(r) + h(v) + u
Tmax

m
α

)

−λmu
Tmax

Isp g0

(3)

where λ := [λr ,λv, λm] is the costate vector associated to x.
The equation of costate dynamics is

λ̇ = −
(

∂H(x,λ, u,α)

∂x

)�
(4)

By virtue of the Pontryagin minimum principle (Bryson
and Ho 1975), the optimal thrust direction α∗ satisfies

α∗ = −λv

λv

(5)

and the optimal thrust throttle factor u∗ is

u∗ =

⎧
⎪⎪⎨

⎪⎪⎩

1 S < 0

0 S > 0

(0,1) S = 0

(6)

where the switching function S is

S = −Isp g0

m
λv − λm (7)

Singular arcs with S = 0 are not considered in this work.
The motion of the spacecraft is determined by integrating
the following dynamical equations (Zhang et al. 2015)

ẏ = F (y) ⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṙ = v

v̇ = g(r) + h(v) − u∗ Tmax

m

λv

λv

ṁ = −u∗ Tmax

c

λ̇r = −A(r)�λv

λ̇v = −λr − B(v)�λv

λ̇m = −u∗λv

Tmax

m2

(8)

where y := [x,λ] ∈ R
14, A(r) := ∂g(r)/∂r and B(v) :=

∂h(v)/∂v.

Since the terminal mass is free and the augmented termi-
nal cost does not explicitly depend on the mass, the transver-
sality condition for the free terminal mass is

λm(tf ) = 0 (9)

From Eq. (8), we have that λ̇m ≤ 0. Then, λm(tf ) = 0
implies λm(t) ≥ 0, thus S < 0 and u∗ = 1 for the whole
time-optimal trajectory. Also, the optimal thrust direction
in Eq. (5) varies continuously. Therefore, the time-optimal
problem considered in this work is unconstrained on the
control.

The Hamiltonian function at the terminal time tf satisfies

H = 0 (10)

The following two categories of boundary conditions are
discussed:

1. Fixed-point initial conditions and soft terminal condi-
tions. In this case, ti is fixed, and tf is free. The fixed-point
initial condition is

x(ti) = xi (11)

and the soft terminal condition is

φ̂(r(tf ),v(tf )) = 0 ∈ R
k, k < 6 (12)

The corresponding transversality condition at tf is

λ�(tf ) − χ� ∂φ̂

∂x(tf )
= 0 (13)

If the multiplier χ can be eliminated by algebraic manip-
ulations, the terminal conditions in Eqs. (12) and (13) are
combined and denoted as

φ(y(tf )) = 0 ∈R
6 (14)

Remark 1 Let ϕ(tf , ti , [λi ,xi], Tmax) be the solution of
Eq. (8) integrated forward from ti to tf with the given
initial conditions and Tmax, the time-optimal problem is
to find the optimal ξ∗ := [λ∗

i , t
∗
f ] ∈ R

8 such that y∗
f :=

ϕ(t∗f , ti , [λ∗
i ,xi], Tmax) satisfies ψ(y∗

f , Tmax) := [φ(y∗
f ),

λm(t∗f ),H(y∗
f )] = 08×1.

2. Soft initial conditions and fixed-point terminal condi-
tions. In this case, ti is free, and tf is fixed. The fixed-point
terminal condition is

r(tf ) = rf , v(tf ) = vf (15)

and the soft initial condition is

φ̂(r(ti),v(ti)) = 0 ∈R
k, k < 6 (16)
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The corresponding transversality condition at ti is

λ�(ti) − χ� ∂φ̂

∂x(ti)
= 0 (17)

Again, if the multipliers χ can be eliminated by algebraic
manipulations, the initial conditions in Eqs. (16) and (17)
are combined and denoted as

φ(yi ) = 0 ∈R
6 (18)

The mass of the spacecraft at ti should satisfy

m(ti) = mi (19)

where mi is the specified initial mass of the spacecraft.

Remark 2 Let ϕ(ti , tf , [λrf ,λvf , λmf = 0, rf ,vf ,mf ],
Tmax) be the solution of Eq. (8) integrated backward from
tf to ti with the given terminal conditions and Tmax,
the time-optimal problem is to find the optimal ξ∗ :=
[λ∗

rf ,λ∗
vf ,m∗

f , t∗f ] ∈ R
8 such that y∗

f := [rf ,vf ,m∗
f ,λ∗

rf ,

λ∗
vf ,0] and y∗

i := ϕ(ti , t
∗
f ,y∗

f , Tmax) satisfy ψ(y∗
f ,y∗

i ) :=
[φ(y∗

i ),m(t∗i ) − mi,H(y∗
f )] = 08×1.

Remark 3 The elimination of the multipliers χ is not re-
quired for the presented method. This assumption is added
to make the problem statement coincide with the simulation
examples.

Remark 4 Cartesian coordinates are used mainly because:
1) they are conveniently used in the multi-body problem;
2) Reduced transversality conditions in Pan et al. (2013) al-
low tackling various orbital transfer problems as soft termi-
nal conditions without the need to solve for the multipliers.

Remark 5 The backward integration is used in Remark 2, so
initial conditions in Remark 2 act as terminal conditions in
Remark 1. Thus, the problem statement in Remark 1 is used
to depict the method in Sect. 3.

3 Thrust continuation method

3.1 Ill-conditioned homotopy path

Thrust continuation approaches the many-revolution, low-
thrust solution starting from the few-revolution, high-thrust
solution that is easier to find. Suppose the time-optimal so-
lution λ∗

i and t∗f with the given Tmax is solved, the neigh-
borhood optimal trajectory for the small thrust variation
Tmax + dTmax satisfies

ψ(yf (xi ,λ
∗
i + dλi , Tmax + dTmax, t

∗
f + dtf ),

Tmax + dTmax) = 0
(20)

Taking the differential of Eq. (20) yields

dψ = ∂ψ

∂yf

∂yf

∂λ∗
i

dλ∗
i + ∂ψ

∂yf

ẏf dt∗f

+
(

∂ψ

∂yf

∂yf

∂Tmax
+ ∂ψ

∂Tmax

)

dTmax = 0

(21)

Then, there exists

⎡

⎢
⎢
⎣

∂λ∗
i

∂Tmax

∂t∗f
∂Tmax

⎤

⎥
⎥
⎦ = −D−1b (22)

where

D =
[

∂ψ

∂yf

∂yf

∂λ∗
i

,
∂ψ

∂yf

ẏf

]

,

b = ∂ψ

∂yf

∂yf

∂Tmax
+ ∂ψ

∂Tmax

(23)

and ∂yf /∂Tmax satisfies the following dynamical equations

d

dt

∂y

∂Tmax
= ∂F

∂y

∂y

∂Tmax
+ ∂F

∂Tmax
(24)

with the initial condition ∂y/∂Tmax(ti) = 014×1.
From the implicit function theorem, the thrust continu-

ation enables us to proceed by reducing Tmax if the matrix
D in Eq. (22) is regular. However, the right-hand side of
Eq. (22) may go off to infinity when approaching a cer-
tain Tmax value. At the same time, as shown in Fig. 1, it
is possible that 1) the costate goes off to infinity as well; 2)
the costate remains finite, and the corresponding termination
point is called the limit point (Pan et al. 2016). Other types
of singular points where homotopy path branches emanate
will not be considered in this work.

A simple path-tracking method is to monotonously de-
crease Tmax at each step. This method is easy to implement
but lacks the capability to tackle homotopy paths in Fig. 1.
PAM enables one to pass limit points by reversing the path
direction, i.e., by increasing the thrust magnitude (Wang and

Fig. 1 Two types of ill-conditioned homotopy paths
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Topputo 2022). However, another limit point should exist
along the path to reverse the path again. Also, PAM fails for
case 1. This work tackles issues of ill-conditioned homotopy
paths by designing a second-layer continuation. As a result,
it is sufficient to monotonously vary the homotopy parame-
ter in the simulation studies.

3.2 Connection of solution curves

The two-layer thrust continuation method is shown in Fig. 2.
Suppose that the solution curve α is traced by gradually re-
ducing Tmax until the continuation terminates at the solu-
tion ξ∗

α,f . Based on the fact that multiple solutions with the
same Tmax exist for the time-optimal orbital transfer prob-
lem (Caillau and Farrés 2016), the method searches the so-
lution ξ∗

β,0 from ξ∗
α,f by solving a series of auxiliary prob-

lems. Then, the thrust continuation proceeds by tracking the
solution curve β starting from the solution ξ∗

β,0.
Figure 3 shows the process to find the solution ξ∗

β,0 for
fixed-point terminal conditions (Ferella 2016). The auxiliary
orbit that frees the true anomaly of the terminal point is iden-
tified first. Starting from the solution ξ∗

α,f , a succession of
auxiliary problems that aim to reach the new terminal point
is solved, where the new terminal point is determined by the
increased true anomaly. The solution ξ∗

β,0 is found once the
true anomaly increases by 2π , indicating that the solution
ξ∗

β,0 has one more revolution than the solution ξ∗
α,f . The

stop condition when the solution ξ∗
β,0 is reached is common

for other transfer problems with fixed-point terminal con-
straints. One aim of our method design is to find the stop
condition that can be commonly used for different soft ter-
minal conditions and dynamics.

With reference to Fig. 4, the angle ζ(r) is introduced as
a function of r . The increment of the variable ζ represents
the angle that the trajectory has swept through. Then, the
number of revolutions of the trajectory is defined as

Nrev = ζf − ζi

2π
(25)

where ζi and ζf are values of ζ at the initial and termi-
nal time. The solution corresponding to a larger value of

Fig. 2 Thrust continuation by switching from the solution curve α to
β through solving a series of auxiliary problems

Fig. 3 Find ξ∗
β,0 from ξ∗

α,f for the fixed-point terminal conditions

Fig. 4 Solution connection for soft terminal conditions

ζf involves more revolutions. Differently from the work in
(Ferella 2016), the true anomaly is not employed since its
dynamic equation involves control variables whereas ζ̇ does
not. Also, the true anomaly is not conveniently used for
multi-body dynamics, especially when the rotating frame is
employed. The use of ζ is the foundation for the definition
of the auxiliary problem in the following.

The state x is augmented by the variable ζ . The equations
of augmented dynamics are

dx̂

dt
= f (x̂, u,α) ⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṙ = v

v̇ = g(r) + h(v) + u
Tmax

m
α

ṁ = −u
Tmax

Isp g0

ζ̇ = σ(r,v) = ∂ζ

∂r
v

(26)

where x̂ := [x, ζ ] is the augmented state.
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The corresponding augmented Hamiltonian function is

Ĥ = 1 + λ�
r v + λ�

v

(

g(r) + h(v) + u
Tmax

m
α

)

− λmu
Tmax

Ispg0
+ λζ σ (r,v)

(27)

The α∗ and u∗ are the same as Eqs. (5) and (6), since ζ̇ does
not contain control variables. The motion of the spacecraft
is determined by integrating the following augmented state-
costate dynamics

dŷ

dt
= F̂ (ŷ) ⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṙ = v

v̇ = g(r) + h(v) + u
Tmax

m

λv

λv

ṁ = −u
Tmax

Isp g0

ζ̇ = σ(r,v)

λ̇r = −A�λv − λζ

(
∂σ (r,v)

∂r

)�

λ̇v = −λr − B�λv − λζ

(
∂σ (r,v)

∂v

)�

λ̇m = −uλv

Tmax

m2

λ̇ζ = 0

(28)

where ŷ := [x̂, λ̂] ∈ R
16 and λ̂ := [λ, λζ ].

In Eq. (28), λ̇ζ = 0 implies the value of λζ is constant
during the flight. It can be seen that the solution of the aug-
mented problem is equivalent to the solution of the original
problem if

λζ = 0 (29)

Let ϕ̂(t, ti , [λ̂i , x̂], Tmax) be the solution integrating Eq. (28)
from ti to a general time t , the following two problems are
defined:

Definition 1 (Problem Porg) Find the optimal λ̂
∗
i and t∗f such

that

ϕ̂(t∗f , ti , [λ̂∗
i , x̂i], Tmax) satisfies

{
ψ(y∗

f ) = 0

λζ (tf ) = 0
(30)

Definition 2 (Problem Paux) Find the optimal λ̂
∗
i and t∗f such

that

ϕ̂(t∗f , ti , [λ̂∗
i , x̂i], Tmax) satisfies

⎧
⎨

⎩

ψ(y∗
f ) = 0

ζ(tf ) = ζ̂
(31)

where ζ̂ is a prescribed value.

Here, Problem Porg is equivalent to the original problem
as stated in Remark 1, while Problem Paux is the auxiliary
problem. The solution of Problem Porg is equivalent to the
solution of Problem Paux if ζ̂ is set to the terminal value of ζ

calculated from the solution of Porg. Besides, Problem Porg

offers a simple criterion to switch from Paux to Porg, i.e.,
λζ (tf ) = 0. Thus, the solution of Problem Paux is equivalent
to the solution of Problem Porg if λζ (tf ) = 0 is addition-
ally satisfied. It is clear that the condition λζ (tf ) = 0 can be
commonly applied to other orbital transfer problems with
soft terminal conditions. In summary, the proposed simple
method is effective because the solution switching between
Porg and Paux is smooth. Besides, the following assumption
is required for its effectiveness.

Remark 6 It is assumed that all auxiliary problems can be
solved.

The indirect method featuring analytic gradients is em-
ployed to solve the time-optimal problem (Zhang et al.
2015). The gradients are computed through the state tran-
sition matrix (STM), subject to

	̇(ti , t) = DyF̂	(ti, t) 	(ti , ti) = I 16×16 (32)

where DyF̂ is the jacobian matrix of F̂ (ŷ) w.r.t. ŷ. Let
z = [ŷ,vec(	)] be a vector containing ŷ and columns of
	. There exists

ż = G(z) ⇒
( ˙̂y

vec(	̇)

)

=
(

F̂ (ŷ)

vec(DyF̂	)

)

(33)

The dynamical equations are integrated using variable–
step seventh/eighth Runge–Kutta integration scheme (Zhang
et al. 2015).

4 Numerical simulations

In this section, simulation examples under two- or three-
body dynamics are conducted under the Windows 10 system
with MATLAB R2019a.

4.1 GTO to GEO transfers

The two-body dynamics with Cartesian coordinates are em-
ployed, i.e.,

g(r) = −μE

r

r3
, h(v) = 0 (34)

where μE is the Earth gravitational parameter (see Table 1).
The variable ζ is defined as

ζ = arctan
y

x
(35)
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Table 1 Physical parameters

Physical constant Value

Mass parameter, μE 398,600.4418 km3/s2

Gravitational field, g0 9.80665 m/s2

Length unit, LU 6378.137 km

Time unit, TU 806.8111 s

Velocity unit, VU 7.9054 km/s

Mass unit, MU 1500 kg

Specific Impulse, Isp 1994.75 s

Table 2 Orbital elements of GTO and GEO

Orbit a (km) e i (deg) 
 (deg) w (deg) θ (deg)

GTO 26,571.43 0.75 7.004 0 0 180

GEO 42,165 0 0 free free free

with the following dynamic equation

ζ̇ = σ(r,v) = xvy − yvx

x2 + y2
(36)

The scaling units and spacecraft parameters are listed in
Table 1, where the initial spacecraft mass is equivalent to
the mass unit. Time-optimal transfers from GTO to GEO
extracted from Caillau et al. (2003) are solved. The orbital
elements of GTO and GEO are shown in Table 2 where the
eccentricity e and the inclination i of GEO are set to 0, and
the right ascension of the ascending node 
, the argument
of perigee ω, the true anomaly θ of GEO are free. The cor-
responding terminal conditions are (Pan et al. 2013)

φ(ŷf ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h�
f hf − h2

1

2
v�

f vf − 1

rf
+ μ

2a

I�
z hf − h cos i

(
λrf × rf + λvf × vf

)�
hf

(
λrf × rf + λvf × vf

)�
I z

λ�
rf vf − μ

r3
f

λ�
vf rf

(37)

where I z = [0,0,1]� and h = √
μEa(1 − e2).

The thrust continuation starts from the time-optimal
transfer with Tmax = 60 N, and corresponding optimal solu-
tion is λ∗

ri = [−2.206184,−1.192697,−0.401076], λ∗
vi =

[−47.309921,48.309300,−21.856674], λmi = 29.145137,
t∗f = 14.80 hours. The optimal trajectory encompasses only
1.05 revolutions; see case A in Table 3.

The procedure of thrust continuation is illustrated in
Fig. 5, including the variations of the norm of optimal initial

Table 3 Summary of solution points A-H

Case Tmax (N) Transfer time (hours) Final mass (kg) Nrev

A 60 14.80 1336.58 1.05

B 12 70.19 1344.98 3.57

B1 12 70.25 1344.86 4.15

C 3 283.33 1343.58 14.66

C1 3 281.97 1344.32 15.16

C2 3 285.77 1342.23 15.84

D 0.5 1708.52 1342.79 87.73

costate and the optimal transfer time with respect to Tmax. In
Caillau et al. (2003), it was stated that the lowest thrust solv-
able when using Cartesian coordinates is 0.7 N. Our simula-
tions show that the proposed method can reach Tmax ≤ 0.7.
From Fig. 5a, it can be seen that the frequency of the curve
connection increases as Tmax decreases. Figure 5b shows
that the optimal transfer time t∗f grows rapidly as Tmax re-
duces. The zoom-in curve of Fig. 5b shows that t∗f is not
smoothly varied. The overview of sample solutions for dif-
ferent thrust levels is provided in Table 3, including the op-
timal transfer time, final mass, and orbital revolutions. It can
be seen that the number of revolutions increases drastically
as Tmax reduces. The time-optimal trajectories, correspond-
ing variations of u, S, m, and a, e, i for sample solutions
A-D in Fig. 5a are shown in Fig. 6. It can be seen that as the
number of revolutions increases, the evolution of a, e, and i

becomes steady.
Time-optimal solutions shown in Fig. 5a only represent

one local solution for a given Tmax. The proposed method
enables searching for other solutions by increasing or de-
creasing ζ . Figure 7 shows the multiple solutions for Tmax =
12 N and Tmax = 3 N. It is interesting to notice that t∗f of lo-
cal solutions is not monotonous with respect to Nrev. Also,
the norm of costate increases as the revolution decreases,
and the minimum-revolution solution has the largest norm
of costate. In Fig. 7a, solution B1 is consistent with the time-
optimal solution obtained in Caillau et al. (2003), which
takes slightly longer time than solution B to reach GEO.
Also, solution B is the solution with the fewest revolutions
and shortest transfer time that can be obtained. The time-
optimal trajectory for solution B1 is illustrated in Fig. 8a. In
Fig. 7b, solution C2 is consistent with the solution obtained
in Caillau et al. (2003) with the transfer time of 285.77 h,
whereas only 283.33 h is required for solution C with the
fewest revolutions. Moreover, solution C1 with the fewest
transfer time 281.97 h is found. It indicates that the solu-
tion with minimum revolutions may not correspond to the
one with globally minimum transfer time. This situation is
more likely to exist for the optimal trajectory with soft ter-
minal conditions where neighborhood solutions are close,
i.e., the difference on the sweeping angle between neighbor-
hood solutions is less than 2π . The time-optimal trajectory
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Fig. 5 Variations of the norm of
optimal initial costate ‖λ∗

i ‖2 and
the optimal transfer time t∗f
w.r.t. Tmax

Fig. 6 Sample solutions A-D in
Fig. 5a. Blue dashed line: GTO;
green line: GEO. ‘o’: initial
point; ‘x’: terminal point
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Fig. 7 Multiple local solutions
(labeled as dots) for
Tmax = 12 N and Tmax = 3 N

Fig. 8 Time-optimal trajectories
for solutions B1 and C1 in
Fig. 7. Blue dashed line: GTO;
green line: GEO

for solution C1 is shown in Fig. 8b. Notice that the obtained
solutions on the continuation path are not guaranteed to be
always close to the globally minimum-time trajectory theo-
retically. The failed continuation point indicates that the op-
timal trajectory with the corresponding thrust level requires
more revolutions to complete the transfer. The proposed al-
gorithm then searches for the first locally optimal trajectory
by sweeping ζ , and then executes the continuation from this
solution. Therefore, the obtained solutions are at least close
to the minimum-revolution trajectory.

4.2 GTO to EIGSO transfers

Time-optimal GTO-EIGSO trajectories are solved, where
the semi-major axis a of EIGSO is the same as GEO in
Table 2, e and i of EIGSO are specified by non-zero val-
ues, and 
, ω, θ are free. The terminal conditions corre-
spond to Eq. (37). In the following, if and ef are denoted
as the terminal i and e of EIGSO. Starting from the time-
optimal GTO-GEO solution with Tmax = 60 N, the continu-
ations on if and ef are performed first to find solutions with
Tmax = 60 N for the given if and ef below.

With reference to Fig. 9, variations of t∗f × Tmax with re-
spect to the thrust level for if ranging from 5 deg to 50 deg
and ef = 0.1 are illustrated. It can be seen that the values
of t∗f × Tmax oscillate for large Tmax, then tend to be nearly
constant as Tmax reduces. The conservation of t∗f ×Tmax has

Fig. 9 Variation of t∗f (hours) × Tmax(N) with ef = 0.1 for various if

been shown for GTO-GEO transfers in Caillau et al. (2003).
Our work shows that the conservation of t∗f × Tmax exists
for general orbital transfers. The constant is further esti-
mated as the averaged value of t∗f (hours) × Tmax (N) with
1/Tmax (N) ≥ 1 in Fig. 9, labeled as C.

To further study how the conservation C varies as if and
ef vary, simulations for various combinations of if and ef

are carried out. With reference to Fig. 10a, the variations of
C for if ranging from 0◦ to 50◦ and ef = 0.1,0.2,0.3 are
illustrated. Let i and e be the absolute value of the dif-
ference of i and e between EIGSO and GTO, respectively.
It can be seen from Fig. 10a that the fuel cost is the least
for the planar transfer, and increases monotonously as i

increases. In Fig. 10b, the variations of C for ef ranging
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Fig. 10 Variation of C (the
averaged value of
t∗f (hours) × Tmax (N))

Fig. 11 Sample solution for the
GTO to EIGSO transfer with
i = 0◦, e = 0 and
Tmax = 0.8 N

from 0 to 0.75 and if = 5◦,15◦,30◦ are illustrated. It can
be seen that the minimum fuel cost does not occur where
e = 0. For the case if = 5◦, as e increases, the value of
C decreases first, then it increases almost linearly when e

is higher than around 0.15. A sample solution with i = 0,
e = 0, and Tmax = 0.8 N is shown in Fig. 11. It can be
seen that i is constant while e is varying during the transfer.
Therefore, the behaviors of e and i are different. It is noticed
that the conservation of the product and its linear relation-
ship with eccentricity apply to optimal trajectories with the
low thrust. From the viewpoint of the averaging, the effect
of changing the orbital elements (except true anomaly) over
one revolution for the low thrust is small. The evolution of
the trajectory is mainly dominated by the secular variation
of the orbital elements, which is insensitive to the selection
of the initial point.

4.3 GTO to Halo orbit transfers

To further verify the effectiveness of the presented method
for multi-body dynamics, the time-optimal transfers from
GTO to the Halo orbit are solved. The CRTBP dynamics
under a rotating frame is employed, i.e.,

g(r) =
⎡

⎣
x − (1 − μ)(x + μ)/r3

1 − μ(x + μ − 1)/r3
2

y − (1 − μ)/r3
1 − μy/r3

2
−(1 − μ)z/r3

1 − μz/r3
2

⎤

⎦ ,

h(v) =
⎡

⎣
2vy

−2vy

0

⎤

⎦ (38)

where r1 = ((x + μ)2 + y2 + z2)1/2, r2 = ((x − 1 + μ)2 +
y2 + z2)1/2, and μ = m2/(m1 + m2) is the mass parameter,
m1 and m2 are the mass of the Earth and the Moon, respec-
tively.

Since the major part of the trajectory is around the Earth,
the variable ζ is defined as

ζ = arctan
y

x + μ
(39)

with the following dynamics

ζ̇ = σ(r,v) = (x + μ)vy − yvx

(x + μ)2 + y2
(40)

The perigee and apogee attitudes of the planar GTO and
the fixed point of Halo orbit from Zhang et al. (2015) are
used to construct the boundary conditions. Differently from
Zhang et al. (2015) where the transfer begins at the perigee
of the specified GTO, the longitude of GTO’s perigee is free
in our simulations, which is also studied in Pan et al. (2020).
Scaling units, spacecraft parameters, perigee, and apogee of
GTO are summarized in Table 4. The backward integration
is executed with the shooting problem stated in Remark 2.
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Table 4 Physical constants

Physical constant Value

Mass parameter, μ 0.0121506683

Length unit, LU 384405 km

Time unit, TU 3.751977 × 105 s

Velocity unit, VU 1.024540 km/s

Mass unit, MU 1500 kg

Specific Impulse, Isp 3000 s

Terminal position, LU [0.823385182067;0;−0.022277556273]
Terminal velocity, VU [0;0.134184170262;0]
GTO perigee, km 400

GTO apoapsis, km 35864

The conditions at the perigee are

φ(ŷi ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

(
(x + μ)2 + y2 − r2

gto

)

1

2

(
(vx − y)2 + (vy + x + μ)2 − v2

gto

)

(x + μ)(vx − y) + y(vy + x + μ)

(x + μ)λy − yλx + vxλvy − vyλvx

z

vz

(41)

where rgto = 0.0176328013 LU and vgto = 9.8261812084
VU are magnitudes of radius and velocity of the spacecraft
at the GTO’s perigee. The thrust continuation starts from
the time-optimal transfer with Tmax = 100N. The corre-
sponding optimal solution is λ∗

rf = [−0.230307,0.004154,

0.007510], λ∗
vf = [0.029780,−0.004956,−0.001141],

t∗f = 1.355 days and m∗
f = 1102.7 kg. The thrust contin-

uation is illustrated in Fig. 12, where the continuation jumps
between long and short curves that are categorized based on
the curve length. Solutions with shorter transfer time than
solutions on the short curve can be obtained when tracking
backward the solutions on the long curve. Thus, solutions
on the long curve are desired, and the value of t∗f × Tmax

on long curves tends to be constant as Tmax reduces. Sam-
ple solutions for Tmax = 3 N and Tmax = 0.6 N are provided
in Table 5. The corresponding time-optimal trajectories and
variations of S and m are shown in Fig. 13. Compared to the
results in (Pan et al. 2020), the fuel consumption and transfer
time are slightly different, because the approximated veloc-
ity constraint is used for the conditions of GTO in (Pan et al.
2020). Solutions obtained by this work and the work in (Pan
et al. 2020) are better than the those in Zhang et al. (2015)
which is 21.1363 days for 3 N and 87.6674 days for 0.6 N.

Fig. 12 Variations of tf (days) × Tmax(N) with respect to 1/Tmax(N)

Table 5 Summary of solution for Tmax = 3 N and 12 N

Tmax (N) Transfer time (days) Final mass (kg) Nrev

3 18.718 1335.09 13.91

0.6 84.713 1350.73 68.56

5 Conclusion

Thrust continuation is a natural way to solve low-thrust
many-revolution time-optimal trajectories. This work ad-
dresses the ill-conditioned homotopy path in finding time-
optimal trajectories with soft terminal conditions. A two-
layer thrust continuation method is presented, where the sec-
ond layer is designed to connect solutions with the same
thrust level but different revolutions. The stop condition
when searching for neighborhood solutions can be com-
monly used for different transfer problems. The effective-
ness of the presented method has been validated by ex-
tensive simulations of time-optimal transfers under two- or
three-body dynamics. The time-optimal solution on the ob-
tained thrust continuation path is close or equivalent to the
minimum-revolution time-optimal solution.

Numerical evidence reveals that: 1) the minimum-
revolution solution may not coincide with the globally
minimum-time solution; 2) The optimal trajectory with the
same eccentricity at the boundary may require longer trans-
fer time than the one with different eccentricity at the bound-
ary; 3) the near conservation of the product between the time
of flight and the thrust level exists for more general orbital
transfers. The linear variation of this quantity with the ec-
centricity is demonstrated when the difference in eccentric-
ity between the initial and terminal orbits is large enough.

The conclusions obtained in this work apply to the time-
optimal trajectories that are unconstrained on the control.
Future work will extend the developed method to tackle the
time-optimal trajectories with thrust direction constraints,
and the hybrid index that combines the transfer time and
the fuel cost. For the latter problem, the optimal control ex-
hibits the bang-bang control, and the strategy that tackles
the continuation failure when the optimal trajectory adds or
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Fig. 13 Sample solutions.
Green dashed line: Halo orbit

removes the thrust or coast arcs is required. Besides, future
work will include the theoretical study to explain the varia-
tion of the conservation with eccentricity.
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