
Enhanced Compiler Technology for Software-based

Hardware Fault Detection

DAVIDE BAROFFIO, Politecnico di Milano, Milano, Italy

FEDERICO REGHENZANI, Politecnico di Milano, Milano, Italy

WILLIAM FORNACIARI, Politecnico di Milano, Milano, Italy

Software-Implemented Hardware Fault Tolerance (SIHFT) is a modern approach for tackling random
hardware faults of dependable systems employing solely software solutions. This work extends an automatic
compiler-based SIHFT hardening tool called ASPIS, enhancing it with novel protection mechanisms and
overhead-reduction techniques, also providing an extensive analysis of its compliance with the non-trivial
workload of the open-source Real-Time Operating System FreeRTOS. A thorough experimental fault-
injection campaign on an STM32 board shows how the system achieves remarkably high tolerance to
single-event upsets and a comparison between the SIHFT mechanisms implemented summarises the tradeoff
between the overhead introduced and the detection capabilities of the various solutions.

CCS Concepts: • Computer systems organization → Reliability; Real-time operating systems; Embedded

systems; • Software and its engineering → Compilers;

Additional Key Words and Phrases: Fault Detection, Embedded Systems, Compilers, SIHFT, Real-Time Oper-
ating Systems

ACM Reference Format:

Davide Baroffio, Federico Reghenzani, and William Fornaciari. 2024. Enhanced Compiler Technology for
Software-based Hardware Fault Detection. ACM Trans. Des. Autom. Electron. Syst. 29, 5, Article 91 (Septem-
ber 2024), 23 pages. https://doi.org/10.1145/3660524

1 Introduction

Recent trends in Integrated Circuitry (IC) manufacturing, such as the decrease in voltages and
the shrinkage of the silicon surface, raise new challenges each year, not only regarding the hard-
ware but also for developers of modern critical systems, since these trends facilitate the occurrence
of soft errors [5] and hardware failures [7]. Indeed, the family of critical systems includes the set

The article is an extension of the conference article “Compiler-Injected SIHFT for Embedded Operating Systems” (DOI:
10.1145/3587135.3589944).

This work has received funding from National Resilience and Recovery Plan (PNRR) through the National Center for
HPC, Big Data, and Quantum Computing [11].
Authors’ Contact Information: Davide Baroffio, Politecnico di Milano, Milano, Italy; e-mail: davide.baroffio@polimi.it; Fed-
erico Reghenzani, Politecnico di Milano, Milano, Italy; e-mail: federico.reghenzani@polimi.it; William Fornaciari, Politec-
nico di Milano, Milano, Italy; e-mail: william.fornaciari@polimi.it.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1084-4309/2024/09-ART91
https://doi.org/10.1145/3660524

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 91. Publication date: September 2024.

HTTPS://ORCID.ORG/0009-0007-3112-9869
HTTPS://ORCID.ORG/0000-0002-1888-9579
HTTPS://ORCID.ORG/0000-0001-8294-730X
https://doi.org/10.1145/3660524
mailto:permissions@acm.org
https://doi.org/10.1145/3660524
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3660524&domain=pdf&date_stamp=2024-09-04


91:2 D. Baroffio et al.

of applications for which the failure of a component – either hardware or software – can have se-
vere consequences on the environment and individuals, as well as business operations and equip-
ment [18]. Achieving high resilience is crucial in critical domains also because critical systems are
often exposed to physical phenomena like electromagnetic interference and radiation. Such phe-
nomena affect hardware components and can manifest at the software level as a so-called Single

Event Upset (SEU), typically modelled as a transient fault causing a single bit-flip in a memory
component of the system.

Traditionally, SEUs are mitigated by adopting hardware-based solutions such as the physical
shielding of the IC components or hardware replication mechanisms for error detection and cor-
rection. These solutions, however, exacerbate some problems typical of the design of critical sys-
tems, especially related to costs and non-functional properties. For instance, adopting Heavy-Ion

Tolerant (HIT) hardened memory cells [34] – which is common in the aerospace safety-critical
domain – introduces around 30% penalty for energy consumption, whilst also occupying twice the
area and weight than equivalent Commercial-Off-The-Shelf (COTS) components [29]. These
additional energy, area, and weight requirements may impact the design of the system at large,
like in the case of spacecraft design, having problematic consequences on the overall project [24].

Software-Implemented Hardware Fault Tolerance (SIHFT) represents a relatively novel
set of solutions that aim at providing, at the software level, resilience against hardware failures.
SIHFT has many advantages with respect to hardware solutions since it allows the adoption of
COTS components, significantly lowering production and maintenance costs, and satisfying high-
performance and low-energy requirements [13]. In this work, we will focus on the SIHFT tech-
niques able to detect the occurrence of a transient fault. Fault recovery strategies and the detection
of permanent faults are outside the scope of this article and left as future work.

1.1 Previous Work, Structure, and Contributions

In our previous conference article [4], we proposed an architecture- and language-independent
approach based on the LLVM compiler framework for the detection of hardware faults by im-
plementing two relevant state-of-the-art SIHFT solutions for data protection and Control-Flow

Checking (CFC) at the level of the LLVM Intermediate Representation (IR). The techniques
have been combined and tested – both in terms of detection rate and overhead – for the compi-
lation of the entire open-source Real-Time Operating System FreeRTOS running on a real-world
COTS embedded device. Remarkably, the resulting system achieved an overall tolerance to SEUs
over 99% by using software-only techniques. The tool, named Automatic Software-based Pro-

tection and Integrity Suite (ASPIS)1, has been further improved both in terms of detection rate
and overhead by implementing novel and state-of-the-art overhead reduction strategies and CFC
techniques. The flexibility of the toolchain increased as well, reducing the user effort required
for the compilation with our framework. This article extends the conference article by describing
how we further improved ASPIS by tackling the challenges that arise from the adoption of SIHFT
solutions in an RTOS, in terms of both the overhead they introduce and their detection capabilities.

Compared to the conference article, this article provides, in addition to a comprehensive descrip-
tion of the approach, the following novel contributions:

— The implementation of a further state-of-the-art algorithm for CFC, namely Random Ad-

ditive Signature Monitoring (RASM) [32];
— the improvement of RASM achieving inter-function CFC, also by modifying the underlying

open-source Real-Time Operating System FreeRTOS;
— two overhead reduction techniques;

1The source code is available at https://github.com/HEAPLab/ASPIS.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 91. Publication date: September 2024.

https://github.com/HEAPLab/ASPIS


Enhanced Compiler Technology for Software-based Hardware Fault Detection 91:3

— the analysis of the compliance of FreeRTOS kernel components with our automated SIHFT
injection tool;

— an extended experimental evaluation of the proposed techniques, comparing the overhead
and detection capabilities of various combinations of the implemented SIHFT mechanisms.

This article is structured as follows: Section 2 provides some algorithmic background about the
SIHFT techniques we implemented, Section 3 provides implementation details of the ASPIS passes
and the optimisations we introduced, and Section 4 describes how we tackled the challenges that
arose whilst compiling FreeRTOS with ASPIS. The experimental setup and the results are described
in Section 5. Section 6 provides a literature review and positions our work with respect to previous
research and Section 7 concludes this work, outlining the future possible research paths enabled
by this article.

2 Background

Data and control-flow protections are a set of SIHFT techniques for detecting SEUs altering the
memory content and the execution flow of a program. This section describes in detail the state-
of-the-art techniques that represent the foundations and the starting point of our solution and
provides the necessary background also on the functioning of FreeRTOS, the case-study OS we
protected with ASPIS. As already mentioned, a detailed literature review of similar approaches is,
instead, reported in Section 6.

2.1 Data Protection

SIHFT techniques for data protection usually implement software redundancy in the data or the
computation. Since the most relevant, diffused, and flexible approach to software-based redun-
dancy is Error Detection by Duplicated Instructions (EDDI) by Oh et al. [23], we adopted it
as the baseline for our data protection mechanism. EDDI is an assembly-level instruction redun-
dancy mechanism that duplicates all the program code, interleaving the original instructions and
their copies. EDDI relies on the assumption that the hardware provides separate memory regions
and sets of registers for the main instructions and their copies. The algorithm inserts assembly
instructions to perform consistency checks before specific instructions that are called synchronisa-

tion points. Before each synchronization point instruction, the algorithm adds the comparison on
its operands, jumping to a user-defined error procedure in case of a mismatch. The most suitable
candidate instructions for synchronization points are typically branch- and store-like instructions
since they can be used to verify the correctness of conditional branches and maintain the consis-
tency of the memory content.

Oh and McCluskey [21] extended EDDI by allowing the developers to manage the function call
instructions in two different ways: (1) functions whose bodies have to be duplicated by standard
EDDI, and (2) functions whose bodies are not duplicated but are invoked twice by the caller, even-
tually comparing their results at the end. We leveraged this approach to extend our data protection
mechanism for managing library functions for which the source code is not available and, in gen-
eral, code that is not possible to transform due to implementation issues. Section 4 will provide
some practical examples of this differentiation applied to the FreeRTOS source code.

2.2 Control-flow Protection

One of the main drawbacks of instruction duplication is the focus limited to data protection, ig-
noring SEUs that alter the program execution flow. For example, a bit-flip in the program counter
could cause the program to unexpectedly jump to a different location of the code (a so-called il-
legal branch), affecting the correctness of the output. CFC is the family of SIHFT techniques that

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 91. Publication date: September 2024.



91:4 D. Baroffio et al.

Fig. 1. Example of CFCSS signature updates with a basic block having multiple predecessors.

focuses on protecting the Control-Flow Graph (CFG) of the program against illegal branches.
Most CFC approaches in the literature rely on one or multiple run-time signatures. These signa-
tures are updated at run-time following the execution path and compared to the ones predicted
at compile-time. Usually, they are checked one time per basic block. The following paragraphs
report the two signature-based CFC solutions from the literature: CFC via Software Signatures

(CFCSS) [22] and RASM [32].

2.2.1 Control-Flow Checking via Software Signatures (CFCSS). CFCSS is one of the most widely
known signature-based CFC techniques. Similarly to the majority of signature-based methods,
CFCSS assigns a unique signature to each basic block of the program and performs periodic checks
– typically after each branch instruction – between the static compile-time signature and a run-
time signature stored in a register G. The algorithm inserts instructions to update the run-time
signature as G = G ⊕ dj at the beginning of each basic block Bj . The symbol ⊕ represents the bit-
wise XOR operation and dj = si ⊕ sj , where sj and si are the signatures of Bj and of its predecessor
Bi . After the update, G and sj are compared and, in case of a mismatch, the program jumps to a
user-defined procedure for fault recovery.

In case a basic block Bj has multiple predecessors, the algorithm requires an additional signature
called adjusting run-time signature that is stored in another dedicated register D. The idea is that
the predecessors of Bj have to store in D a value that adjusts the run-time signature depending on
the signature of the predecessor chosen by the successor for computing dj . If Bj uses the signature
of its predecessor Bk for computing dj = sj ⊕ sk , CFCSS inserts the instruction D = sh ⊕ sk into
each predecessor Bh of Bj , right after the comparison of G with the static signature. Finally, the
adjusting run-time signature D is XOR-ed with the run-time signature G in Bj so that no mismatch
occurs: G = G ⊕ D. Figure 1 provides a simple example of how CFCSS uses D for blocks having
multiple predecessors.

2.2.2 Random Additive Signature Monitoring (RASM). CFCSS suffers from the drawbacks of all
the CFC mechanisms that adopt a single signature update per basic block. More specifically, they
are vulnerable to illegal branches from the middle of the body of a basic block to the beginning of
another and from the end of a basic block to the middle of the body of another. Solutions adopting
a double update of the signature, like RASM, solve these issues. The comparison is depicted in
Figure 2. Other than the double signature update, RASM differs from CFCSS because it requires

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 91. Publication date: September 2024.



Enhanced Compiler Technology for Software-based Hardware Fault Detection 91:5

Fig. 2. One signature update approaches (left and centre) fail to detect the two depicted illegal branches,

while two signature update approaches (right) are able to detect them.

only one run-time signature for standard CFC – which increases to two run-time signatures if
we enable inter-function checking – and performs the run-time signature update on conditional
branches using the same condition of the conditional branch itself. For nomenclature consistency
with CFCSS, we call the run-time signature G, and we call D the additional run-time signature for
inter-function CFC.

Similarly to CFCSS, unique signatures si are assigned to each basic block Bi in the CFG at com-
pile time. Specifically, RASM requires two random numbers whose sum is the unique signature si

assigned earlier, called ni and ri
2, i.e., si = ni + ri . The static signature si and its addenda are used

for both determining the validity of a branch at the beginning of a basic block and for computing
each update to the run-time signature. According to the original RASM specification, the values
of the signatures and their addenda are chosen randomly, with no specific precautions necessary
in the randomization process apart from ensuring that there is no shared state between the signa-
tures, i.e., si � sj ∧ si � nk for all distinct i, j,k . The algorithm inserts the first update instruction
G = G − ri at the beginning of each basic block Bi . Then, the signature verification is added to
check whether the condition G == ni holds. In the negative case, it means that an illegal branch
has been detected and the program jumps to a user-defined error routine. Afterwards, the algo-
rithm inserts the second run-time signature update at the end of each basic block. The objective of
this update is to ensure that all outward edges of the basic block can be taken using an adjustment
value ai . The update instructions differ depending on whether the terminator of the basic block,
i.e., the last instruction of the block, is a return statement or not. If the terminator is a return state-
ment, we allocate a value called Ri and a prime number pi . We then compute the adjustment value
ai = (pi + ri ) − Ri , we add an instruction updating G = G − ai , and a comparison between G and
Ri that is used to jump to a user-defined fault handling routine in case of a mismatch. If the last
instruction is not a return statement, the algorithm updates the run-time signature depending on
the successors: for each successor Bj of Bi , we compute ai = ni − (nj + r j ) and, finally, we update
the run-time signature G = G − ai . This case trivially extends to function calls by considering the
first block of the callee as the successor when updating the run-time signature.

The original algorithm also provides a solution to indirect branches and calls, with the limitation
that the candidate successor basic blocks must known at compile-time.

2Variable names differ from the one presented in the original RASM publication [32] for the sake of clarity.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 91. Publication date: September 2024.



91:6 D. Baroffio et al.

2.3 FreeRTOS Execution Flow

Before diving into the description of the ASPIS toolchain, we provide some background informa-
tion on FreeRTOS and its functioning to better understand the impact of the ASPIS transformations
on the kernel components of the OS.

FreeRTOS implements a real-time operating system which is suitable for embedded systems
thanks to its small memory footprint and timing predictability. The OS features a small amount of
components, providing APIs for task creation, inter-task communication, and, most importantly,
task scheduling. All the kernel components that are platform-independent are contained in three
source files: tasks.c, queue.c, and list.c, with the first managing task lists and scheduling,
the second managing inter-task communication, and the third implementing a list data structure
which is also used by the previous two files. Other than that, FreeRTOS requires some platform-
dependent libraries, mainly composed of assembly code, and macros that are needed for dynamic
memory management, interrupt handling, and context switching, which are designed for the spe-
cific processor architecture.

The scheduler is invoked upon system ticks and performs context switches according to the
active set of tasks, which is represented by a collection of Task Control Blocks (TCBs). FreeRTOS
by default creates an Idle task, which is used for garbage collection and to run the scheduler (when
in non-preemptive mode), and a Timer task for timed events management in case the timers are
enabled. All these software components leverage a set of data structures that represent the state of
FreeRTOS at execution time. Previous research [20] categorized these components and analyzed
their vulnerability to SEUs, defining a baseline for estimating the elements that can and cannot be
protected by ASPIS. We analyzed the degree of protection that ASPIS can provide to FreeRTOS by
studying the software targets categorized in their work, the results of our analysis are described
in Section 5.2.4.

3 Automated Compiler-Injected SIHFT

ASPIS is a set of LLVM passes that implement the SIHFT algorithms described in Sections 2.1 and 2.2
at the LLVM IR level, meaning that the transformations are platform- and language-independent.
We designed the passes FuncRetToRef , EDDI and DuplicateGlobals to implement the EDDI
data protection mechanism, while CFCSS and RASM are implementations of the original CFCSS
and RASM algorithms in LLVM.3 Figure 3 depicts the ASPIS compilation flow. As a preliminary
step, ASPIS takes a set of source files and transforms them via the LLVM front-end, producing the
respective set of LLVM IR files that will be linked together by the llvm-link tool in order to ease
the transformations across multiple compilation units. After the application of FuncRetToRef ,
EDDI , and either CFC pass, ASPIS utilizes llvm-link once again to incorporate external sources
into the compilation unit. The output of the linking then is transformed by DuplicateGlobals
for maintaining the consistency of the global variables that are modified by the external functions.

The next paragraphs outline the major features of the passes for each protection mechanism
– data protection and CFC – describing the implemented algorithms, the challenges encountered
during development and how they have been solved, in addition to the novel concepts introduced
by this work.

3.1 Data Protection

The data protection mechanism in place is enforced by three passes: FuncRetToRef , EDDI , and
DuplicateGlobals . Their subsequent application implements IR-level redundancy by duplicat-

3The EDDI and CFCSS passes were respectively called DuplicateInstructions and CFGVerification in the original
conference article. They have been renamed to make clear which are the original algorithms.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 91. Publication date: September 2024.



Enhanced Compiler Technology for Software-based Hardware Fault Detection 91:7

Fig. 3. High-level perspective of the ASPIS compilation sequence as the subsequent application of custom

(in green) and pre-defined (in yellow) LLVM passes.

ing most of the program IR instructions and performing other transformations to guarantee data
integrity, including the duplication of return values and function arguments, the duplication of
global variables, and keeping consistent the global variables across the external modules. This
data protection mechanism is further detailed in the next paragraphs: Section 3.1.1 describes the
behaviour of the passes FuncRetToRef , EDDI , and DuplicateGlobals , Section 3.1.2 explains the
motivations behind the need and the effects of these transformations, and Section 3.1.3 describes
the overhead-reduction techniques that we implemented in ASPIS.

3.1.1 Data Protection Passes. FuncRetToRef is a preliminary pass that transforms non-void
functions into void functions moving the return value to the parameter list. Indeed, this transfor-
mation requires a modification of the function body, transforming the original IR return instruc-
tion into a return void instruction, as well as a modification of the body of each caller to correctly

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 91. Publication date: September 2024.



91:8 D. Baroffio et al.

pass the return parameter to the new function signature and handle the return pointer after the
procedure call.

EDDI is the core pass implementing instruction duplication, which is an almost straightforward
implementation of the original EDDI algorithm. The procedure can be divided into three major
steps: duplicate all the non-constant global variables, duplicate the arguments in the function sig-
natures, and iterate over the instructions of the program performing duplication and synchronisa-
tion points insertion.

Finally, DuplicateGlobals finalises the data protection transformation by iterating over all the
excluded functions to maintain the integrity of the global variables between internal (duplicated)
functions and external (non-duplicated) functions.

3.1.2 Motivations Behind these Transformations. The implementation of the three passes for
data protection enhances the original EDDI algorithm, solving the challenges that arose from the
translation of the original approach to standard the LLVM IR abstraction level.

The first issue was related to the impossibility of assigning different sets of registers and memory
regions as required by the original EDDI since LLVM IR is architecture-independent and, therefore,
has no knowledge of the available hardware registers. The separation of the memory components
is required to prevent interference between the data of the two copies of the program.

Proposition 3.1. The application of EDDI and DuplicateGlobals transformations is equivalent

to the adoption of different sets of registers and memory regions for each copy of the program used in

the original EDDI.

Since the data of a program is represented by the set of variables in the source code, irrespec-
tive of their physical location in memory or registers, ASPIS only cares about duplicating these
variables, without the need for two separate regions for storing data. The EDDI pass straightfor-
wardly protects variables within the function scope by duplicating the alloca LLVM instructions.
However, challenges arise when dealing with global variables used by functions external to the
code compiled with ASPIS (for instance, libraries). In fact, it may happen at run-time that only
one copy of a global variable is updated by some non-duplicated code, which causes a mismatch
when the program returns to the duplicated code. These external functions are represented by the
“External Sources” block in the ASPIS compilation flow (Figure 3). To solve this problem, we need
to split the global variable types into non-complex (e.g., integers, floats) and complex (e.g., point-
ers, data structures, and arrays) types. On the former, ASPIS applies for the DuplicateGlobals
pass: after integrating the external libraries in the IR (via the llvm-link tool as showed in Fig-
ure 3), DuplicateGlobals duplicates each store on non-complex global variables of these exter-
nal functions so that data consistency is guaranteed. Regarding the variables of the complex type,
instead, EDDI directly duplicates them assuming that such variables are not modified by functions
external to the compilation unit. In practice, we relax this assumption by allowing developers to
mark globals to not duplicate thanks to a custom LLVM annotation so that they can be used safely
in external functions. This limitation on complex types is caused by the challenges posed by the
need to explore all the uses of the members of the complex variables, which is an intricate, long
and, in some cases, not even feasible process. ASPIS also provides selective function call duplica-
tion, in line with the work of Oh and McCluskey [21], for guaranteeing consistency on variables
that are passed as parameters to library functions. Some examples will be provided in Section 4.
We conclude that the combination of EDDI and DuplicateGlobals guarantees data integrity by
duplicating all the variables of the program.

Another problem is that the original EDDI algorithm does not explicitly manage call and
return instructions because it just considers them as branch instructions surrounded by a set

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 91. Publication date: September 2024.



Enhanced Compiler Technology for Software-based Hardware Fault Detection 91:9

of load/store instructions that perform parameter and return value passing. Therefore, the pro-
tection of the data flow between procedure calling is guaranteed by the duplication of these in-
structions done by EDDI. To apply this scheme, LLVM should know architecture-specific details
(e.g., the calling convention) that are, instead, not available at the LLVM IR level,4 which instead
uses the high-level call and return primitives to abstract all the implementation details.

Proposition 3.2. The combination of FuncRetToRef and EDDI provides data flow protection

across function calls and returns.

Our pass EDDI performs function argument duplication by design, and the instructions using the
duplicated arguments are duplicated as well, guaranteeing a full-fledged parameter duplication
upon function invocation. Additionally, running FuncRetToRef before the EDDI pass appends
a new parameter as a return pointer at the end of the list of function arguments so that EDDI
duplicates it as well. Regarding the original return instruction, FuncRetToRef substitutes it with
a store followed by a return void, with the former being duplicated by EDDI , effectively enabling
the return value duplication. Therefore, FuncRetToRef and EDDI provide inter-function data flow
protection since they allow the duplication of function arguments and return values.

The original EDDI specification does not discuss how to manage complex data types at syn-
chronisation points. For example, let us consider a data variable and a pointer to this variable. The
original EDDI algorithm duplicates both of them obtaining two copies of the data variable and two
copies of the pointer allocated in different memory regions, each pointer pointing to one of the
variables. Hence, with the original EDDI algorithm, any comparison of pointers to these variables
always leads to a mismatch. The problem also affects arrays and data structures.

Proposition 3.3. ASPIS’s pass EDDI improves the original EDDI algorithm by offering the protec-

tion of pointers, simple arrays, and data structures.

When feasible, EDDI determines the original content of the pointer, possibly following the chain
of load-store instructions in the case of a multi-level pointer. When the pointer content is found,
the pointed value and its copy are compared. If one of the two pointers suffered an SEU, the pointed
data will likely mismatch, hence the mechanism achieves pointer protection. Finally, ASPIS does
not compare data structures by design on each synchronisation point that uses the data structure
itself. Instead, it compares the members of a data structure when they are eventually retrieved
and used as operands of a synchronisation point, effectively protecting them. Regarding arrays,
ASPIS compares all their items at synchronization points. Nonetheless, since comparing all the
elements may introduce unacceptable overhead, we reduced the number of checks by avoiding the
comparison on nested arrays or arrays of complex data types. In fact, similarly to data structures,
we observed that the data contained in the array is likely to be used in a synchronisation point,
hence we perform the comparison on the single array element uses instead of the whole array.

3.1.3 Overhead Reduction. One of the main drawbacks of SIHFT solutions is the considerable
timing overhead they introduce. In the specific case of instruction duplication, we expect an in-
crease in the execution time of a factor of two due to the need to execute twice the amount of
code of the original program. On top of that, there is the non-negligible overhead introduced by
the consistency checks, which are performed upon store, branch, and call instructions. In prin-
ciple, reducing the number of consistency checks should not affect the execution correctness, but
only postpone the detection to the next synchronisation point. Based on this observation, we pro-
vide some tweaking parameters in ASPIS that can be enabled or disabled to reduce the number

4This issue looks like a limitation but it is actually a design feature of LLVM to remain architecture-independent at IR-level.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 91. Publication date: September 2024.



91:10 D. Baroffio et al.

of consistency checks injected in the code. One of the parameters enables or disables Full Dupli-

cation with Selective Checking (FDSC), which is a technique that inserts consistency checks
in critical blocks identified by using a heuristic from the state-of-the-art based on the number of
their fan-outs [2]. We also provide a set of parameters for selecting what instructions the pass
considers as synchronisation points between store, call, and branch instruction families. These
simple tweaks have been used for the implementation of a novel selective checking technique, we
call it selective-EDDI (sEDDI), which is a revised version of EDDI that does not consider store
instructions as synchronisation points.

3.2 Control-flow Graph Monitoring

Concerning CFC, ASPIS includes two alternative solutions: CFCSS and RASM . They are applied after
the EDDI pass to prevent it from creating duplicate instructions also on the code that performs the
integrity checks on the CFG signatures. In fact, protecting the code for CFC is not required under
the assumption that the faults manifest as SEUs.

3.2.1 The CFCSS Pass. The CFCSS pass is an almost straightforward implementation of the
original CFCSS algorithm. However, due to the abstraction level of the LLVM IR, it is not possible
to allocate registers for the pair of run-time signatures. Instead of adopting a set of global variables,
we opted for a per-function CFC, similar to what we did for memory allocation in EDDI , meaning
that the CFCSS pass performs control-flow graph monitoring only between the basic blocks within
the same function. Adopting a pair of global run-time signatures would cause problems due to the
unpredictability of some program features such as indirect function calls and interrupts. Therefore,
we employed a pair of local variables for each function, such that the callees do not alter the
contents of the run-time signatures of the callers.

Some corner cases are not considered by the original CFCSS specification when determining the
predecessors of a successor – which can be seen as a neighbour – upon computing the adjusting
signature D, leading to ambiguities and undefined behaviours. As a simple example, consider the
CFG in Figure 4. The original CFCSS algorithm defined di as depending on the signature of one
of its predecessors, for instance, we can set d100 = s100 ⊕ s001, meaning that B100 has chosen B001

as the predecessor for computing di . Therefore, both its predecessors B001 and B010 should use s001

for computing D. But B010 has another successor B101 with multiple predecessors, hence setting
D = s001 ⊕ s010 would require that B101 uses the signature of its predecessor B001 for computing
d001. B100 and B101 have B010 as a common predecessor, so they can use s010 as the signature of the
predecessor for computing d100 = s100 ⊕s010 and d100 = s101 ⊕s010. However, the reasoning does not
extend to the block B111, since it shares no predecessor with the other two blocks. The problem is
that, according to the original algorithm, it is unclear which predecessor signature should be used
by the blocks B100, B101, and B111 for computing di . Although scenarios like this – in which blocks
share no predecessors – are not uncommon in real-world programs, the CFCSS specification does
not tackle the problem. Therefore, we extend the CFCSS original approach by defining the concept
of neighbourhood as follows:

Definition 3.4 (Neighbourhood). A basic block Bi is in the neighbourhood of a basic block Bj –
and in such a case we write Bi ∈ neiдh(Bj ) – if either of these conditions hold:

— succ(Bi ) ∩ succ(Bj ) � ∅, i.e., Bi and Bj have at least a common successor, or
— Bi ∈ neiдh(Bk ) and Bj ∈ neiдh(Bk ), i.e., Bi and Bj are both in the neighbourhood of the same

basic block Bk .

With our extension, all basic blocks of the same neighbourhood use the same basic block Bi as
the neighbour block. We apply the same reasoning to all the successors of the blocks in the neigh-

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 91. Publication date: September 2024.



Enhanced Compiler Technology for Software-based Hardware Fault Detection 91:11

Fig. 4. Corner case not considered by the original CFCSS algorithm. The boxes represent the basic blocks

and the number is the binary representation of the compile-time signature of each basic block.

bourhood, i.e., all the basic blocks Bj having a predecessor in a neighbourhood deterministically
use the signature of the same basic block Bi for computing dj = sj ⊕ si , effectively tackling the
issue described earlier.

3.2.2 The RASM Pass. Contrarily to CFCSS , RASM has multiple advantages such as the double
signature update, conditional signature update, indirect branch protection, and return block protec-
tion. This last feature has been leveraged for the implementation of the inter-function CFC version
of RASM (inter-RASM or iRASM for short), which will be described in Section 3.2.3. Focusing on
the standard RASM, in practice, its implementation as a pass is very similar to the one of CFCSS.
Similarly to CFCSS , the pass inserts the two local variables for storing the run-time signatures. In
principle, only one local variable should suffice, i.e., the one storing the current run-time signature
G, but the extra variable is necessary later for the inter-function CFC version of RASM described in
Section 3.2.3.

Additionally, the main difference in our approach with respect to the original RASM algorithm
concerns the assignment of the static signatures si . Specifically, the signature si is divided into two
parts, as required by the specification: ni and ri . However, the original algorithm does not provide
precise indications on how to pick the two random numbers, so we opted for assigning sequential
numbers divisors of 2 to ni and 1 to ri , such that the following relation holds:

si = ni + ri = ni + 1,

and ni = 2 + ni−1, ∀i . This is one of the simplest ways of enforcing no shared state between the
signatures, i.e., si � sj ∧si � nk for all distinct i, j,k . We demonstrate the equivalence – in terms of
safety – with the original RASM by observing that a control-flow error can only be caused by an
SEU targeting either a memory component able to produce an alteration in the control-flow graph
(such as the program counter) or the memory region containing the signature. In the first case, the
SEU would cause a jump to an instruction in another part of the code that is assumed to be valid
(i.e., part of the ISA). But since no two blocks share the possible signature states at the beginning
and in the body of the basic blocks, respectively si and ni , the signature would mismatch as soon
as a check is encountered. Considering, instead, the case of an SEU on the signature leading to
any value different from the valid signature expected by the successor block, the next update will
indeed invalidate the signature, leading to a mismatch. Our approach guarantees SEUs resiliency
since only one signature is admissible at the beginning of a basic block and only one signature
is admissible during the execution of a basic block. We suspect that the original randomicity
requirement of the RASM specification was needed to minimise the probability that two basic
blocks in different compilation units share the same signature. However, we tackle this issue by
linking with llvm-link all the compilation units we plan on protecting, as shown in Figure 3.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 91. Publication date: September 2024.



91:12 D. Baroffio et al.

In this way, we ensure that a unique signature is assigned statically to each basic block of the
protected code.

After the signature assignment with the criteria just mentioned, the RASM pass hardens the code
implementing the same algorithm described in the original RASM specifications. We also apply the
lowerswitch LLVM pass (not depicted in the compilation flow figure for simplicity), which, as the
name suggests, “lowers” switch instructions into a sequence of consecutive branch instructions
before the application of our compilation pipeline for simplifying the insertion of the conditional
signature updates required by RASM.

3.2.3 Achieving Inter-function CFC. The two approaches described thus far do not protect
against control-flow errors that jump at the very first instruction of a function. In fact, they use
local variables as per-procedure run-time signatures which are reset at the beginning of each func-
tion call, hence an illegal branch landing at the first instruction of a function will reset the signature,
which makes the fault undetectable. In order to protect against such errors, the code needs to trace
at run-time the sequence of functions called in order to set, upon function call/return, the signa-
ture for the basic block following the call/return instruction. Indeed, a unique pair of signatures
is required globally, which makes it straightforward to implement them as two global variables G
and D. In ASPIS, we implemented a novel inter-function CFC version of the RASM pass, which we
call Inter-RASM , or iRASM for short. Inter-RASM is based on the intuition that the caller sets the
signature of the first basic block of the callee as the run-time signature before performing the call
and signals the callee that the signature it expects at the end of the procedure is the one of the
basic block following to the call. The implementation leverages the Ri adjusting signature, which
is now stored dynamically in D. Since the run-time signature G is checked against D upon return
(in compliance with the original RASM specification), the basic block reached after the return has
a run-time signature G that matches the one it expects. This raises the problem of multiple nested
function calls, which are obviously extremely common in programming. In order to prevent the
callee from overwriting D when it, in turn, calls another function, it backs up D before the call
and then resets it after the nested call has terminated. This slight modification to the original al-
gorithm is based on the features provided by RASM itself. Its implementation, however, requires
the addition of some checking instructions at the beginning of each function of G against a fixed
well-known value, which we call the INIT_SIGNATURE, to check whether the function is the entry
point of the program or not (e.g., the main() of a C/C++ application).

Figure 5 provides an example of CFG compiled with iRASM . Blocks of the same colour are part
of the same function. The CFG of procedure() is only outlined for the sake of simplicity, and the
instructions performing the checks on INIT_SIGNATURE at the beginning of each function are omit-
ted as well. The dashed line represents the predecessor-successor relationship modelled by LLVM,
yet the actual block executed after BB1 is the entry block of procedure. Hence, before calling
procedure(), BB1 sets G and D according to the values expected at the beginning of procedure()
and of BB2, respectively.

4 Enabling ASPIS in FreeRTOS

Most of the SIHFT literature we reviewed does not provide insight into the applicability of their
techniques to specific workloads. The only exception is the article by James and Goeders [16],
which evaluated the proposed COAST framework on FreeRTOS. Likewise, we evaluate the appli-
cability of our framework to FreeRTOS by providing an estimation of the amount of programming
effort required by the user to make its code compliant with ASPIS. In fact, although ASPIS can
be used to protect the entire FreeRTOS kernel codebase without any major programming effort,
the interaction with external components and drivers (i.e., port-dependant components) must

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 91. Publication date: September 2024.



Enhanced Compiler Technology for Software-based Hardware Fault Detection 91:13

Fig. 5. Example of CFG with inter-RASM enabled.

be carefully adapted in the context of code duplication and control-flow checking. In particular,
most of the concerns derive from the use of external functions and their use of FreeRTOS global
variables, together with the problem of context switches and interrupt routines in the case of
inter-RASM . The following will describe the only modifications required to the FreeRTOS kernel
to be compliant with ASPIS.

4.1 Handling FreeRTOS Global Data Structures

FreeRTOS employs several global variables in order to ease the interaction between the different
kernel components. The management of global variables of non-complex data types is performed
directly within ASPIS thanks to EDDI and DuplicateGlobals passes. However, the assumption
of ASPIS by which complex variables are not modified in external functions does not hold, in
general, in the case of a FreeRTOS port. For instance, the port-dependant assembly function
xPortPendSVHandler saves the top of the stack into pxCurrentTCB, which is a global variable
that, as the name suggests, contains the TCB of the currently running task. Since this function
is written in assembly, we had to manually adjust the code in order to mirror changes also on the
duplicate pxCurrentTCB_dup, which will be created at compilation time.

Other than the aforementioned modification, we needed to exclude all the global variables that
serve as stacks of statically allocated tasks using a source-level annotation. These are the only
variables of the FreeRTOS kernel that are excluded from the duplication. Indeed, since the data is
already duplicated within each stack, there is no need to duplicate the stacks as well.

4.2 Architecture-dependent Functions Management

Since all the functions belonging to the Drivers and Portable modules are port-dependent, in-
cluding the already mentioned xPortPendSVHandler, they have been excluded from the SIHFT
compilation. Other than exploiting in-line assembly, these functions deal with other architecture-
dependent features, for instance, they perform read/write operations in specific memory regions

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 91. Publication date: September 2024.



91:14 D. Baroffio et al.

that are reserved for GPIO. Memory management functions, such as malloc and free, also belong
to the set of excluded functions of the Portable FreeRTOS module. Library functions like memcpy
and memset are excluded as well. However, we give developers the option to set some functions
as “to duplicate” via Clang annotations. ASPIS, in such a case, duplicates the calls to the annotated
function, providing selective function call duplication. Therefore, we created a set of wrappers for
duplicating calls to external functions as well as a set of wrappers for performing calls to original
non-duplicated functions from external sources. In particular:

— pvPortMalloc has been duplicated in case of dynamic TCB and timer creation.
— pvPortFree has been duplicated in case of TCB and timer deletion, matching what was done

for pvPortMalloc.
— memcpy has been duplicated in prvCopyDataToQueue() and prvCopyDatafromQueue(), two

primitives of the queue.c kernel component for saving and reading data from a queue, re-
spectively. In fact, only one of the two queue replicas would be updated when calling the
first function, whereas the read would be performed only from one replica when calling the
second function.

Not performing duplication would lead to some serious correctness problems such as overflows
in task stacks or ghost updates on variables (i.e., the code would update only one copy of the
variable), which in turn may lead to an incorrect error detection.

One notable example linked to the problem of global variables duplication is the global
xTimerQueue, which requires the duplication of all the three functions described above in order
to work correctly. In particular, no memcpy duplication would prevent the update of xTimerQueue
clone. Moreover, also assuming memcpy is duplicated, not duplicating pvPortMalloc would pre-
vent the creation of the double timers, causing a command sent on xTimerQueue to be executed
twice on the same timer, while not duplicating pvPortFree would lead to an overflow in the case
pvPortMalloc duplication is enabled.

4.3 The inter-RASM algorithm with Context Switch and Interrupts

Interrupts and context switches are surely the most concerning aspects of the compilation of an
entire operating system with CFC enabled. The main issue is that interrupts and context switches
are indistinguishable from illegal branches due to their unpredictability in altering the CFG of the
program. Figure 6 provides a clear example of the indistinguishability between an illegal branch, a
context switch, and an interrupt: the execution can be moved to another task because of a context
switch, or to another routine for interrupt handling, but it can also happen that the control flow has
been altered due to a CFE. Therefore, applying inter-RASM on the unmodified FreeRTOS kernel
will lead to a mismatch in all the above cases.

Our solution employs two global variables as the run-time signatures and assigns a pair of run-
time signatures to each task, backing the signatures up and restoring them at each context switch.
This required the addition of two integer fields to the FreeRTOS TCB data structure, acting as
per-task run-time and adjusting run-time signatures. The context switch procedure was modified
as well to perform the switching between the signature pairs. Finally, we also added some code
intercepting interrupt routines for backing up and restoring the signatures before and after the
routine body, respectively.

5 Experimental Evaluation

In order to evaluate the effectiveness of ASPIS, we ran an experimental campaign aimed at assess-
ing its SEU detection capabilities and the introduced overhead in terms of timing and size.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 91. Publication date: September 2024.



Enhanced Compiler Technology for Software-based Hardware Fault Detection 91:15

Fig. 6. Outlined CFG of two tasks, demonstrating the indistinguishability of an illegal branch w.r.t. context

switches and interrupts.

5.1 Experimental Setup

We hardened the OS employing multiple combinations of protection passes by employing EDDI
and its FDSC and sEDDI optimisations for instruction duplication in conjunction with the three
passes for CFC: CFCSS , RASM , and inter-RASM . We combined them to test a total of 10 configura-
tions, including the configuration without any SIHFT mechanism, which serves as our baseline per-
formance. The resulting code ran on a NUCLEO-L152RE board equipped with the STM32L151RET6
microcontroller and was used to measure the ability of ASPIS to improve SEU detection and the
introduced overhead. In our experimental setup, the NUCLEO board was connected to a host ma-
chine governing the experiments via gdb and the ST-Link gdb server.

5.2 Fault Detection

The objective of this part of the experimental campaign was to investigate the detection capabilities
of ASPIS on the OS components. We used ASPIS to compile a version of FreeRTOS running specif-
ically developed microbenchmark tasks designed to test the majority of FreeRTOS core features:
Tasks, Queues, Message Buffers, and Timers, in parallel with two tasks executing the MatMult and
CRC benchmarks from the Mälardalen [14] and MiBench [15] benchmark suites, respectively. The
experiment is orchestrated by the host machine that performs the fault injection at random time
instants, targeting the RAM address space and the processor registers with a uniform distribution.

5.2.1 Interpretation of the Possible Outcomes. The host machine observes the execution after
the injection to discover data corruptions or timing faults that were not detected by the protection
mechanisms in place. Specifically, data corruptions are discovered by checking the output of the
program against a pre-computed golden run, while the timing integrity is checked using a so-
called watchdog timer. A watchdog requires the analysed task to send periodic heartbeats in order
to detect whether timing errors occurred.

The orchestrator determines the output of each injection depending on the following possible
outcomes:

— No Effect. The fault did not cause any modification to the execution, meaning that the output
matches the one of a pre-computed golden run.

— Loop. This is a “stuck-at” fault, i.e., the program does not continue the expected execution
path but gets stuck in an infinite loop.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 91. Publication date: September 2024.



91:16 D. Baroffio et al.

— Silent Data Corruption (SDC). The execution correctly finishes but the actual output of the
program does not match the one of the golden run.

— HW-Detected. The fault injected caused an error that is captured by the hardware (e.g., illegal
address/opcode). The hardware triggers the execution of an OS-level routine to manage the
error.

— EDDI-Detected. The ASPIS data protection mechanism in place detected a mismatch between
the two copies of the data.

— CFC-Detected. The ASPIS CFC mechanism in place detected an illegal branch.

Watchdogs are very common in the context of real-time systems, therefore we can consider loop
faults to be easily detectable. However, waiting for a watchdog expiration requires idle cycles in
which the program could already be performing a recovery, worsening the real-time capabilities
of the system. Therefore, even if we consider loop faults to be detectable, they are still relevant
when evaluating the detection capabilities. HW-detected faults, on the other hand, are immediately
detected since the processor would raise an exception due to an illegal instruction or an illegal
memory access. In this case, even if we did not consider recovery techniques in our discussion,
we can assume that recovery from a hard fault is not trivial. Therefore we consider mechanisms
lowering the number of HW-detectable faults as more effective than others. Finally, the most im-
portant outcome, that we actually used as a reliability metric, concerns the amount of SDCs that
the system suffers. The relevance of this category of errors comes from the fact that in practice
they are indistinguishable from correct program executions, meaning that ASPIS was not able to
detect in any way that an error occurred and an incorrect output was produced.

5.2.2 Injection Campaign. We injected 60,000 bit-flips between registers and memory assuming
a uniform distribution on each memory word by considering the size of the memory and the
registers space: 80KB of RAM (81, 920B) against 16 32-bit registers (64B). Therefore our injector
had the probability of injecting a fault within the register space of Pr =

64B
80KB+64B

= 64B
81920B+64B

=

1/1281 ≈ 0.0008, and the probability of injecting a fault within the memory space of Pm = 1−Pr =

1280/1281 ≈ 0.9992. Given our statistical fault injection model, we use the following widely used
formula for computing the margin of error rate e [19]:

e = t ×

√
p × (1 − p)

n
×
N − n

N − 1
,

where p is the a priori estimate of the percentage of faults causing a failure, which we conserva-
tively set to p = 0.5 to maximize the sample size as suggested by the original article [19]. Then,
t = 2.5758 is the cut-off point corresponding to a 99% confidence level computed with respect to
the normal distribution, N is the sample space size,5 and n = 60 000 is our sample size. Under the
conservative assumption that N is infinite, we estimate the error rate of our injection campaign
by computing the limit: limN→∞ e = 0.00526 = 0.526%.

5.2.3 Results. The fault injection results for each configuration of ASPIS are provided in Table 1.
The table reports the percentage for each outcome with an error e = 0.526% < 1% and a confidence
of 99% together with the percentages by considering only effective faults, which represents the
effectiveness of ASPIS provided that the SEU is not masked by the program. Expectedly, EDDI is
one of the best data protection mechanisms, achieving the highest results in terms of detection
rate. However, when considering the number of SDCs, the three mechanisms for data protection
provide comparable protection. This is probably due to the overhead introduced by the checks of
EDDI , which increase the execution time and the liveliness period of the variables.

5N = (memory size × time instants)

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 91. Publication date: September 2024.



Enhanced Compiler Technology for Software-based Hardware Fault Detection 91:17

Table 1. Fault Injection Results Showing the Percentages of Outcomes with Respect to the

Total Amount of Injections (%tot) and Only the Effective Faults (%Effective)

Configuration
No Effect Loop SDC HW-Detected EDDI-Detected CFC-Detected
%tot %tot %effective %tot %effective %tot %effective %tot %effective %tot %effective

No SIHFT 97.133 0.925 32.267 0.625 21.802 1.317 45.930 – – – –
EDDI + CFCSS 92.265 0.532 6.874 0.017 0.215 1.178 15.234 5.453 70.502 0.555 7.175
EDDI + RASM 92.225 0.462 5.938 0.022 0.279 1.232 15.841 5.703 73.355 0.357 4.587
EDDI + inter-RASM 91.173 0.447 5.060 0.015 0.170 1.797 20.355 6.173 69.940 0.395 4.475
FDSC + CFCSS 92.865 0.513 7.195 0.022 0.304 1.298 18.197 4.768 66.830 0.533 7.475
FDSC + RASM 92.737 0.498 6.861 0.012 0.161 1.242 17.095 5.143 70.812 0.368 5.071
FDSC + inter-RASM 91.518 0.507 5.974 0.012 0.138 1.828 21.556 5.742 67.695 0.393 4.637
sEDDI + CFCSS 92.925 0.512 7.232 0.023 0.330 1.362 19.246 4.675 66.078 0.503 7.114
sEDDI + RASM 92.615 0.502 6.793 0.015 0.203 1.335 18.077 5.170 70.007 0.363 4.920
sEDDI + inter-RASM 91.567 0.495 5.870 0.013 0.158 1.855 21.996 5.603 66.443 0.467 5.534

Concerning CFC, although CFCSS manifests the highest detection rate, the most efficient mech-
anism in terms of SDCs is inter-RASM , while CFCSS and RASM provide slightly worse but still
comparable protection. With the former achieving a lower SDC rate with EDDI and the latter
achieving a lower SDC with sEDDI and FDSC . Regarding loop faults, the three mechanisms for
CFC provide almost the same degree of protection, but, once again, inter-RASM manifests the
lowest average amount of loop faults when considering only effective faults.

5.2.4 Protection of FreeRTOS. Mamone et al. [20] studied the resiliency of the FreeRTOS against
SEUs by performing statistical fault injection on the kernel’s most important data structures group-
ing them depending on their usage. By keeping track of the injection targets during our fault in-
jection campaign, we performed a similar analysis by gathering the variables that suffered from
SDCs, filtering them between application-specific and FreeRTOS-specific locations, and grouping
them extending the classification nomenclature we found in the literature [20] as follows:

— GKVARS: The set of global kernel variables of FreeRTOS.
— TCBVARS: The set of TCB structures in the set of FreeRTOS variables.
— DLDLST: The lists containing information about the delayed tasks.
— RDYLST: The lists containing information about the ready tasks.
— MTXQVARS: The set of data structures used by FreeRTOS for inter-task communication,

including queues and message buffers.
— TMRVARS: The set of data structures related to FreeRTOS timer handling.
— APPVARS: Application-specific locations and other variables that do not belong to the other

categories.

The SDCs and loop faults for each of the categories are represented in Tables 2 and 3, respectively
showing the total percentage of injections that caused SDCs and loop faults. The data highlights
how all protection mechanisms in place were able to significantly reduce the number of SDCs,
achieving zero faults in all targets except the data structures for inter-task communication, while
loop faults are completely zeroed out, meaning that ASPIS is able to greatly increase the real-time
capabilities of the system.

5.3 Timing and Size Overhead

In this case, we implemented two tasks running the DES encryption and Matrix Multiplication

(MM) benchmarks from the Mälardalen benchmark suite [14], one task running the Lift bench-
mark from the TACLeBench benchmark suite [9], and two tasks running CRC and SHA from
the MiBench suite [15]. The overhead experiments have two goals: measure the execution time
overhead and the binary size overhead. In particular:

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 91. Publication date: September 2024.



91:18 D. Baroffio et al.

Table 2. SDC Rate per FreeRTOS Target

Target No SIHFT
EDDI +
CFCSS

EDDI +
RASM

EDDI +
iRASM

FDSC +
CFCSS

FDSC +
RASM

FDSC +
iRASM

sEDDI +
CFCSS

sEDDI +
RASM

sEDDI +
iRASM

GKVARS 3.703% 0% 0% 0% 0% 0% 0% 0% 0% 0%
TCBVARS 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
DLDLST 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
RDYLST 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
MTXQVARS 1.680% 0.068% 0.069% 0.137% 0.134% 0.069% 0% 0.069% 0.068% 0%
TMRVARS 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
APPVARS 0.659% 0.018% 0.024% 0.014% 0.022% 0.012% 0.014% 0.026% 0.016% 0.016%

Table 3. Loop Rate for FreeRTOS Target

Target No SIHFT
EDDI +
CFCSS

EDDI +
RASM

EDDI +
iRASM

FDSC +
CFCSS

FDSC +
RASM

FDSC +
iRASM

sEDDI +
CFCSS

sEDDI +
RASM

sEDDI +
iRASM

GKVARS 18.519% 0% 0% 0% 0% 0% 0% 0% 0% 0%
TCBVARS 5.348% 0% 0% 0% 0% 0% 0% 0% 0% 0%
DLDLST 7.778% 0% 0% 0% 0% 0% 0% 0% 0% 0%
RDYLST 0.042% 0% 0% 0% 0% 0% 0% 0% 0% 0%
MTXQVARS 1.200% 0% 0% 0% 0% 0% 0% 0% 0% 0%
TMRVARS 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
APPVARS 0.753% 0.637% 0.554% 0.537% 0.617% 0.598% 0.609% 0.615% 0.602% 0.593%

— To test the timing overhead, we compiled multiple versions of FreeRTOS, each one running
with one of the benchmarks, and we measured the time required for the benchmark execu-
tion. Results were collected via the debugging interface of the board by placing a break-point
on a dedicated function from which it is possible to extract the correct execution time of
the task.

— Regarding the binary size overhead, we simply observed the size of the binary files produced
at the end of each compilation. This value provides us insights into the size of the program
code, rather than the number of actually executed instructions.

The timing and size overheads are summarised in Table 4 and in Table 5, respectively. The data
highlights that CFCSS is the most lightweight CFC mechanism, performing slightly better than
RASM . Inter-RASM , on the other hand, introduces a massive overhead, with up to 9× penalty on
the execution time. Concerning instruction duplication, the overheads are comparable for FDSC
and sEDDI, while, unsurprisingly, EDDI introduces the greatest overhead due to its checks at every
store, branch, and call instruction.

5.4 Overhead-detection Tradeoff

The experimental evaluation we conducted highlighted that there is no “best” solution for achiev-
ing resilience at a low cost. This is one of the major concerns of SIHFT solutions as it represents
an engineering challenge for developers of critical systems who have to select the solution that
fits their needs depending on the specific domain of application.

Figure 7 illustrates the overhead-detection tradeoff of ASPIS. The X -axis represents the increase
factor in terms of both size and average timing overhead, whereas the Y -axis represents on a log-
arithmic scale the percentage of SDCs suffered by the resulting system on 60, 000 injections. Each
combination of data protection and CFC solutions is represented by a point in the two plots, as
described in the legend on the right-hand side of the figure. Clearly, the most efficient solutions
are the ones closer to the bottom-left corner of the two plots. It is reasonable to assume that crit-
ical systems engineers would prioritise execution time over binary size, therefore we focus on

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 91. Publication date: September 2024.



Enhanced Compiler Technology for Software-based Hardware Fault Detection 91:19

Table 4. Increase in Benchmark Execution Time with Respect

to No SIHFT Configuration

Configuration DES MM Lift CRC SHA Avg.

EDDI + CFCSS 5.472× 4.276× 4.724× 3.889× 5.083× 4.689×
EDDI + RASM 6.291× 5.053× 5.801× 4.638× 6.255× 5.6081×
EDDI + inter-RASM 10.749× 7.041× 8.052× 6.572× 8.626× 8.208×
FDSC + CFCSS 2.672× 3.086× 2.985× 2.676× 2.718× 2.827×
FDSC + RASM 3.090× 3.488× 3.385× 3.063× 2.969× 3.199×
FDSC + inter-RASM 5.392× 4.889× 4.812× 3.959× 4.175× 4.645×
sEDDI + CFCSS 3.387× 3.027× 2.993× 2.674× 2.728× 2.962×
sEDDI + RASM 3.700× 3.637× 3.486× 3.059× 3.110× 3.399×
sEDDI + inter-RASM 6.190× 4.877× 4.631 4.184× 4.191× 4.814×

Table 5. Size of the Program Code (.text Sections) of

FreeRTOS having Microbenchmarks as Tasks

Configuration Size (B) Increase

No SIHFT 29 160 1.00×
EDDI + CFCSS 130 176 4.46×
EDDI + RASM 151 968 5.21×
EDDI + inter-RASM 280 352 9.61×
FDSC + CFCSS 113 152 3.88×
FDSC + RASM 131 232 4.50×
FDSC + inter-RASM 248 544 8.52×
sEDDI + CFCSS 113 152 3.88×
sEDDI + RASM 130 992 4.49×
sEDDI + inter-RASM 248 272 8.51×

Fig. 7. Size and timing overhead w.r.t. the percentage of SDC for each SIHFT mechanism.

the timing overhead plot (on the right). We can observe that most solutions achieve a remark-
ably low SDC rate. FDSC obtains the lowest rates with the smallest overhead, yet both are com-
parable to the ones of sEDDI , while EDDI provides a low SDC rate with a much higher timing
penalty.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 91. Publication date: September 2024.



91:20 D. Baroffio et al.

6 Relation with Previous Works

There are multiple SIHFT techniques in the literature that enforce consistency of the execution
state at diverse granularity levels. For example, application-level redundancy consists of running
multiple replicas of an application and comparing their output. The orchestration of the interleav-
ing between the two replicas and the consistency checks is typically left to a hypervisor. Indeed two
replicas enable only fault detection, while three instances provide Triple Modular Redundancy

(TMR), which leverages a voting mechanism for recovery purposes. Other than TMR, fault recov-
ery can also be performed by SIHFT mechanisms such as recovery blocks, task re-execution, and
Error-Correcting Codes [13, 25]. Other than application-level duplication, we already mentioned
instruction-level duplication (EDDI), and its extension to the procedure level [21].

Other works focused on reducing the overhead of SW-based redundancy by reducing the dupli-
cated code while keeping the protection level reasonably high, exploiting the fact that a significant
amount of SEUs causes architecture-level faults, such as segmentation faults, that are inherently
masked by the processor [28]. This family of techniques is known as “selective duplication”. Ex-
amples of selective duplication are: Shoestring by Feng et al. [10] and other selective duplication
techniques exploiting code analysis mechanisms to determine the vulnerable instructions like pro-
filing [17], genetic algorithms [3] and critical basic block identification [2, 31]. Remarkably, critical
block identification has been used for our FDSC optimization, which implements the heuristics of
Critical-Block Duplication (CBD) [2] for checkpoint insertion.

Regarding CFC techniques, other than the already mentioned CFCSS and RASM algorithms that
are implemented in ASPIS, some notable mentions are Control-flow Error Detection using As-

sertions (CEDA) [35] and Path Sensitive Signatures (PaSS) [36]. None of these mechanisms
implements intra-block protection, preventing instruction skip faults from being detected. This
kind of fault can be mitigated by different approaches known in the literature as Instruction Moni-
toring techniques, like RACFED [33], which, however, introduces a much higher overhead. Even if
some researchers explained concerns related to the effectiveness of CFC techniques [27, 30], these
techniques provide protection to the execution flow with relatively low overhead, and they are
considered a valuable tool in the security domain [1] as a stand-alone mechanism against targeted
faults tampering with the control flow.

Research shows the advantages of combining computational redundancy and CFC techniques,
like ASPIS. Reis et al. [26] presented SWIFT, which employs CFCSS together with EDDI under
the assumption that the underlying memory provides ECCs. Didehban et al. [8] presented near-

Zero Silent Data Corruption (nZDC), an improved version of SWIFT adding more instruction
redundancy and consistency checks, while at the same time exploiting micro-architectural features
of modern devices to lower the overhead. Bohman et al. implemented COAST [6], a platform-
independent approach for inserting both DMR and TMR as a set of passes for the LLVM compiler
framework, without making assumptions on the underlying hardware in contrast to SWIFT and
nZDC. COAST aligns with the approach we described in this article and has also been tested on
FreeRTOS via hardware emulation [16]. They tested the detection capabilities of their instruction
triplication (TMR) solution on the FreeRTOS kernel achieving a 3×–4× overhead and a total of
0.52% SDCs with respect to the total number of effective faults in registers, cache and dcache.
Overall, the combinations provided by ASPIS have comparable overhead and the majority of them
manifest a lower SDC rate. Other than that, ASPIS has also greater usability since the module can be
compiled out-of-tree for a more recent version of LLVM and provides a command-line interface to
the automatised pipeline. Finally, Sharif et al. described COMPAS [30], an LLVM-based compiler
framework implementing techniques such as CFCSS, CEDA, nZDC, SWIFT, and others, for the
RISC-V architecture, while also comparing their protection degree carrying out a Monte Carlo

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 91. Publication date: September 2024.



Enhanced Compiler Technology for Software-based Hardware Fault Detection 91:21

analysis. The techniques implemented in COMPAS have been extended to the security domain as
well in COMPASeC [12], demonstrating how they can be adopted for ensuring protection against
attacks relying on hardware fault injection for instruction skipping.

7 Conclusions

This article described an improvement with respect to our previous work [4] and other state-of-
the-art works by providing more tools for platform-independent and compiler-injected SIHFT. The
novel implementation of ASPIS provides further protection as well as overhead-reduction tech-
niques. The overhead reduction techniques allow us to find some efficient tradeoff combinations
of SIHFT that make our system at least as effective as other state-of-the-art solutions with com-
parable features, achieving resiliency to up to 99.842% of effective faults, which is the largest rate
in the literature we reviewed. Our experiments concluded that the best option by considering the
tradeoff between timing overhead and detection is represented by FDSC + RASM – which combines
a novel overhead-reduction technique with a state-of-the-art CFC solution – and suffers from only
0.012% of the total faults injected with an overhead of less than 3.5×.

The future research directions from this article include the study of the effects of introducing
other compiler optimisations, the implementation of recovery techniques, the expansion of the
framework to the domains of security and distributed computing, and the compliance of ASPIS
with the strict requirements and standards of safety-critical domains.

References

[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. Control-flow integrity. In Proceedings of the 12th

ACM Conference on Computer and Communications Security (Alexandria, VA, USA). Association for Computing Ma-
chinery, New York, NY, USA, 340–353. DOI:https://doi.org/10.1145/1102120.1102165

[2] Athena Abdi, Seyyed Amir Asghari, Saadat Mozaffari, Hassan Taheri, and Hossein Pedram. 2012. An optimum in-
struction level method for soft error detection. International Review on Computers and Software 7, 2 (2012), 637–641.

[3] Bahman Arasteh, Asgarali Bouyer, and Sajjad Pirahesh. 2015. An efficient vulnerability-driven method for hardening
a program against soft-error using genetic algorithm. Computers and Electrical Engineering 48, C (2015), 25–43. DOI:
https://doi.org/10.1016/j.compeleceng.2015.09.020

[4] Davide Baroffio and Federico Reghenzani. 2023. Compiler-injected SIHFT for embedded operating systems.
InProceedings of the 20th ACM International Conference on Computing Frontiers. Association for Computing Machinery,
New York, NY, USA, 337–343. DOI:https://doi.org/10.1145/3587135.3589944

[5] R. Baumann. 2005. Soft errors in advanced computer systems. IEEE Design and Test of Computers 22, 3 (2005), 258–266.
DOI:https://doi.org/10.1109/MDT.2005.69

[6] Matthew Bohman, Benjamin James, Michael J. Wirthlin, Heather Quinn, and Jeffrey Goeders. 2019. Microcontroller
compiler-assisted software fault tolerance. IEEE Transactions on Nuclear Science 66, 1 (2019), 223–232. DOI:https://doi.
org/10.1109/TNS.2018.2886094

[7] S. Borkar. 2005. Designing reliable systems from unreliable components: The challenges of transistor variability and
degradation. IEEE Micro 25, 6 (2005), 10–16. DOI: https://doi.org/10.1109/MM.2005.110

[8] Moslem Didehban and Aviral Shrivastava. 2016. nZDC: A compiler technique for near Zero Silent Data Corruption. In
Proceedings of the 2016 53nd ACM/EDAC/IEEE Design Automation Conference. 1–6. DOI:https://doi.org/10.1145/2897937.
2898054

[9] Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolfgang Puffitsch, Christine Rochange, Martin Schoe-
berl, Rasmus Bo Sørensen, Peter Wägemann, and Simon Wegener. 2016. TACLeBench: A benchmark collection to
support worst-case execution time research. In Proceedings of the 16th International Workshop on Worst-Case Execu-

tion Time Analysis. Martin Schoeberl (Ed.), Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany,
2:1–2:10.

[10] Shuguang Feng, Shantanu Gupta, Amin Ansari, and Scott Mahlke. 2010. Shoestring: Probabilistic soft error reliability
on the cheap. In Proceedings of the Fifteenth International Conference on Architectural Support for Programming Lan-

guages and Operating Systems (Pittsburgh, Pennsylvania, USA). Association for Computing Machinery, New York, NY,
USA, 385–396. DOI:https://doi.org/10.1145/1736020.1736063

[11] William Fornaciari, Federico Reghenzani, Federico Terraneo, Davide Baroffio, Cecilia Metra, Martin Omana, Josie
E. Rodriguez Condia, Matteo Sonza Reorda, Robert Birke, Iacopo Colonnelli, Gianluca Mittone, Marco Aldinucci,

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 91. Publication date: September 2024.

https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1016/j.compeleceng.2015.09.020
https://doi.org/10.1145/3587135.3589944
https://doi.org/10.1109/MDT.2005.69
https://doi.org/10.1109/TNS.2018.2886094
https://doi.org/10.1109/MM.2005.110
https://doi.org/10.1145/2897937.2898054
https://doi.org/10.1145/1736020.1736063


91:22 D. Baroffio et al.

Gabriele Mencagli, Francesco Iannone, Filippo Palombi, Giuseppe Zummo, Daniele Cesarini, and Federico Tesser.
2023. RISC-V-based platforms for HPC: Analyzing non-functional properties for future HPC and big-data clusters. In
Proceedings of the Embedded Computer Systems: Architectures, Modeling, and Simulation. Cristina Silvano, Christian
Pilato, and Marc Reichenbach (Eds.), Springer Nature Switzerland, Cham, 395–410. DOI:https://doi.org/10.1007/978-
3-031-46077-7_26

[12] Johannes Geier, Lukas Auer, Daniel Mueller-Gritschneder, Uzair Sharif, and Ulf Schlichtmann. 2023. CompaSeC: A
compiler-assisted security countermeasure to address instruction skip fault attacks on RISC-V. In Proceedings of the

2023 28th Asia and South Pacific Design Automation Conference. 1–7.
[13] O. Goloubeva, M. Rebaudengo, M.S. Reorda, and M. Violante. 2006. Software-Implemented Hardware Fault Tolerance.

Springer US, New York, NY.
[14] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. 2010. The Mälardalen WCET benchmarks: Past,

present and future. In Proceedings of the 10th International Workshop on Worst-Case Execution Time Analysis. Björn
Lisper (Ed.), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 136–146. DOI:https://doi.org/10.
4230/OASIcs.WCET.2010.136 The printed version of the WCET’10 proceedings are published by OCG (www.ocg.at) -
ISBN 978-3-85403-268-7.

[15] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B. Brown. 2001. MiBench: A free, commercially
representative embedded benchmark suite. In Proceedings of the 4th Annual IEEE International Workshop on Workload

Characterization. WWC-4 (Cat. No.01EX538). 3–14. DOI:https://doi.org/10.1109/WWC.2001.990739
[16] Benjamin James and Jeffrey Goeders. 2021. Automated software compiler techniques to provide fault tolerance for

real-time operating systems. In Proceedings of the 2021 Design, Automation and Test in Europe Conference and Exhibition.
1452–1455. DOI:https://doi.org/10.23919/DATE51398.2021.9474205

[17] Daya Shanker Khudia, Griffin Wright, and Scott Mahlke. 2012. Efficient soft error protection for commodity embedded
microprocessors using profile information. SIGPLAN Not. 47, 5 (2012), 99–108. DOI:https://doi.org/10.1145/2345141.
2248433

[18] John C. Knight. 2002. Safety critical systems: Challenges and directions. InProceedings of the 24th International

Conference on Software Engineering. Association for Computing Machinery, New York, NY, USA, 547–550. DOI:
https://doi.org/10.1145/581339.581406

[19] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert. 2009. Statistical fault injection: Quantified error and confidence.
In Proceedings of the 2009 Design, Automation and Test in Europe Conference and Exhibition. 502–506. DOI:https://doi.
org/10.1109/DATE.2009.5090716

[20] Dario Mamone, Alberto Bosio, Alessandro Savino, Said Hamdioui, and Maurizio Rebaudengo. 2020. On the analysis of
real-time operating system reliability in embedded systems. In Proceedings of the 2020 IEEE International Symposium

on Defect and Fault Tolerance in VLSI and Nanotechnology Systems. 1–6. DOI:https://doi.org/10.1109/DFT50435.2020.
9250861

[21] Nahmsuk Oh and Edward J. McCluskey. 2001. Low energy error detection technique using procedure call duplication.
In Proceedings of the 2001 International Symposium on Dependable Systems and Networks.

[22] N. Oh, P.P. Shirvani, and E.J. McCluskey. 2002. Control-flow checking by software signatures. IEEE Transactions on

Reliability 51, 1 (2002), 111–122. DOI:https://doi.org/10.1109/24.994926
[23] N. Oh, P.P. Shirvani, and E.J. McCluskey. 2002. Error detection by duplicated instructions in super-scalar processors.

IEEE Transactions on Reliability 51, 1 (2002), 63–75. https://doi.org/10.1109/24.994913
[24] Federico Reghenzani. 2023. Enabling software technologies for critical cots-based spacecraft systems. In Proceedings of

the 20th ACM International Conference on Computing Frontiers (Bologna, Italy). Association for Computing Machinery,
New York, NY, USA, 236–242. DOI:https://doi.org/10.1145/3587135.3592765

[25] Federico Reghenzani, Zhishan Guo, Luca Santinelli, and William Fornaciari. 2022. A mixed-criticality approach to fault
tolerance: Integrating schedulability and failure requirements. In Proceedings of the 2022 IEEE 28th Real-Time and Em-

bedded Technology and Applications Symposium . IEEE, Milano, Italy, 27–39. DOI:https://doi.org/10.1109/RTAS54340.
2022.00011

[26] G.A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D.I. August. 2005. SWIFT: Software implemented fault tolerance.
In Proceedings of the International Symposium on Code Generation and Optimization. IEEE, San Jose, CA, USA, 243–254.
DOI:https://doi.org/10.1109/CGO.2005.34

[27] Abhishek Rhisheekesan, Reiley Jeyapaul, and Aviral Shrivastava. 2019. Control flow checking or not? (for soft errors).
ACM Transactions on Embedded Computing Systems 18, 1 (2019), 25 pages. DOI:https://doi.org/10.1145/3301311

[28] Alessandro Savino, Stefano Di Carlo, Gianfranco Politano, Alfredo Benso, Alberto Bosio, and Giorgio Di Natale.
2012. Statistical reliability estimation of microprocessor-based systems. IEEE Transactions on Computers 61, 11 (2012),
1521–1534. DOI:https://doi.org/10.1109/TC.2011.188

[29] ECSS Secretariat. 2016. Space Product Assurance - Techniques for Radiation Effects Mitigation in ASICs and FPGAs

Handbook (ECSS-Q-HB-60-02A ed.). European Space Agency, Noordwijk, The Netherlands.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 91. Publication date: September 2024.

https://doi.org/10.1007/978-3-031-46077-7_26
https://doi.org/10.4230/OASIcs.WCET.2010.136
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.23919/DATE51398.2021.9474205
https://doi.org/10.1145/2345141.2248433
https://doi.org/10.1145/581339.581406
https://doi.org/10.1109/DATE.2009.5090716
https://doi.org/10.1109/DFT50435.2020.9250861
https://doi.org/10.1109/24.994926
https://doi.org/10.1109/24.994913
https://doi.org/10.1145/3587135.3592765
https://doi.org/10.1109/RTAS54340.2022.00011
https://doi.org/10.1109/CGO.2005.34
https://doi.org/10.1145/3301311
https://doi.org/10.1109/TC.2011.188


Enhanced Compiler Technology for Software-based Hardware Fault Detection 91:23

[30] Uzair Sharif, Daniel Mueller-Gritschneder, and Ulf Schlichtmann. 2022. COMPAS: Compiler-assisted software-
implemented hardware fault tolerance for RISC-V. In Proceedings of the 2022 11th Mediterranean Conference on Embed-

ded Computing. 1–4. DOI:https://doi.org/10.1109/MECO55406.2022.9797144
[31] Venu Babu Thati, Jens Vankeirsbilck, Jeroen Boydens, and Davy Pissort. 2019. Selective duplication and selective

comparison for data flow error detection. In Proceedings of the 2019 4th International Conference on System Reliability

and Safety. 10–15. DOI:https://doi.org/10.1109/ICSRS48664.2019.8987731
[32] Jens Vankeirsbilck, Niels Penneman, Hans Hallez, and Jeroen Boydens. 2017. Random additive signature monitoring

for control flow error detection. IEEE Transactions on Reliability 66, 4 (2017), 1178–1192. DOI:https://doi.org/10.1109/
TR.2017.2754548

[33] Jens Vankeirsbilck, Niels Penneman, Hans Hallez, and Jeroen Boydens. 2018. Random additive control flow error
detection. In Proceedings of the Computer Safety, Reliability, and Security. Barbara Gallina, Amund Skavhaug, and
Friedemann Bitsch (Eds.), Springer International Publishing, Cham, 220–234.

[34] R. Velazco, D. Bessot, S. Duzellier, R. Ecoffet, and R. Koga. 1994. Two CMOS memory cells suitable for the design of
SEU-tolerant VLSI circuits. IEEE Transactions on Nuclear Science 41, 6 (1994), 2229–2234. DOI:https://doi.org/10.1109/
23.340567

[35] Ramtilak Vemu and Jacob Abraham. 2011. CEDA: Control-flow error detection using assertions. IEEE Transactions on

Computers 60, 9 (2011), 1233–1245. DOI:https://doi.org/10.1109/TC.2011.101
[36] Ze Zhang, Sunghyun Park, and Scott Mahlke. 2020. Path sensitive signatures for control flow error detection. In

Proceedings of the 21st ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems.

(London, United Kingdom). Association for Computing Machinery, New York, NY, USA, 62–73. DOI:https://doi.org/
10.1145/3372799.3394360

Received 30 November 2023; revised 21 February 2024; accepted 13 April 2024

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 91. Publication date: September 2024.

https://doi.org/10.1109/MECO55406.2022.9797144
https://doi.org/10.1109/ICSRS48664.2019.8987731
https://doi.org/10.1109/TR.2017.2754548
https://doi.org/10.1109/23.340567
https://doi.org/10.1109/TC.2011.101
https://doi.org/10.1145/3372799.3394360

