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Foreword

The meeting “Challenges in hydro-meteorological forecasting in complex terrain” aimed at

bringing together scientists, mainly meteorologists and hydrologists who participate in the

MAP D-PHASE project and in the COST Action 731 or are active in the related fields. These

two initiatives share the aim of improving the quality and reliability of quantitative precip-

itation and river discharge / flood forecasting, particularly in mountainous areas. Both are

also concerned with important applications related to decision support and societal impact.

The main topics of the meeting were ensemble modelling, challenging the limited atmospheric

predictability, high-resolution hydro-meteorological modelling, dealing explicitly with atmo-

spheric convection, nowcasting, uncertainty in observations, assimilation of data into models,

model verification and decision support in critical situations.

After the highly successful international R&D Project MAP (Mesoscale Alpine Programme),

which was focused on the investigation and understanding of atmospheric processes over the

Alps, the World Weather Research Programme (WWRP) proposed to the MAP community

to perform a Forecast Demonstration Project. The goal of MAP D-PHASE was decided to

be to demonstrate the ability of reliably forecasting orographically influenced precipitation

in the Alps and its consequences on the distribution of run-off characteristics. Hence, the

acronym D-PHASE stands for Demonstration of Probabilistic Hydrological and Atmospheric

Simulation of flood Events in the Alpine region. The D-PHASE Operations Period (DOP)

ran from June to November 2007. Participants in D-PHASE are meteorological and hydro-

logical services in the Alps (but also far from the Alps as Canada and United Kingdom),

universities, research institutions and, in particular, decision makers (end users) with respect

to flood management. The first D-PHASE scientific meeting was held in Fall 2006 in Vienna

and was dedicated to scientific planning and coordination of the various activities. After

the DOP the second D-PHASE scientific meeting now provided an excellent opportunity to

present first results, discuss further plans and create an overview on the impact and possible

further developments of the project. The common interests and topics made it a perfect

opportunity to jointly hold the meeting with COST 731.

The COST 731 Action was launched in 2005 in the COST Domain Earth System Science

and Environmental Management (ESSEM) as a five-year coordinative effort in hydrometeo-

rology. It reflects a common European will to tackle the challenge of enhancing hydrological

forecasting by using imperfect, yet not information-void, meteorological data with 20 coun-

tries and a majority of operational groups participating. COST 731 addresses the problem

of forecasting (heavy) precipitation events and the corresponding hydrological processes in

connection with the uncertainty inherent in this task. Hereby the main focus of the Action is

the quantification of forecast uncertainty and its propagation through a meteo-hydrological



forecast chain, and is structured in three working groups, which deal with uncertainty cascad-

ing from observations (predominantly from radar) into numerical weather prediction (NWP)

models, from observations and NWP into hydrological models, and the use of uncertainty as

support in decision making. The groups of scientists involved in the Action therefore range

from radar meteorology, NWP, hydrological modelling, to as far as sociologists who deal

with risk communication. MAP D-PHASE was, at the conception stage, and continues to be

an important element of COST 731, while the present conference represented the Mid-term

Seminar of the Action.

The meeting was organized jointly by ISAC (Institute of Atmospheric Sciences and Climate)

of CNR (National Research Council) and ARPA-SIM, the Hydro-Meteorological Service of

the environmental and protection regional agency of the Emilia-Romagna region. These are

two of the several institutions (including the local university) where research and operational

meteorological and hydrological activities are conducted in Bologna, taking advantage from

a consolidated tradition.

The meeting was hosted at the Congress Centre of the Research Area of CNR in Bologna.
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E. Pirkhoffer, S. Czigány, I. Geresdi . . . . . . . . . . . . . . . . . . . . . . . 139

4.4 On testing the stability and reliability of hydrometeor classification opera-

tional products

M. Celano, P. P. Alberoni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Session 5: Uncertainty in observations and data assimilation

5.1 Uncertainty assesment in the framework of radar quantitative precipitation

estimate developed at ARPA-SIM

A. Fornasiero, P. P. Alberoni, R. Amorati . . . . . . . . . . . . . . . . . . . . 152

5.2 Data assimilation experiments with ensemble Kalman filter

B. Jakubiak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.3 Enhancing weather radar observations in complex topography using radio-

propagation information

J. Bech, G. Haase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.4 Exploitation of radar observations in HIRLAM
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1.1 Performance of the COSMO–LEPS system during the D–
PHASE Operations Period

Andrea Montani, Chiara Marsigli, Tiziana Paccagnella

Hydrometeorological Regional Service ARPA–SIM, Bologna, Italy

Introduction

COSMO–LEPS is the Limited–area Ensemble Prediction System developed and implemented

by ARPA–SIM within COSMO (COnsortium for Small–scale MOdelling; the members of the

Consortium are Germany, Greece, Italy, Poland, Romania and Switzerland). COSMO-LEPS

project aims to generate “short to medium–range” (48–132 hours) probabilistic predictions

of severe weather events based on the non–hydrostatic regional COSMO–model, nested on

a number of ECMWF EPS members, chosen via a clustering selection technique (Marsigli

et al., 2001).

Figure 1.1: Present set–up of COSMO–LEPS operational suite.
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The “experimental–operational” COSMO–LEPS suite (following the methodology described

by Montani et al., 2003 and Marsigli et al., 2005) was set–up in November 2002 so as to pro-

duce probabilistic forecasts over a domain covering all countries involved in COSMO. After 6

years of activity, COSMO–LEPS application has become an “ECMWF member–state time–

critical application” managed by ARPA–SIM and its present configuration in shown in Fig.

1.1. COSMO–LEPS is made up of 16 members, running at the horizontal resolution of 10 km

with 40 model levels in the vertical. The computer–time to run COSMO-LEPS application

on ECMWF supercomputers is provided from allocations to the ECMWF COSMO partners

(i.e. Germany, Greece, Italy and Switzerland), whose contributions are joined into a unique

“COSMO-account”. Perturbations to the initial and boundary conditions are provided by

the different EPS members driving the limited–area integrations. In addition to this, the

following model perturbations are introduced:� perturbations to the convection scheme: within each COSMO–LEPS integration, a

random choice between Tiedtke or Kain–Fritsche convection scheme is made;� perturbations in the maximal turbulent length scale;� perturbations in the length scale of thermal surface patterns.

In this contribution, it is assessed the state–of–the–art of the system, showing its ability to

provide warnings of severe weather events (e.g. heavy rainfall, strong winds, cold temperature

anomalies).

Results of verification

As already mentioned, COSMO–LEPS has recently passed the 6–year milestone of activity.

Therefore, a big verification effort was undertaken so as to assess objectively how the sys-

tem changed in these years and the extent to which modifications have actually caused an

improvement in terms of precipitation forecasts over mountainous areas.

In order to carry on this evaluation, a fix set of SYNOP stations (about 470) was selected,

over an area covering the Alps (43-50N, 2-18E) and for the period ranging from December

2002 to August 2008. Precipitation accumulated over 12 hours (18-06 UTC and 06-18 UTC)

was verified, comparing the values forecast on the grid–point nearest to each station against

the observed values at that station. The other main features of the verification exercise

are summarised in Fig. 1.2. Several probabilistic scores were used and the performance of

the system was analysed both in terms of monthly and seasonal scores so as to identify the

occurrence of possible seasonal variability.

As an example of the obtained results, Fig. 1.3 shows the performance of COSMO–LEPS in

terms of the Relative Operating Characteristic (ROC) area, for 4 different thresholds (1, 5,
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Figure 1.2: Main features of COSMO–LEPS verification.

10, 15 mm/12h) at the 78–90h forecast range. Although the score is computed monthly, the

3–month running mean is actually shown in the plots to increase readability, due a marked

month–to–month variability of the score itself. At the beginning of the verification period

(early 2003), the ROC area scores (especially for high rainfall thresholds) were close to, or

below, the 0.6 line, considered the discriminating value to detect between a useful and a

useless forecast. Then, the scores increased for all thresholds starting from summer 2004.

The ROC area has been well above 0.6 since spring 2004, for all the thresholds including the

highest (15mm/12h). A different behaviour is exhibited in autumn 2006, which was a very

dry season: COSMO–LEPS performance is not satisfactory. On the other hand, the ROC

area is close to 0.8 during both 2007 and 2008, indicating a skillful system in the prediction

of precipitation at the day–4 range. A marked seasonal variability is also evident, the system

often performing better in the summer season.

In the overall evaluation of the system performance, it has to be kept in mind that, in addition

to the upgrades in the COSMO–model itself, COSMO–LEPS configuration was subject to

three major changes during the verification period:� June 2004: the ensemble members were increased from 5 to 10 and only two EPS

instead of three were considered to select the global–model members to drive the

COSMO–LEPS integrations;� February 2006: the ensemble members were increased from 10 to 16 and the vertical
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Figure 1.3: ROC area of COSMO–LEPS 12-hour precipitation forecasts for the forecast range
78–90h. The BSS was computed for each month, from January 2003 to July 2008. A 3-monthly
running mean was applied to the scores to improve readability.

resolution of COSMO–LEPS integrations from 32 to 40 levels;� December 2007: it was introduced the Runge–Kutta numerical scheme as well as new

perturbations (in the maximal turbulent length scale and in the length scale of thermal

surface patterns).

The former change seems to have led to better scores, since an improvement is evident from

spring 2004. The impact of the latter change is more difficult to be judged, due to the already

underlined problem in autumn 2006. Obn the other hand, a positive trend is well evident in

the scores obtained in 2007, especially during the various meteorological experiments which

took place during that year (e.g. COPS and MAP D-PHASE). This is also true if other

scores, like the Brier Skill Score and the percentage of outliers, are considered (not shown).

As a final remark, it has to be pointed out that nowadays COSMO–LEPS forecast products

are well–established in met–ops rooms across COSMO community. They have been recently

used with success in EC projects (e.g. Windstorms PREVIEW) as well as in the field

campaigns of the above–mentioned meteorological experiments. As future developments, it is

planned to introduce more model perturbations, so as to improve the spread–skill relationship

of the system, and to develop “calibrated” COSMO–LEPS forecasts.
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1.2 The COSMO-SREPS ensemble for the short-range:
system analysis and verification on the MAP D-PHASE

DOP

Chiara Marsigli, Andrea Montani, Tiziana Paccagnella

Hydrometeorological Regional Service ARPA–SIM, Bologna, Italy

System description

The COSMO-SREPS (COSMO Short-Range Ensemble Prediction System) ensemble system

is based on 16 integrations of the limited-area non-hydrostatic COSMO model at about 10

km of horizontal resolution, with 40 vertical levels.

This system has been built to fulfil some needs that have recently arisen in the COSMO

community:� to have a short-range mesoscale ensemble to improve the support especially in situations

of high impact weather� to have a very short-range ensemble for data assimilation purposes� to provide boundary conditions for the COSMO-DE-EPS convection-resolving ensem-

ble, currently under development at DWD.

Therefore, the ensemble had to be designed to describe the uncertainty affecting the short-

range predictions of surface weather parameters at a high spatial resolution. Aiming at this

purpose, the strategy to generate the mesoscale ensemble members proposed by this project

tried to take into account as many as possible sources of uncertainty which affect the scales of

interest in the weather forecast at the short time range, in order to model many of the possible

causes of the relevant forecast errors. Hence, perturbations have been applied both in the

driving model and in the mesoscale model. The driving model error is described by means

of a multi-analysis multi-boundary approach. Initial and boundary condition perturbations

are applied by driving the 10-km COSMO runs with the four 25-km COSMO members

of the Multi-Analysis Multi-Boundary SREPS system of INM. These four lower resolution

COSMO runs, nested on four different global models (IFS, GME, GFS, UM) which use

independent analyses, are provided by INM for this purpose. A representation of the smaller

scale uncertainty is accomplished by applying limited-area model perturbations as well: the

values of a number of parameters included in the sub-grid process parametrisation schemes
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are randomly changed (within their range of variability) in the different ensemble members.

The set-up of the 16 runs is summarised in Table 1. The MAP D-PHASE DOP was chosen

Table 1. Main features of the 16 runs which constitute the ensemble.

for an extensive testing of the system. During the DOP, 99 full runs of the COSMO-SREPS

system were performed, covering not continuously the period, 50 in summer (JJA) and 49 in

autumn (SON). Each full run (made up of 16 COSMO-model integrations at 10 km) started

at 00UTC. The lack of continuity in the runs was mainly depending on the availability of

initial and boundary conditions.

Different data-sets have been used for the evaluation:� high-res alpine: a dense network of stations covering Northern-Central Italy and Swit-

zerland, providing precipitation data accumulated over 24h, from 06 to 06 UTC (about

1400 stations)� high-res Italy: a dense network of stations covering Northern-Central Italy, providing

precipitation data accumulated over 6h (about 900 stations) and 2m temperature data

(about 600 stations)� synop alpine: the SYNOP stations covering approximately the same area (43-48 N

6-14 E, 218 stations)

The main issues which have been addressed in the system evaluation are: 1) if the system

shows a good spread/skill relationship, representative of the capability of the ensemble in
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Figure 1.1: The high-res alpine dataset (left panel) and the synop alpine dataset (right panel).
The high-res Italy dataset is made up by the Italian part only of the high-res alpine one.

describing the forecast error 2) how the different perturbations contribute to the spread and

to the skill of the system 3) which is the ensemble skill in the forecast of surface weather

parameters.

Some results of the system performances during the DOP

The evaluation of the spread-error relationship shows that the system still tends to be under-

dispersive. The gap between the spread and the error has been observed for a number

of meteorological variables, both surface and upper-air (2m temperature, mean-sea-level

pressure, precipitation, temperature at 850 hPa, geopotential height at 500 hPa). Moving

from towards upper-air variables, the gap decreases, but it is still detectable.

In Figure 1.2, the root-mean-square error of the ensemble mean and the root-mean-square

spread of the ensemble (or ensemble standard deviation) are compared for the two seasons,

in terms of 2m temperature. The error is computed by comparing forecasts interpolated on

station points belonging to the synop alpine dataset with the corresponding observations, the

spread is computed using these same interpolated forecast values, for homogeneity reasons.

Figure 1.2: COSMO-SREPS spread (red) and error (blue) in terms of 2m temperature for summer
(left) and autumn (right) 2007. Data are from the synop alpine dataset.
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The ensemble spread is bounded between 1 and 2 K in the summer season (Fig. 1.2, left

panel), increasing with the forecast range and exhibiting a diurnal cycle, with values peaking

at noon. In autumn (right panel) the spread stays close to 1 K throughout the whole forecast

range. In both seasons the ensemble mean error is quite larger than the spread, remaining

below the 3 K value in summer, with peaks grater than 3 K at 18 UTC, while being generally

above the 3 K value in autumn. The gap between the two measures is due to both the

underdispersion of the ensemble system and to the COSMO model systematic error, which

should not be removed by ensemble techniques, but only by model improvement.

In order to assess the contribution to the skill of the system provided by the different ensemble

members, depending on their initial and boundary conditions and physics set-up, it has been

analysed how the scores vary according to two different methods used to group the ensemble

elements. The 16 members can be subdivided into 4 groups of 4 elements each, in 2 different

ways:� considering groups of elements homogeneous in terms of initial and boundary condi-

tions, but distinct for the model parameterisations;� considering groups of elements homogeneous in terms of the model parameters, but

distinct in terms of initial and boundary conditions.

Each group is referred to after the common feature of their members, e.g. the group named

ecmwf contains all the run driven by the ECMWF global model, which have different pa-

rameter perturbations, while the group named p1 contains all the run with the same physics

perturbation No 1, which have different initial and boundary conditions. Considering 24h

precipitation forecast, the ensemble scores have been computed for each of the 4 groups of

4 elements, in order to assess how the different forecast characteristics in terms of driving

model and parameter contribute to the skill. The ROC area of the 4-member sub-ensembles

are shown in Figure 1.3 for the both seasons for the alpine area.

The light blue line of each panel represents the ROC area of the full 16-member ensemble,

which gives an indication of the COSMO-SREPS skill in forecasting precipitation for that

period and in that particular area.

In the left panels, the other lines show the ROC area values of the 4-member ensembles

made up by the 4 members nested on one particular global model. The 4 members are

differentiated only in terms of the set-up of the physical parameterizations. Therefore, these

represent the skill of ensembles, which are only model-perturbed, having the same initial

and boundary conditions. Apart from the decrease in skill evident when passing from a

16-member to a 4-member ensemble, which is expected, it is worth pointing out that the

different 4-member ensembles have different skill, which varies with the considered threshold

and also with the forecast range (not shown).
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Figure 1.3: ROC area as a function of threshold for 24hr accumulated precipitation in the alpine
area (high-res alpine data set) for the summer season (upper panels) and for the autumn season
(lower panels). Left panels: full 16-member COSMO-SREPS (light blue line) vs. 4-member
ensembles with identical driving run (black: ECMWF, red: GME, green: GFS, blue: UKMO).
Right panels: full 16-member COSMO-SREPS (light blue) vs. 4-member ensembles with identical
physical perturbation (black: p1, red: p2, green: p3, blue p4). The scores are for the +30 h
forecast range.

In the right panels, the 4-member ensembles made up from identical physics perturbations

are shown. Therefore, these represent the skill of ensembles, which are perturbed in the ini-

tial and boundary conditions only, but have the same model set-up. Comparing each right

panel with the corresponding left one suggests that perturbation of initial conditions gener-

ally yields more skilful performance than physical perturbation only. This is an indication

of the fact that, the higher degree of diversity among members introduced by perturbing

initial and boundary conditions determines a greater amount of skill with respect to the

smaller-scale diversity introduced by the physics perturbations. As for the role of the differ-

ent parameterizations, the 4-member ensemble where model perturbation p2 (Kain-Fritsch

convection scheme) is applied to each member (red line on the right panels) turns out to be

more skilful that other 4-member ensembles.

Finally, it appears that scores for the autumn season are quite higher than those relative to

the summer season, but the general features are the same.

Conclusions

Some conclusions can be drawn:
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system is under-dispersive. Hence a better representation of model error is needed� the different driving models contribute differently to the ensemble skill, but there

is a strong dependence on forecast range, season, verification area� the different perturbations can contribute differently to the ensemble skill as well

The analysis over the is still on-going. In particular, a comparison of COSMO-SREPS with

the other mesoscale ensemble systems running during the DOP will be carried on.
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1.3 Development of an ensemble prediction system on the
convective scale with the COSMO-DE

Christoph Gebhardt(1), Susanne E. Theis(1), Tanja Winterrath(1), Marcus

Paulat(1), Peter Krahe(2),Volker Renner(1)

(1)Deutscher Wetterdienst (DWD), Offenbach, Germany,

(2)Bundesanstalt für Gewässerkunde (BfG), Koblenz, Germany

Introduction

The Deutscher Wetterdienst (DWD) has developed the convection-resolving limited-area

model COSMO-DE (COSMO: Consortium for Small-Scale Modelling, Doms and Förstner

2004) with the aim to improve the very short-range forecast of severe weather triggered by

deep moist convection and interaction with small-scale topography. The COSMO-DE has

a very small grid spacing of 2.8 km on 50 vertical levels which explicitly allows to simulate

small-scale processes such as deep convection. An important advance of the model is the

assimilation of radar information. The model is in operational phase since April 2007 with

18 hours forecast range started every 3 hours. The model domain covers mostly Germany.

Compared to observations by rain-gauges and radar-estimates, the precipitation forecasts

of COSMO-DE look much more realistic than those of the 7 km model COSMO-EU with

respect to spatial structure and precipitation patterns. The bias of the diurnal cycle of pre-

cipitation is reduced and the assimilation of radar data has positive impact in the first 4 to

6 hours.

Since the predictability of the relevant processes acting on the resolved scales of COSMO-DE

can be limited to very short forecast lead times, the quantification of forecast uncertainty

and the production of probabilistic forecasts are necessary to guarantee the benefical use of

COSMO-DE in warning and decision-making processes. Therefore, the DWD decided to de-

velop an ensemble prediction system (EPS) on the 2.8 km scale. This development explores

a new field of research because existing ensemble approaches mainly focus on larger spatial

scales (e.g. Molteni et al. 1996, Toth and Kalnay 1997, Lefaivre et al., 1997, Montani et al.,

2003, Bowler et al. 2008). The DWD has initiated two closely linked projects to develop an

EPS using the COSMO-DE. The first project (’EELMK’) is a joint effort of DWD and the

Bundesanstalt für Gewässerkunde (BfG) with the aim to run an experimental atmospheric

ensemble with focus on hydrological applications. In the second project (’COSMO-DE-

EPS’), an EPS for operational weather forecasting is currently under development. Project

activities comprise the generation, verification, statistical postprocessing and visualization

of the ensemble forecasts. The plan is to run the COSMO-DE-EPS in pre-operational mode
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in 2009 with an approximate number of 20 members differing in physics parameters, lat-

eral boundary conditions and initial conditions. Operational implementation with about 40

members is envisaged to start in 2011.

The COSMO-DE-EPS will estimate and quantify inherent uncertainties due to imperfect

representation of atmospheric processes and initial conditions in the numerical predictions

as well as uncertainties introduced by lateral boundary conditions of the model domain. In

the current state of development, we focus on uncertainties in the model itself and in the

boundary conditions. The model uncertainties are represented by non-stochastic perturba-

tions of the physics parameterizations. The uncertainty in boundary conditions is estimated

by nesting the COSMO-DE in an ensemble chain where uncertainty is propagated from

global to resolved scales. The perturbation of initial conditions is part of future tasks and

is neglected in this paper keeping in mind that initial uncertainty is important to set up a

complete EPS.

In the following, we first introduce the methodologies of perturbation used in COSMO-DE-

EPS. Then we present experimental results to describe some general characteristics of the

COSMO-DE-EPS. This is followed by a brief outlook.

Model uncertainties

The uncertainty in model formulation can be highly relevant in short-range mesoscale predic-

tion, e.g. when large-scale forcing is weak. Important contributors to model uncertainty are

parameterizations of processes acting on the unresolved scales of the model. These parame-

terizations sum up the mean effect of the sub-scale by functions depending on the resolved

scales. These functions depend on parameters which are often empirically estimated under

highly idealized conditions. The values of these parameters under real atmospheric condi-

tions are therefore quite uncertain. We incorporate this uncertainty in the COSMO-DE-EPS

by perturbing parameters of the parameterization schemes. This is done in a non-stochastic

way, i.e. the perturbations are kept constant over the entire forecast range and each mem-

ber is characterized by one or more perturbed parameters. Up to now, we have tested the

perturbation of 13 parameters that are expected to have significant impact on forecast re-

sults. These parameters are related to the parameterizations of boundary layer processes,

turbulence, cloud microphysics as well as the interaction of soil and vegetation with the at-

mosphere. Each parameter is perturbed within its full range of physically reasonable values.

With such a perturbation approach we generate ensemble members which are systematically

different and the ensemble consists of several slightly different model versions. This has the

advantage that forecast peturbations can be traced back to the physics perturbations which

can be an important feedback for model developers. The disadvantage is that the members

are not equally likely which complicates the processing of the results.
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Uncertainties in lateral boundary conditions

Depending on the synoptic situation the forecast of a limited-area model can by significantly

influenced by the inflow at the lateral boundaries. This inflow is commonly simulated by

nesting the limited-area model into a model covering a larger domain with coarser grid size.

This nesting implies several sources of uncertainty, i.e. the interpolation to the finer scale,

differences in the resolved processes on the different scales or other systematic differences

between the nesting and the nested model.

The COSMO-DE-EPS estimates this uncertainty by nesting the COSMO-DE in members of a

coarser scale EPS which itself is one link of an ensemble chain which propagates uncertainty

across different scales. The coarsest scale of this ensemble chain is the AEMet-SREPS

(Garcia-Moya et al. 2007) of the Spanish Meteorological Service. In this EPS, five regional

models with 25 km grid size are nested into four global models. The regional COSMO-

SREPS (Marsigli et al. 2006) uses four members (COSMO regional model nested in all four

global models) of AEMet-SREPS as boundary conditions and applies physics perturbations

to produce 16 members at 10 km grid size. The COSMO-SREPS members provide boundary

conditions for COSMO-DE-EPS. It is assumed that the differences between these COSMO-

SREPS members are representative for the uncertainty of boundary conditions.

Ensemble forecasts

We run an ensemble with 20 members. We selected those five physics perturbations which

deviated the most from the unperturbed control run in test experiments and combined

them with four different COSMO-SREPS boundary conditions to get 20 members. Each

member represents one physics perturbation. The four COSMO-SREPS members where

chosen such that each of the four global models entering the AEMet-SREPS is represented

in the ensemble. The ensemble was started at 00UTC for most days of August 2007 with

a forecast range of 24 hours. Figure 1.1 shows 12 hours accumulated precipitation for four

selected members of the ensemble. These members representatively demonstrate the different

spatial scales of forecast perturbations due to model and boundary uncertainties. Members

with different physics perturbations but identical boundary conditions differ on the small

scale while members with different boundary conditions but identical physics differ also on

larger scales. This holds for 2m-temperature as well (not shown).

To demonstrate the effect of perturbations in physics and boundary conditions on forecasts

of hourly precipitation and 2m-temperature we show in Figure 1.2, the mean behaviour of

these variables for each member depending on forecast range. The results are averaged over

the model domain and the period 8 th–16 th August 2007. Looking at the precipitation, it is

obvious that the members are grouped by identical boundary conditions and that there is

more variability between these groups than within the groups. Thus precipitation variability
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Figure 1.1: Forecast of 12-24UTC accumulated precipitation on 8th August 2007. Top:
Members with identical boundary conditions but different physics perturbations. Bottom:
Members with different boundary conditions but identical physics perturbations.

is dominated by the variability introduced by the boundary conditions. In contrast, the

2m-temperature forecasts are more grouped by identical physics perturbations and there is

more variability due to model uncertainty.

Subensembles are investigated to analyse the characteristics of the ensemble variability more

closely. Figure 1.3 shows the mean member range of hourly precipitation and the ensemble
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Figure 1.2: Spatial and temporal mean of precipitation (left) and 2m-temperature (right) de-
pending on forecast lead time for all members. Identical colours represent identical boundary
conditions, identical symbols represent identical physics perturbations.

spread for 2m-temperature each calculated for subensembles with either fixed boundary

conditions or fixed physics perturbations. The member range is defined at each grid point as

the difference between the member with the largest value and the member with the smallest

value. The results are averaged over the whole model domain and the period 8 th–16 th

Figure 1.3: Spatial and temporal mean of member range of hourly precipitation (left) and
spread of 2m-temperature (right) depending on forecast lead time calculated for subensem-
bles. Identical colours represent identical boundary conditions, identical symbols represent
identical physics perturbations.

August 2007. The plot on the left shows that the member range of precipitation is larger

in subensembles with varying boundary conditions compared to ensembles with varying

physics. This is again an expression of the relative importance of boundary uncertainty

for precipitation forecast uncertainty. It can also be seen that the black lines are more

divergent than the colored lines. This means that precipitation variability in subensembles

with varying boundary conditions depends on the applied physics perturbation. But this
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dependence is weaker the other way round. For 2m-temperature, the spread of boundary

and physics subensembles is of similar magnitude for all but the first 5 forecast hours. At

the beginning of the forecast, the ensemble spread is dominated by the variability due to

model uncertainties. In general, black and colored lines are close together and there is

no such dependence of boundary ensemble spread on physics perturbation as observed for

precipitation.

Outlook

There are four major tasks for the further development of COSMO-DE-EPS. First, it is

necessary to run experiments for longer periods to build a sound basis for verification and

calibration purposes. While the verification software is already established, appropriate

methods for calibration needs to be tested. This calibration is the second task and will focus

on precipitation, 2m-temperature and 10m-wind. Challenges in calibration may arise from

the very small spatial scale of the ensemble. A further task is the combination of more than

one perturbed physics parameter in a single member. This will come along with some tuning

and redefinition of the existing perturbations. Furthermore, there is the very important task

of perturbing the initial conditions in COSMO-DE-EPS. The plan is to use an ensemble

transform Kalman filter in the long run which will be developed in the COSMO priority

project KENDA. But inbetween, more ad hoc methods will be tested for the quantification

of initial uncertainties.
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1.4 Warning system of extreme precipitation for the Dutch
Water Boards

Kees Kok and Daan Vogelezang

Royal Netherlands Meteorological Institute

Introduction

About half of the Netherlands is below sea level and the majority of the inhabitants is living

there. But the country is not only jeopardized by surges along the coast but also by extreme

precipitation events. All excessive amounts of water have to be drained eventually to large

rivers, like the Meuse and Rhine, to the IJssel Lake and the North Sea. The possibility to do

so depends strongly on the respective river and surge levels. An additional threat is therefore

posed by heavy precipitation events upstream in the Meuse and Rhine catchments.

Water management in the Netherlands is organized in 25 so-called water boards. One of their

main tasks is to prevent fields and cities from flooding in times of extreme precipitation, and

if necessary to get rid of excess water as soon as possible. But they also have to keep the

water at a minimal level even in cases of extreme drought.

In order to warn the water boards in cases of potential threats due to meteorological con-

ditions a warning system was developed by the Royal Netherlands Meteorological Institute

(KNMI) in cooperation with the Union of Water Boards. KNMI is only allowed to issue

warnings with respect to extreme conditions; forecasts are not intended to be used for day-

to-day operation. The warning system is operational since 2003. Currently 14 water boards

have subscribed to the system (see figure 1.1).

Risk Profiles

The “extremity” of the meteorological conditions depends strongly on local circumstances,

and is different for every water board. The amount of precipitation a water board can

handle depends e.g. on its geography, canal system, soil type, and of course on its pumping

and storage capacity. The pumping capacity is not constant but may strongly be affected

by strong winds from certain directions (e.g. when winds push the water away from the

pumping station), in particular for larger water boards.

The storage capacity depends among other things on the amount of rain in the last couple

of days (soil saturation) and on time of the year (vegetation). For some of the most densely
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Figure 1.1: Water boards subscribed to the warning system

populated water boards in the western part of the country the storage capacity is quite low

and precipitation amounts in the order of 15mm (area averaged) in 24 hours can be critical

already, whereas other water boards can handle up to three times as much in favorable

conditions.

Water boards have a rather good notion of what their critical precipitation thresholds are,

as a function of a large variety of meteorological and initial conditions. We have to bear in

mind that it is usually not that important to know the accumulated amount of rain falling

between fixed times in the future but it may be much more important to know whether there

will be a lot of rain falling in a very short period of time somewhere in the next coming days.

In addition, not only excessive rain but also the absence of rain over long periods can cause

large economic losses. Therefore also the occurrence of long dry spells can be regarded as

an extreme (critical) situation.

Once these critical thresholds are expected to exceed water boards should take precautionary

measures to avoid or mitigate the consequences. These measures may comprise early start

of pumping, installing extra pump capacity, notifying third parties, change planning, etc.,

all the way up to evacuation of the endangered area. The time needed for preparing and

taking these measures range from several hours to several days.

But since meteorological forecasts are inherently probabilistic water boards also have to

assess at what probability level action will be taken. This is the most difficult part. At best

the determination of the probability threshold is more or less based on a heuristic cost-loss

analysis. If the costs of taking precautionary actions are low compared to the losses incurred

when no action is taken then a water board is inclined to take those precautionary actions at
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low probabilities already. On the other hand, if the precautionary actions are very expensive

relative to the losses incurred then the probability threshold will be relatively high.

So a large number of possible critical situations can be specified together with their proba-

bility level above which precautionary actions are profitable. Also the time in advance the

water board would like to be warned must be specified in order to give them ample time

to take the necessary actions. These are called risk profiles. All participating water boards

have been consulted to establish their risk profiles. The typical number of risk profiles for

each water board is in the order of 10 to 15 (including different levels for different seasons).

The event thresholds are essentially based on an impact assessment of possible adverse

weather situations / scenarios, but they are usually taken somewhat on the safe side to

account for the variability of the precipitation within the water board area since locally the

situation may be critical while the area averaged threshold is not exceeded. This is also true

for the probability threshold; a few extra false alarms are preferred over having no warning

at all. Besides, not all risk profiles are intended to take immediate action upon. Many risk

profiles, especially for longer lead times, mainly serve to raise the awareness that something

might happen.

Description of the present status of the warning system

In order to provide water boards with warnings in case of .extreme. weather conditions an

automatic warning system has been developed which checks every hour all risk profiles of

all participating water boards and issues a warning if at least one of the critical thresholds

is exceeded. As indicated in the previous section it has to consist of a historic part and

a prediction part. Since soil saturation and diminished storage capacity is important for

the amount of (additional) precipitation a water board can handle, the warning system

must include an estimate of this each time the risk profiles are checked. As a proxy for

this we take the history of (area averaged) precipitation over the last couple of days (to a

maximum of 5 days). The length of this .history. period again depends on local circumstances

and is different for each water board. Some water boards can restore normal situation

much faster than other water boards. The precipitation record is constructed from radar

observations over all pixels covering the water board area, but calibrated using online rain

gauge measurements from stations within the particular area (Holleman, 2006). The radar

pixels have recently been changed from 2.5x2.5 km to approximately 1x1 km.

The meteorological prediction part consists of a deterministic and a probabilistic part. The

deterministic part is optional. It is limited to a maximum of 36 hours (starting from the

issuance time) and is obtained from the local Hirlam model that runs 4 times a day with a

resolution of 11km. The first two hours of the deterministic forecast are replaced by a “radar

extrapolation” in which the observed radar field at time zero is advected using the model
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winds at that time, and the precipitation is summed over the area of the water board (Rudolf

van Westrhenen, pers. comm.). The probabilistic part comes directly from the ensemble

prediction system (EPS) of ECMWF; no calibration or post-processing is performed. The

forecasts used are mainly precipitation but also combinations with winds and other variables

are possible (see the example in the next section). EPS forecasts are available twice a

day with a forecast range of 15 days. If water boards have risk profiles extending into the

probabilistic forecast range (i.e. beyond 36 hours), they can choose to incorporate (part of)

the deterministic forecast into the evaluation of the risk profile. In that case the deterministic

value at the predetermined lead time is simply subtracted from the event threshold in the

particular risk profile.

Also probabilistic water level forecasts for several sites along the Dutch coast are available

in the alert system. These are produced by the WAQUA/DCSM storm surge model (de

Vries, 2008) driven by ECMWF EPS forecasts for wind and mean sea level pressure, and are

updated twice daily as well.

This means that water boards can define risk profiles that may be combinations of all kinds

of meteorological and surge conditions up to lead times of 15 days. The precipitation amount

of up to 5 days in the past can be taken into account. The number of risk profiles is virtually

unlimited but most water boards have risk profiles in the order of 10-15. As mentioned

above the system is updated every hour, and every hour all risk profiles are checked. If at

least one of the thresholds is exceeded an automatic mail will be send to the water board

with all relevant information regarding the forecast and precipitation record. There is also

some graphical support available to the water boards by means of a web site with restricted

access. Finally, in cases of doubt or if further consultation is needed KNMI forecasters can

be phoned 24 hours a day.

Example

In order to construct more tailor-made risk profiles including a less subjective basis of event

as well as probabilistic thresholds we are performing an experiment with one of the water

boards. It is water board Fryslan which is located in the NE part of Holland. Excess water

has to be drained through a system of canals and small lakes to the North Sea in the north

and to the IJssel Lake in the west (see figure 1.2).

In normal circumstances water board Fryslan can handle at least 40mm of precipitation but

it runs into trouble if there is a strong persistent wind from west or north west resulting in

relatively high water levels in the canals in the south east and relatively low levels in western

parts. In extreme situations this difference in water level may be almost 50 cm. Situations

are even worse if this happens in combination with high surges along the coast, which is

usually the case in a northwesterly flow regime, since part of the water has to be drained



Atmospheric and hydrological ensemble forecasting 26

Figure 1.2: Water Board Fryslan

towards the north sea by opening sluices at low tides. In these conditions it is expected that

a precipitation amount of 25 mm accumulated over 48 hours may be critical already. The

water board may wish to receive an alert at least 3 days in advance if the probability is at

least 25% that a situation like this will occur. In figure 1.3, a forecast is shown based on

the 12UTC run of EPS on the 15th of November 2007. The probability of having a surge

along the coast of more than 1.5 meter above normal is indicated in blue, the probability of a

wind speed of at least 10 m/s from the NW averaged over the last 24 hours is given in green

and the probability of more than 25 mm of rain in red. The combined probability (given in

black) exceeds the 25% threshold in 4.5 days time. This 25% ideally comes from an estimate

of the cost-loss ratio as outlined previously but is still a matter of further investigation.

Figure 1.3: red: probability of accumulated precipitation of ≥ 25mm; green: prob. of
sustained ff ≥ 10m/s from the NW; blue: sea level ≥ 1.5 meter +NAP; black: combined
probability (if ≥ 25% then alert)

Concluding Remarks

The automatic alert system for the Dutch water boards is a rather flexible one. It can accom-

modate almost all meteorological and surge situations for all water boards. The acceptance

of the warnings being based on probabilistic in stead of deterministic information is quite

good, although determining probabilistic thresholds in the risk profiles is still somewhat trou-

blesome. By tailoring the profiles more closely to critical conditions that are combinations

of several meteorological parameters, including possibly surge levels, we hope to improve the



Atmospheric and hydrological ensemble forecasting 27

use and usefulness of the system even more.

In the near future the system will be updated to include probabilistic river level forecasts.

These are very important for some of the water boards for the amount of precipitation

they can handle. Furthermore, work is in progress to replace the deterministic short range

forecasts by probabilistic ones. Probabilities obtained from EPS do not show enough spread

and are therefore not reliable (Wilks, 2006). The method we plan to use is Bayesian Model

Averaging (BMA) performed on several operational NWP models available at KNMI.
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1.5 Experiences in the operational flood forecasting service
with MAP D-PHASE products

Stephan Vogt

Federal Office for the Environment FOEN, Hydrology Department, 3003 Bern, Switzerland

Introduction

For more than two decades the Hydrology division of FOEN has been running an operational

hydrological forecasting service for the High Rhine basin. Initially forecasts were only issued

for the most downstream gauging station Rhein-Rheinfelden. Over the last years additional

forecasts for the main tributaries have been set up. Today forecasts for 11 gauging stations

are issued to regional authorities and private customers.

The increased frequency of flood events over the past years in Switzerland and in neighboring

countries sensitized the public as well as media and led to increased expectations of the

hydrological forecasting service.

Especially the flood event in August 2005 and the resulting event analysis showed the need

for improvements in various respects. Among other points the consideration of uncertainty

as well as frequently updated high resolution forecasts as input in the hydrological model

were identified as key factors.

The project MAP D-PHASE provided an excellent opportunity to benefit from the latest

developments in the field of numerical weather prediction and to test new products.

Current operational flood forecasting system at FOEN

In the present operational forecasting system the hydrological model HBV is coupled with

COSMO7 from MeteoSwiss; deterministic ECMWF is used as backup. Hourly data from

SwissMetNet as well as from the discharge gauging network of FOEN is used for data as-

similation. The integration of all components is realized in the Flood Early Warning System

FEWS.

FEWS as it is currently set up at FOEN is a stand-alone system. This means that forecast

runs are triggered manually by the forecaster. Under normal conditions one forecast run is

carried out on working days in the morning. Under flood conditions forecasts are produced

more frequently up to every two hours also during weekends. In consequence flood forecasts

do not have regular initial times.
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Figure 1.1: Area covered by flood forecasting systems at FOEN

Experimental setup of FEWS during MAP D-PHASE

COSMO2, a refined version of COSMO7, COSMO-LEPS and SRNWP-PEPS were tested

during the DOP of MAP D-PHASE. COSMO7 and the deterministic version of ECMWF

were already used for the operational hydrological forecasting service, these models were also

considered for the experimental setup. All models are in use in the operational forecasting

service at MeteoSwiss which means that assistance for the interpretation was available.

In collaboration with DeltaRes an experimental version of FEWS was set up parallel to the

existing forecasting system. Like the operational system it is a stand-alone system which

has to be run manually. This is done once a day under normal conditions and more frequent

during flood situations if the operational service allowed it.

Direct model output was disseminated to the MAP D-PHASE visualisation platform. More

than 30 persons in 12 different institutions participated as end users and were informed

actively by E-Mail in case of an exceedance of MAP D-PHASE warning level 2 (mHQ - σ).

Because of the great benefit of the use of MAP D-PHASE products for the hydrological

forecasters as well as for the end users the experimental setup of FEWS MAP D-PHASE

has been prolonged beyond the DOP. Plans to carry over the experimental setup into an

operational status are discussed below.

Flood event from August 8 and 9, 2007

On August 8 and 9 extraordinary flood peaks were observed especially in the central and

northwestern parts of Switzerland. Return periods of more than 100 years have been esti-

mated for several gauging stations.

For river Kleine Emme, a hindcast experiment has been carried out using all available

COSMO2 forecasts as input for HBV instead of only one as it is done under normal condi-

tions.



Atmospheric and hydrological ensemble forecasting 30

Figure 1.2: hindcast experiment with COSMO2 coupled with HBV for Kleine Emme-Littau.
Blue line: measured discharge. Red line: actual initialisation. Gray lines: previous initiali-
sations. t0 = August 08, 2008, 00 CEWT

The large overestimation of the magnitude of the flood peak in the first runs was reduced to

an acceptable level while the timing of the peak was too late. All runs can be considered as

time-lagged ensemble, the measured flood peak is within the ensemble spread.

COSMO-LEPS coupled with HBV from the same day in the same basin shows clear indices

for a rise of discharge above MAP D-PHASE warning level 2. The rise above warning level

3 has been indicated only with a very low probability. The timing of the flood peak tends

to be too late.

Follow-up projects triggered by MAP D-PHASE

Automatisation of forecasting system: It was clear after a short time working which different

meteorological model input that switching back to the deterministic one-model-world is not

an option. Since the stand-alone version of FEWS does not allow to use the full potential

of frequently updated high-resolution models, a project for a fully automated client-server

system has been set up. A testing system will be available in early 2009.

Verification of MAP D-PHASE forecasts: In collaboration with MeteoSwiss, WSL and

DeltaRes a project for a sound evaluation of the MAP D-PHASE forecasts is set up. Verifi-

cation will be done with WMO standard methods, an adaptation is needed to hydrological

questions, e.g. flood volume and timing of peak. Three different approaches will be pursued:� As mentioned above, forecasts were started and disseminated to end users with irregular
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Figure 1.3: Operational flood forecast based on COSMO-LEPS/HBV for Kleine Emme-
Littau.

initial times. In order to judge the possible benefit for end users, these operational MAP

D-PHASE forecasts are examined.� Complete hindcasts series for all driving models and all available initial times will be

verified. This will help to judge the full potential of frequently updated forecasts.� For special events (e.g. flood August 8 + 9, 2007) detailed analyses are carried out.

Using only the forecasts from the DOP results in a very small data basis, therefore the test

forecasting period has been extended to June 2008. On the basis of the methodology used for

the MAP D-PHASE verification it is planned to develop an operational real-time verification

tool.

Conclusions

Working with more than one meteorological model and especially with ensemble models

as driving input for hydrological models has been a paradigm shift in operational flood

forecasting in Switzerland. This includes the perspective of the hydrological forecaster as well
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as the perspective of the end user who has to take a decision upon ambiguous information.

Therefore, the following statements may be trivial for met forecasters and modelers but are

important for the hydrological community:� Subjective experience from the forecasting service shows that the best input for flood

forecasting does not exist and using one model is not enough.� In case of longer reaction times (>48h) decisions have to be made on the basis of mid-

range forecasting models (ECMWF, COSMO-LEPS). The accuracy may be relatively

low especially in small, fast responding catchment. On the other hand this information

is very helpful to raise the awareness and to think in scenarios. For shorter reaction

times (<24h) frequently updated forecasts (COSMO2) should be drawn on for the

judgment of the development.� Guidance from the meteorological forecaster is essential. They have the knowledge of

typical behavior of meteorological models in certain weather situation and can provide

add-benefit to the hydrological forecaster.� Forecasting is interpretating, weighting and judging of different models, based on the

forecasters experience, knowledge and intuition. While this is undisputed in meteorol-

ogy, this has been the practice for many years in hydrological forecasting. The whole

bunch of different model output can be very complex for many (not all!) end users.

This model output should not be kept back from the end user but has to be completed

with the forecaster’s interpretation.� Due to the previous practice end users are used to look and focus on the hydrograph.

Therefore training of customers and sharing of experience and knowledge between end

users and forecasting center is important. The forecasting service has the challenge to

prepare and communicate the products in the easiest way possible. On the other hand

it’s the end user’s duty to be prepared to learn how to work with uncertainty.
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Introduction

Radar based quantitative precipitation estimates (QPErad) available in real time at high spa-

tial and temporal resolution are promising information to adequately simulate the dynamics

of hydrological systems. Though, remarkable progress has been achieved in measuring pre-

cipitation fields these data remain an important source of uncertainty in hydrological model

predictions. On the one hand, uncertain precipitation input propagates through the hydro-

logical model contributing directly to the uncertainty of model predictions. On the other

hand, uncertain input data affect hydrological model parameter estimates as they tend to

compensate for erroneous input data during inverse parameter estimation procedures. Biased

parameter estimates, in turn, influence the reliability of model predictions.

Objectives

The objective of this work is to statistically analyse spatial and temporal characteristics

of uncertain QPErad and to conceive an appropriate probabilistic model to describe this

uncertainty. The capability of the probabilistic model to explain the uncertainty present in

the input data is evaluated both in precipitation terms and in hydrological terms.

Methodology

The quantification of QPErad uncertainty builds on a relative comparison of different QPE

methods. QPErad, which are available for operational hydrological modelling applications in

real time, are compared against a benchmark precipitation field (QPEbm) which represents

the best ex post attainable estimate of the precipitation field. QPEbm assimilates all available

information, including data records which are not accessible in real time, and allows for a

thorough post-processing and expert analysis.

This approach does not resolve uncertainties related to both unknown errors and known

but unaccounted errors in the benchmark field. Still, this method deepens insight into the
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structure of QPErad uncertainty and is suitable to evaluate the relevance of different input

uncertainty characteristics in a hydrological modelling context. The error field resulting from

the comparison is statistically analysed to infer the parameters of the probabilistic input

uncertainty model. Following Germann et al. (2006) and Lee et al. (2007) a multiplicative

error definition is adopted. The error is defined in equation 1.6 as the ratio in logarithmic

scale between QPEbm and the QPErad field.

E(t) = LOG10 ·
QPEbm(t)

QPErad(t)

(1)

A threshold value is applied to identify actual occurrence of rainfall and to cut off error

values outside the definition domain of the logarithm. For each error field, the relative

frequency distribution, the mean (µ(t)) and standard deviation (σ(t)) as well as the spatial

auto-correlation of error pixel values are determined. The analysis of spatial auto-correlation

resorts to the String of Beads model proposed by Pegram and Clothier (2001), which applies

spectral analysis of the field. Fast Fourier Transformation (FFT) is used to quantify the

degree of spatial auto-correlation in terms of the slope (β(t)) in the Fourier power spectrum,

(Llort et al. 2008).

Perturbation fields are generated for each time step from the input uncertainty model by

means of a stochastic sampling process using the temporal mean values (µ, σ and β) of

the parameters identified in the analysis of the error fields. The probabilistic simulation

process starts with the generation of a white noise field. This field is transformed according

to the actual mean and standard deviation of the error sample. Next, spatial correlation is

superimposed using FFT. Along these lines an arbitrary number of perturbation fields (ǫi)

with identical statistical properties is produced. For the preparation of the precipitation

input ensemble the error term in equation 1.6 is replaced by a realisation of the perturbation

field (ǫi). Reorganising (1) results in the definition for the computation of an input ensemble

member (QPEENS) as given in equation 1.6.

QPEENSi
t

= QPErad(t)
· 10

ǫ
i

(t)
10 (2)

QPEENS are used to force the hydrological model. Forward propagation of uncertain input

reveals the sensitivity of model predictions to input uncertainty. The impact on hydrolog-

ical model parameter estimates is analysed in terms of changes in the posterior parameter

distribution using a Bayesian inference approach. To exclude other sources of uncertainty,

a set of reference model parameters are used. In combination with QPEbm this parameter

set is used to generate reference hydrographs to study the implications of QPErad and the

performance of QPEens .
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Application Study

For the analysis a distributed hydrological model (WBrM) (Lempert, M. 2000) is applied

to the Bess basin (1024 km, near Barcelona, Spain). Soil and land use patterns as well as

precipitation input are represented on a 1 km grid resolution. Data from the C-Band radar

of the Spanish Institute of Meteorology (INM) at Corbera de Llobregat are used. QPErad

data have a resolution of 1 km and are available in 10 minutes intervals. Further, there

are 31 remote data transmitting rain-gages of the SAIH network (Hydrological Information

and Alert System) within the region of interest reporting in 10 minute intervals, refer to

Berenguer et al. (2005) for details on the data processing algorithms applied.

Four parameters are used to calibrate the hydrological model, being, the degree of impervi-

ousness (DI), total porous volume (TPV), saturated hydraulic conductivity (kf) and initial

soil moisture (iniSM).

Results

A selected single rainfall-runoff event is used to demonstrate the procedure of the method-

ology proposed. The QPErad and the QPEbm data yield hyetographs of the mean areal

precipitation (MAP) that largely show a similar development in time. As a mayor difference

the volumetric information provided by QPErad overestimates rainfall depth by 16 %. The

corresponding hydrological responses using the WBrM are shown in Figure 1.1 in terms of

the hydrographs at the basin outlet. The thick solid and dashed black lines correspond to the

model response using QPEbm and QPErad respectively. This plot shows that overestimation

of rainfall depth by QPErad consistently leads to an overestimation of discharge volume and

peak discharges.

Figure 1.1: Simulated hydrographs using different input data for the hydrological model
WBrM.

The histogram of errors resulting from the statistical analysis of the QPE data according
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to equation 1.6 resembles a normal distribution (not shown). The variation of µt , σt and

βt within the different error fields of the event is small, see Llort et al. (2008) for details.

An ensemble with 100 members has been generated. The hyetographs of the QPEensi
have

been compared to the (QPEbm) field in order to assess whether it adequately describes

the uncertainty inherent to the (QPErad) field. The range of ensemble hyetographs almost

entirely embraces (QPEbm). However the volumetric correction is too strong (not shown).

The grey shaded area in Figure 1.1 contains the range of minimum and maximum responses

produced by the input ensemble using the hydrological model. The slim solid and the dot-

ted black lines mark the 50%, 10% and 90% quantiles of the model output ensemble. In

general, the dynamics of the ensemble hydrographs follow the QPErad simulation results.

The ensemble range in great parts approximates the benchmark hydrograph. With regard

to the magnitude of simulated peaks and the discharge volume, the findings of the analysis

in precipitation terms are consistently reflected in the hydrographs. Overall, the discharge

ensemble too strongly corrects for the volume differences and most members slightly under-

estimate the peak values.

Model parameter and parameter uncertainty estimation has been carried out using a sub set

of 10 members of the entire ensemble (100 members). These members have been selected in

view of capturing the variation in accumulated MAP as well as extreme occurrence of precip-

itation intensity. The normalised parameter values obtained from a repeated (10 repetitions)

estimation process based on the minimisation of the error variance are shown in Figure 1.2

using different input data. For comparison the reference parameter values are also given

in the chart. Overall, the parameters identified using QPEENS are closer to the reference

values than obtained by calibration using QPErad. The degree of imperviousness and initial

soil moisture show the tendency to increase the runoff volume in order to compensate for the

volumetric differences in comparison to QPEbm data. Similar observations have been made

for the mode of the posterior parameter distributions using a Monte Carlo Markov Chain

inference approach which cannot be discussed in detail here. Refer to Schröter (2008) for a

full discussion of this approach.

Conclusions

These first results presented demonstrate that it is possible to condense the uncertainty in-

herent to radar based input uncertainty in a probabilistic model and to map this uncertainty

to the response of a hydrological model by means of an input ensemble. The statistical

analysis does not resolve all aspects of input data uncertainty. Uncertainty with regard to

volumetric information has been found to be highly relevant. Further it has been shown that

the explicit quantification of input uncertainty adds additional information to the parameter

estimation process and can be beneficially exploited. The evaluation of the approach has to
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Figure 1.2: Reference parameter values and parameter estimates using different input data.

be deepened and extended in order to analyse further characteristics of input uncertainty

more in detail, such as temporal auto-correlation, maximum precipitation intensity as well

as the space time distribution. In this context, the analysis in hydrological terms has to be

conducted at different internal sites of the catchment. Another issue of interest concerns the

generality and transferability of the parameter values of the probabilistic input uncertainty

model to different events.

Acknowledgements: Parts of the work have been elaborated within the frame of the EU project

EWASE, contract no. 02NH0810, which is embedded in the ERA-NET CRUE integrated

project, supported by the European Comission under FP6. Further support has been granted

by COST Action 731 by means of Short Term Scientific Mission.

References

Berenguer, M., C. Corral, R. Sanchez-Diezma and D. Sempere-Torres (2005). ”Hydrological

validation of a radar-based nowcasting technique.” Journal of Hydrometeorology 6(4): 532-

549.

Corral, C., M. Berenguer, D. Sempere-Torres and I. Escaler (2002). Evaluation of a con-

ceptual distributed rainfall-runoff model in the Bess catchment in Catalunya using radar

information. 2nd European Conference on Radar in Meteorology and Hydrology, Munich.

Germann, U., M. Berenguer, D. Sempere Torres, and G. Salvad, 2006: Ensemble radar

precipitation estimation - a new topic on the radar horizon. Fourth European Conference

on Radar in Meteorology and Hydrology, Barcelona.

Lee, G., A. W. Seed, and I. Zawadzki, 2007: Modeling the variability of drop size distributions

in space and time. Journal of Applied Meteorology and Climatology, 46, 742-756.

Lempert, M., 2000: Ein GIS-gekoppeltes rasterbasiertes Modell zur Berechnung des Wasser-

haushaltes kleiner Einzugsgebiete, Inst. fr Wasserbau und Wasserwirtschaft, Technische

Universitt Darmstadt, 183.



Atmospheric and hydrological ensemble forecasting 38

Llort, X., C. Velasco-Forero, J. Roca-Sancho and D. Sempere-Torres (2008). Characteriza-

tion of Uncertainty in Radar-Based Precipitation Estimates and Ensemble Generation. Fifth

European Conference on Radar in Meteorology and Hydrology, Helsinki.

Pegram, G. G. S. and A. N. Clothier, 2001: High resolution space-time modelling of rainfall:

the ”String of Beads” model. Journal of Hydrology, 241, 26-41.
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1.7 Can time–lagged precipitation forecasts improve hydro-
logical predictions?
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Introduction and objective

The concept of time-lagged deterministic forecasts has been explored in different meteorolog-

ical applications. Forecasts with different initialisation times but with the same verification

time are pooled to generate a small (poor-mans) forecast ensemble. This ensemble may be

used directly to produce probabilistic forecasts but it has also been used to create perturbed

initial conditions for EPS. For both short- and medium-range forecasting, the time-lagging

has been showed to improve the forecast accuracy. Evaluation has however generally focused

on free-atmosphere variables (geopotential height, temperature, wind speed, etc.) and less

on the hydrologically more important precipitation at surface level.

The objective of the study is to investigate whether previously issued forecasts of 24-h ac-

cumulated catchment precipitation can be used to enhance the current forecast in different

respects. The predictand is accumulated precipitation between t and t+24. The current

forecast is denoted ft and the previous forecasts considered ft−24 and ft−48. Two approaches

are tested: (1) weighting of the forecasts and (2) probabilistic forecasts from a mini-ensemble.

Methodology and evaluation

One previously attempted strategy is to use a weighted combination. An adjusted weighted

forecast f
′

t may be generated according to

f
′

t = wt ∗ ft +wt−24 ∗ ft−24 + wt−48 ∗ ft−48,

where w are constants (weights).

The three forecasts ft, ft−24 and ft−48 form a mini-ensemble. From this ensemble, forecast

probabilities can be estimated according to:

pmax=p(obs¿fmax) with fmax=max(ft,ft−24,ft−48)

pmin=p(obs¡fmin) with fmin=min(ft,ft−24,ft−48),

where p() denotes probability.
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The two approaches were evaluated using 2 years of daily precipitation observations (gauge-

derived averages) and categorical forecasts (PMP, combining HIRLAM and ECMWF fore-

casts) for 77 Swedish catchments, representing different sizes as well as geographical/climato-

logical conditions. Forecast accuracy was assessed in terms of average value (Avg), standard

deviation (Std) and mean absolute error (MAE). For approach 1 the constants were opti-

mised by multiple linear regression. For approach 2 the empirical values of pmax and pmin

were estimated.

Results and discussion

In the original forecast, the mean value is overestimated by ∼ 20%, the standard deviation

by ∼ 10% and MAE is 1.48 mm.

On average, the contribution to the weighted forecast is 52% from ft, 22% from ft−24 and 13%

from ft−48. The weights are almost always positive, but in some catchments wt−48 is negative.

The fact that the sum of the average weights is below unity may reflect the overestimated

mean value in the original forecast. The resulting mean value, however, becomes slightly

underestimated (4%) but more accurate than in the original forecast. MAE is 1.22 mm, which

means an 18% improvement compared with the original forecast. The weighting procedure

naturally has a smoothing effect on the forecasts, which is reflected in an underestimated

standard deviation (20%).

If the three forecasts are evenly distributed over the probability space, fmax defines the upper

quartile (75% probability of non-exceedance) and fmin the lower quartile (25%). Thus 25% of

the observations should fall above fmax and 25% below fmin (pmin = pmax = 25%), i.e. 50%

outside the entire range (fmin-fmax). On average, however, only 36% of the observations

fall outside the range, indicating that the spread obtained from the latest three forecasts

is larger than the interquartile range. There is in reality on average a 20% probability of

getting precipitation above fmax and a 16% probability of getting precipitation below fmin.

The values are rather similar for different catchments.

Conclusions and future work

The results indicate that the current forecast of daily catchment precipitation may be im-

proved by simple functions of previous forecasts or information derived from them. Overall,

the attainable gain in accuracy was found to be 10-20% when all days are considered. The

result from the mini-ensemble evaluation indicated relatively stable values of pmax and pmin,

with rather limited variation between catchments. This suggests that the maximum (mini-

mum) of the three most recent forecasts may be used as a rough estimate of the precipitation

value with a 15-20% probability of exceedance (non-exceedance). Possible future extensions
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of the study include the incorporation of older forecasts than ft−48 as well as evaluation fo-

cusing on large (observed and/or forecasted) rainfall events. Finally, the ultimate aim of the

work is improved hydrological forecasts. Hydrological modelling with adjusted precipitation

forecasts is required to assess the hydrological significance of the improvements obtained for

the precipitation forecasts.
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Introduction

Ensemble forecasting appears to be the only feasible method to predict the evolution of the

atmospheric probability distribution function (PDF) beyond the range in which error growth

can be prescribed by linearized dynamics (Molteni et al., 1996). The contained large amount

of information can be hardly managed in the whole, and two different strategies, clustering

and tubing, are adopted at the ECMWF for reducing the 51 EPS forecasts to few alternative

scenarios (Molteni et al., 2001; Marsigli et al., 2001).

For clustering, “similar” EPS forecasts are collected in clusters and averaged to constitute

new forecasts, whose probability of occurence are provided by the cluster sizes. At present

clustering is performed on the 500 hPa forecast and a quadratic norm is adopted for evalu-

ating the similarity degree between two forecasts. One of the principal shortcomings of the

clustering technique is the empirical distribution of the ensemble members: a large spread

in the ensemble does therefore not necessarily lead to more clusters, nor does a small spread

necessarily lead to fewer.

The tubing technique averages all ensemble members close, in term of RMS again, to the

ensemble mean, while the excluded members are grouped together in a number of tubes.

Each tube is represented by its most extreme member and not by an average of members

belonging to it. Although tubing allows a better visualization of the most different scenarios

in the ensemble, tubes are not intended to serve as probability alternatives, but only to give

an indication of what is not included in the central cluster.

In order to provide a different way to condense information, which tries to overcome the

shortcomings related to the empirical distribution of ensemble members, it is here exploited

the possibility to represent ensemble forecasts as point processes in the plane, i.e. as a finite

set of random points distributed in plane or in space. The subject of point process statistics

is to define some methodologies for establishing whether random points do not exhibit any

kind of interaction (homogeneous distribution pattern) or, instead, among them there is

a tendency to the clustering or a regular distribution. Usually, it is useful to compare
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an unknown point process against other point processes, considered as reference models

(Stoyan et al., 1987; Cressie, 1991). Hereafter, it is tested the hypothesis according to which

EPS point processes can be treated statistically equivalent to one of these reference models:

Poisson, Gaussian and Poisson cluster processes.

The Principal Component Analysis

The Principal Component Analysis (PCA) is a very useful tool in the treatment of meteoro-

logical and climatological data, because it enables to transform a data set, characterized by

a large number of variables in a new one, where the number of variables is highly reduced.

Because of the strong correlation between original variables, a few of these new variables

may explain the most part of variance of the original data set. The new variables are cal-

culated as the eigenvectors of the covariance matrix and they are orthogonal among them

(Preisendorfer, 1988).

The freedom degree number of an ensemble of forecasts is very large, because related to

the grid point number, where meteorological fields are defined, and to the ensemble size.

For the whole winter season 2006–2007 PCA has been therefore applied to the 5 to 7 day

ECMWF EPS forecasts of 500 hPa geopotential height, defined over a regular grid at 1 degree

of resolution and covering the European clustering area. Let Z represent the 51 ensemble

anomalies respect to the ensemble mean. The covariance matrix is given by S = ZZT , and

the eigenvectors E = [e1, ..., em] are obtained by the following equation system:

SE = EΛ

The analysis equation, representing the principal components matrix, is hence defined as

A = ZTE

Because number of grid points is larger than the ensemble size, it is more useful to compute

A as

ZTSE = ZT (ZZT )E = (ZTZ)ZTE = ZTEΛ = AΛ

while EOFs having norm equal to 1 are given by

E =
1√
n
ZAΛ−1/2
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The variance explained by the first two eigenvectors ranges from 46% to 69% of the total

variance.

The point–process statistics

The 90 Winter 5 to 7 day ECMWF EPS forecasts are reduced to point patterns in a plane

by the first two Empirical Orthogonal Functions (EOF). In such case every point, say event,

represents a single ensemble member, whose coordinates are provided by the first two Prin-

cipal Components. A point process obtained projecting ensemble members over the plane of

the first two EOFs, is reported in figure 1.1, as an example.
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Figure 1.1: 5 to 7 day ECMWF ensemble forecasts starting from the 1st December 2006
12 UTC. The sign (+) represent the ensemble perturbed forecasts, the capital letter A,
B represent the two most distant members from the ensemble mean, whereas C show the
control forecast position. The letters E indicate the positions of two possible extreme events,
outside ensemble.

Three kinds of point processes are here used as reference models:

(i) a stationary Poisson point process with intensity λ equal to 51, whose events are

uniformly distributed over a quadratic box of side equal to 4;

(ii) a Gaussian point process with the same intensity, whose events are distributed accord-

ing to a standardized normal probability distribution function;

(iii) a Poisson cluster process, realized as a combination of two point processes: at first, a

random number of parent events, ranging from 1 to 6, is generated in the quadratic
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box of side 4 according to a Poisson point process. Then, in the neighbours of the

parent events, taken as new centers, other random events are generated according to

a Gaussian point process until a number of 51 events is reached.

Two different point–processes can be compared by the nearest–neighbour distribution func-

tion and by the reduced second order momentum, so called K function, or its derivative

L. The nearest–neighbour distribution function D(r) describes the probability the distance

from a randomly chosen event to its nearest event is less than or equal to r > 0. Theoretical

calculations show that for a homegeneous Poisson process, with intensity λ, the distribution

function of the distance from an event to the nearest event in ℜ2 is (Stoyan et al., 1987):

H(r) = 1 − e−λπr2

This function can be euristically estimated from the observed pattern:

D̂(r) =

∑n
i=1 I(ri,A ≤ r, di > r)∑n

i=1 I(di > r)

where di denotes the distance of the event from the nearest boundary of the closed set A

and ri,A is the distance from the nearest event in A (Cressie, 1991).

The K functon uses information in the pattern over a wide range of scales than the nearest–

neighbour distribution function. Its definition is related to the number of extra events within

distance r from an arbitrary event. For a homogeneous point process in the plane, the reduced

second order momentum K(r) is given by the formula (Stoyan et al., 1987):

K(r) = πr2

Estimating of K from an observed pattern in a bounded A ⊂ ℜ2 is complicated by edge

effects. Here the Ripley’s edge–corrected estimator is considered (Cressie, 1991):

K̂(r) =
1

nλ

n∑

i=1

n∑

j=1′

w(si, sj)
−1I(‖si − sj‖ ≤ r)

Let u = ‖si − sj‖ and let d1 and d2 be, respectively the distances of si from the edges of A;

w(si, sj) is the weighting factor computed as a function from u, d1 and d2. The estimator K̂

is approximately unbiased provided that the n events are approximately independent.

Estimating of the derivative of the K function, L̂(r), are computed by the formula (Stoyan

et al., 1987):
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L̂(r) =

√
K̂(r)

π

When L̂(r) is approximatively linear, events tend to be distributed in a homogeneous manner;

positive deviations from the linearity indicate a tendency to a clustering, whereas negative

deviations are representative of a regular distribution of the points.

Results

The objective of the present study is to apply some mathematical tools of the point process

statistics for finding out typical behaviours of the 90 Winter 5 to 7 day ECMWF EPS predic-

tions, represented by the principal component analysis as point processes. For pursuing this

objective, a comparison based on the similarity degree of the nearest–neighbour distribu-

tion function and the derivative of K function among the ensemble point processes and the

other processes is perfomed. In particular, in the figure 1.2 the shaded area represents the

confidence interval relative to the minimum and maximum values obtained by 99 simulated

Poisson point processes. The median is also indicated and in this case it follows quite well

the theoretical curve. At the same time it is also reported the inteval of the minimum and

maximum values for the 90 ensemble point processes. It is evident on the left side the in-

creasing displacement between the two nearest–neighbors distribution function. Similarly, a

large deviation is also evident on the right side of the figure, for the second order momentum

derivative.
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Figure 1.2: Ensemble point process vs. Poisson point process: nearest–neighbour distance
distribution function (left side) and the derivative of the reduced second order momentum
(right side): grey shaded area represents the confidence interval for 99 stochastic point pro-
cesses, black solid line indicates the median value, while the blue solid line is the theoretical
one. Red dashed lines represent the minimum and maximum values of the ECMWF EPS
point process distribution, whereas the red continuos line is the median.
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A good agreement between the median curves is evident for the case of gaussian point

processes (fig. 1.3). In fact, for both functions the confidence interval of the ensemble point

processes is contained in the shaded area. However, it is important to highlight on the right

side of the figure a slight overestimation of the median for the second order momentum

derivative.

For the case of Poisson cluster processes the median relative to the nearest–neighbor distri-

bution function lies under the ensemble median as evident on the left side of the figure 1.4.

Moreover, all the confidence interval of the ensemble point processes is placed in the region

over the median for the second order momentum derivative.
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Figure 1.3: Ensemble point process vs. Gaussian point process: as in figure 1.2.
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Figure 1.4: Ensemble point process vs. Poisson cluster process: as in figure 1.2.
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Summary and Outlook

The possibility of applying mathematical tools of point–process statistics to the ECMWF

Ensemble Prediction System (EPS) has been exploited in this work, in order to find a

different way to condense the large amount of ensemble information. It has been proved

the first two empirical orthogonal functions enable to represent about, or more, the 50%

of the ensemble spread as point processes in a plane. These planar representations have

been therefore compared to other three point patterns, obtained by a Monte Carlo method

and considered as reference models. The estimations of the nearest–neighbour distribution

function and of the reduced second order momentum function for point processes relative

to the ensemble predictions are in good agreement with the correspondent estimations of

gaussian point processes. At the same time, the behaviour of ensemble forecasts represented

as point processes appears to be biased respect to a Poisson cluster processs.

On the basis of these results, it appears reasonable assign a probability to each ensemble

member calculated by the standardized normal distribution function, proportionally to the

distance of the event from the origin in the plane.
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2.1 Assessment of cloud cover and precipitation forecasts ob-
tained with MESO-NH in summertime

Jean-Pierre Chaboureau and Evelyne Richard

Laboratoire d’Aérologie, Université de Toulouse and CNRS, Toulouse, France

Introduction

Clouds and their potential outcome - precipitation - are sensible weather elements that it

is crucial to forecast. Despite the importance of the water cycle for human activities, skill

in forecasting cloud cover on a day-to-day basis has been little explored. Satellite obser-

vations, with their good coverage in time and space, can provide a basis for assessing such

skills. In this study, we adopted a model-to-satellite approach, in which satellite brightness

temperature (BT) images were directly compared to BTs computed from predicted model

fields. This approach offers the advantage that the satellite data are used in an objective way,

without being combined with any ancillary data. The verification of the cloud cover forecast

combined the model-to-satellite approach with the calculation of scores and was carried out

over the series of daily 30-h simulations performed with the MESO-NH model, driven with

ECMWF analyses and forecasts during the D-PHASE period. We essentially used the BT at

10.8 µm from hourly MSG observations, which is mainly affected by cloud-top heights. The

cloud forecast assessment was also examined in comparison with the results of a more classi-

cal precipitation verification method based on rain gauge observations. The overall method

provides a framework for assessing the cloud cover and precipitation forecasts together and

quantifying their predictability with respect to weather regimes

Model setup and experimental design

The forecasts were made with the anelastic non-hydrostatic mesoscale model, MESO-NH

(Lafore et al. 1998). The two-way interactive grid-nesting method (Stein et al. 2000)

enabled simultaneous running of several models on the same vertical levels but with different

horizontal resolutions. The forecasts were made using triply nested models with horizontal

grid spacings of 32, 8, and 2 km, the inner model covering the COPS area. The vertical

grid had 50 levels up to 20 km with a level spacing of 60 m close to the surface, rising to

600 m at high altitude. A sponge layer was installed from 14 to 20 km in order to damp the

upward propagating gravity waves. The lateral boundary conditions were given by large-scale

operational analyses for the outermost model and they were provided by the outer models
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for the inner models at each time step. The individual forecasts were initialized with 00 UTC

European Centre for Medium-Range Weather Forecasts (ECMWF) or ARPEGE analyses.

From 1 July to 31 August 2008, two sets of 62 daily 30-hour forecasts were run. For the

two coarser-resolution grids (32 and 8 km), the subgrid-scale convection was parameterized

by a mass-flux convection scheme. For the inner grid (2 km), explicit deep convection was

permitted and the convection scheme was switched off. The microphysical scheme included

the three water phases with five species of precipitating and non-precipitating liquid and

solid water. The turbulence parameterization was based on a 1.5-order closure. The radiative

scheme was the one used at ECMWF including the Rapid Radiative Transfer Model (RRTM)

parameterization. The surface scheme was the Interactions between Soil, Biosphere and

Atmosphere (ISBA) soil scheme.

Cloud cover assessment

Synthetic brightness temperatures (BT) corresponding to the MSG observations were com-

puted off line using the Radiative Transfer for Tiros Operational Vertical Sounder (RTTOV)

code version 8.7 and compared against observations following Chaboureau et al. (2000,

2002). We used the BT at 10.8 µm from hourly MSG observations as it is mainly affected by

cloud-top heights. The method provided a framework for assessing the cloud cover forecast.

In particular it has been used to investigate the predictability of convective systems with

synoptic forcing over West Africa (Söhne et al. 2008).

Time evolution Systematic errors in the representation of the cloud cover were first exam-

ined through the time evolution of the mean observed and forecasted BTs and the associated

biases (Fig. 2.1 left). The mean BT range was between 240 and 300 K. The low BT values

that persisted for several hours corresponded to fronts travelling across the simulation do-

main (on 2, 3, 8, 20, 23, and 30 July and 1-2, 7-8, 21, and 29-30 August). The high BT

values characterized the hot weather periods around 14 July and 5 August. Intermediate

BTs that presented a high variability during daytime characterized convective periods, e.g.

on 16-19 July or 12-20 August. Note that longer periods of convection occurred in July than

in August. On the other hand, the bias varied between 0 and 5 K (Fig. 2.1b). The largest

values were found in the transition periods when the observed mean BT was around 260 K.

As the two sets of forecasts showed a similar time evolution of the bias, the latter could be

attributed to a systematic fault in the model.

BT distribution The systematic error in BT was further investigated using observed and

forecasted BT distributions over the whole period (Fig. 2.1 right). All the distributions

showed a maximum for the 290-295 K bin and a shape skewed towards the lower values.

The frequency of forecasted BTs was overestimated in the maximum bin, which counterbal-
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Figure 2.1: (left) Time evolution of mean BT and bias (a) mean BT from (black) the MSG
observation and (grey) the Meso-NH forecasts. (b) bias between the Meso-NH forecasts and
the MSG observation. The time axis is indicated by the day; j, July; a, August. (right) BT
distribution from MSG observation and forecasts.

anced the underestimation in the occurrence between 300-315 K and between 235-270 K.

In the upper range the discrepancy pointed out an understimation of the highest surface

temperature during hot weather conditions, the discrepancy being more pronounced for the

MESO-NH-E forecasts than for the MESO-NH-A ones. In the lower range, the lack of inter-

mediate BTs can be attributed to a limitation in the physics, in particular to our choice of

using explicit microphysics only (the use of shallow convection parameterization might have

been a beneficial option).

Scores BTs at 10.8 µm were used to characterize the cloud patchiness (Schroeder et al.

2006) using 260 K as the threshold below which BTs were associated with high clouds.

The observed patchiness linked to periods of cloudy days was reasonably well forecasted

(Fig. 2.2a). However, the forecasted cloud systems were too patchy, indicating a lack of

organized cloud systems. The skill in forecasting cloud cover as measured using the Fractions

Skill Score (FSS, Roberts and Lean 2008) was rather high. The highest scores, close to 1,

the perfect skill, were achieved during overcast periods, particularly in August (Fig. 2.2b).
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Figure 2.2: (a) Time evolution of the patchiness from (black) the MSG observation and (grey)
the Meso-NH forecasts. (b) Time evolution of the FSS between the Meso-NH forecasts and
the MSG observation. The time axis is indicated by the day; j, July; a, August.



Fine–scale modelling and forecasting in hydrology and meteorology 52

Spatial distribution Another question concerned the location of the errors in the cloud

cover forecasts. A simple diagnosis was obtained by averaging the observed BTs during

the two-month period and computing the associated biases in forecasts (Fig. 2.3). The

mean observed BT showed a small range, between 268 and 273 K, with lower BTs over

the mountains, especially over the Alps, and higher BTs in the valleys (Fig. 2.3a). This

pattern can be explained by the sensitivity of BT to both the surface temperature under

clear conditions (with lower temperatures over the mountains) and the cloud top temperature

under cloudy conditions (with more frequent clouds over the orography). The mean difference

between forecasts and observations pointed out some systematic errors (Fig. 2.3b, c). For

both sets of forecasts, the biases were the lowest on the crests (<2 K), in particular over

the Alps and highest (>5 K) over the Rhine valley. From the two sets, the MESO-NH-A

forecasts showed the largest bias extending from the Vosges to the German plain.

Figure 2.3: a) Mean BT (K) from observation and the associated BT bias (K) for b) MESO-
NH-E and c) MESO-NH-A. The black lines indicate the topographic heights of 600 and
900 m.

Precipitation assessment

Precipitation measurements were taken by rain gauges. Here we used 24-h daily accumulated

rain from 06 UTC on a particular day to 06 UTC the next day. Each rain gauge was compared

with the nearest model grid point. In addition, the comparison with rain gauges was extended

to the forecasts from two Meteo-France models, ALADIN, the current operational model

using a grid-mesh of 10 km, and AROME, the future operational model running with a

2.5-km grid mesh. Both models use initial conditions from the global analysis ARPEGE.

As AROME shares the same physics with MESO-NH, the present comparison exercise could

help to document some systematic errors due to modelling issues other than the physics. On

the other hand, comparison with ALADIN allowed discussion of the added value provided

by Cloud-Resolving Models (CRMs) compared to the previous generation of models.

Time evolution An overview of the model skill is given with the time evolution of the

24-h accumulated rain spatially averaged over the COPS area (Fig. 2.4 left). Both MESO-
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NH and AROME represented the time evolution well. In particular, the occurrence of the

forecasted rain peaks followed the observations closely, but with some disagreements in their

intensity. It is interesting to note that the two models gave different peaks. This can be

attributed to the different initial conditions used by the models. On the other hand, there

was no systematic bias, but the CRMs presented a larger amplitude. This was to be expected

because, as seen next, the largest values predicted by the CRMs can lead to larger errors

than the ALADIN forecasts.
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Figure 2.4: (left) Time series of (a) the 24-h accumulated rain from observation and forecasts
and (b) their associated bias. The time axis is indicated by the day; j, July; a, August. (right)
Distribution of the 24-h accumulated rain from observation and forecasts.

Rain distribution The observed rain distribution over the whole period exhibited a de-

crease in frequency with the increase in accumulated rain (Fig. 2.4 right). The CRMs

reproduced the rain distribution well. They slightly overestimated the cases with more than

30 mm of rain. Remarkably, there is no outstanding difference between MESO-NH and

AROME. This result suggests that the difference in initial conditions and in modelling other

than physics did not affect the rain distribution significantly. In contrast, ALADIN showed

some departures from the observed rain distribution: the frequency of light rain (less than

0.1 mm) was underestimated by a factor 2 while intermediate rain amounts were overesti-

mated.

Scores The Heidke Skill Score (HSS) characterizes the ability of a model to forecast rain

over a certain threshold. It is shown for all the models (Fig. 2.5 left). As expected, a lower

skill is achieved for heavy rain as these events are less frequent in time and space. On

the other hand, ALADIN shows higher skill except for small amounts of rain. The poorer

results for the CRMs can be attributed to the double penalty effect. This arises when an

observed small scale feature is realistically forecast but is misplaced. The CRM is penalized

twice, once for missing the actual feature and again for forecasting it where it is not. The

forecast skill was further analyzed by differentiating the HSS (Fig. 2.5 right) between July
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and August (left column) and between the Vosges and the Black Forest (right column).

Results show higher scores in August, when conditions were less convective, and over the

Vosges, i.e. upwind.

Figure 2.5: HSS as function of the rain threshold. Results (right) for the whole period and
(left) for (a) July and (c) August and between (b) the Vosges and (d) the Black Forest.

Spatial distribution The dependency of the skill on location was examined with the

mean observed rainfall and the associated biases for the two sets of MESO-NH forecasts

(Fig. 2.6). Observations showed heavy rain upwind and on the crests with up to 7 mm of

rain. In particular, the mean rainfall was larger over the Vosges than the Black Forest. The

bias between MESO-NH-E and the observation showed good agreement over the Vosges,

but a larger bias over the Black Forest. This was also the case for MESO-NH-A, but with

some reduced values in bias downwind of the Black Forest. This difference in the two sets

of forecasts is consistent with the higher BT forecasted by MESO-NH-A.

Figure 2.6: a) Observed mean rain (mm) from rain gauges and the associated biases (mm)
for the b) MNH-E and c) MNH-A forecasts. The black lines indicate the topographic heights
of 600 and 900 m.

Summary and Outlook

The paper has presented an assessment of the MESO-NH forecasts made in July and August

2007 in the framework of the COPS and MAP-D PHASE programmes. The evaluation was
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made using BT at 10.8 µm observed from MSG and 24-h accumulated rain measured by

rain gauges. A general consistency between the variables is found. The highest scores are

obtained during the least convective periods (i.e. in August) and upwind (i.e. over the

Vosges). The comparison with BTs points out too patchy a structure in cloud cover as well

as a lack of intermediate BTs. This could be attributed to the choice of not using any subgrid

cloud scheme.

In addition, the evaluation with rain forecasted by AROME and ALADIN has shown the

dependency of skill on the spatial scale. When using a classical score such as the HSS, better

skill is obtained for the 10-km forecasts compared to the 2-km forecasts. However, the rain

distribution is better represented by the CRMs. This underlines the necessity of designing

scores for the scale of the CRMs.
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2.2 Forecasting summer convective activity over the Po Val-
ley: insights from MAP D-PHASE

S. Davolio, O. Drofa and P. Malguzzi

ISAC - CNR, Bologna, Italy

Introduction

The Po Valley is an area prone to convective storms often associated with severe weather

conditions, such as hail and strong winds, especially during spring and summer. The large

and flat valley is surrounded on three sides by orographic chains (Alps and Apennines) that

remarkably affect its weather, modifying the large scale flow and contributing to generate

favourable mesoscale conditions for deep convection. Moreover, the valley is a semi-closed

basin in which the low-level wind circulation is generally sluggish (Morgan, 1973). During

summer, this facilitates heating and humidification of low-level air, thus producing favourable

(unstable) conditions for convection development.

In the past, numerous studies were devoted to investigate different aspects of this phe-

nomenon, such as climatological distribution (Bossolasco, 1949; Morgan, 1973; Cacciamani

et al., 1995), physical mechanisms, dynamic and thermodynamic characteristics (Buzzi and

Alberoni, 1992; Costa et al., 2001). The passage of frontal structures and the development

of orographic cyclones on the lee (southern) side of the Alpine chain turned out to be the

synoptic scale features most favourable for the occurrence of thunderstorms. Moreover, con-

vection over the Po Valley resulted often organized and associated with mesoscale circulation

induced by direct or indirect topographic effects.

The climatological analysis of Bossolasco (1949) clearly showed the Po Valley as one of the

area of Italy mostly affected by thunderstorms, which are more frequent in the region north

of the Po river. The sesonal distribution is characterized by a peak during the summer

months, in particular between May and August.

During the summer period of MAP (Mesoscale Alpine Programme) D-PHASE, that is be-

tween June and August 2007, a number convective systems affected the Po Valley. The

D-PHASE offered a unique opportunity to assess, at least qualitatively at this stage, the

capability of state-of-the-art high-resolution, convection-resolving models in predicting thun-

derstorms over the Po Valley. In the present study a preliminary evaluation of short-range

forecasts issued by several fine-scale models, operational during the project, is presented.
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Experiment setup

In order to evaluate the performance of the high-resolution models in predicting the develop-

ment and evolution of convective episodes, forecast precipitation is compared with available

radar data. In particular, the attention is focused on the region covered by the San Pietro

Capofiume radar, located in Emilia Romagna region about 40 km north east of Bologna and

managed by ARPA-SIMC (HydroMeteorological Service of the Emilia-Romagna Regional

Agency for Environmental Protection). In order to avoid problems in radar precipitation

estimates connected with the presence of orography, mountainous area (above 200 m a.s.l)

are not considered in the analysis. Moreover, radar data are upscaled in order to fit models’

resolution. The radar domain (Fig. 2.1) cover almost entirely the eastern part of the Po

Valley.

Figure 2.1: Orography of northern Italy and the area covered by the San Pietro Capofiume
radar. The grid-points over the orography (see text) are not considered in the analysis.

Among the high-resolution operational models employed in the D-PHASE project, only three

of them were run on a domain that besides the whole Alpine region suitably cover the area

of interest: MOLOCH (run in two different configurations), AROME and COSMOCH2, for

a total of four daily forecasts (see Table 2.1 for details).

MOLOCH model (Malguzzi et al., 2006) was run at ISAC-CNR using two different initial

and boundary conditions data set, provided by ECMWF and GFS global model, respectively.

The run driven by the 00 UTC, GFS analysis/forecasts (named ISACMOL) started at 09

UTC and lasted for 39 hours, while the run driven by the 18 UTC ECMWF analysis/forecasts

(named ISACMOL2) started at 00 UTC and lasted for 48 hours. MOLOCH was not directly

nested in the global model, but an intermediate nesting step, performed using the hydrostaic
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model BOLAM (Zampieri et al., 2005), was needed. AROME (Bouttier and Roulet, 2008)

forecasts were performed daily by the CNRM of Meteo-France, starting at 00 UTC. The

forecasts, driven by the non-hydrostatic ALADIN-France model which was itself nested in

the ARPEGE global spectral model, covered a 30-hour period. COSMOCH2 (for a complete

description see the COSMO (COnsortium for Smallscale MOdelling) web site www.cosmo-

model.org) was run by MeteoSwiss several times a day, driven by the ECMWF global model

analysis/forecasts. In the present analysis only the 24-hour run starting at 00 UTC is

considered.

The time series of maximum and mean (areal averaged) hourly precipitation for the three

month period of June, July and August obtained from radar data and model forecasts are

compared. The model time series have been obtained using consecutive forecasts. Concerning

the two MOLOCH runs, the forecast range has been selected so as to maintain the same

time interval from the global model initial condition. Therefore for ISACMOL the forecast

range between +3 and +27 hours has been selected, while for ISACMOL2 the interval is

from +6 to +30 hours. The same forecast range (+6 to +30) has been chosen for AROME,

while for COSMOCH2 the entire 24-hour run has considered.

Results

Figure 2.2 shows the comparison among the time series of the maximum hourly precipitation

computed from the radar data and model forecasts for the entire three-month period. It has

to be intended as a temporal correlation and not a spatial coincidence since at every hour the

maximum rainfall pattern may be located anywhere within the region covered by radar (Fig.

2.1). From a qualitatively point of view, the forecast precipitation correlates quite well with

the observation and the number of false alarm (that is forecast precipitation missing in the

reality) is remarkably low. The COSMOCH2 model displays the less intense precipitation

and seems to miss some of the events. The behaviour of the two MOLOCH runs is quite

similar in terms of number of forecast episodes, but there are differences in the intensity

MODEL Resolution Initial time Forecast IC - BC
[km] (UTC) range [h]

AROME 2.5 00 30 ALADFR
ARPEGE (00 UTC)

COSMO CH 2.2 00 24 COSMOCH7
ECMWF (00 UTC)

MOLOCH GFS 2.2 09 39 BOLAM
(ISACMOL) GFS (00 UTC)

MOLOCH ECMWF 2.2 00 48 BOLAM
(ISACMOL2) ECMWF (18 UTC)

Table 2.1: Main characteristics of model configurations.
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of the precipitation concerning the single events. Finally, AROME forecasts more intense

precipitation in June, but in general its forecasts do not differ significantly from those of

MOLOCH.

The evolution of the areal averaged hourly precipitation (Fig. 2.3) provides information

about the amount of rainfall affecting the area. In the process of averaging, isolated maxima,

which may be due to anomalous propagation that affect radar measurements especially

during the evening and the night, are filtered out, while wide-spread convective activity is

highlighted. Therefore, the comparison among areal average quantities provides more robust

results.

From the analysis of the mean rainfall time series shown in Fig. 2.3, it can be see that the

AROME model provides the “wettest” forecasts, while COSMOCH2 is affected by a clear

underestimation of convective activty over the area.

Despite the large differences between radar and model data (in term of intensity) we attempt

also a quantitative comparison, computing the anomaly correlation coefficient (ACC) and

the root mean square error (RMSE), between forecasts and radar (see Tab. 2).
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Figure 2.2: Time series of the maximum hourly rainfall (mm) for the 3-month period June-
July-August 2007. The red line corresponds to radar data, the blue line to model fore-
cast. ISACMOL (top-left), ISACMOL2 (top-right), AROME (bottom-left), COSMOCH2
(bottom-right). Model time series are plotted as negative in order to facilitate the compari-
son. Negative (positive) values in the radar (model) time series indicate missing data.
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MODEL Anomaly Correlation Root Mean
Coefficient Square Error

AROME 0.46 0.48

COSMOCH2 0.44 0.49

ISACMOL 0.54 0.44

ISACMOL2 0.62 0.44

Table 2.2: ACC and RMSE computed by comparing the models’ forecasts with radar data.

MOLOCH model outperforms both AROME and COSMOCH2.The same analysis computed

on the hourly maximum precipitation turned out to be remarkably affected by the presence

of isolated intense rainfall patterns due to anomalous propagation, and therefore are not

shown here.

Finally, the distribution of rainfall intensity has been computed by kernel estimation using

a smoothing parameter of 5 mm/h. The results are shown in Fig. 2.4.

The forecast maximum hourly precipitation follows an esponential distribution, with maxi-

mum occurrence for low rainfall intensity. The distribution computed with the radar data is

quite different, displaying a much higher occurrence of intense precipitation (above 30 mm/h)

and a lower frequency for weak rainfall. The lack of the probability maximum in the radar

data is due to the fact that hourly precipitation values below 5 mm/h are excluded from this

analysis. However, if we consider the unfiltered radar data, the probability maximum at low

-4

-2

 0

 2

 4

 6

 8

01/06 08/06 15/06 22/06 29/06 06/07 13/07 20/07 27/07 03/08 10/08 17/08 24/08 31/08

MEAN HOURLY PRECIPITATION (No mountain) - JJA

RADAR SPC
MOLOCH-GFS

-4

-2

 0

 2

 4

 6

 8

01/06 08/06 15/06 22/06 29/06 06/07 13/07 20/07 27/07 03/08 10/08 17/08 24/08 31/08

MEAN HOURLY PRECIPITATION (No mountain) - JJA

RADAR SPC
MOLOCH-ECMWF

-4

-2

 0

 2

 4

 6

 8

01/06 08/06 15/06 22/06 29/06 06/07 13/07 20/07 27/07 03/08 10/08 17/08 24/08 31/08

MEAN HOURLY PRECIPITATION (No mountain) - JJA

RADAR SPC
AROME

-4

-2

 0

 2

 4

 6

 8

01/06 08/06 15/06 22/06 29/06 06/07 13/07 20/07 27/07 03/08 10/08 17/08 24/08 31/08

MEAN HOURLY PRECIPITATION (No mountain) - JJA

RADAR SPC
COSMOCH2

Figure 2.3: As in Fig. 2.2, but for mean (areal averaged) precipitation.
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precipitation rates is recovered.

Summary and Outlook

During the MAP D-PHASE, for the first time a number of high-resolution, non-hydrostatic,

convection-resolving models have been operated over the whole Alpine area. This offered an

unique opportunity to evaluate their skill in forecasting thunderstorms during the summer

season in particular over an area prone to intense and organized deep convection such as the

Po Valley. The analysis has been undertaken by comparing forecast precipitation with radar

data. The results show a quite satisfactory correlation between the hourly rainfall series with

a small number of false alarms.

A more detailed analysis of selected episodes of deep convection, occurred over the region

during the investigated period, has confirmed the general behaviour of the models outlined

here. Moreover, from this analysis we conclude that better forecasts are generally attained

when convection is embedded in mesoscale flows having some degree of predictability.
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Introduction

The strong impact that heavy precipitation events have on human activities and environment

have led to a great effort devoted to improve numerical weather prediction models, that are

the main tool for quantitative precipitation forecasting (QPF). Heavy precipitation events

are usually related to deep moist convection whose occurrence is tied to various processes

acting on different scales, and to their complex interactions. Small errors in initial conditions

or in simulating the involved processes can cause large error in QPF. Moist convection is an

intrinsic source of forecast uncertainty, therefore limiting predictability of heavy precipitation

events (Walser et al., 2004).

The increase of model horizontal resolution, allowed by the raised computing power, has

been introduced as one of the possible strategies to improve short-range QPF. Several recent

studies were performed to analyse the ability of high-resolution models in reproducing heavy

precipitation events and to verify benefits brought by increased horizontal resolution. Buzzi

et al. (2004) analyzed three cases of heavy orographic precipitation; they argued that the

high horizontal resolution allowed to resolve physical processes, different from those repro-

duced through parameterization, leading to a more realistic representation of precipitation

fields. Anquetin et al. (2005) statistically evaluated the performance of different models

in forecasting a flash flood event: high-resolution models (with horizontal grid resolution

ranging from 6 to 2 km) showed better results than lower-resolution models, but still re-

taining their drawbacks in terms of precipitation amount bias and location. Richard et al.

(2007) compared four convection-resolving models run over the same domain with the same

horizontal resolution (2 km) for the most intense orographic precipitation episode occurred

over the southern flank of the Alps during the Mesoscale Alpine Programme (MAP) Special

Observing Period: large variability in precipitation forecasts was found but high-resolution

models showed more intense precipitation and better objective scores than coarser-resolution

models.

In this context, we compare precipitation forecasts of four high-resolution models, operational

during the MAP D-PHASE project. We consider a heavy convective precipitation event
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occurred over the flat area adjacent to the Venice Lagoon, on 26th September 2007. This

work aims at showing the overall performance of the different selected models.

The event

During the morning of 26 September, a mesoscale convective system (MCS) affected the flat

area west of the Venice Lagoon causing floods in the nearby towns of Marghera and Mestre.

Satellite image (Fig. 2.1(a)) shows the wide V-shaped cloud shield of the MCS and different

convective cells over the southern side of the Alpine range, indicating that the large-scale

environment was favourable to deep and widespread convection.

Figure 2.1: Left: Satellite image at 06:00 UTC. Right: observed accumulated precipitation
for the 12-h period from 00 UTC to 12 UTC, 26 Sep. 2007

Figure 2.2: NCEP-GFS analyses of 00 UTC, 26 Sep. 2007, at 925 hPa. Left: mean sea level
pressure (hPa). Right: wind vectors and speed (m/s)

The approaching of a mid-tropospheric trough towards the western Alpine region favoured

a lee cyclogenesis over the Gulf of Genoa that, together with a minimum previously located
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over Tunisia, contributed to generate a wide low-pressure area over central Mediterranean

and northern Italy (Fig. 2.2). The resulting cyclonic circulation strengthened the pre-

existing south-easterly flow that affected the eastern Po valley coming from the Adriatic sea,

advecting moist and unstable air. Colder air was already present over the central and eastern

Alps, associated with a cold front moving slowly to the south east. As typical, cold air was

turning anticyclonically around the eastern Alps, while west of them the cold outbreak had

already penetrated over the Mediterranean as Mistral flow.

Some scattered convective cells were observed over the central and eastern Po Valley after

about 02 UTC. Two hours later, a MCS started developing along a line roughly oriented from

southwest to northeast in the area between Venice and the Prealps. Observed surface rainfall

and wind data recorded by 49 automatic stations in the area indicate that convective cells

organized in a zone of low-level convergence between the more intense south-easterly wind,

blowing from the sea, and a weaker north to north-easterly wind, blowing over inland plain

(Fig. 2.3(b)). Rain gauges data show that intense precipitation (rain-rate > 40 mm/hr)

affected the same area for almost 5 hours. A peak of hourly rainfall amount of about 126

mm in one hour was recorded around 06 UTC.

The surface wind configuration and related convergence zone persisted throughout the MCS

activity, suggesting that the moist south-easterly flow had a relevant role in feeding con-

vection. The MCS then slowly moved eastward, over the sea. After about 10 UTC, the

north-easterly flow, following the MCS translation, invaded the area previously affected by

the south-easterly wind. The 12-hour accumulated precipitation, from 00 to 12 UTC of 26

September is reproduced in Fig. 2.1(b), which shows a narrow area of high rainfall amounts,

oriented from southwest to northeast, with a maximum of 324 mm, of which almost 250 mm

fell in 3 h. This event produced the highest rainfall amount observed during the D-PHASE

Operations Period.

Figure 2.3: Left: 30-min accumulated precipitation (mm) at 04:30 UTC. Right: observed
surface wind vectors (m/s) and convergence (−10−3s−1) at the same time
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Resolution Initial time Forecast IC - BC
[km] (UTC) [h] range [h] (run)

AROME∗ 2.5 00, 26 Sep 30 ALADFR∗

ARPEGE (00, 26 Sep)

COSMO CH 2.2 00, 26 Sep 24 COSMOCH7∗

ECMWF (00, 26 Sep)

MOLOCH GFS 2.2 09, 25 Sep 39 BOLAM
GFS (00, 25 Sep)

MOLOCH ECMWF 2.2 00, 26 Sep 48 BOLAM
ECMWF (18, 25 Sep)

Table 2.1: Main characteristics of models configurations. ∗Indicates models that use an
assimilation scheme

The high-resolution models

We selected the forecasts provided by 3 models, namely AROME, COSMO CH and MOLO-

CH, whose domains suitably covered the area of interest. The modelling chain comprising

the MOLOCH model was run with 2 different initial and boundary conditions so that a

total of 4 forecasts were analysed in this work. Main characteristics of model setup are

summarized in Table 1. The AROME forecasts were performed daily by the CNRM of

Meteo-France. Each run started at 00 UTC and covered a period of 30 hours; numerical

integrations were computed on a three-dimensional grid with horizontal resolution of 2.5 km

and 41 levels. Initial and boundary conditions were provided every 3 hours by the non-

hydrostatic ALADIN-France model implemented on a domain with horizontal mesh-sizes

of 9.5 km and 46 levels. Such model was initialized and updated every 3 hours using the

ARPEGE global spectral model outputs.

The selected COSMO CH simulation was performed by MeteoSwiss that implemented a

modelling chain based on initial and boundary conditions derived from the European Centre

for Medium-Range Weather Forecast (ECMWF) global model forecasts initialized at 00 and

12 UTC. The COSMO CH model was run on two 1-way nested domains with horizontal

resolution of 7 and 2.2 km respectively. Two runs per day, with a forecast range of 72 hours,

were performed on the outermost domain. Outputs from these runs were used to initialize

every 3 hours a new forecast performed on the high-resolution domain, with a time step of

20 sec. The selected run, with forecast range of 24 hours, was initialized at 00 UTC of 26

September.

The MOLOCH model, developed at the Institute of Atmospheric Sciences and Climate -

National Research Council (ISAC-CNR) in Bologna, produced two forecasts per day: one

using NCEP-GFS analysis and 3-hourly forecast at 0.5 degree resolution, the other using

ECMWF analysis and 3-hourly forecast at 0.25 degree resolution. The modelling chain

employed at ISAC was based both on the hydrostatic model BOLAM and the non-hydrostatic

model MOLOCH, nested in BOLAM. BOLAM was run with a horizontal resolution of 0.11
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degree and 40 levels. The MOLOCH run using GFS data (MOLOCH GFS, indicated also as

ISACMOL in the D-PHASE database) started at 09 UTC each day, i. e. at the 9th forecast

hour of the BOLAM run. The MOLOCH run using ECMWF data (MOLOCH ECMWF,

indicated also as ISACMOL2) started at 00 UTC each day, i.e. at the 6th forecast hour of

the BOLAM run. MOLOCH was implemented with a horizontal resolution of 0.02 degree

and 50 levels. We selected the MOLOCH forecasts obtained through the BOLAM runs

initialized with 18 UTC ECMWF analysis of 25 September and with 00 UTC GFS forecast

of 25 September, respectively.

Results

Figure 2.4: 12-h accumulated precipitation (mm) at 12 UTC, 26 Sep. 2007, as fore-
casted by AROME (top-left), COSMO CH (top-right), MOLOCH ECMWF (bottom-left)
and MOLOCH GFS (bottom-right)

Precipitation fields, predicted by the different models over the time interval from 00 UTC to

12 UTC 26 September, are analysed and compared with the corresponding observed rainfall.

Fig. 2.4 shows the spatial distribution of the 12-h accumulated precipitation forecast by

the four different runs. The AROME forecast (Fig. 2.4(a)) produces a relevant portion of

precipitation over the Adriatic sea with a maximum of about 160 mm. The northernmost

precipitation peak, of about 140 mm, is reproduced over the coastal area adjacent to the

eastern tip of the Venice Lagoon. Amounts of about 60 mm in 12 h are forecast over

the Prealps north of the flat region of interest. The COSMO CH model (Fig. 2.4(b))
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produces the smallest precipitation amount among the selected models. Some scattered

peaks of about 40 mm are simulated over the coastal area east of the Lagoon; the most

intense precipitation is located over and at the foothills of the Prealps northwest of the focus

area, with a peak of about 80 mm. The MOLOCH ECMWF run (Fig. 2.4(c)) shows a

precipitation pattern covering the region extending from the Lagoon area to the Prealps.

The most intense precipitation is located over the flat area in between, with a maximum

of about 150 mm. Rainfall up to 120 mm is reproduced over the area where most intense

precipitation was observe, while weak rainfall affects the sea. The MOLOCH GFS run

(Fig. 2.4(d)) provides the highest precipitation amount among the four forecasts. Intense

precipitation is reproduced over the sea facing the area of interest and the adjacent flat

region: a maximum of about 240 mm is located close to the observed one. A wide area of

intense simulated precipitation also hits the mountainous region with a secondary maximum

of 180 mm in 12 h.

The largest amounts of precipitation simulated in the four runs are located along a direction

roughly from southeast to northwest, that is from the coastal to the mountainous region

(Fig. 2.5(a)), indicating the occurrence of different lifting mechanisms, due to low-level

convergence zones over the flat terrain and over the sea, and to orography near the Alps.

The time evolution of the convective available potential energy (CAPE) computed upstream

of the Lagoon (not shown) indicates that sensibly lower values of CAPE were simulated in

the COSMO CH run, suggesting a possible reason for the smaller amount of precipitation

of this model. A key-role for the generation and maintenance of the MCS was played also

by the surface south-easterly flow that developed over the Adriatic sea, in the form of a low

level jet (LLJ), induced mainly by the synoptic scale environment. Model differences in the

simulation of the dynamical and thermodynamic properties associated with this LLJ and its

interaction with other currents, especially the north-easterly flow south of the Alps, seem to

account for the main differences in forecasting precipitation amount and location.

The hourly series of observed and modelled precipitation, averaged on a domain centred on

the study area, are presented in Fig. 2.5, in order to evaluate the main temporal features

of the simulated rainfall evolution (see in particular Fig. 2.5(b)). All the models except

COSMO CH reproduce a distinct rainy phase starting and culminating during the first 12

hours of 26 September. The AROME model shows the best results in terms of timing

and rainy spell length. The absolute maximum is forecast one hour before the observed

one, while an unobserved but significant peak is reproduced four hours after precipitation

started. Such evolution is caused by the activity of several convective cells affecting the

area at different times of the analysed period. For example, at the beginning of the most

intense hourly precipitation peak (06 UTC), the high-level cloud cover simulated by AROME

(Fig. 2.6(a)) indicates the presence of a convective cell over the area of interest and smaller

cells over the adjacent sea. A different evolution is depicted in time series derived from
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Figure 2.5: Left: 12-h observed (shaded) and simulated accumulated precipitation (mm),
showing maximum amounts: 100 mm isoline for AROME and MOLOCH, 50 mm isoline
for COSMO CH. Right: hourly precipitation time series averaged over the 1◦x1◦ domain
depicted in the left panel

the two MOLOCH runs: in both simulations, most of precipitation is accumulated during

a rainy spell produced by an intense convective structure that affects the area for at least

four hours. In the MOLOCH ECMWF run, the most intense convective activity occurs

after a period of weaker precipitation beginning at about 04 UTC and lasting for about four

hours. The maximum is underestimated and reproduced three hours later than observed;

the subsequent precipitation decay is less marked than in the observed evolution. However,

the resulting overall trend realistically captures the length of the rainy period even if it is

delayed by about three hours. The MOLOCH GFS run starts to simulate significant rainfall

by 06 UTC, later than the other runs. The shorter rainy spell is associated with a strong

convective structure that produces, three hours later than in the observations, the highest

hourly area-averaged precipitation amount, even somehow overestimating the observed peak.

As shown in Fig. 2.6(b), during the period of most intense hourly precipitation (10-11 UTC),

MOLOCH develops a realistic V-shape cloud shield, resembling the observed MCS (Fig.

2.1(a)), with convection regenerating over the area next to the vertex.

Conclusions

An intense MCS, that affected the Venice Lagoon area during the morning of the 26 Septem-

ber 2007 with very intense precipitation and flood of nearby towns, has provided the opportu-

nity to evaluate the performance of a subset of the short-range, high-resolution deterministic

forecasts produced during the MAP D-PHASE Operation Period.

Spatial and temporal precipitation characteristics varied significantly among the four model

forecasts. All models underestimated the observed accumulated maximum amount. How-



Fine–scale modelling and forecasting in hydrology and meteorology 71

Figure 2.6: Simulated high level cloud cover (%). AROME at 06 UTC (left), MOLCOH GFS
at 10 UTC (right), 26 Sep. 2007

ever, three models reproduced quite clearly the convective nature of the precipitating MCS,

predicting intense precipitation, ranging from about 120 to 240 mm, within an area very close

to the one where the MCS was actually observed. Therefore, the short-range, high-resolution

operational forecast of the analysed convective event can be considered at least moderately

successful, also considering that the forecast range varied between 24 and 48 hours.

Various factors acting on different scales contributed to this result, like the presence of a

moderate low over the Gulf of Genoa (lee cyclone), the CAPE distribution, the northeasterly

flow over the Veneto plains, south of the Alps, and the intensity of a low level jet over the

central and northern Adriatic sea. The modelled convective activity appeared to depend to

a large extent on the considered model. In spite of the different initialization data, and the

lack of mesoscale assimilation, both MOLOCH runs reproduced the most intense and long-

lasting convective structures, resembling the observed MCS and differing from the rather

scattered convection reproduced by the AROME model. The noticed space variability of

precipitation was mainly related to differences in modelling the mesoscale evolution of the

moist and unstable south-easterly flow over the Adriatic mentioned above. It appeares

to constitute the main mesoscale feature directly involved in triggering and maintaining

the convective activity. This indicates that, through the set up of a low-level cyclone and

associated circulation, the large scale environment drove the convective event consequently

favouring its reatively high degree of predictability.
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Abstract

This study is part of the international MAP-D-PHASE Project, whose main objective is

to demonstrate the benefits in forecasting heavy precipitation and related flood events, by

coupling atmospheric and hydrological models. The analysis is focused on the River Toce,

a middle-size alpine basin, in North-West of Italy. The hydro-meteorological chain includes

both probabilistic forecasts based on ensemble prediction systems with lead time of a few days

and short-range forecasts based on high resolution deterministic atmospheric models. The

hydrological model used to generate the runoff simulations is the rainfall-runoff distributed

FEST-WB model, developed at Politecnico di Milano. The observed data to run the control

simulations were supplied by ARPA-Piemonte. A re-analysis for two precipitation events,

affecting the Toce river basin at half June and at the end of November 2007, is shown.

Introduction

In recent years, the interest in the prediction and prevention of natural hazards related to

hydrometeorological events has grown, due to the increased frequency of extreme rainstorms

(Rabuffetti et al. 2005a). Several research projects have been developed to test hydrome-

teorological models for flood forecasting, like HYDROPTIMET Project (Rabuffetti et al.,

2005b), and AMPHORE Project (Rabuffetti et al., 2008 and Amengual et al., 2008), two

recent Interreg IIIB EU Programmes. Despite these improvements, forecasting of highly

localized and severe events is still a challenging problem in many areas, particularly where

orographic feature and mesoscale structures cannot be properly represented by Global Cir-

culation Model - Ensemble Prediction System (GCM-EPS) because of its coarse horizon-

tal resolution (Federico et al., 2006). For this reason the challenge for numerical weather

modelling, in particular for limited area models, is to improve the Quantitative Precipita-

tion Forecasts (QPFs) for hydrological purposes. Following this goal, many research bodies

participated during the summer and autumn 2007 at MAP-D-PHASE Project. D-PHASE

stands for Demonstration of Probabilistic Hydrological and Atmospheric Simulation of flood
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Events in the Alpine region and is a Forecast Demonstration Project (FDP) of the WWRP

(World Weather Research Programme of WMO). It aims at demonstrating some of the many

achievements of the Mesoscale Alpine Programme (MAP). The MAP FDP will address the

entire forecasting chain ranging from limited-area ensemble forecasting, high-resolution at-

mospheric modelling (km-scale), hydrological modelling and nowcasting to decision making

by the end users, i.e., it is foreseen to set up an end-to-end forecasting system. The D-

PHASE Operations Period (DOP) was from 1 June to 30 November 2007. In this framework

two non-hydrostatic meteorological limited area models are used to predict such phenomena

at local scale: one with a spatial resolution of 10 km, supported by the powerful ensemble

prediction system (Cosmo-Leps model) and the other with a finer grid, but with one deter-

ministic output only (Moloch model). The hydrological model (FEST-WB), developed at

Politecnico di Milano, was forced with observed weather data and QPF data coming from the

meteorological models used. The state variables of the model are updated daily by A.R.P.A.

- Piemonte that runs the same model with weather observations. The aim of this work

is to reproduce a hindcast for two precipitation events, affecting the Toce river basin, the

Western watershed of Maggiore Lake basin in North-West of Italy, at half June (convective

event) and at the end of November 2007 (stratiform event), in order to estimate how the

uncertainty of meteorological forecasts influences the quality of hydrological forecasts and

the whole hydrometeorological alert system for a midsize catchment.

Case study

The Toce basin (Figure 2.1) is a midsize watershed located between North-West of Italy (90

%) and South of Switzerland (10 %). The area, closed at Candoglia, covers 1534 km2 and

it is basically an Alpine basin with maximum altitude of 4635 m a.s.l. (East face of Mount

Rosa) and minimum altitude of 193 m a.s.l. (height of Maggiore Lake). The lag time of Toce

river is about 9 hours.

During the MAP-D-PHASE period three warning codes were adopted to highlight different

alert thresholds from a meteorological and hydrological point of view. As shown in Figure

2.2 the yellow line points out a discharge (306 m3/s) with a return period of at least 60 days,

the orange line points out a discharge (694 m3/s) with a return period of at least 180 days

and the red line a discharge (1588 m3/s) with a return period of at least 10 years.

Meteorological models

The hydrometeorological chain includes both probabilistic forecasts based on ensemble pre-

diction systems with lead time of a few days and short-range forecasts based on high res-

olution deterministic atmospheric models, in order to predict the QDF (Quantitative Dis-

charge Forecast). The probabilistic forecast was supplied by Cosmo-Leps model (COnsortium
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Figure 2.1: Geographical map with the
raingauge stations located in the Maggiore
Lake basin. The red line bounds the Toce
basin.

Figure 2.2: Warning codes used for Toce
basin at Candoglia during the DPHASE
period.

for Small-scale Modelling - Limited-Area Ensemble Prediction System) of A.R.P.A. Emilia-

Romagna (Marsigli et al., 2005, Montani et al., 2008). The spatial resolution is 10 km (0.09),

while the temporal resolution is 3 h, with 40 vertical levels, 16 ensemble members nested

on ECMWF EPS (European Centre for Medium Range Forecast - Ensemble Prediction Sys-

tem) and 5 days as lead-time; the run starts every day at 12:00 UTC, while the hydrological

simulation begins 12 hours later at 00:00 UTC. The deterministic forecast was supplied by

Moloch model of I.S.A.C. - C.N.R. (Davolio et al., 2007). The spatial resolution is 2.2 km

(0.02), while the temporal resolution is 1 h, with 50 vertical levels, nested on BOLAM, based

on ECMWF and 2 days as lead-time; the run starts every day at 00:00 UTC, at the same

time of the hydrological simulation.

Hydrological model

The hydrological model used to generate the runoff simulations is the rainfall-runoff dis-

tributed FEST-WB model, developed at Politecnico di Milano. FEST-WB computes the

main process of the hydrological cycle: evapotranspiration, infiltration, surface runoff, flow

routing, subsurface flow and snow dynamics. The computation domain is discretized with

a mesh of regular square cells, within which water fluxes are calculated. The models needs

spatially distributed meteorological forcing. The observed data at ground stations are in-

terpolated to a regular grid using IDW technique, considering the effect of topography such

as elevation, aspect and shadow (Rabuffetti et al., 2008). Runoff is computed according to

a modified SCS-CN method extended for continuous simulation where the potential maxi-

mum retention, S, is updated at the beginning of storm as a linear function of the degree

of saturation (Ravazzani et al., 2007). The actual evapotranspiration, ET, is computed as a

fraction of the potential rate tuned by a function that, in turn, depends on soil moisture con-

tent (Montaldo et al., 2003). The estimation of ETP is computed with Priestley and Taylor
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Figure 2.3: Ensemble QDF for Cosmo-
Leps model from 14 June to 17 June 2007.

Figure 2.4: Box-Whisker plot for Cosmo-
Leps. The date is referred to the day of
the initial hydrological simulation.

(1972) equation. The surface and subsurface flow routing is based on the Muskingum-Cunge

method in its non-linear form with the time variable celerity (Montaldo et al., 2007). The

snow model includes the snow melt and the snow accumulation dynamics. The snow melt

simulation is based on the degree day concept (Martinec et al., 1960). The melt rate is pro-

portional to the difference between air temperature and a predefined threshold temperature

(Saladin et al., 2004).

13-15 June 2007 event

The synoptic analysis over Europe showed a low depression located South-West of the British

Isles with cold air moving eastward over the Po Valley, triggering convective cells on the

southern edge of the Alps (about 100 mm of total rain over Toce basin in about 48 hours).

The hydrological simulation (green line), done by FEST-WB model, has reached a peak of

750.7 m3/s and it presents 3 hours of delay as peak time error compared to the observed

discharge (red line) of 783.2 m3/s. The QPF predicted by Cosmo-Leps model shows a

general underestimation in all three days of simulations for all 16 members. This affects the

forecasted discharge (Figure 2.4) that has never exceed the second alert threshold as shown

in Figure 2.3.

The Moloch model, instead, has predicted, one day in advance, the peak discharge, exceeding

the second threshold like the observed and simulated discharge, even if there is an evident
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Figure 2.5: QDF for Moloch model (light
green curve) from 14 June to 15 June 2007.

Figure 2.6: QDF for Moloch model (light
green curve) on 15 June 2007.

error in time and volume as shown in Figure 2.5. On the contrary, on the same day of the

peak event, the QPF was totally underestimated and the discharge has not exceeded even

the first alert threshold (Figure 2.6).

21-23 November 2007 event

The synoptic analysis over Europe showed a typical autumn pattern with a deep depression

on Atlantic Ocean, bringing moist flow from South-West towards the Italian Alps (about 80

mm of rain on Toce basin, after a long dry period of two months). First of all the FEST-WB

discharge simulation with real data has been completely underestimated on 21 (Figure 2.7)

and 22 November, due to a not correct initial value of river discharge. Data assimilation

of observed discharge, not used in FEST-WB, may provide better results. Therefore, even

if Moloch and Cosmo-Leps models have shown a general overestimation of rainfall in terms

of volume and intensity, the forecasted discharges remained underestimated. Only on the

peak flow day (23 November), after two days of precipitation, a perfect synchrony between

the observed and forecasted precipitation (Figure 2.8) and discharges peak is pointed out

both for Cosmo-Leps (Figure 2.9) and Moloch model (Figure 2.10). Anyway the observed,

simulated and forecasted discharge has never exceeded the first threshold (306 m3/s) in any

model, i.e. no alert was issued for this event.

Conclusions

This analysis has shown the results of the hydro-meteorological chain with a multi-model

comparison, using the weather models output (Cosmo-Leps and Moloch) as input into the

hydrological model (Fest-WB) to predict a QPF (Quantitative Precipitation Forecast) and

a QDF (Quantitative Discharge Forecast). The proposed hydro-meteorological forecasting

system has been implemented in a real-time configuration, in order to provide useful informa-

tion concerning the discharge peak (magnitude and timing). High resolution meteorological
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Figure 2.7: Observed (red line) vs simu-
lated discharge by FEST-WB model with
initial conditions start on 21 November.

Figure 2.8: Forecasted mean area accumu-
lated precipitation by Cosmo-Leps model
on 21 November.

Figure 2.9: QDF for Moloch model (light
green curve) on 23 November 2007.

Figure 2.10: QDF error for Cosmo-Le-
ps ensemble members (black dots) and
FEST-WB (dark green dot).

model seems to show greater reliability on the prediction of flood on complex topography,

but the number of investigated flood events is too small to draw conclusions. Future studies

could be addressed to better evaluate the temporal and spatial scale for the total rainfall

volume, above all for the convective events. For stratiform events further analyses could be

carried out on snow melt temperature which affects the liquid precipitation and therefore the

forecasted runoff, like in November event where the snow melt limit was very changeable.
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Introduction

U.O. Idrografia, the hydrology office of ARPA Lombardia, is in charge of river and lake

monitoring, discharge measuring, rating curve development and updating. ARPA also co-

operates with the Civil Protection Department of Regione Lombardia in flood forecasting

and monitoring. The Lambro river runs in the Po valley with a north-south orientation and

crosses the city of Milan in the east area (Figure 2.1). Milan has a very high population

density and the authorities are aware of the flood risk coming from the river.

Figure 2.1: The Lambro basin has an area of 562 Km2.

Medium-small catchments, like Lambro closed at the Milan via Feltre section (Figure 2.2),

have fast response that makes difficult to alert the population with a proper advance or to

plan discharge measures at high hydrometric levels. For all these reasons the Civil Pro-

tection Department of Regione Lombardia developed a semi-distributed hydrological model

of the Lambro river. Coupled with meteorological models and observed rainfall data, the

hydrological model may give an appropriate flood forecast. The scientific community has

been working on coupling meteorological and hydrological models since the 1990s (Yu Z. at

al., 1999) and the quantitative precipitation forecast was immediately found as the main

source of uncertainty in the whole process. Recently Arduino G. et al (2005) underlined the

importance of a high spatial resolution of meteorological models in order to resolve small

scale phenomena such as the convective events or the orographic effects (Bartholmes J. at al.,

2005). Other authors (Davolio S. et al., 2008; Coulibaly P., 2003; Taschner S. et al., 2000)
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observed that the precipitation forecast differs model by model and developed a multi-model

or ensemble approach for their studies. In the MAPDPHASE project ARPA Lombardia -

U.O. Idrografia applied the multi-model approach to the Lambro basin: the precipitation

fields, from four meteorological models (Table 1), have been used as input of one hydrological

model. Possible interactions or feedbacks between meteorological and hydrological models

(Verbunt M. et al, 2006; 10 Jasper K. et al., 2002) are here neglected.

The hydrological model

The Lambro basin is characterized by different orography and land use: the northern area

is mountainous and rural while the southern part is plain and very urbanized. Rural and

urbanized areas have different response time and infiltration capacity, then Civil Protection

Department divided the Lambro basin into 44 sub-basins and described them with 44 rainfall-

runoff lumped models. The runoff from each sub-basin is the input of a hydraulic model

that computes the discharge propagation and the water level at the cross-sections.

Figure 2.2: The Lambro basin divided into the 44 sub-basins. Milan via Feltre section (red
circle), raingauges (green cricles).

The meteorological model

The Lambro basin is characterized by different orography and land use: the northern area

is mountainous and rural while the southern part is plain and very urbanized. Rural and

urbanized areas have different response time and infiltration capacity, then Civil Protection
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Department divided the Lambro basin into 44 sub-basins and described them with 44 rainfall-

runoff lumped models. The runoff from each sub-basin is the input of a hydraulic model

that computes the discharge propagation and the water level at the cross-sections.

Table 1: Meteorological models

Case Studies

Here two interesting rainfall-runoff events are analyzed: the convective event on September

17th 2007 and the frontal event on November 23rd 2007. The convective event on September

17th was very short (6 hrs) and intense. None of the meteorological models forecast the

event and neither precipitation nor runoff were given in output. Anyway, using observed

precipitation as input, the hydrological model well reproduced the observed discharge (Figure

2.3).

On the contrary, the frontal event of November 23rd has been forecast four days in advance

by the CLEPS model (Figure 2.4a). Looking at the forecast made on November 22nd,

three out of four meteorological models forecast either temporal or spatial behavior of the

precipitation (Figure 2.5). The hydrological model well simulated the temporal behavior of

the event (Figure 2.4b), even if it overestimated the actual discharge because of the too high

soil moisture initial conditions.

The event has been forecast four days in advance, this allowed U.O. Idrografia to plan

a discharge measure on November 23rd. On November 22nd three meteorological models

confirmed the rainfall event and the hydrological model predicted the peak time around

midday: an U.O. Idrografia team had enough time to setup the instrumentation at Milan

via Feltre section, waited for the peak and measured it (Figure 2.6a). In Figure 2.6b the

rating curve and the discharge measure are shown. Since the discharge value is very close to

the line, it confirmed the rating curve.

Conclusions

Meteorological models well simulated frontal precipitation events but the convective ones are

not completely reproduced yet. The time behavior of the flood event is well reproduced by

the hydrological model, even if initial soil-moisture conditions affect the actual discharge. A
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Figure 2.3: Forecast made on September 16th: Mean areal rainfall intensity (a) and cumu-
lated rainfall over the Lambro basin, (b): the convective event is not resolved by any model.
Discharge at Milan via Feltre (c): using observed rainfall from raingauges the hydrological
model (light blue line) well simulated the observed discharge (dark blue line).

Figure 2.4: Discharge forecast made on Novenber 19th (a): the chain CLEPS-hydrological
model forecast a discharge event on November 23rd; comparing the observed discharge (dark
blue line) with the simulation using observed rainfall (light blue line), the hydrological model
overestimated discharge because of the too high soil moisture initial conditions. Discharge
forecast made on November 22nd, (b): ARPALMOL and LAMI28 chains well reproduced
the simulation using observed rainfall, the simulated peak time matches with the observed
one.

frontal rainfall event and the occurrence time of the flood peak have been forecast 4 days in

advance. This allowed ARPA Lombardia - U.O. Idrografia to plan and carry out a discharge

measure right during the flood peak. Then the rating curve of Milan Via Feltre section has

been validated.
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Figure 2.5: Forecast made on November 22nd: Mean areal rainfall intensity (a) and cu-
mulated rainfall over the Lambro basin, (b): the frontal event is well resolved by CLEPS,
ARPALMOL and LAMI28. Spatial distribution of cumulated rainfall over Lambro basin (c):
the orographic effect is simulated by CLEPS, ARPALMOL and LAMI28.

Figure 2.6: (a) Discharge measure at Milan via Feltre on November 23rd, (b) the measured
discharge (red point) well fits with the rating curve.

Further developments

With the MAPDPHASE project ARPA Lombardia experienced the efficacy of coupling me-

teorological and hydrological models. U.O. Idrografia is now testing the methodology on

some mountainous basins using simple hydrological lumped models. The basins are shown

in Figure 2.7 and are of great interest from a hydrological point of view. If positive results

will be achieved, as in the MAPDPHASE project, U.O. Idrografia will have a very useful
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help for planning discharge measures.

Figure 2.7: ARPA Lombardia - U.O. Idrografia is testing MAPDPHASE approach on some
mountainous basins for flood forecasting.
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2.6 The flood event near Venice of 26 September 2007: uncer-
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model
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Abstract

The quantitative precipitation and other meteorological fields obtained from a number of

different simulations made using the ISAC MOLOCH model, nested in BOLAM as in the

configuration applied during the D-PHASE experiment, are presented for the heavy precip-

itation event that affected the area of Venice on the 26th September 2007. In order to assess

to what extent the event was predictable, and how sensitive the QPF is to different initial

conditions and model parameters, the model chain setup differs from that of the D-PHASE

in some aspects. Simulations based on initial and boundary conditions derived from GFS

and ECMWF global forecasts at different times before the event are compared. Although

the intense precipitation event is expected to have low predictability due to its convective

nature, and in spite of the high spread of QPF obtained, the forecasts of explicit convection

made more than 24-30 hours in advance indicate that the larger scale environment driving

the event dynamics (as the formation of an Alpine lee cyclone, the presence of a low level

jet over the Adriatic Sea and of a cold outbreak over the Veneto inland areas) played an

important role in favouring predictability. Results of different sensitivity experiments are

shown.

The event and the model setup

In the early morning of 26 September 2007, several thunderstorms developed over the south-

ern side of the Alps and over the plains of northern Italy, in association with the formation

of a moderate mesoscale lee cyclone over the Gulf of Genoa and a deepening of an upper

level trough west of the Alps (see Fig. 2.6a below). Heavy precipitation was recorded near

Milano, but the most prominent intense rainfall event, which seems to have produced the

maximum accumulated precipitation over 12-24 hours during the entire D-PHASE project

period (Arpagaus et al, 2008), affected an area 10-20 km to the west of Venice, near the

town of Marghera (Fig. 2.1), as described in detail in Barbi et al (2007). The absolute

precipitation maximum exceeding 300 mm was mostly due to the heavy rainfall occurred in

the period 5:00 - 11:00 UTC. The consequence was extensive flooding of the flat area.
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Figure 2.1: Accumulated precipitation of 26 Sep. 2007 (courtesy of ARPAV, Teolo, Padova)

Figure 2.2: MET-9 IR image at 07:00 UTC, 26 Sep. 2007 (EUMETSAT copyright - courtesy
of ARPAV, Barbi et al, 2007)

Different convective cells formed in the area located between the Veneto Prealps and the

Venice Lagoon, starting around 2:00 UTC. Deep convection developed 3-4 hours later into

a MCS that formed about 20 km to the west of Venice and insisted over the region for

more than 6 hours, before moving slowly to the east, over the Adriatic sea. The MCS

was characterized by a distinct V-shaped cloud top, oriented SW-NE, and was deep (top

temperature ∼ -55 C, corresponding to a height of about 12 km - see Fig. 2.2).

The operational MOLOCH (Malguzzi et al, 2006) forecast (ISACMOL) of D-PHASE based

on 00 UTC GFS/NCEP analysis of 25 September (24-36 hour range) essentially captured

the event, predicting a precipitation maximum of 242 mm, located about 20 km north and
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2-3 hours late compared with observations.

This case has been chosen to assess the sensitivity of the forecasts to various factors. The

MOLOCH resolution is the same as for the D-PHASE (2.2 km), but with a smaller domain

(250x250 in place of 340x290 grid points), centred over the area of interest. The MOLOCH

runs considered here, always starting at 01 UTC of 26 September, are nested into BOLAM

(Zampieri et al, 2005) runs initiated at different times, as specified in the following section.

Experiment results

Sensitivity to the initial conditions

The various experiments have been run starting with ECMWF analyses at September 25-00,

25-12 and 26-00, and GFS analyses at 25-00 and 26-00, respectively. Figure 2.3 shows the

two runs starting at 25-00. The two cases produce similar precipitation maxima, but the

GFS-based run, as in the DPHASE case, gives the best localization. All the other simulated

forecasts initialized at later times (not shown) produce smaller precipitation and with larger

geographical errors (except for the ECMWF run starting at 25-00).

Figure 2.3: Accumulated precipitation as forecast by the MOLOCH model, in the period
01-12 UTC of 26 Sep. 2007. Left: from GFS/NCEP analysis. Right: from ECMWF analysis

The position and intensity of the precipitation maxima obtained in the five experiments are

summarized in Fig. 2.4, superimposed on the model orography. Different colours indicate

precipitation ranges: blue: > 200 mm; red: 150-200 mm; yellow: 100-150 mm. The arrow

points to the position of the observed precipitation maximum. The red circle, having a radius

of 40 km, encompasses all the precipitation maxima resulting also from other sensitivity

experiments. In the following, the forecast starting with the GFS analysis of 25-00 is named

as “control” case.
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Multicell structure and V-shape MCS

One of the distinctive features that characterize the “successful” forecasts among those con-

sidered here, which produce realistic amounts of precipitation, is related to the vertical

penetration and degree of organization of the simulated MCS. The observed MCS was pre-

ceded by a multi-cellular stage, before developing into a V-shape structure. The MOLOCH

“control” simulation reproduces both stages of development (see the vertical velocity at 500

hPa at 09 - Fig. 2.5a - and 11 UTC - Fig. 2.5b - respectively). Figure 2.5b shows the

V-shape feature of the mid-high tropospheric updraft. This figure reflects the shape of the

anvil visible in Fig. 2.2.

Role of the orography

The MCS developed during a lee cyclogenesis process: at 26-00 a distinct geopotential min-

imum is present at 850 hPa over the Ligurian Sea, as indicated by the 850 hPa geopotential

in Fig. 2.6a as obtained in the BOLAM model forecast. The lee cyclone circulation induces,

together with the direct barrier effects of the Alps but also of the Apennines and the Dinaric

Alps, a strong low-level flow confluence/convergence over the area where the severe convec-

tion is initiating, as indicated schematically by the arrows in Fig. 2.6a. Over the Adriatic, a

SE low level jet (LLJ, indicated by the red arrow) advects warm and moist air, while a NE

cold flow (partly a barrier wind, indicated by the blue arrow) is present more to the north,

over the Veneto plains. In the case the BOLAM run is performed after the model orography

height has been arbitrarily reduced to one fourth of its original amplitude (Fig. 2.6b), the

lee cyclone and related convergence are suppressed, the cold front moves smoothly to the SE

and severe convection does not develop in the model experiment.

Figure 2.4: Position and intensity of precipitation maxima obtained using different global
initial conditions (see text)
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Figure 2.5: Vertical velocity w at 500 hPa, at 00 UTC (left panel) and 11 UTC (right panel),
26 Sep. 2007, as reproduced by the MOLOCH forecast experiment

Conclusions

The results of the D-PHASE project allow us to evaluate to what extent organized convection

can be predicted, in the short range, by convection-resolving models, also in association with

the capability of forecasting the mesoscale phenomena that determine location and timing

of thunderstorm activity. The intense convective precipitation event that affected an area

near Venice on September 26 constitutes an interesting case-study.

The MOLOCH model, which produced the more realistic QPF in real time for this event,

has been used to evaluate heuristically the forecast uncertainty in the range from 6 to 36

hours in advance. A large number of MOLOCH a posteriori forecasts were performed,

changing initial conditions, model chain setup (including the intermediate BOLAM model),

model parameters, and physical and dynamical schemes. The results are sensitive to the

Figure 2.6: BOLAM forecast at +24h, verifying at 00 UTC of 26 Sep. 2007; Left: with full
orography; Right: for a orography height reduced to 1/4
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convective parameterization scheme applied in the lower resolution model, extension of the

inner domain, time at which the fine resolution model is initiated, and spatial resolution.

However, in all cases, the MCS developed in the model within the circle depicted in Fig. 2.4

and produced maximum rainfall in the range between 140 and 290 mm.

The above results indicate that forecasting severe convective events and associated quanti-

tative precipitation in advance of one day or so is feasible in cases in which convection is

embedded in mesoscale flows having sufficient predictability. This result is consistent with

the recent finding of Weisman et al (2008), regarding the forecast application of the non-

hydrostatic, convection-permitting WRF model over the North America, nested in the Eta

model. In fact they conclude that “perhaps the most notable result is the overall strong

correspondence between the Eta and the WRF-ARW guidance. . . , suggesting the overrid-

ing influence of the larger scales of forcing on convective development in the 24-36-h time

frame. . . . The relative success in forecasting seemingly unpredictable phenomenon such as

convection out to 36h seems most directly related to its strong connection to identifiable

and more predictable synoptic or subsynoptic features, which establish the mesoscale envi-

ronment favourable for the convection as well as serving as the primary triggering agent”.

The event described here has precisely the characteristics identified in the former sentence,

which seem to give higher predictability to a phenomenon like convection that is intrinsically

poorly predictable.
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Introduction

Forecasting activities performed during the Demonstration Operational Period (DOP, June

to November 2007) represent the core of the World Weather Research Programme (WWRP)

Forecast and Development Project (FDP) MAP D-PHASE

(http : //www.map.meteoswiss.ch/map − doc/dphase/dphase info.htm). A wide range of

numerical models has been run in operational configuration by the project partners, providing

real-time forecast and post-processing products (e.g., maps and alerts) over two target areas,

namely, the D-PHASE and the Convective and Orographically-induced Precipitation Study

(COPS) domains. Data were stored daily on a common database (CERA–World Data Center

for Climate) and published on a web-based Visualization Platform (VP).

The APAT (now ISPRA) contribution to DOP is presented here. An improved version of

the 10-km, hydrostatic, atmospheric Quadrics BOlogna Limited Area Model (QBOLAM;

Mariani et al., 2005; Speranza et al., 2004, 2007) has been run, operationally as well, during

DOP. QBOLAM is operational at APAT since 2000 as a part of the Hydro-Meteo-Marine

forecasting System (“Sistema Idro-Meteo-Mare”, hereinafter SIMM;

http : //www.apat.gov.it/pre meteo/), on a domain covering the whole Mediterranean basin,

implemented on a parallel platform. The improvement consists mainly in the implementation

of a more accurate convection scheme, that is, the Kain and Fritsch (1990, 1993) convective

parametrization scheme (hereinafter KF).

As an example of the results of this activity, the 23–25 November 2007 case study is simulated

with both the two model versions. The impact of the cumulus convection scheme change

on the rainfall forecast is evidenced. As a first attempt of verification, model results are

qualitatively compared to the METEOSAT satellite images.
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SIMM and its recent evolution

SIMM is an integrated meteo-marine forecasting system formed by a cascade of four numeri-

cal models, telescoping from the Mediterranean basin to the Venice Lagoon (Fig. 2.1). These

are: QBOLAM; the wave model WAM over the whole Mediterranean Sea; a shallow-water

version of the Princeton Ocean model (POM) for sea elevation forecast on the Adriatic Sea;

and a finite-element version of the same model (VL-FEM) on the Venice Lagoon (aimed

to forecast the “acqua alta” events). The system was designed primarily to achieve a suit-

able resolution (i.e., 10 km grid step) on the entire Mediterranean area in order to resolve

simultaneously the whole range of scales involved in the complex phenomenology of this

region.

Figure 2.1: An outdraw of SIMM; QBOLAM inner and outer domains are also displayed.

QBOLAM is in turn a parallel version of the hydrostatic model BOLAM, developed at ISAC–

CNR (Bologna, Italy), originally designed for the massively parallel supercomputer Quadrics.

Initial and boundary conditions from ECMWF global model drive the model on the two

nested domains shown in Fig. 2.1. Due to the Quadrics synchronous (SIMD) architecture,

model code implementation was subject to severe constraints, especially concerning radiation

and convection parametrization. Specifically, the simple Kuo (1974) convection scheme was

used in place of the original, and more accurate KF.

Recent developments include porting the system on a new parallel platform (SGI ALTIX)

and, on 2007, under the project WERMED of the INTERREG IIIB MEDOCC programme,

the acquisition from ISAC–CNR of the up-to-date date serial BOLAM code. Parallelization

of the updated code, to be completed during next year, also employing this project’s results,

will overcome the above-described lacks in parametrization schemes, and implement the

recent code improvements, too. In the meanwhile, an intermediate BOLAM version – namely,

the old QBOLAM with the KF scheme – has been parallelized on the ALTIX platform

and used for research purposes. These include the creation of a multi-annual (2000–2006)
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reforecasting database and the participation to the DOP activities.

As a first use, the reforecasting database was employed for objective verification of precip-

itation forecast improvement due to KF. In fact, QBOLAM forecast verification activity

performed in APAT from 2000 (Accadia et al., 2005) evidenced as a critical point in the

QBOLAM precipitation forecast the tendency to overpredict convection over the mountains

on summer. So, two-years rainfall forecast series (Oct. 2000–Oct. 2002) from both the origi-

nal (Kuo) and the reforecast (KF) series of the model have been verified over all Italy using

categorical scores and skill scores, and the bootstrap method to provide confidence intervals

to models’ score differences (Mariani et al., 2007; Mariani 2008). Results show a significant

increase of forecast quality using KF, with a dramatic decrease of the excessive categorical

bias (BIAS) at the highest verification thresholds, and a correspondent, statistically signif-

icant increase in the equitable threat score (ETS). Such an improvement is comparatively

more pronounced on the summer season, when QBOLAM displayed most of false alarms.

The APAT activity during DOP

Our work, needed to provide suitable, real-time QBOLAM products during the 6-month

DOP, required the following steps:

1. Inserting a daily run of the intermediate code (the one using KF), after the operational

one, in the system scheduling procedure.

2. Automatic launching of scripts for model output post-processing (selection of variables,

cropping the D-PHASE and COPS domains, GRIB encoding, etc.).

3. Automatic launching of a script for the GRADS procedure which generate alerts and

images (see an example in Fig. 2.2) and for the FTP-based upload on the CERA archive

and VP (in collaboration with the D-PHASE providers).

Our contribution to the MAP D-PHASE allows a further verification of the intermediate

QBOLAM with respect to the previous version. A case-study approach has been adopted,

choosing the 22–25 November 2007 event. This was the most intense event occurred south of

the Alps during DOP (Dr. Andrea Buzzi, personal communication). Results are presented

in the following section.

Verification of QBOLAM on the 22–25 November 2007 case study

The event provided a test bed for verifying the improvement in the APAT model chain

due to the implementation of the KF scheme. The forecast of this model version has been
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Figure 2.2: Example of QBOLAM plot displayed into the D-PHASE VP: mean sea-level
pressure and 10m wind forecast for a) Nov. 23, 0000 UTC; b) Nov. 24, 0000 UTC.

subjectively intercompared with the forecast of the older version, with respect to the 24h-

accumulated precipitation analysis. Further verification will be the object of future work.

From 21 to 25 November 2007, an elongated upper-level trough moved slowly above western

Europe, while a high was stationary on the Balkans. While south-westerly advection over

the Alps was present aloft, several shallow lows developed on the western Mediterranean

(Figs. 2.3a and 2.3c), then being slowly advected eastwards (Figs. 2.3b and 2.3d). Intense

rain hit northern Italy on days 22–24 November. Many synoptic and sub-synoptic features

depicted on the maps are recognizable onto water vapor (WV) satellite images (Figs. 2.3c

and 2.3d), along with precipitating clouds: see, in particular, organized convection over the

Genoa Gulf in Fig. 2.3d.

Rain-gauge observations over northern Italy (courtesy of the Italian regional and autonomous

province environmental agencies of Valle d’Aosta, Liguria, Lombardia, Piemonte, Emilia-

Romagna, Friuli-Venezia Giulia, Veneto, Marche, Trento, and Bolzano) have been employed

for subjective quantitative precipitation forecast verification. Gridded analyses (Figs. 2.4a

and 2.4b) are obtained through a two-pass Barnes (1964) algorithm (no-data areas are blank

in figure).

Despite the lack of observation over the sea prevents us to verify most of the predicted rainfall

field, subjective verification evidences that both the model versions are able to reproduce the

gross structure of the event (Fig. 2.4 refers only to days 24 and 25 Nov.). However, shifting

in local structures is visible, and several rainfall peaks are underestimated or overestimated.

Anyway, the QBOLAM version using KF (hereinafter KF forecast) seems more able to catch

these features than the QBOLAM version using Kuo (hereinafter Kuo forecast). For instance,

on day 23 both QBOLAM versions underestimate rainfall maxima observed in the eastern

(Liguria) and southern (eastern Alps) part of the rainy area (Fig. 2.4a), whereas precipitation

is overestimated in the center of the rainy zone. Actually, the KF forecast (Fig. 2.4c) predicts

more rainfall than the Kuo one (Fig. 2.4e) over Liguria and the eastern Alps. Something
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Figure 2.3: The November 2007 event. Surface charts at 0000 UTC for a) 23 Nov.; b) 24
Nov. (courtesy of the UK Met Office). METEOSAT–8 channel 5 (WV) images at 0000 UTC
for: c) 23 Nov.; d) 24 Nov. (courtesy of EUMETSAT).

similar happens on day 24 November. Also in this case, rainfall peaks are predicted over the

south-western and the north-eastern edges of the observed rain band (Fig. 2.4b). On those

areas, the KF forecast (Fig. 2.4f) appears more in agreement with the observations than

the Kuo one (Fig. 2.4d). On the contrary, the long rain band predicted by both the models

along 9° latitude seems not to be present in the observations, although such an assessment

is questionable due to the absence of observations over the Ligurian Sea (actually, it could

be associated with the cloud system visible over the same area in Fig. 2.3d).

Summary and Outlook

The APAT activity during DOP gives an opportunity to evaluate the forecast improvement

due to the implementation of the Kain-Fritsch convection scheme in the QBOLAM model,

in place of the previously-used Kuo scheme. First qualitative results, presented here, suggest

an increased ability in predicting rainfall location and intensity. Not surprisingly, the choice

of the convection scheme does not affect the ability in predicting structures on a larger scale

(e.g., the occurrence of a rain band); rather, it affects the rainfall distribution inside such

structures (e.g., shift or underestimation of rainfall peaks).

These results are encouraging in view of the implementation, on a parallel platform, of the
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Figure 2.4: Subjective verification of the 22–25 November 2007 event. Left and right column
display 24-h accumulated precipitation on 23 November and 24 November, respectively. a)
and b): rain gauge analysis; c) and d) QBOLAM–Kuo forecast; e) and f): QBOLAM–KF
forecast.

fully updated BOLAM version (to be performed during 2009). By the way, this verification

work has been quite useful in order to design the SIMM upgrade, and to plan the related

activity. The completion of the verification of the intermediate QBOLAM version, into the D-

PHASE framework, will constitute a basis for future verification of the upcoming forecasting

system.
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Introduction

The forecasting of moist convection, especially when associated with heavy precipitation

events, is a major challenge for current numerical weather prediction models. The correct

reproduction of the different processes involved in moist convection, occurring on different

scales, and of their complex mutual interactions, is a difficult task for limited area models.

Moreover, errors in the initial conditions, associated with large-scale features, may nega-

tively affect the smaller scales and increase the precipitation forecast uncertainties. The

growing computing power and the improvements in model formulation have recently allowed

to increase the horizontal resolution of numerical models: the explicit reproduction of the

processes associated with deep convection and the finest resolution of the modelled orogra-

phy can produce positive impacts on the precipitation forecast. In this context, the objective

of the present study is to evaluate the performance of two convection-resolving models in

forecasting a mesoscale convective system (MCS) occurred over the flat area close to the

Venice Lagoon on 26 September 2007 and to give a first insight into the main mesoscale

features responsible for the occurrence of heavy rain.

The event and numerical experiments

During the morning of 26 September 2007, a deep mesoscale convective system affected the

western side of the Venice Lagoon. More than 320 mm of precipitation were recorded in

a 12-hour period, with a peak of almost 250 mm in 3 hours. Precipitations were initially

caused by scattered convective cells and subsequently by the organized convection related to

the MCS that produced the most intense rainy spell from about 05 to 09 UTC. The resulting

precipitation pattern was oriented from SW to NE (Fig. 2.1a).

The severe convective event was associated with a lee cyclogenesis occurring over the Ligurian

Sea. The related low-level cyclonic circulation induced a moist and unstable south-easterly

flow that entered the area of interest from the Adriatic Sea. The convergence between the
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unstable flow and the weaker north-easterly flow inland favoured the triggering of convective

activity (Fig. 2.1b).

Figure 2.1: (a) 12-h period accumulated precipitation at 12 UTC of 26 September 2007; (b)
observed surface wind vectors and wind field convergence (shaded, -10−3 s−1) at 06:30 UTC,
during the most intense precipitation period.

We used the WRF model (Skamarock et al., 2005) and the PSU-NCAR MM5 model (Grell

et al. 1995) to produce high-resolution simulations of the event. The WRF setup includes 2

two-way nested domains and 30 vertical levels while 3 two-way nested domains and 27 vertical

levels were used in MM5 runs. Different global forecast data (NCEP-GFS, ECMWF) were

used as initial and boundary conditions, and different convective schemes (Grell, 1993, and

Kain-Fritsch, 1990, 2004) were activated in the lower-resolution domains. In this way a

multi-model multi-analysis modelling scheme was developed to test the predictability of the

event. Further details on the different simulations are shown in Table 1.
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Table 1: summary of numerical experiments and model set up. The Kain-Fritsch scheme used in
WRF runs is described in Kain (2004); the Kain-Fritsch scheme used in MM5 runs is described
in Kain-Fritsch (1990).

Results

The 12-h accumulated precipitation, simulated from 00 to 12 UTC of 26 September in the

different runs, is shown in Fig. 2.2.

Among the simulations initialized with 00 UTC 25 September GFS forecast (GFS25), only
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Figure 2.2: 12 hour accumulated simulated precipitation at 12 UTC of 26 September. First row,
left to right: W ECMWF25, W GFS25Gr and W GFS25 experiment; second row, left to right:
W GFS26, M GFS25, M GFS25Gr experiment. WRF outputs are plotted over a zoomed area of
the inner domain.

M GFS25 Gr was able to predict realistically large rainfall amounts. Also, the maximum

rainfall simulated in M GFS25 Gr is located next to the area actually affected with precipi-

tation, but the pattern is oriented from SE-NW, thus with a different orientation compared

with the observations (Fig.2.2d vs. Fig. 2.1). The M GFS25 experiment misses most of

the observed precipitation: maxima of about 100 mm are reproduced downstream, on the

pre-alpine area. The WRF experiments initialized with GFS25 are characterized by a strong

underestimation of the precipitation, independently of the implemented convective scheme.

The precipitation maximum computed in the W GFS26 run, even if more intense than the

W GFS25 maximum, is predicted over the pre-alpine region, therefore with a large location

error. The best prediction in terms of pattern orientation, timing and location is reproduced

in the WRF run using ECMWF forecasts starting at 00 UTC, 25 September: in fact, the

areas affected by the largest amount of precipitation show a pattern similar to the observa-

tions. The maximum is located a few tenths of km to the south of the area actually affected

by the most intense precipitation. The overall precipitation pattern is oriented from S to N,

thus much closer to the observed patterns than all the other runs, suggesting a more correct

representation of the mid-tropospheric currents. The analysis of the simulations reveals that

a major mesoscale feature related to the triggering and maintenance of convection was the

confluence of the low-level south-easterly flow, associated with the orographic cyclone over

the Ligurian Sea, with north-easterly flow. Differences in this feature significantly impact

the simulated precipitation. The comparison between Fig. 2.2a and Fig. 2.3a shows that the

precipitation simulated in the most realistic run (W ECMWF25) is associated with low-level

convergence of the south-easterly unstable flow with weaker winds inland. Such a feature is

not reproduced by the W GFS26 experiment (Fig. 2.3b): the south-easterly flow impinges

directly on the pre-alpine area where most of the precipitation is simulated (Fig. 2.2d). In
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order to better understand the characteristics of the air converging with the southerly flow,

we estimated the value of the unsaturated Froude number Fr=hN/U (where h is the moun-

tain height, N the Brunt-Vaisala frequency, U the environmental wind speed), at 00 UTC of

26 September, in the lower 1.5 Km layer above the region the flow comes from. As the wind

above the ground is prevalently from the east-northeast, we calculate the Froude number

based on the section of the mountain crossed by this flow component. The resulting value

of Fr 2 indicates the occurrence of a ”flow-around” regime (Miglietta and Buzzi, 2001):

the easterly wind over Friuli, before the beginning of the convective event, was deviated

by the orographic barrier to the left and the southern side of the jet converges with the

south-easterly wind over the Venice lagoon.

Figure 2.3: 950 hPa wind (vectors) at 09 UTC and 950 hPa wind convergence (contour interval
[8 · (−10)−4] s−1) at 03, 06, 09 UTC for (a) W ECMWF25 and (b) W GFS26 experiments. The
blue dot in (a) indicates the location where the Froude number has been evaluated.

Summary

Several runs have been performed using the MM5 and WRF convection-resolving models to

reproduce a flood event occurred over a flat coastal area on 26 September 2007. A general

delay and underestimation in most of the model simulations have been found. The simulated

quantitative precipitation fields showed strong sensitivity to the different forecast data used

as initial and boundary conditions and to the convective parameterisation schemes active on

the lower resolution domains. Using similar setups, simulated precipitation depends on the

used model as well. Initialization data had the most relevant impact on WRF simulations,

with the most realistic run obtained using ECMWF global forecasts starting the day before

the event (00UTC, 25 September). Using the same initial conditions (GFS25), a weak

sensitivity to the convective scheme has been found in WRF simulations, while the MM5

model showed a stronger sensitivity. The analysis of the most realistic run indicates that

important differences in precipitation location and amount are related to the simulation of

the mesoscale flow convergence between the low-level flow driven by a large scale minimum
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over Liguria and a north-easterly flow that was deviated by the Alpine chain. The fact

that the large-scale dynamics controlled to some extent the mesoscale event favoured the

predictability of its evolution. Further investigation will be performed to deeply assess the

respective influence of initialization data and convective schemes.
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Introduction

In the framework of the Mesoscale Alpine Programme (MAP), a Forecast Demonstration

Project (FDP) of the World Weather Research Programme (WWRP) of WMO, called

“Demonstration of Probabilistic Hydrological and Atmospheric Simulation of flood Events

in the Alpine region” (D-PHASE), has been launched aimed at demonstrating the benefits

in forecasting heavy precipitation and related flooding events in the Alpine region using

high-resolution numerical weather prediction (NWP) models, ensemble prediction systems

(EPSs), atmospheric–hydrological coupled systems, and real-time nowcasting tools.

During the D-PHASE Operations Period (hereafter DOP), from June to November 20007,

the participating institutions provided meteorological simulation over the D-PHASE and the

Convective and Orographically-induced Precipitation Study (COPS1) domains and hydro-

logical simulations over target river basins. Within the MAP D-PHASE Working Group

Verification (WG VER), an intercomparison study of the precipitation fields forecast by sev-

eral deterministic NWP models over the DOP period has been set-up and started at the

beginning of 2008.

The northern Italian regions (Fig. 3.1a) have been considered as test bed for the implemen-

tation of a multi-method approach (see Mariani et al., 2008, Lanciani et al., 2008) based on

multi-scale (power spectrum analysis), objective (skill scores and contiguous rain area anal-

ysis) and subjective methods. On the one hand, multi-scale methods are a methodological

necessity since traditional skill scores, measuring point-to-point match, are sensitive to small

displacement errors such as those due to the double penalty effect. Higher order moments

should be studied to assess whether the fields to compare are defined on grids with the same

1A Research and Development Project (RDP) within the WMO WWRP Programme.
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real resolution and whether they have the same amount of small-scale detail. On the other

hand, objective techniques can provide a quantitative basis to subjective verification, which

in turn can suggest physical interpretations to the objective verification findings.

(a) Spatial distribution. (b) Temporal distribution.

Figure 3.1: Spatial and temporal distribution of the rain gauges available during DOP over
the Italian regions considered for the set-up of the multi-method approach. Rainfall data
courtesy of the Italian Regional and Autonomous Provincial Environmental Agencies.

Moreover, skill score differences between “competing” models can be statistically assessed by

means of a bootstrap-based hypothesis test. Finally, it has been considered the possibility

to combine the different deterministic forecasts in order to provide a single multi-model

forecast.

The paper is organized as follows. The problem of how to make forecasts and observations

“comparable”, that is, how to take into account the representativeness of the meteorological

fields to be compared, is addressed in the following section. The subsequent section is devoted

to the presentation of the methodologies employed for forecast verification multi-method

approach. The exposition of this approach is supported by means of preliminary results over

the test bed area. Finally, summary and outlook of the future studies, in particular the

application of the multi-method approach over the entire D-PHASE domain, are reported in

the last section.

Rain Gauges vs. NWP Forecasts: What Are We Actually Comparing?

Traditional surface weather instruments, such as rain gauges, provide the more accurate,

although localized, estimate of the observed weather, usually referred to as the observational

“truth”. On the contrary, NWP forecasts should be instead considered, in general, as areal

mean quantities (see, e.g., Haltiner and Williams, 1980). Thus, when comparing a numerical
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approximation of the atmosphere vs. a good estimation of the “true” weather state, we are

actually comparing two different quantities. The representativeness of the fields compared

– observations vs. a single forecast and/or observations vs. several “competing” forecasts –

need to be addressed before applying any kind of verification.

Consequently, in order to have as much as possible a fair comparison (or intercomparison

when verifying “competing” forecasts), it has been decided to make a selection of the NWP

models2 to be verified, and compared against to observations, among the ones available

during DOP (see Table 3.1) and to “optimally interpolate” both observations and forecasts

at the same scale. Moreover, as reported in Table 3.1, models have been subdivided in

two quasi-homogeneous categories, namely the Very High Resolution (hereafter VHR),

in which models have a grid horizontal spacing of about 2–3 km, and the High Resolution

(hereafter HR), in which models have instead a grid spacing of about 7–10 km. Each one of

these sub-groups can be also considered as a sort of “poor man’s ensemble” group. Thus,

according to the procedures presented by Ebert (2001), four deterministic ensemble forecasts

can been obtained and considered in the verification study:� AVE: the simple arithmetic ensemble forecast mean;� MED: the ensemble median precipitation forecast;� PAV: the probability matched forecast based on AVE;� PMD: the probability matched forecast based on MED.

Table 3.1: List of the NWP models considered for the study, categorized with respect to the
grid size of the native grid. Acronyms (and providers) as reported in the IP document.

Very High Resolution High Resolution
(grid size ∼ 2–3 km) (grid size ∼ 7–10 km)

ALADAT (ZAMG)
AROME (Météo France) ALADFR (Météo France)
COSMOCH2 (Meteo Swiss) COSMOCH7 (Meteo Swiss)
LAMI28 (ARPA SIM) LAMI7 (ARPA SIM)
LMK (DWD) LME (DWD)
LMITA (CNMCA) LMEURO (CNMCA)
ISACMOL2 (ISAC-CNR) MESONH8 (Univ. Paul Sabatier)

QBOLAM11 (APAT)

Therefore, for the quantitative precipitation forecast (QPF) verification, the VHR precipita-

tion forecasts have been integrated from their native grids to two common verification grids

of 0.05° and 0.1°, respectively; whereas the HR precipitation forecasts have been integrated

2The main characteristics of the NWP models analyzed here are summarized in the MAP D-PHASE
Implementation Plan (IP) available online at
http : //www.map.meteoswiss.ch/map− doc/dphase/ip− exportv3.220070815.zip.
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from their native grids to three common verification grids of 0.1°, 0.3° and 0.5°, respectively.

The transfer of the analyzed forecasts from native to verification grid has been performed by

means of a simple nearest-neighbour average method, usually referred as remapping (Bald-

win, 2000; Accadia et al., 2003). This post-processing procedure is applied as follows. First,

each verification grid box is subdivided into n × n sub-boxes. Then, to each sub-grid point

is assigned the value of the nearest native grid point. Finally, the average of these sub-grid

point values produces the remapped value of the verification grid point.

Rainfall measurements collected within the project from the networks of the Italian Regional

and Autonomous Provincial Environmental Agencies have been considered for the implemen-

tation of this multi-method approach procedure (see Fig. 3.1). A two-pass Barnes scheme

(Barnes, 1964, 1973; Kock et al., 1983) has been used to produce the observational analyses

for the DOP period over the four aforementioned verification grids (see, e.g., Fig. 3.2). The

Figure 3.2: Contours, in mm (24h)−1, of the precipitation analyses on 23 November 2007
obtained by using the two-pass Barns procedure over the four verification grids: (a) 0.05° grid;
(b) 0.1° grid; (c) 0.3° grid; (d) 0.5° grid.

Barnes scheme is a Gaussian weighted-averaging technique that produces a gridded observa-

tional analysis by assigning a weight to each rain gauge observation in xk, averaged spaced

∆n, as a function of the distance between the gauge and the grid box center x:

wk = exp

[
|x− xk|2

4κ

]
, (3.1)

where κ ∝ ∆n2 is the shape parameter. By iterating the method, it is possible to restore

the small details suppressed in the first application. The two-pass version employed here is a
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modified version designed to rapidly and sufficiently achieve the convergence of the method

by using for the second iteration a modified shape parameter κ′ = γκ, where γ ∈ [0.2, 0.4].

Then, the observational analyses are obtained as follows:

f
(1)
A (x) = f

(0)
A (x) +

K∑

k=1

wk

[
f0(xk) − f

(0)
A (xk)

]
, (3.2)

where f0(xk) is the precipitation measured at the k-th gauge and f
(0)
A (x) =

∑
k wkf0(xk) is

the first-guess precipitation analysis.

For the rainfall verification, 24-h accumulation has been chosen as the temporal scale. Thus,

both the gridded observation fields and the remapped forecast fields have been accumulated

on a daily basis, starting from 0000 UTC.

Methodologies

As anticipated in the introduction, the approach followed to study the NWP models in

Table 3.1 is based on different methodologies, each one focusing on a particular aspect of

the forecast performance. A subjective verification limited to particular events occurred

during DOP (e.g., 22–25 Nov. 2007) can be useful to provide a physical interpretation of the

quantitative verification findings or, more in general, to give some hint about the performance

of a particular model with respect to observations and the other models considered in the

study. The eyeball comparison is usually employed for this task. However, simulations of

satellite observed fields (METEOSAT-7 Water Vapour channel) can be also employed, for

instance to check qualitatively the impact of initialization on model error growth.

Categorical scores and skill scores are primarily involved in the QPF objective verification.

Verification is then based on a categorical dichotomous “yes/no” statement by considering

whether the precipitation forecast exceeds or not a pre-defined threshold. The same kind of

statement is also true for the rainfall observational analyses. The combination of paired fore-

cast and observed events above or below the thresholds gives origin to the 2× 2 contingency

tables. Since different scores evaluate different aspects of the forecast performance, it should

be preferable to applied more that one score in each verification study. Thus, comparison

between BIAS, ETS, HK, FAR, etc. (Wilks, 1995 and references therein) can provide useful

information on the models’ performance over the DOP period (see Fig. 3.3). However, to

discriminate statistically significant differences between scores of two “competing” models,

an hypothesis test should be also applied. The bootstrap-based hypothesis test introduced

by Hamill (1999) is applied here in order to assign confidence intervals to score differences.

In the present example, the AVE forecasts is compared to the ISACMOL2 forecasts. Results

show that, for the lower thresholds, AVE overforecasts3 the frequency of the yes observed.

3BIAS > 1: it indicates that the considered model overestimates the frequency of the events above a
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(a) BIAS. (b) ETS.

Figure 3.3: An example of the 24-h accumulation scores calculated for DOP over northern
Italy for AVE and ISACMOL2 on the 0.05° grid. The bootstrap confidence intervals are
referenced to AVE scores, indicating the 2.5th and the 97.5th percentiles of the resampled
distributions.

The BIAS differences are also statistically significant for those thresholds, whereas differences

are not statistically significant for the medium-high thresholds. The ETS values are quite

close to each other, nevertheless, differences are statistically significant for all thresholds. To

assess whether the differences in skill scores between two competing models (“competitor”

& “reference”) are the result of an actual different forecast capability, the BIA adjustment

method (Hamill, 1999) is employed. The method is based on the introduction of a different

threshold for the forecasts4 in order to get similar BIA values for the two competing models.

However, the BIA adjustment method does not remove the ambiguity that may still exist in

model intercomparison. In other word, how to consider the structure of the fields compared?

In fact, since the score calculation is sensitive to small displacement errors, higher order

moments (power spectrum analysis) must be studied to evaluate whether the fields being

compared are defined on grids with the same resolution and whether they have the same

amount of small scale detail (see, e.g., Lanciani et al., 2008). Moreover, attention should be

given to spatial forecast error, as well. A correct simulated event, misplaced with respect

to observations, is penalized twice in terms of skill scores: once for missing the event in the

correct position, and once for producing a false alarm where the event is not observed (the

double penalty effect). Thus, the contiguous rain area analysis (CRA; Ebert and McBride,

2000) can be employed to evaluate the magnitude of the displacement error (and of its

component sources, e.g., volume, pattern and displacement errors). This object-oriented

technique quantify the displacement (in terms of grid points, and consequently, in terms

of km) by translating in latitude and longitude (until a maximum number of grid points

– shifting value sv) the forecast rainfall entity (a precipitation area delimited by a chosen

threshold. The models could have too many false alarms, so that related skill scores could be negatively
affected compared with those related to a model with a lower BIAS. Relative high differences in the BIA
measure among competing models may result in an erroneous or ambiguous evaluation of the score differences.

4To have the competitor BIA similar to the reference BIA, the competitor contingency tables are recalcu-
lated by adjusting the forecast precipitation threshold, while keeping the observation threshold unchanged.
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isohyet) over the observed entity, until a best-match criterion is satisfied. Patter-matching

can be obtained, for instance, by minimizing the MSE or maximizing the correlation between

the forecast and the observed areas. To diagnose systematic spatial forecast errors (see, e.g.,

Tartaglione et al., 2008), the CRA analysis should be used on the entire DOP period. By

repeating the CRA analysis over a set of N events, and giving ns(i, j) the number of times in

which the gridded forecast entity need to be shifted i-grid points eastward and j-grid points

northward, it is possible to calculate the CRA mean shift (CSM) as:

CSM =

sv∑

i=−sv

sv∑

i=−sv

Fi,jwi,j, (3.3)

where Fi,j = ns(i, j)/N is the frequency associated to the shift in (i, j) and wi,j =
√
i2 + j2

is the weight that measures the distance between the position (i, j) and the no-shift (i.e.,

forecast correctly simulated in space) position (0, 0).

(a) 21 July 2007. (b) 05 September 2007.

Figure 3.4: The 2-D shift analysis, maximizing correlation, of CRA between the 0.1° QBO-
LAM11 forecast and the precipitation analysis, using an isohyet equal to 0.5 mm (24h)−1.
Solid lines indicate statistically significant shifts, whereas dashed lines indicate statistically
nonsignificant shifts. On panel (b), maximum values found during CRA are indicated with
a cross symbol. The colorscale, from black to red, indicates the progressive order in which
these values are found. The suspicious final shift is indicated with a red dashed circle.

Two examples of CRA applied on QBOLAM11 forecasts are reported in Fig. 3.4. As shown

in panel (b), quality tests can be also applied to verify whether the best-match found is

obtained by chance (i.e., it is not reliable) or it is the result of a reasonable physical match.

For the event analyzed, the suspicious final shift in the top-right corner of the 2-D CRA

analysis is a localized isolated correlation maximum, whereas the relative second maximum,

located in the middle-up left side of the 2-D analysis, is a more robust result.



Verification, support to decisions and social impact 114

Summary and Outlook

The present document shows an overview of the multi-method approach implemented within

WG VER in order to allow a complex characterization of the forecasts’ performance of the

NWP models provided during DOP. The approach has been initially applied on a test bed

area, the northern Italy, but it is ongoing its application over a wider area, within the D-

PHASE domain, selected by taking into account the intersection of the domains of all the

models in Table 3.1. First results over this area are foreseen for the beginning of 2009.
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Introduction

Verification is a central aspect of quantitative precipitation forecasts (QPFs) to assess their

shortcomings and problems. The MAP D-PHASE dataset offers a unique opportunity to

investigate the QPF performance of different deterministic regional numerical weather pre-

diction (NWP) models. Due to the complex nature of precipitation fields the verification of

QPFs is very challenging. Also for current high-resolution NWP models, including models

without parameterization of deep convection, it is difficult to accurately capture observed

convective rainfall events in time and space. When using classical grid-point based veri-

fication measures, errors in the timing and/or location of the events lead to the so-called

“double penalty” problem. In order to measure the skill of QPFs in a more reasonable way,

a feature-based or fuzzy verification technique is required. (See Casati et al. (2008) for a re-

view of recently proposed verification approaches.) One of the newly developed QPF quality

measures, referred to as SAL (Wernli et al. 2008), will be used in the present study.

The goal of this study is to reveal the differences in the QPF performance of various NWP

models that, among other factors differ in terms of horizontal resolution, treatment of deep

convection and the influence of assimilated data. QPFs are taken from the MAP D-PHASE

dataset during Summer 2007, when the COPS (Convective and Orographically-induced Pre-

cipitation Study) field experiment took place (Wulfmeyer et al. 2008 ). The area of interest

is the German Part of the COPS region (see Fig. 3.1).

Data and methods

(a) Observations and model data

The observational precipitation field was obtained from about 150 rain gauges in the COPS

Germany region, provided by the German Weather Service. These daily accumulated station

values were transformed to a grid with a horizontal resolution of 7 km, using the gridding

∗zimmerm@uni-mainz.de
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Figure 3.1: Topography of the German part of the COPS region (referred to as “COPS
Germany”) with the Black Forest, the Swabian Alb and the upper Rhine valley.

technique of Frei and Schär (1998). More information about the gridding of the German

rain gauge data can be found in Paulat et al. (2008).

For this study, 19 deterministic models have been extracted from the D-PHASE “model

zoo” (see Table 1), which can be divided into three categories: global models (1), medium-

resolution local area models (LAMs) with parameterized deep convection (10), and high-

resolution LAMs (7) where deep convection is explicitely calculated.

To calculate daily precipitation sums (from 06 to 06 UTC on the following day), the simu-

lations started at 00 UTC (except for COSMO-DE and COSMOCH2 for which the forecasts

starting at 00 and 12 UTC had to be combined) were used. Due to the fact that the 19 NWP

models have different horizontal resolutions ranging from 2 to 60 km(see Table 1), the fore-

casts were transformed onto the same grid as the observations with a horizontal resolution

of 7 km.

(b) The SAL technique

For the assessment of the QPFs of the 19 NWP models, the recently developed feature-based

verification technique SAL (Wernli et al. 2008 ) has been used. SAL contains three indepen-
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model horizontal parameterization of model category
resolution deep convection

ECMWF ∼30 km yes global

MM5 60 60 km yes medium-resolution

MM5 15 15 km yes medium-resolution

QBOLAM11 11 km yes medium-resolution

ALADAT 9,6 km yes medium-resolution

ALADFR 9,5 km yes medium-resolution

MESONH8 8 km yes medium-resolution

COSMO-EU 7 km yes medium-resolution

COSMOCH7 7 km yes medium-resolution

LMEURO 7 km yes medium-resolution

LAMI7 7 km yes medium-resolution

COSMO-DE 2,8 km no high-resolution

LMITA 2,8 km no high-resolution

AROME 2,5 km no high-resolution

COSMOCH2 2,2 km no high-resolution

MESONH2 2 km no high-resolution

MM5 CT 2 km no high-resolution

MM5 4D 2 km no high-resolution

ISACMOL2 2 km no high-resolution

Table 1: List of the 19 models with their horizontal resolution (∆x in km), information about
the parameterization of deep convection and the corresponding model category.

dent components measuring the quality of the (S)tructure, (A)mplitude and (L)ocation of

the QPF.

The structure component S investigates the size and shape of precipitation objects. It is

defined in the range [−2 · · · + 2], where negative values correspond to too small and/or too

peaked objects, while positive values indicate too large and/or too flat simulated precipita-

tion objects. Corresponding to SAL, a value S = 0 indicates a perfect structure of the QPF.

The amplitude component A evaluates the total amount of precipitation in a predefined

region. The values of A are within [−2 · · · + 2], where 0 represents again the perfect value.

Negative values of A correspond to too little and positive values to too much predicted pre-

cipitation, respectively.

The location component L quantifies the displacement of observed and simulated precipita-

tion objects, relative to their overall centers of mass. The values of L are within [0 · · · + 2]

and also here 0 denotes the perfect value.

(c) An example for the application of SAL

To illustrate the working of SAL, an example is shown in Fig. 3.2 for southwestern Germany.

The observations are shown on the left-hand side with a couple of distinct precipitation ob-

jects. The upper right panel shows the simulation from model I with intense and widespread

precipitation. This leads to high positive values of S = 1, 3 and A = 0, 6, i.e. the amount

of precipitation is overestimated as well as the typical size of the precipitation objects.
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The forecast from model II is shown in the lower right and this model simulates almost no

precipitation. The negative values of S = −1, 0 and A = −1, 6 quantify the significant

under-prediction of the amount of precipitation and the size of the objects.

Figure 3.2: An example for the application of SAL. The left panel shows the observations in
mm/day and the right panels show two forecasts, which score different in terms of SAL.

Results

For concisely representing the results of all 19 models, the interquartile range (IQR) is plotted

against the median in Fig. 3.3 for the SAL components S and A determined for all 92 QPFs in

JJA2007. In this diagram, a perfect model is represented by a point at the origin (median=0,

IQR=0). In contrast, a random forecast, generated by using a “Monte-Carlo” approach to

the set of observed precipitation fields (Wernli et al. 2008 ), has a median of zero with a high

IQR (> 2).

For S, the results for the three model categories are well separated: The medium-resolution

models (blue) show a tendency to predict too large and/or too flat rain objects (median of

S ≥ 0), while the high-resolution models (red) simulate too small and/or too peaked rain

objects (median of S ≤ 0). Most of the high-resolution models have a significantly smaller

IQR than the medium-resolution models. The global model produces the largest median of

S, but a fairly small IQR.

The picture for the A component (Fig. 3.3b) is less systematic, but three particular aspects

are apparent. The first one (dark green) is related to the performance of the COSMO model

driven by different global models. The COSMO model driven by the GME (global model

from the German Weather Service) simulates the amount of precipitation better than if

driven by the ECMWF global model, as revealed by the differing medians. The second
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aspect corresponds to the fact that different LAMs (orange) driven by the same global

model (ECMWF) perform differently. For the MM5 and COSMO models, the simulated

amount of precipitation is on average underestimated, while for MESONH the amount is

overestimated (MESONH is the only model using a two-way nesting method). The third

aspect (purple) is the positive effect of the 4D-Var assimilation of GPS water vapor mea-

surements in the MM5 model for the amplitude component of SAL. In contrast, both with

and without assimilated GPS data, precipitation objects in the MM5 forecasts are too small

and/or too peaked (as indicated by the negative median of S).

Figure 3.3: Interquartile range vs. median for the SAL components S (a) and A (b) for JJA
2007 in the COPS Germany domain. Black symbols denote global, blue medium-resolution
and red high-resolution models, respectively.

Summary & Conclusions

Daily QPFs from a set of 19 models have been verified with the recently developed feature-

based technique SAL in the German part of the COPS area during summer 2007. The

investigation reveals some important differences between medium-resolution models with pa-

rameterized deep convection and high-resolution convection permitting models. On average,

the high resolution models simulate the structure of the precipitation field more realistically

than the medium-resolution models (as shown by the smaller IQR of S), however some of

them show a systematic underestimation of the structure component (median of S ≤ 0). The

quality of the simulated precipitation amount is linked to the following three characteristics.

The COSMO model driven by the GME (median of A ≃ 0) predicts the amount of precip-

itation better than if driven by the ECMWF (median of A < 0). The IQR of A is smaller

for the high-resolution models. For the MM5 model, the use of 4D-Var assimilation of GPS

water vapor measurements leads to a better estimation of the precipitation amount but not

of the structure of the precipitation objects.

Probably for the first time such a large dataset of forecasts from different models has been
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available for a thorough validation of QPF performance. It is interesting that systematic

differences occur between models that parameterize deep convection (here referred to as

medium-resolution models) and models that don’t parameterize deep convection (here re-

ferred to as high-resolution models) - if using a feature-based verification measure like SAL.

In particular when considering the structure of a precipitation field, the first results from the

new generation of convection-permitting models are promising. However, one should keep in

mind that this study focused on a relatively small mountaineous region in southwestern Ger-

many during one particular summer season. Further work is required to assess the robustness

of these results and to quantify the QPF quality of the different model categories in other

regions and during other seasons. Also, the considered summer season in 2007 was charac-

terized by strongly contrasting synoptic weather conditions (Zimmer and Wernli 2008 ) and

it will be rewarding to compare the models’ QPF performance for different weather regimes.

Acknowledgments: This work has been funded by the priority program “Quantitative Nieder-

schlagsvorhersage” (SPP-1167) of the German Science Foundation (DFG). We are thankful
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3.3 Automated CRA method
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Introduction

Among many approaches to the verification of output of numerical weather prediction (NWP)

models the entity-based method proposed by E.E. Ebert and J.L. McBride in [Ebert &

McBride] is arguably the most intuitive. The CRA technique mimics ”eyeball” verification

in order to rigorously quantify visual similarities of forecast and observed rain events. As-

suming that we have forecast and observed rain entities mapped onto a common grid we

may compare properties like location, size, mean and maximum intensity, volume, area and

evaluate performance of a NWP model with respect to these variables. Object-based ver-

ification provides more information about model’s performance than standard statistics so

operational version of Ebert-McBride technique would be a helpful diagnostic tool. This

technique, however, is not easily automated. The procedure requires some decision making

which would usually be done by human. There is also an ambiguity when forecast and

observed fields involve many separate rain systems or when forecast and observed entities

don’t overlap at all. In what follows we propose a systematic procedure that resolves these

problems. In this framework entire forecast and observed fields are compared and differences

between them are quantified in terms of entity-based verification method.

Method

In Fig.3.1 below, there is a particular case of forecast and observed fields mapped onto a

common grid. Since grid of the radar system and model grid do not overlap and extent

of radar scan is finite, part of the forecast field suitable for verification is cut from the

original size. The classic pointwise verification severly punishes this forecast because rain

systems almost don’t overlap. There is, however, a similarity between those fields. There

is an elongated, slightly bent, large rain system in both pictures at approximately the same

location. There are also some smaller systems in the centre. Visual similarity is clear but

under closer inspection significant differences emerge. The forecast field contains more rain

events but they are apparently smaller and less intensive. In order to quantitatively compare

the forecast and observed fields we need to look from two points of view. On the one hand

if we observe a large rain system and a corresponding object in the forecast field we can

concentrate on model’s skill to predict this particular event and describe differences in terms
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of location, size, shape, volume etc. This local viewpoint may be sufficient if we’re interested

in model’s ability to reveal some specific types of events like severe storms or large rain

systems. On the other hand we’d like to assign some measures to entire forecast fields

often composed of many separate rain systems some of which may have no counterpart in

observations or otherwise. From this viewpoint model’s success in accurate prediction of one

particular rain event may be insufficient to constitute a good forecast. Our method collect

these local, ”object-wise” measures and assign statistics to entire forecast fields. Procedure

consists of a series of steps.

Step 0. Since we want to compare sub-regions of fields directly, observations and forecasts

are mapped onto a common grid. It may be the case that forecast and observation grids do

not overlap or that observations are incomplete e.g. finite extent of radar scan. Although it

is possible to artificially extend incomplete observations and statistically incorporate their

effect (see [Ebert & McBride]), we present a simplified approach where we accept only those

rain systems which are fully enclosed within the common field i.e. they don’t touch the

boundary.

Step 1. The first step is extraction of ”events” from both fields. Depending on the kind

of data and specific features under investigation a minimal threshold is set. In Fig.3.1 the

threshold is 5mm/3h. Now an algorithm is applied to find connected entities enclosed by the

Figure 3.1: Threshold shows separate rain systems

threshold isohyet in both pictures. It is important to stress that entities are identified in both

fields separately. They are not yet merged to define CRAs as in the case of classic Ebert-

McBride technique. Those entities are treated individually. We can investigate attributes

of any one event i.e. position, mean precipitation, maximum precipitation, area, volume.
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Different events are identified by their unique locations. Those are just coordinates in the

common grid. It is a matter of choice how we define the location. If model’s ability to

predict heavy rain events is under investigation we may choose to identify the location with

the centre of mass of an object i.e. centre of mass of pixels that constitute an object, where

their mass is given by intensity of rain. In our example location is defined as the centre of

area of an object i.e. the centre of mass of pixels where each pixel has unit mass. This choice

is more suitable when stress is put on geometric pattern rather than intensity. Fig.3.2 shows

events extracted from their original fields.

Figure 3.2: Individual rain entities

Step 3. Now we have two sets of well described entities. First set contains observed and

the second forecast entities. We take an event from the set of observed events and we merge

it into the forecast field. Depending on what is understood as acceptable displacement we

define a search zone i.e. a circle centred at location of our observed event and radius of

our choice. In our case study the radius is 200 km. All forecast entities whose location is

inside the circle will be compared with the observed entity. At this stage Ebert-McBride

technique is applied to each [observed event, forecast event] pair separately. One by one they

are horizontally translated over the observed event and moved around until the best fit is

obtained. Best fit may be defined in many ways. Here the total squared error is calculated.

When all events are checked, the one that provides the minimal error is chosen and the

matched pair is removed from sets of events. This is the local stage of the procedure. After

the pair is removed we repeat the procedure with another observed event and so forth until

we’re left with no more observations. It has to be said here that not all forecast and observed

pairs will be matched. There can be three cases:

1. there is a matched pair,
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2. there is no forecast event in the search zone - observation without a pair,

3. there are forecast events left after all observed were used - forecast without a pair.

These cases will form a basis of dichotomous statistics later.

Step 4. Those events that are matched may be compared further. It is again a matter

of choice what we understand as accurately forecast intensity. In our case study we follow

the scheme proposed in [Ebert & McBride]. There is a sequence of categories 1-2, 2-5, 5-10,

10-25, 25-50, 50-100, 100-150, 150-200 and >200 mm/d. When the maximum intensity of

observed and forecast event falls within the same category there is a ”hit”. Otherwise we may

have an ”underestimate” or ”overestimate”. In this way we can analyse such indicators like

ratio of underestimated/overestimated/correct to total number of pairs and quantitatively

describe model’s skill to predict intensity.

Dichotomous statistics

We have two distinct sets of values suitable for dichotomous statistics. First comes from the

matching step. After an algorithm has matched corresponding pairs we call them ”hits”.

Those observed events that are left without a pair are called ”misses” and those forecast

events that are left when all ”hits” and ”misses” are removed are called ”false alarms”.

Observe that ”correct negatives” don’t make any sense in this approach. However all the

classical dichotomous statistics which make no use of ”correct negatives” are well defined.

Among those are e.g. frequency bias, probability of detection, false alarm ratio and threat

score. Second set of dichotomous statistics comes from differences in intensity. We take only

matched pairs i.e. ”hits” from above statistics and count number of underestimate, correct

and overestimate intensities. We refer to correct intensities ”hits” like before but it shouldn’t

create misunderstanding.

Case Study

Our statistics describing the matching step are summarised on Fig.5.5 and Fig.3.4.

Four different statistics, each for a control run and the mean estimated from ensemble were

averaged over the cases we have at our disposal. Threat score and the probability of de-

tection decrease in time. Ensemble mean is better during the first 12 hours of the forecast,

compensating the spin-up time of each individual run. In a period from 12 to 24 hours the

statistics from control and ensemble runs are comparable. It is interesting to see that for

the second day of the forecast the control case gives better results than ensemble while the

ensemble is better than the control for the third day of the forecast (with minor exceptions).



Verification, support to decisions and social impact 126

Figure 3.3: Statistics of matching events

Figure 3.4: More statistics of matching events

At the end of the forecast period, the control forecasts are sufficiently better than ensemble

mean, what could be explained by too narrow spread of the ensemble. The daily cycle is

evident in all of four statistics, also the shift between control and ensemble statistics in daily

cycle is observed. It is difficult to propose what is the cause of such behaviour, and it is very

likely that our sample is to small to the obtain the correct answer.

Statistics describing differences in a rain intensity are illustrated in Fig. 3.5. Ensemble

runs have smaller underestimates ratios and higher overestimates ratios comparing with the

control runs. Hit ratios for control run are better for first two days of the forecast while hit

ratios for ensemble mean are better for the third day of the forecast.
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Figure 3.5: Statistics of intensity

Summary and Outlook

Object-based verification provides a deeper insight into nature of models’ errors. While

classical (grid) pointwise statistics don’t discriminate between errors due to missed location

or wrong intensity the Ebert-McBride technique helps to pinpoint particular flaws of a given

forecasts and indicate which internal subroutines may be responsible for poor performance.

This particular strength of CRA method is especially useful in determination of systematic

errors. It is therefore of interest to perform this kind of verification on regular basis. The

procedure presented above may prove helpful in designing an operational, fully automated,

object-oriented verification method.

Acknowledgements: This research has been partly supported by the NICOP program under the grant

N000140510673 and by the KBN grant COST/20/2006. We used computer resources of ICM, Warsaw Uni-

versity.
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4.1 Variationally derived extrapolation of radar echoes

Martin Ridal, Magnus Lindskog, Günther Haase and Nils Gustafsson

Swedish Meteorological and Hydrological Institute, S-601 76 Norrköping, Sweden

Background

The Swedish Meteorological and Hydrological Institute (SMHI) is developing a nowcasting
system for generating short range precipitation forecasts. The general idea is to to advect
the latest available structure of accumulated precipitation, as obtained from radar reflec-
tivity composites, forward in time by applying 2-dimensional, semi-Lagrangean advection.
The approach is similar the method used by Germann and Zawadzki (2003). The radar
composites are derived using data from the NORDRAD network (Michelson, 2006), with
a horizontal resolution of 2 (or optionally 4) km and a temporal resolution of 15 minutes.
The advection field is variationally derived by utilising a time-sequence of radar reflectivity
composites separated in time by 15 minutes. To catch non-developed convection there is a
weighting towards a NWP forecast, in this case the SMHI operational HIRLAM forecast (11
km horizontal resolution). The geometry of the advection field is obtained from the same
HIRLAM model domain, illustrated in Figure 4.1 together with the horizontal coverage of
the radar composites.

Figure 4.1: Illustration of advection field (frame) and horizontal coverage of NORDRAD
radar composites utilised (circles).
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Variational methodology

The variational methodology applied for deriving the advection field is based on the HIRLAM
4-dimensional variational data assimilation (Gustafsson et. al, 1999, Lindskog et. al, 2001).
It consists in finding the model state vector, x0, including a 2-dimensional advection field
(u,v) and a reflectivity field ψ, at the start of an assimilation window, that minimizes the
following cost function, J:

J(x0) = Jb(x0) + Jo(x0) =
1

2
xT

0B
−1x0 +

1

2
(HMx0 − ψobs)

TR−1(HMx0 − ψobs)

Here Jb measures the distance to a background model state, xb, valid at the start of the as-
similation window, and Jo measures the distance to the reflectivity observations, ψobs, which
consist of 2-dimensional radar composites spread in time within a 90 minutes assimilation
window. The background state is a first guess of the 2-dimensional advection field and re-
flectivity field at the beginning of the assimilation window (t0). The background advection
field is taken from the level 50 wind field of the latest available 6 hour SMHI operational
HIRLAM forecast (11 km horizontal resolution). The background reflectivity field is set
close to zero everywhere. Within the assimilation window, the advection field is assumed
constant in time, while ψ has a time variation due to advection. M is the advection model
that propagates ψ forward in time, to the time of the observations. H is the observation
operator that in our case simply consists of horizontal interpolation of the model state re-
flectivity to the positions of the reflectivity observations, ψobs. B is the matrix containing
the covariances of the background error field (u, v, and ψ) and R is the matrix containing
the covariances of the reflectivity observation errors (ψobs. The denotation T indicates the
transpose, or adjoint, of a matrix.

The cost function is minimized iteratively and for each iteration calculation of the gradient
of the cost function is required. The minimization problem is not strictly quadratic, however,
since the advection model Mx0 depends non-linearly on the advection field (u and v included
in M) and on the initial reflectivity field ψ. To avoid minimization divergence, we will
solve this minimization problem by successive re-linearizations in an outer minimization
loop and by solving a standard quadratic minimization problem in each such outer loop.
The solution of the quadratic minimization problem may be referred to as the minimization
inner loop. For each minimization inner loop, we will apply a tangent linear model Mx0,
obtained by linearization around the solution for the advection field (u,v) and the initial
reflectivity (ψ) from the previous outer loop iteration. After convergence of the outer loop
minimization, this means that the reflectivity observations have induced a reflectivity field
and advection field that are most consistent with the 2-dimensional observed reflectivity
pattern and its variation in time. That advection field should then later on be used to
advect accumulated precipitation structures obtained from the latest available observed radar
reflectivity composite three hours forward in time. To catch non-developed convection and
advection of precipitation into the area, a weighting towards a NWP forecast is applied
during this time.

Results

a. Idealised example using simulated observations

In an illustration of the functionality of the variational methodology the background ad-
vection field is set uniform all over the domain, having a speed of roughly 1.4 m/s towards
north-east. The background reflectivity field is set to all small positive value close to zero
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everywhere. Each 15 minutes two single simulated reflectivity observation are provided. The
positions of the reflectivity observations is shifted more and more towards south-east, within
the 75 minutes assimilation window, with a speed of roughly 25 m/s. The positions of the
observations and the background advection field are illustrated in the upper panels of Figure
4.2.

Figure 4.2: Horizontal position of observations at various times (1 to 90 minutes) within
the assimilation window (upper left) and direction of background advection field (upper left)
with a speed of approximately 1.4 m/s. Variationally derived advection speed (lower left) in
m/s and direction (lower right).

Also shown is Figure 4.2 (lower panels) is the speed and direction of the variationally derived
advection field. Close to the position of the observations it is roughly 18 m/s towards south
east.

b. Full scale illustration

A full scale demonstration of the method is carried out for 20080326, 10.30-12.00, utilizing
a time-sequence of radar composites. The resulting variationally derived advection field is
presented in Figure 4.3, together with the background advection field, which is a HIRLAM
low level wind forecast.

There are some significant differences between the background advection field and the varia-
tionally derived advection field. For example, over Northern Finland the variationally derived
southward advection is significantly smaller, while in the south east and south of Finland in
it larger.



Nowcasting 131

Figure 4.3: Variationally derived advection field for 20080326, 10.30-12.00 (left) and corre-
sponding background advection field (right).Unit: m/s.

In Figure 4.4 the following 3h advection and resulting forecast of 3h accumulated precipita-
tion is shown without weighting towards a NWP forecast. The left panel shows the result
when the variationally derived advection field is used, the middle panel when the background
advection field is used also for the advection and right panel shows the verifying observed
3h accumulated precipitation, as obtained from radar composites. Note that the position
of the precipitation maxima is better predicted when variationally derived advection field is
applied.

Figure 4.4: Three hour forecast of 3h accumulated precipitation(mm) for 20080326, 14.45-
17.45. With variationally derived advection field (left), with background advection field
(middle) and verifying radar based observations (right).

Conclusions

A variationally based method for extrapolation of radar based precipitation structures for-
ward in time has been developed. It uses a time sequence of radar composites to derive an
advection field which is then applied in a semi-Lagrangean advection of the latest available
radar composite. The methodology has been demonstrated to work in idealised experi-
ments using simulated observations and prescribed background fields as well as in full-scale
frameworks using real radar composites and wind forecasts. The system is currently applied
pre-operationally at the Swedish meteorological and Hydrological Institute. In the preoper-
ational phase the system is evaluated for future improvements including improved quality
control and tuning.
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Hungary; E-mails: horvath.a@met.hu; csirmaz.k@met.hu
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Introduction

Estimation and nowcasting of precipitation mainly based on appropriate usage of radar
reflectivity data. Time series of radar images allows the calculation of radar motion vector
fields. Once motion vector fields between two radar images is known, radar reflectivity can be
interpolated to any time with high density (say 2 minutes), and the reflectivity-rain intensity
(Z-R) relations can be used more exactly for quantitative precipitation estimation. Using
motion vectors, extrapolation of radar images and nowcasting of precipitation is feasible for
a limited time ahead. The problem with that method is that radar echoes and the radar
motion vectors are evolving during the forecast time. High resolution numerical models can
be applied to extend validity of motion vector fields. Using hydrometeors (mixing rates
of rain, snow, graupel, hail etc) artificial radar reflectivity and motion vector fields can be
calculated. Comparing and smoothing motion vector fields coming from radar measurement
and NWP allows us to extend advection of precipitating system and upgrade nowcasting of
precipitation. In the first section of this paper the precipitation estimation, in the second
section the NWP artificial reflectivity calculation in the third part a radar assimilation
method and in the forth part precipitation nowcasting method is presented.

Precipitation estimation using time series of radar reflectivity

The radar reflectivity allows us to estimate precipitation intensity. Lets suppose that reflecti-
vity-intensity calculation is an errorless procedure (which is a rather strong assumption) and
we integrate precipitation from reflectivity images with 15 minutes time resolution. The
result is shown in Fig. 4.1 where unrealistic precipitation fields come from the error of echo
advection and echo intensity changing.

To decrease the advection and evolution errors the first step is to calculate motion vector
of radar echoes. There are several existing methods to do this calculation, here the TRAC
(Tracking RAdar echoes using Correlation) procedure were applied. During TRAC procedure
the radar grid was divided in macro grids and motion vectors were determined based on
maximum correlations for the macro grids. After some quality control to filter out noisy
vectors on macro grid fine resolution motion vectors were interpolated to all grid points of
the original radar grid.
Once a motion vector field between two radar images belonging T2 and T1 are calculated by
TRAC method, the radar reflectivity interpolation can be done at any time between T1 and
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Figure 4.1: 2 Hours accumulated precipitation calculated by radar images with 15 minutes
time resolution.

T2 by the following. Echoes from T1 moved forward and echoes from T2 moved backward
by motion vectors and a reflectivity of a given pixel is interpolated between forward and
backward moving reflectivity values as shown in Fig.4.2.

The methodology using interpolated radar images provides more realistic accumulated pre-
cipitation fields. The optimal time step of precipitation calculation was found 1 minute. The
12 hour precipitation field of Fig.4.3 is calculated from 15 minutes measurements interpolated
to 1 minute.

Calculating motion vectors from NWP output

NWP provides hydrometeors as output. For radar reflectivity calculation the mixing rations
of rain waters and solid precipitation elements such as graupel snow and hail are used.
Radar reflectivity of the precipitation elements was calculated by supposing Rayleigh scat-
tering; that is the reflectivity depends on the sixth power of diameter of the particles. Using
exponential size distribution the reflectivity of the rain drops is given by the following equa-
tion:

ZR = nRO exp(−λRD)dD = 720 1018nRO λ−7
R ,

where nR0 (8 ·106 m−4) is the interception parameter of the size distribution. The dimension
of the reflectivity is mm6m−3. The λR parameter can be calculated from the rain mixing
ratio (qR):

λR =
πρwnRO

ρaqR

0.25
,

where ρa and ρw are the density of air and water, respectively. In the case of the solid
precipitation elements (snow and graupel/hail) difference between dielectric factor of water
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Figure 4.2: Interpolation of radar reflectivity using motion vector.

and that of ice was taken into consideration. The following equations give the reflectivity
of the snow and garupel/hail particles. It was supposed that their size distributions, as
in the case of the rain drops, are also exponential with fixed interception parameters of
nS0 = 3 · 106m−4 and of nG0 = 4 · 104m−4 for the snow and hail and graupel particles,
respectively.

ZSDRY = 720 1018 |KI |2ρ2
s

|Kw|2ρ2
w

nSOλ
−7
S ,

ZGDRY = 720 1018 |KI |2ρ2
G

|Kw|2ρ2
w

nGOλ
−7
G ,

where ρS and ρG are the density of the snow particles (100kg/m3) and graupel/hail particles
(800kg/m3), respectively. The value of the dielectric factors (|Kw|2 and |KI |2) are 0.93
and 0.21, respectively. The λS and λG parameter can be calculated from the snow and
graupel/hail mixing ratios:

λS =
πρSnSO

ρaqS

0.25
, λG =

πρwnGO

ρaqG

0.25
.

If the temperature is larger than 0oC the solid precipitation elements start to melt. Due to
the melting a water layer covers the snow and graupel/hail particles. The presence of the
water layer modifies the reflectivity of these particles:

ZSDRY = 720 1018nSOλ
−7
S ,
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Figure 4.3: 12 Hours accumulated precipitation calculated by 1 minute interpolated radar
images.

ZGDRY = (720 1018nGOλ
−7
G )0.95.

Reflectivity values were calculated at all model grid points and the maximum value of vertical
columns were chosen to create NWP radar image. Results of model integration were taken
in every 15 minutes, and simulated radar motion vector fields were calculated in the chapter
1 described way.

Assimilation of convective storms in NWP

The numerical simulations were made by the MM5 (NCAR-PSU Mesoscale Model Version 3)
showed that equivalent potential temperature (EPT) values are vertically near constants at
severe thunderstorms (Fig.4.4). The mean EPT value of the lowest 1000 m can be considered
as vertically constant value at grid points where thunderstorms are. The assimilation of
thunderstorms works that at grid points where radar observation indicates thunderstorms
the EPT profile is considered constant. Supposing the air column at thunderstorms are
saturated (relative humidity is 100 %) a new vertical temperature profile (T(pressure)) can
be recalculated. Thunderstorms appears as wet warm bubbles in the objective analysis and
using built in nudging technique of MM5 these strong trigger effects can be introduced into
the model.

Precipitation nowcasting

Considering the procedures described above four levels of precipitation estimation and fore-
cast can be defined.
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Figure 4.4: Cross section of equivalent potential temperature at the case of severe thunder-
storm.

1. Estimation of measured precipitation can be done using time series of radar reflectivity
using motion vector field calculation by the method described in section 2.

2. Very short range nowcasting of precipitation can be done using extrapolation of radar
echoes in such a way that echoes are moved by the motion vector fields ahead and
the precipitation is calculated from the present and the extrapolated radar field by the
same method.

3. Longer forecast (1-2 hours) can be produced involving NWP. The procedure described
in section 3 allows us to determine predicted motion vector fields. Measured and pre-
dicted vector fields can be smoothed allowing more precise forecast of radar reflectivity.

4. A more advanced method is the NWP triggering method described in section 4. Assim-
ilating heavy thunderstorms into the model via triggering allows us to forecast not only
motion vector fields but development of thunderstorms, too. At a successful assimila-
tion continuity can be created between the real measured and numerically forecasted
thunderstorms extending the forecast time of the precipitation.

The 1-3 levels are used in operative practice at the nowcasting system of Hungarian Meteo-
rological Service. The 4th level is only in experimental state.
The methods described above can be verified comparing forecasted radar echoes with real
measured radar echoes. Case studies show that squall lines, supercells can be predicted for
2-2.5 hours ahead with good reliability. Nowcasting of local and isolated thunderstorms are
much less successful.
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Conclusion

Quality of precipitation estimation can be upgraded applying time series of radar images.
Series of radar images also allow making very short range precipitation forecast using mo-
tion vector fields. More complex method is involving numerical model into calculation of
radar motion vector field that extends the forecast time. Using a trigger method, severe
thunderstorms indicated by radar reflectivity can be assimilated into a high resolution nu-
merical model and it may establish continuity between measured and numerically predicted
convective phenomena.
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4.3 Rapid screening of flash flood impacted areas in Hungary

E. Pirkhoffer, S. Czigány, I. Geresdi

Department of Soil Sciences and Climatology, Institute of Environnmental Sciences, University of

Pécs, Pécs, Hungary

Introduction

Despite the widespread publicity of the conventional floods of the rivers Danube and Tisza,
the public awareness of flash flood events is limited in Hungary. However, large flash flood
disasters are exceptions, as they were documented and published widely by several authors
(e.g.: Horváth, 1999, Koris and Winter, 2000; Ely and Nagyváradi, 2001; Szlávik, 2003).
Similarly, our scientific knowledge on flash floods is much more limited than on conventional
riverine floods. The few studies, which discuss the hydrological problems of low-mountain
watersheds; however, these studies only provide a broad but distant overview of the ac-
tual complexity of the phenomena. Undoubtedly, Hungary is not the typical location for
flash flood generation; its lowland characteristics do not provide relief energy comparable
to the mountains of the Alps or the Carpathians, and, similarly peak flood discharges are
significantly less than those, which occur in Alpine environment (Ranzi et al., 2007). Nev-
ertheless, several flash flood events have occurred and were documented in Hungary, e.g. on
the Bükkösdi–v́ız in SW Hungary (July 1, 1954 and June 27, 1987), on the Átalér (June
9, 1953), and the Kövicses and Csörgö Streams (on April 18, 2005) in Northern Hungary
(e.g.: Eszéky, 1987; Eszéky, 1992; Vass, 1997, Horváth,2005). These flash floods were local-
ized events; however, they caused widespread and considerable economic losses (Lóczy ando
Juhász, 1996; Gyenizse et al., 2005).

Climate change is likely to affect the frequency of extreme weather (e.g.: intense convec-
tive rainfall) and weather associated phenomena, such as flash floods. However, in lack of
substantial statistical data, the identification of trends of this type is challenging and likely
to be misleading. Meteorological factors, on the other hand may have a subordinate role
on flash flood generations. For instance, the increasing extension of surfaces under human
influence (e.g. clear cuts and forest roads) in rural and non-urban environments may signif-
icantly enhance the impact of rainfall on surface runoff. In other words, primary triggering
factors of conventional flash floods, occurring in natural environments, may be similar to
pluvial and urban floods that occur on paved surfaces. Thus, such potentially flash flood
triggering factors also needs to be considered prior to the prediction of flash floods and in
risk management.

To prevent, or at least mitigate, extensive economic loss and fatalities, our objective, in col-
laboration with the Hungarian Meteorological Services, is to create a nationwide flash flood
guidance (FFG) system for the hilly and mountainous regions of Hungary (approx. 36,000
km2 ). Such forecasting system will be based on ultrashort weather forecasting, numerical
models, radar measurements and site-specific precipitation/water discharge functions. In
such cases, warning could be issued with a few-hour time lead prior to the occurrence of
the flood, potentially preventing economic and life losses. The development of a nationwide
flash flood guidance and warning system first requires the application of a rapid screening
method to delineate the potentially flash flood affected watersheds. Rapid screening and
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identification of flash flood impacted watersheds primarily involves topography (slope) but
also considers other environmental factors, such as rainfall intensity and duration, soils,
vegetation and land use.

The objective of the present study is to identify the most flash flood prone watersheds
of Hungary and to analyze the spatial pattern of the potential environmental factors that
may contribute to flash flood generation. Based on the identification and mapping of these
environmental factors and documented flash flood events, in the present paper we present
the development of a nationwide vulnerability model. This both statistically and historically
based map (hereafter HiStaM) forms an initial, but integral part of the nationwide FFG
system and is suitable for a decision support system.

Materials and methods

The most important environmental factors we analyzed include precipitation, topography,
soils, land use and vegetation and surface rock types. In our initial approach we generated a
watershed model for the hilly and low-mountain regions of Hungary by using the appropriate
digital elevation (50 meter spatial resolution) and hydrographic models. Watersheds ranging
from 10 km2 to 60 km2 were delineated with the Hydrogeographical module of ArcGIS 9.2
for the entire land area of Hungary.

The precipitation databases are founded on three datasets that depicts the spatial variance of
rainfall patterns in Hungary. These three datasets include the highest measured rainfall in-
tensities, highest cumulative rainfall per a single event, and return time of 40+ mm rainfall
events. The applied rainfall data were measured at 99 standard automated weather sta-
tions operated by the Hungarian Meteorological Services (Országos Meteorológiai Szolgálat,
OMSZ) and are roughly evenly distributed throughout the country. We also incorporated
data to the HiStaM from non-automated, manually operated rain gages.

The slope angle map was created from the 50-meter resolution DEM of Hungary in ArcGIS
9.1 and the same software was used to calculate and map the inflection points of each
individual watershed. Slopes were classified according to their steepness (slope inclination).

Obviously higher slope inclination and increasing precipitation directly enhance the proba-
bility of flood risk. Other environmental factors, such as land use and soils, on the other
hand, may decrease flood risk. In terms of land use and land cover we considered bare rock
surfaces, meadows, grasslands and other impervious layers as enhancing factors for surface
runoff.

Soils were modeled with the 1 : 100, 000 resolution AGROTOPO database (see e.g. Várallyay
a et al. 1979; Várallyay et al. 1980a; Várallyay et al. 1980b; Várallyay 1985) from which we
a a a used soil physical properties (texture and hydraulic conductivity) and soil thickness.

We deselected limestone and dolomite areas from the geological database of Hungary as
limestone and dolomite enhance infiltration along their vertical fractures forming preferential
flowpaths. The above described databases were overlaid and processed with ArcGIS 9.2
and IDRISI for Windows 32 softwares to spatially visualize and compare the geographical
difference and to identify the possible spatial correspondence among (i) topography, more
precisely slope inclination (ii) rainfall pattern and (iii) past occurrence of flash floods . Spatial
limitation of the studied environmental factors is primarily determined by precipitation data,
as this factor has the poorest spatial resolution.

Historical data were based on literature (documented flash floods) and damage reported to
insurance companies. The modeled location of flash flood impacted watersheds and historical
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data was then spatially correlated and analyzed in ArcGIS 9.2.

Results

Until today, 835 flash flood, urban and pluvial flood associated damage was reported to
insurance companies in Hungary (e.g. Horváth, 1999, Koris and Winter, 2000; Szlávik, 2003;
a a Hizsák, 2005, Horváth, 2005; Kovács and Kovács, 2007). Purely based on topography
(slope and elevation), potentially flash flood prone (PFFP) areas cover a total area of 36,152
km2 , i.e. 38.86% of the land area of Hungary. These areas encompass 1,082 watersheds, with
and average area of 33.41 km2. However, in our case study smaller watersheds were delineated
in order to spatially homogenize input environmental factors (e.g. soil and canopy) for the
hydrological model.

Spatial rainfall patterns reflect only a limited topographically influenced effect. Although the
three highest rainfall maxima per event are recorded in mountainous areas, other extreme
peak values are located e.g. on the Little Hungarian Plain (LHP) and to a certain extent
on the Great Hungarian Plain (GHP). The pronounced high intensity and high accumulated
rainfall event in the NW corner of the country was caused by an abrupt convective rainfall
event, hence the influence of topography here is unlikely as it is located in the Little Hun-
garian Plain. Since other high intensity precipitation events were also observed in the Great
Hungarian Plain, such events cannot be exclusively associated with an orographic influence.
The highest measured hourly rainfall intensities poorly correlate with either topography or
the location of documented flash floods. With their relatively low spatial extent, their iden-
tification is problematic, at least at the available rain gage frequency. The highest value was
recorded in the NW corner of the country (Mosonmagyaróvár, 82 mm h−1). However, the
second highest value was reported from the Mátra Mountains (Kékes–teto

′′

, 65.5 mm h−1),
a typical location for flash flood generation (e.g. Horváth, 2005). A five-year return time of
a 40+ mm rainfall per rainfall event seems to be certain over the entire land area of Hungary
(based on the 1961-1990 meteorological data set). Correlation between the spatial distri-
bution of flood-affected areas and rainfall pattern within the borders of Hungary is rather
poor. Although the map of 40+ mm rainfall per rainfall even indicates a certain degree of
orographic effect to explain the higher intense rainfall frequency, the higher rainfall intensity
of the SW part of the country (caused by low pressure systems originating primarily from
the Mediterranean region) is coupled only with a scarce number of documented flash floods
(e.g. Bükkösdi–v́ız). A second frequency maximum, due to orographic effects, is found in
the two highest mountains of Hungary, the Mátra and the Bükk.

Our former studies indicated that flash floods were not only affected by rainfall intensity
and duration, but they are also extremely sensitive to other environmental factors, such as
slope, soil type, soil thickness and rock type (Pirkhoffer et al., 2007; Czigány et al., 2008).
Soil properties, such as physical soil type and topsoil thickness were also included in the
generation of the HiStaM. The AGROTOPO’s resolution was sufficient for the development
of the HiStaM, although we used a better resolution soil map for our case study (Zalavári,
a 2008). Unlike the Alpine region (Ranzi et al., 2007), soil properties considerably affect
the rate of surface runoff and, although indirectly, significantly impact stream discharge
in Hungary. Soil properties were classified according to hydraulic conductivity and topsoil
thickness, i.e. enhancing or mitigating effects on surface runoff. The secondary porosity and
macropores of limestones can significantly mitigate the on-site generation of flash floods,
while at the perimeter of such areas interflow triggered outflow could significantly contribute
to surface runoff. From this consideration, we included the potential effect of limestone rocks
in the generation of the HistaM.
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Figure 4.1: HiStaM based flash flood vulnerable locations in Hungary at (a) 1%, (b) 2%,
(c)5% and (d) 10% level compared to the highest potential pixel value

When input datasets were overlaid we obtained the location of watersheds of high flash flood
vulnerability of the entire country at 1%, 2%, 5% and 10% levels, compared to the potential
maximum value of the HiStam (Fig. 4.1).
Observed and documented flash flood affected (ODFF hereafter) areas cover 5,926 km2,
while the HiStaM based modeled area encompasses 5,741 km2 for all individual points. Our
HiStaM overlaps with the ODFF areas on 1,819 km2 that equals 30.70 per cent of the
accumulated area of the ODFFs (Fig 4.2). Outliers were located along the Transdanubian
Mountains (Bakony). Hitherto no flash floods have been reported from the Bakony, how-
ever topography and soil conditions would favor flash flood generation here. On the other
hand, other limestone and dolomite covered areas, such as the Vértes Mountains, the Bükk
Mountains and the Aggtelek region have been affected by flash floods several times over the
past decades (e.g.: Szilágyi, 1954; Szlávik, 2003). It needs to be mentioned however, that
in the latter cases, floods primarily occurred along the perimeter of the limestone areas.
The foothill location of documented flash floods can be attributed to the contribution of
subsurface runoff that triggers flash floods when water leaves the limestone zones. Another
reason for the lack of documented flash floods in the Bakony can be explained by the low
spatial density of operating stream gages here. Note that limestone areas could only eliminate
in situ flash floods when uncovered i.e. lacking soil cover. In soils on limestones, infiltration
obviously reduces and hence runoff increases.

Several severe flash, pluvial and urban floods have been reported from the headwaters of the
River Kapos (e.g. Hizsák, 2005), although judging from our historical-statistical model this
area is not affected by flash floods. A large flood event occurred here on August 21, 2005,
initiated by a 105 mm rainfall event over a 3-hour period. A possible reason for lacking
model predicted floods here is likely caused by the considerable anthropogenic influence
(impervious layers) of the strongly urbanized area and the increasing extent of clear cuts in
the watershed, not included in the CLC2000.

It is noteworthy, that none of the 1 by 1 km pixels reached the potentially highest value
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in the HiStaM. This is explained by the high spatial heterogeneity of the observed and
studied eight environmental factors. The impact of topography on the HiStaM is obvious.
Note, that precipitation is important but not an exclusive factor according to our model.
The large rainfall event on the LHP was eliminated by the model and does not appear
on the HiStaM provided vulnerability maps (Fig 4.2). Even at 1% level, contiguous flood-
influenced areas are only found in the Bükk, Mátra, Börzsöny and Mecsek Mountains, hence
these areas have the highest potential flash flood vulnerability, where operation of the FFG
system is essential. Other hilly and low-mountain regions only show a discontinuous and
scattered spatial vulnerability pattern where flash flood generation is less likely, however
still expectable. Hence, the FFG system and the nationwide warning should be extended to
these latter areas as well.

(a) (b)

Figure 4.2: Watersheds with potentially flash flood-impacted (black dotted) areas simulated
by our historical-statistical model (Figure A); Locations, from which flash, urban and plu-
vial flood associated damage and economic loss have been reported to insurance companies
(Figure B) potential pixel value

Summary and Outlook

Model validation is carried out in a small low-mountain watershed in SW Hungary, the
catchment of the Bükküsd Valley, western Mecsek Mountains. This watershed lies in the
flowpath of high convective storm cells, and rainfall intensity is usually further increased
by orographic effects. The valley and the surrounding villages have been inundated by
flash floods several times in the past (see above). This area was chosen as a typical low
mountain watershed in Hungary which could be employed as a model (template) watershed
representing the majority of flash flood influenced watersheds in Hungary. Here we monitor
the temporally variable environmental factors, namely (i) precipitation, (ii) soil moisture,
(iii) canopy cover, and (iv) stream discharge. By monitoring these environmental factors
we study the proportion of each factors with which they individually contribute to flash
flood generation. We presume that this preliminary monitoring data will increase the spatial
accuracy of the watershed identification by the HiStaM. The conclusions derived from the
monitored data are assumed to be successfully employed in the flowchart based nationwide
FFG system.
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toriskolából I. Bornus Nyomda, Pécs. P.261-285. (in Hungarian, English summary).



Nowcasting 145
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(Soil hydrological properties map of Hungary III., resolution: 1: 100 000) Agrokémia és
Talajtan 29:77-113. (in Hungarian).

Várallyay G. 1985. Magyarország 1: 100 000 méretarányú agrotopográfiai térképe. (Soil
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4.4 On testing the stability and reliability of hydrometeor
classification operational products
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Introduction

The use of polarimetric radar measurements allows to identify the prevailing hydrometeor
type and its spatial distribution within a meteorological event. This information is partic-
ularly helpful in operational monitoring to characterise deep convection events (especially
for hail presence) and winter stratiform snow episodes. Real-time hydrometeor classification
maps, from the two polarimetric C-band radars located in the Po Valley and managed by
ARPA Emilia-Romagna (S. Pietro Capofiume and Gattatico), are provided to operational
meteorologists every 15’ to support weather monitoring and nowcasting activities.

Previous studies (Celano et al., 2008) highlighted that hydrometeor classification maps are
improved by using a sophisticated analysis method, instead of a simple averaging, to estimate
surface temperature, but also that they are quite sensitive to small variations of the radar
variables involved. As an example, pre-processing Z and ZDR data using various interpola-
tion methods produces slightly different classification maps. This last consideration leads us
to analyse the variability of hydrometeor identification maps resulting from different Z and
ZDR field perturbations, in order to study the stability and the reliability of the classification
product. Outcomes from this uncertainty study are presented.

The hydrometeor classification algorithm

The hydrometeor classification algorithm used refers to the scheme developed at the National
Severe Storms Laboratory (Zrnic at al., 2001), with appropriate modifications to deal with
C-band radar data (Marzano et al., 2006). The algorithm is based on a combination of
weighting functions mapping the reflectivity Z and differential reflectivity ZDR space and
associated with a particular type of hydrometeor.

The environmental temperature is used to remove further ambiguities by introducing the
additional constraint that every class of hydrometeor can only be found within a prescribed
range of temperatures. The summer version of the algorithm can discriminate the following
classes: large drop (LD), light rain (LR), moderate rain (MR), heavy rain (HR), rain-hail
mixture (RH), graupel and small hail (GSH), hail (HA), wet snow (WS), dry snow (DS)
and ice crystal (IC), whereas the winter version discriminates a reduced set of hydrometeors
(LR, MR, HR, WS, DS, IC), excluding classes related to convective events.

Radar fields perturbation and case studies analysed

In order to test the stability of the operational classification algorithm, different perturba-
tions to Z and ZDR radar fields have been applied for two different case studies (a summer
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severe storm and a winter snowfall) to investigate the algorithm behaviour in convective and
stratiform events.

The summer event occurred in the early afternoon of August 3rd, 2006 and it was charac-
terized by a supercell storm that developed in a frontal system after its interaction with a
second convective line located over the Appennines and then swept over the Po Valley. The
Doppler analysis detected the presence of the typical supercell vortex and the hydrometeor
classification was limited by the strong attenuation phenomenon. This severe event caused
many damages to a wide area of the Emilia Romagna Region. The winter episode occurred
on January 3rd, 2008 and it led to a copious snowfall lasting over the Region for the whole
day.

A first uncertainty study has been implemented by applying a “white noise” to Z and ZDR
fields and then producing the resulting hydrometeor classification maps (1 hundred maps
for each case study). Fields perturbation has been realized by adding random values Z’ and
ZDR’, ranging from -1 to 1 dB and from -0.5 to 0.5 dB respectively, to Z and ZDR radar
variables.

The second uncertainty evaluation has been performed by adding perturbations with different
ranges, in order to investigate the stability of the classification maps even in large noise
conditions and the different behaviours due to increasing perturbations.

Convective case (03-08-2006 12:34 UTC)

The San Pietro Capofiume operational classification map, displayed in Figure 4.1a, shows
that typical convective classes are detected (i.e., LD in purple and GSH in dark green)
together with LR, MR and HR classes (from light to dark blue). The HA pixels (light
green), instead, refer to clutter areas, especially over the Appennine regions, and they appear
as fixed-points when classification maps, collected at subsequent times, are analysed.

For this convective episode, about 5% of the classified pixels changes its assigned hydrometeor
type when the “white noise” is applied. These pixels are shown in Figure 4.1b, where
some stable areas (see empty light brown circles) and unstable areas (located close to the
attenuation cone, see red circles filled with light blue points) are also highlighted. Larger
range field perturbations produce appreciable variations (Figure 4.2a, b, c), with an increase
of LD and GSH pixels providing a noisy structure to light rain areas (light blue). It is
possible to note, anyway, that the main precipitation pattern is similar and maintained for
all the maps (i.e., areas with heavy, ice or slighter precipitation), even when the applied
noise is much higher than a realistic operational variation (up to -6÷6 dBZ for Z and -3÷3
for ZDR fields displayed in Figure 4.2c).

Histogram displayed in the top of Figure 4.3a represents the occurrence of the hydrometeor
type (examining the 100 maps) averaging on all the pixels affected by the noise (ND means
no data and NC not-classified pixels). It shows a general picture of the mean “perturbed”
pixel, pointing out that the most involved class in perturbation is LR, followed by GSH.
Histogram in Figure 4.3b, obtained normalizing the bars values of the previous histogram to
the number of pixels of the not-perturbed operational map (for each class type, scaled x104),
highlights that GSH (located close to the attenuation region) is the most “perturbed” class
followed by LD, while the other classes present similar behaviours.

Finally, histograms of Figure 4.4 show, for each class of the map obtained assigning the more
frequent class to each pixels, the occurrence of all the hydrometeor types in the 100 pertur-
bation maps. RH (assigned to very few pixels) and HA classes (due to clutter phenomenon)
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Figure 4.1: On the left: hydrometeor classification maps of 03-08-2006 at 12:34 UTC (a) and
03-01-2008 at 15:04 UTC (c). On the right: pixels changing their assigned hydrometeor type
after the addition of “white noise” (b and d, respectively, for 03-08-2006 and 03-01-2008 case
studies).

have been not displayed. As is possible to note, classes are quite stable, having the main
occurrence higher or close to 80%, while the other assigned classes have quite low occurrence.
Further, LR and GSH are the only classes involved in the NC pixels and the more frequent
class instead of LD is LR (16.3 %, that is the highest), as can be expected from previous
hydrometeor classification algorithm sensitivity analysis (Celano et al., 2005).

Stratiform case (03-01-2008 15:04 UTC)

Hydrometeors detected in the operational classification map (San Pietro Capofiume radar),
displayed in Figure 4.1c, are WS (in orange), DS (in yellow), LR (and few HR and MR
classes) and pixels affected by the perturbation are about 17%, much more than for the
convective case. Figure 4.1d highlights that WS areas are quite stable (empty light brown
circles), whereas the mixed regions (LR-DS-WS, red circles) are the most variable, followed
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Figure 4.2: Hydrometeor classification maps of 03-08-2006 at 12:34 UTC (top panels) and
03-01-2008 at 15:04 UTC (bottom panels) obtained by adding three increasing perturbations
to Z and ZDR fields (-2≤Z≤2, and -0.5≤ZDR≤0.5, a and d maps; -3≤Z≤3 and -1≤ZDR≤1,
b and e maps; -6≤Z≤6 and -3≤ZDR≤3, c and f maps).

by the DS areas.

Considering the pixels affected by the “white noise”, DS (with NC data) turns out to be
the class most involved in the perturbation (histogram shown in Figure 4.3c), whereas when
the occurrence is normalized to all the pixels, MR and LR appear to be quite unstable too
(Figure 4.3d). Figure 4.5 displays the occurrence of hydrometeor types for each class of the
more frequent classification map. Because the few MR and HR classes detected near the
ground for the snowfall event are supposed to be mis-classified pixels, the statistical analysis
for these types of hydrometeors has not been performed.

As in the previous convective case, all the classes turn out to be quite stable. DS is the class
more involved in Not Classified pixels, the more frequent class instead of LR is DS (10.9%),
of WS is DS (9.8%) and of DS is IC (13.8%).

Conclusions

In both case studies analysed, classification maps, resulting after the Z-ZDR field perturba-
tions, maintained the main precipitation pattern, confirming a good stability and reliability
of the hydrometeor classification algorithm used for operational activities.

The stratiform event presents stable WS areas, while DS and mixed regions are quite variable.
For the convective episode, the areas most affected by the perturbation are those filled with
GSH and LD classes.

Moreover, the severe convective case classification has shown a better stability respect of the
stratiform one (5% varying pixels vs 17%), with the exception of the areas affected by strong
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Figure 4.3: Left histograms: occurrence of the hydrometeor type averaged on the pixels
affected by the noise for the 03-08-2006 (a) and the 03-01-2008 (c) case studies. Right
histograms are obtained normalizing the bars values of left histograms to the pixel number
of the not-perturbed operational map (for each class type, scaled x104), for the 03-08-2006
(b) and the 03-01-2008 (d) case studies .

attenuation (where especially GSH is detected).
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Figure 4.4: 03-08-2006 12:34 UTC; histograms of the occurrence of the hydrometeor types,
for each class of the more frequent classification map.

Figure 4.5: 03-01-2008 15:04 UTC; histograms of the occurrence of the hydrometeor types,
for each class of the more frequent classification map.
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5.1 Uncertainty assesment in the framework of radar quanti-
tative precipitation estimate developed at ARPA-SIM
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Abstract

Uncertainty assessment in radar quantitative precipitation estimate (QPE) is one of the most
challenging tasks in the radar hydrometeorology studies. Several sources of error affect the
quality of radar data, like poor calibration, clutter, beam blocking, attenuation, anomalous
propagation, variation of reflectivity with height etc. and their effects propagate along the
data elaboration process up to the final product. In most cases well-constructed correction
procedures are applied, which reduce the impact of these errors, but often the final reliability
of the rainfall estimate is not described. The scope of this work is the validation of the
framework developed at ARPA-SIM for its regional radar network which is consisting of two
radars located in San Pietro Capofiume and Gattatico. Three versions of the QPE procedure
are compared. The first one corrects the Doppler filtered reflectivity data for anomalous
propagation and clutter; the second one adds beam blocking evaluation and correction and
improves anomalous propagation detection using a beam trajectory model which accepts
radiosounding data as input; the last one adds the reconstruction of the rainfall rate at
the ground level by means of the identification of a mean Vertical Profile of Reflectivity.
The radar products are evaluated by comparison with the measurements of a network of
quality controlled raingauges; the mountains area is separated from the rest of the radars
domain and the rainfall is cumulated during the whole event. The analysis is carried out
on mainly stratiform cases: some statistical scores are calculated and the precipitation fields
are observed to describe the reliability of the different radar QPE products.

Incidence of QPE error sources

Radar QPE accuracy is a strategic information for meteorological services, especially in order
to monitor the areas where raingauges are absent, but it is still a field of investigation. In
fact, the incidence of different uncertainty sources varies considerably depending on local
climatology and topography and on radar systems types. The magnitude of different errors
is a crucial point to define the best QPE strategy in each particular condition.

For non polarimetric radars it is possible to group the errors in three types: hardware
dependent, related to reflectivity (Z) retrieval and to the conversion of Z in rain rate .

Hardware uncertaintes are caused by the poor knowledge of the instruments characteristic
which can change in time due to substitution or deterioration of the components: antenna
positioning, transmitting chain and receiving chain require therefore a constant monitoring,
in other words, calibration. Reflectivity measurement are spoiled by clutter (due to ground,
anomalous propagation, sea, birds and insects, clear air), attenuation (due to radome, gas,
rain, hail), beam blocking, hail echoes, inhomogeneous beam filling. Finally, the conversion
of reflectivity into rain rate (R) is subjected to errors due to vertical reflecivity variation,
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overhanging precipitation, wind drift, Z-R relation. In fig. 5.1 is shown a summary table
of the principal sources of error at midlatitudes (Fornasiero, 2006) filled considering a wide
literature and the research works of Fabry et al. (2004) and Saltikhoff et al. (2004). The bars
show the range of relative error in % units over a cell of 1km x 1km produced by different
factors.

Ground clutter, vertical reflectivity variation, beam blockage and attenuation show the higest
impact, and they are able to nullify the reliability of a rain rate estimate. The Table is
useful to compare different errors but not sufficient to define the data correction priorities.
Another information should be added about the errors frequency, which is dependent on the
local conditions.

Figure 5.1: Range of relative errors (%) in radar QPE for a cell of 1 km x 1 km. Where the
colours becomes darker are to be intended extreme values.

Po Valley region and errors localization

The two radar systems of San Pietro Capofiume and Gattatico managed by ARPA-SIM
(hereinafter SPC and GAT) are located in the Po Valley, an area of Northern Italy limited
in the Southern part by the Appennini mountains, in the Northern and West one by the
Alps and in the East part by the Adriatic Sea. They monitor therefore a region which is
partially flat and partially characterized by complex orography. The climat in the Valley is
continental: wet and hot in summer, with cold winter.

Anomalous propagation incidence

At the interface between cold-humid and warm-dryer layers the refraction index of air de-
creases sharply causing a deviation of the radar beam from its standard trajectory toward
the ground. This condition is called supperrefraction and the effect on the beam path is
known as anomalous propagation (AP), and causes a huge increase of clutter echoes. The
nocturnal radiative cooling, in presence of stability conditions, produces a type of atmo-
spheric stratification having the mentioned characteristics (surface temperature inversions



Uncertainty in observations and data assimilation 154

and humidity trapped close to the ground) during the whole year. Nevertheless in Summer
the anomalous propagation is more frequent and more marked because the absolute humidity
and its gradient are higher; in fact the variables governig the phenomenon are temperature,
pressure and vapor pressure.

The Po Valley presents the highest climatological values of humidity in Italy (APAT, 2005)
and this is the main reason why the area is often characterized by superrefraction conditions.
Moreover, sometimes cool and humid air is advected from the sea over land by the sea
breeze. In the ECMWF report (Lopez, 2008) is represented the superrefraction occurrence
frequency simulated by the global model: the Po Valley shows the highest incidence in
Europe together with the south-western Spain and the Tirrenic central coast of Italy. Two
previous studies in this area (Alberoni et al. 2001, and Fornasiero et al, 2006 (1)), showed
how anomalous propagation conditions are very frequent, mostly in Summer during the
night (80% of incidence). Therefore the first ARPA-SIM QPE framework handled the errors
produced by mean and AP clutter.

Beam blocking effect

The shielding effect of mountains reduces the radar visibility at the lowest elevations in a
variable measure, depending on the propagation conditions. Since SPC and GAT radars are
scanning an area partially covered by mountains, this effect is not negligible. A large area
beyond the Appennino mountains is totally screened at the first elevation, and partially at
the sequents, for both radars. This justifies the introduction, in the QPE framework, of an
algorithm to correct beam blockage rate, which simulates the beam propagation conditions
through a model based on radiosounding data.

VPR impact

During the cold season the zero degree level is on the average about 1500 m above the ground
in the Po valley. Precipitation patterns are mainly stratiform and also bright band and the
vertical reflectivity variation affect the radar QPE. When the rain rate is accumulated over
some hours the VPR impact on the QPE maps is evident and dramatic. On the contrary in
Summer this effect is minor because the vertical reflectivity gradients are negligible during
convective event (in the range of heigth sampled to retrieve the QPE). Therefore the last
ARPA-SIM QPE framework is integrated by reflectivity reconstruction at the ground level.

Other uncertainty sources

Other uncertainty sources are not addressed here, for example attenuation, drop size dis-
tribution variability, secondary trips, precipitation type. Their impact on the QPE quality
is not negligible but minor respect to the above mentioned sources, for magnitude and fre-
quency in the considered area. They can be taken into account in the characterization of
the QPE quality pixel by pixel; in the ARPA-SIM framework for example a raw index of
attenuation contributes to define the quality value of the rain rate field (Fornasiero, 2006).

ARPA-SIM QPE framework evolution

During the years the radar QPE framework has undergone several improvements addressing
the principal error sources in the Po valley. The first one (2001) extrapolated the precipita-
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tion at the ground level considering the lowest available Z measure not affected by ground
clutter and converting it into precipitation, after AP clutter removal. The first condition was
satisfied by means of a static map, which recorded pixel by pixel the elevation not affected
by clutter in normal propagation conditions and during not rainy weather; AP clutter was
removed observing the vertical coherency of the signal (Alberoni et al. 2001).

The second QPE framework (2006) added beam blocking correction and improved anaprop
reduction by means of trajectory simulation based on the radiosounding data and on a multy
ray representation of the beam. Instead of a static map of elevations, a dynamic one was
used (Fornasiero et al. 2006 (2)).

The third and more recent framework (2008) is integrated by VPR calculation based on the
method described by Germann and Joss (2002); the VPR is then quality controlled, analyzed
and used to reconstruct the precipitation at the ground level (Fornasiero, 2008).

Case studies

The change of accuracy in radar QPE, produced by the frameworks evolution, was anal-
ized comparing the radar estimate with respect to the accumulated rain rate measured by
raingauges, in two different case studies and for GAT radar. The first one, occurred in
March 2007, is stratiform with bright band close to the ground, the second one is a mixed
convective-stratiform event occurred in May 2007. The radar precipitation field is calculated
considering the 125-km range acquisition (PRF=1200 Hz) and a 4-elevations volume scan.

The quantitative comparison was performed separating the flat area and the mountains
area. In fig. 5.2 are represented the scores calculated for different thresholds, using the
three schemes in the event of 24-28 March 2007. In the flat area, since the beam blocking
problem is absent, the difference between frameworks 2001 and 2006 is negligible. The VPR
correction (2008) improves the bias score and the critical succes index whereas the number of
false alarms shows a sligth variation. The absolute values of BIAS and RMSE are reduced.

Over the mountains the algorithms 2001 and 2006 are more different (fig. 5.3). The frame-
work 2006 produces an improvement for low thresholds which is lost for higer thresholds.
The reason is probably the elevation change behind the mountains induced by the beam
blocking algorithm, which leads to sample the reflectivity far from the ground. The addition
of VPR correction (2008) smooths the problem and corrects this behavior.

For the second event, the scores are represented in fig. 5.4 and in fig. 5.5; an appreciable
difference is present in the mountains area and between the 2006 and 2001 frameworks, due
to the visibility change produced by the introduction of the beam blocking algorithm. The
difference respect to 2008 is slight and difficult to evaluate (even if a bit of accuracy seems to
be gained), because the effect of VPR correction is limited to the instants where the mean
VPR has a stratiform shape (when the behaviour is convective, no correction is applied).

Summary and Outlook

The progressive introduction of AP clutter detection, ray path-beam blocking simulation and
VPR correction in the ARPA-SIM QPE framework has certainly increased the quality of the
QPE product during the years. The rain rate maps are now less noisy, more continouous
behind the mountains and bright band signatures are smoothed. Otherwise the local evalua-
tion is particularly tricky especially for the 2008 framework. The application of an averaged
VPR to the whole map is in fact able to increase locally the errors especially in mixed cases,
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Figure 5.2: 24-28 March 2007, flat area: QPE scores for the three frameworks.

Figure 5.3: 24-28 March 2007, mountains area: QPE scores for the three frameworks.

even if on average it reduces BIAS and RMSE. Another point is the different efficacy of the
frameworks in flat land and over the mountains: the performances are better over flat land
due to the absence of beam blockage and to the minor impact of beam overshooting and
VPR. In the mountains area the beam blocking correction improves the maps quality, but
may increase VPR problems. In mainly convective cases the major effect on the scores is
given by the beam blocking algorithm, whereas VPR correction produces small changes that
are difficult to appraise. The results suggest to apply the VPR only in pure stratiform cases.
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Figure 5.4: 4 May 2007, flat area: QPE scores for the three frameworks.

Figure 5.5: 4 May 2007, flat area: QPE scores for the three frameworks.

More work is also needed to improve radar QPE; a next interesting step could be the intro-
duction of an algorithm of separation stratiform-convective to distinguish the two contributes
in the VPR calculation and in the Z-R conversion. Moreover, in an optimal chain of QPE
retrieval, the different behaviour of the correction procedures should be taken into account
to define a decision tree able to track automaticly the more appropriate QPE path.
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5.2 Data assimilation experiments with ensemble Kalman fil-
ter

Bogumil Jakubiak

University of Warsaw, ICM, Pawińskiego 5A, 02-106 Warsaw, Poland

Introduction

Kalman filtering approach to data assimilation in meteorology and oceanography has more
then twenty years of implementation. Introduced to oceanography by Evensen (2003), en-
semble Kalman filtering approach has been extensively developed in US and results are
presented in number of papers. First implementation of the ensemble Kalman filter to
storm-scale events using simulated data was reported by Snyder and Zhang (2003), and later
on by Tong and Xue (2005). Results of experiments with assimilation of real radar data were
presented by Dowell at al. (2004). The progress in implementation of filtering methods to
data assimilation was possible after the development of the square root filters concept (An-
derson, 2001), an implementation of sequential analysis of observations (Anderson, 2003)
and development of the DART - the modern software tools able to run experiments in effi-
cient way. To learn the features of the filtering methods, from number of models available in
DART environment we choose the simple one-dimensional Lorenz L96 model and two-layer
isentropic primitive equation model.

Algorithm of the ensemble filtering approach

The ensemble Kalman filer is formulated as two-step procedure. First step is a forecast of the
model state to the next observation time. The ensemble members are evolved independently,
according to the nonlinear weather prediction model. The second step is the analysis, i.e.
adjustment of the entire ensemble to the information available in new observations. Such
update reflects both the new state estimate and the uncertainty included in observations.
The input to the filter analysis are:� the background (forecast) ensemble

{
xi

b
: i = 1,2, ...k

}� the observation operator H : Rm → Rs that maps the model space to the observation
space� the observations Y o ∈ Rs� the observation error covariance matrix R ∈ Rsxs

We assume that the best available estimate to the system state, before the observations are
taken into account, is the background mean.

x̄b = (k − 1)
k∑

i=1

xi

b (5.1)
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Define the m × k matrix of background ensemble perturbations Xb whose ith column is
Xi

b
= xi

b
− x̄b. Then the background uncertainty in this state estimate is described by the

background error covariance matrix

Pb = (k− 1)−1Xb(Xb)T (5.2)

Sequential assimilation of the observations is easier to implement and finally it gives the
same result as simultaneous processing of all observations. To compute the state variables
ensemble we need to compute the prior ensemble estimate of observation k using state
variable ensemble updated by all observations prior to k , compute update increments for each
ensemble member, and finally update the estimate of the state variables for each ensemble
member.

xo
i , i = 1, ...N

yp
i,k = hk(x

k−1
i )

∆k−1
i,k = yp

i,k − yk

xk
i,j = xk−1

i,j +
covk−1

xj,yk

vark−1
yk,yk

∆k−1
i,j

(5.3)

In sequential filter algorithm the forward observation operator for the first observation is
applied to the ensemble state vector x1 to produce a prior ensemble approximation, y1, of
the observation. Observation increments, ∆y1, are computed using the observation value,
ỹ1 and error variance, σ2

o,1, and regression is used to compute increments for the state. The

state is updated by adding the increments to produce x2 and the process is repeated for each
observation in turn.

The output of the analysis are the analysis ensemble {xa

i
: i = 1,2, ...k}, the analysis mean

and the analysis error covariance matrix. The analysis mean x̄a = (k−1)
∑k

i=1 xi
a represents

the estimate of the system state after the observations are assimilated and the analysis error
covariance matrix Pa = (k − 1)−1Xa(Xa)

T represents the uncertainty of this estimate.

Ensemble Kalman Filter is based on the Monte Carlo integration of the Fokker-Planck equa-
tion and its convergence rate for linear Gaussian problems depends on the dimension of the
phase space.

Experiments with L96 Lorenz model

The Lorenz L96 model represents an ‘atmospheric variable’ x at m-equally spaced points
around a circle of constant latitude. The jth component is propagated in time following the
differential equation with the quadratic advection term that conserves the total energy and
linear dissipation and external forcing terms. Our experiments with L96 model concentrated
on testing the way of reducing the sampling errors due to noise. Model imperfections lead to
erroneous prior distribution. Filter sampling errors lead to too little variance in priors. The
common method in such cases is to implement covariance inflation. The method is based
on the idea that the true is farther from ensemble mean than it is suggested by the prior
sample. Covariance inflation avoids this by increasing the prior variance. After the model
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Figure 5.1: Experiments with covariance inflation in L96 model

is advanced in time, the prior sample variance of each model state variable is increased by
linearly inflating the ensemble around its mean. Left panel of Fig. 5.1 shows the evolution in
time the inflated ensemble mean and spread for the variable 20 of the L96 model. Right panel
on that same figure shows posterior diagnosis of each realization form 20 member ensemble
and the ensemble mean for the 4th state variable

Experiments with isentropic primitive equations model

The more realistic, isentropic, primitive equations two-layer pe2lyr model was implemented
to DART by Jeffrey Whitaker. We used the model in a standard configuration 71×36 points.
We generated 100 day sequence to use in spinning up the model. After that we generate 50
day sequence to use it as the basis for 20 ensemble members tests. After these computations
we run filter to generate 80 ensembles perturbed from single restart file. Examining the
ensemble spread we found it not enough, so we rerun the model and the filter starting with
the final states from the previous step.

The pe2lyr model has three variables: interface height, zonal and meridional wind com-
ponents. In our experiments only wind components were assimilated, interface height was
used for diagnostic purposes. On Fig. 5.2 both wind components are presented on upper
and bottom layer respectively. This ensemble mean after 50 days of integration show well
developed structures of the flow. The interface height on bottom and upper levels presented
on Fig. 5.3 reflect the features of wind field assimilated by that model. The variability of
the height is from -2242.55 to 13308.1 m.

More detailed inspection of the time series of wind components presented on Fig. 5.4 and
Fig. 5.5 in selected point (in that case in Central Poland) shows stronger variability of both
components during the first 30 days of data assimilation. These results are for 80 member
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Figure 5.2: Zonal and meridional wind components after 50 days of integration

ensemble mean.

Summary and Outlook

The main purpose of these experiments was to familiarize ourselves with the modern data
assimilation tools developed in a frame of the Data Assimilation Research Testbed (DART)
initiative. We found this tool very efficient, well designed and programmed. We would like
to use the DART for experiments with the numerical weather prediction model COAMPS.
Square root ensemble filters available in DART are formulated in a such manner, than they
could be used in real atmospheric applications. The statement that the data assimilation
for high-dimensional nonlinear atmospheric models is a challenging task is true and will be
valid in near future. The important issue in future implementation of DART to the the
operational data assimilation schemes is a proper use of the uncertainties (sources of errors)
in a manner similar to proposed by Jeffrey Anderson and his colleagues.
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Figure 5.3: Posterior diagnostics: variable Z, levels 1 and 2, time=50 days
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Figure 5.4: The zonal wind component for the point (50.1N, 18.75E), level 1

Figure 5.5: The meridional wind component for the point (50.1N, 18.75E), level 1

used. Pictures were printed using ncview facility.
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Introduction

The common assumption of average atmospheric temperature and humidity vertical profiles
(normal radio-propagation conditions) provides a convenient way to calculate echo heights
for weather radar observations. However, it is a well known fact that in a number of cases this
assumption is often violated, impacting seriously in the quality of weather radar observations
under the so-called anomalous propagation conditions -typically bending of the radar beam
to the surface more than usual, i.e. super-refraction. The classical effect of super-refraction,
or its extreme case of ducting, is the increase of the number and intensity of ground and sea
clutter echoes. Additional side-effects include errors in echo height assignments (including
those clutter-free) or, in complex topography environments, variation of the degree of beam
blockage due to sheltering by mountains.

In this presentation an overview of related work to this topic performed under the framework
of the COST-731 Action is presented. This includes estimation of the variability of radio
propagation conditions using radiosonde data sets, methodologies for correcting radar beam
blockage corrections considering realistic radio-propagation conditions derived from Numer-
ical Weather Prediction (NWP) data, a Bean Propagation Model (BPM) to calculate actual
radar coverage and for correcting precipitation estimates in blocked radar bins, a specific
application to a radar siting case or the development and implementation of a technique for
assimilating blocked radar data into an NWP system.

Propagation conditions variability and radar beam blockage

Variations in the radio propagation conditions of the radar beam may produce unexpected
echo heights errors if standard propagation is assumed. As noted previously (see among
others Bech et al. 2003 or Fornasiero et al. 2006) this phenomenon may cause errors in radar
beam blockage corrections, which are typically applied in complex topography environments
to enhance quantitative precipitation estimates from beam shielding.

Modelling of radar beam blockage under different propagation conditions has been done
trough the use of a Beam Propagation Model (BPM). BPM requires as input a high resolution
digital elevation model, a description of the radar system (position, antenna beam width and
elevation angle, etc.) and information about the radio propagation conditions (Bech et al.
2007a). The propagation conditions are typically described by a refractivity profile derived
either from radiosonde observations or from NWP model output (see Bech et al. 2007b)
used in a geometrical-optics approach though more sophisticated options are also possible
considering for example hybrid parabolic equation methods as described by Bebbington et
al. (2007).
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Figure 5.1 illustrates the beam blockage problem with the Rst radar (Norway). The top
picture shows a view of the radar and three nearby hills (labelled with the numbers 1, 2
and 3) which produce blockage, while the rest of the horizon is flat and unobstructed. An
example of observed daily radar accumulated precipitation (bottom left) shows clearly the
effect of the shielding by the three hills (plus other obstacles to the northeast). The BPM
output (bottom right) simulates the blockage -in reasonable agreement with the observations-
and allows quantifying the degree of shielding. This enables subsequent correction of the
estimated precipitation field or analysis of the associated anaprop echo pattern (for example,
additional sea clutter caused by anaprop which Doppler filtering does not remove correctly).

Figure 5.1: View of the Rst radar (Norway) looking south; three hills (numbered 1 to 3)
cause partial beam blockage (top). Example of observed daily radar rainfall accumulation,
showing the effects of blockage in the precipitation field (bottom left). BPM output showing
the simulated blockage of the radar.

The use of the BPM corrections allowed the reduction of the bias between yearly radar
precipitation estimates and gauge records by 1 dB for moderate blockages (1 to 50 per cent),
and by up to 3 dB for intense blockages (50 to 70 per cent) as described in detail in Bech
et al (2007a). Moreover, several case studies using HIRLAM 6-h forecasts suggested the
potential of the BPM system to provide a general prediction of the radar coverage and the
associated ground and sea-clutter patterns under anomalous propagation events.

Radar siting using BPM

Another application of the BPM is radar siting, allowing not only to take into account the
influence of terrain on several possible sites but also super-refractive conditions experimented
in the region which may have substantial effects on the radar coverage. This is illustrated
with the Hemse radar in Gotland island, Sweden which had to be uninstalled in June 2007
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because the agricultural silo over which was built had to be demolished (Haase et al. 2006).

The analysis of alternative locations where the radar could be moved took into account
a number of issues, including property rights, technical infrastructure (road access, power
supply, etc.), local vegetation, radio interferences (e.g. RLAN), the existence of nearby
obstacles (churches, GSM towers, windmills,..) and topographical blockages. The last two
items were assessed using the BPM model. Ten different new locations were evaluated
considering both standard radio propagation conditions and HIRLAM NWP model output
corresponding to intense super-refractive anaprop (ducting) events.

An example of the analysis is given in Figure 5.2, corresponding to a super refractive event (9
July 2005 00 UTC). The figure shows the modelling of the blockage and beam propagation at
90 degrees azimuth (East) considering different sources of the refractivity profile: radiosonde
and HIRLAM output (from the 22 and 11 km grid length versions). The top row corresponds
to the Hemse site (completed with actual observations) and the bottom row to one of the
potential sites evaluated (G09). In this case the G09 simulation indicated that this site
was not affected by beam blockage when using HIRLAM data as input. The analysis of
several cases showed that using HIRLAM profiles corresponding to the radar site provided
more accurate simulations than using radiosonde profiles, as the radiosonde -located at some
distance- was not always representative of the radar site.

Figure 5.2: Anaprop event (9 July 2005 00 UTC) modelled for the Hemse radar site (top
row) and the G09 site (bottom row) using refractivity profiles from both radiosonde and
HIRLAM output (22 and 11 km grid length versions).

Assimilation of radar reflectivities considering topographical beam blockage

This section deals with the application of topographical radar beam blockage corrections
to assimilated radar reflectivities based on the BPM system (Haase et al. 2007). This
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was applied to AROME (Application de la Recherche l’Oprationel Mso-Echelle) an NWP
system for the convective scale developed by Mto-France with 2.5 km horizontal resolution. It
uses a three-dimensional variational (3dVar) data assimilation scheme and has an advanced
representation of the water cycle with five hydrometeor classes (cloud water, rainwater,
primary ice, snow and graupel) governed by a bulk microphysics parameterization.

The assimilation of radar reflectivities consists of three steps: 1) simulate reflectivities from
the model hydrometeors using an observation operator (Caumont et al. 2006), 2) retrieve
columns of pseudo-observations of humidity and other model prognostic variables from a
reflectivity column, and 3) assimilate the pseudo-observations through the 3dVar assimilation
scheme.

Figure 5.3: Vertical interpolation from model to radar space (along dashed lines). The black
solid line corresponds to the beam center while the dotted lines mark the beam width of
the unblocked beam. The red solid line defines the actual visibility at this elevation angle
assuming atmospheric standard conditions. The circles indicate the integration limits used
in the vertical interpolation for the blocked (red) and unblocked beam (black), respectively.

Figure 5.3 illustrates the vertical interpolation with and without beam blockage. Gauss-
weights are computed for all model levels within the beam width (dotted lines). Currently,
topographical shielding is not considered, i.e. the vertical interpolation (dashed lines) is
always performed within the theoretical beam width (black circles). This is justified for flat
regions (in Figure 5.3 at 60 km), but in mountainous regions the interpolation might consider
model levels which are not visible by the radar (in Figure 5.3 at 80 km). By using BPM’s
visibility maps for standard propagation the vertical interpolation becomes more realistic
where the radar beam is partly blocked (red solid line). In this case the lower integration
limit is lifted to the lowest visible height at that azimuth and range (red circles) while the
weights remain untouched.

This technique is demonstrated with a case study (14 May 2007 09 UTC) showing AROME
simulations for three different French radars: Bollne, Nmes and Opoul (Figure 5.4). The
effect of the AROME topography on the modelled visibility is clearly appreciated and in
some cases also in the actual radar observations. The analysis of the results indicated a
positive impact in using visibility maps producing less rejected pixels and also a decrease of
the absolute mean departure. It was also noted that the resolution of AROME’s topography
may not be sufficient to generate proper visibility maps so higher resolution topographies
are being considered.
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Figure 5.4: AROME simulations for 14 May 2007 09 UTC with (VIS) and without visibility
maps (CTL) for Bollne (left), Nmes (center) and Opoul radar (right).

Final remarks

Different applications of modelling radar beam propagation in complex topography envi-
ronments have been described in this paper. Two aspects, topographical beam blockage,
and the use of realistic radio propagation conditions (i.e. not assuming standard refraction)
are considered in a modelling system to enhance radar observations in order to provide im-
proved high quality quantitative precipitation estimates or input to a high resolution NWP
forecasting system. It should be emphasized that radar propagation conditions may present
substantial variability (normal conditions assumed not always met) so echo height estimation
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assuming normal conditions may be incorrect (potential impact in related products: blockage
corrections, VPR, VVP, etc.). The BPM tool presented has been used to generate correction
matrices for topographical beam blockage for standard propagation for NORDRAD sites,
has shown good potential to detect AP using HIRLAM11 refractivity profiles in several case
studies and also has been used in radar siting analysis. Complementary, considering to-
pographical beam blockage in AROME’s assimilation scheme has shown a positive impact
on the simulation of radar reflectivities, thus improving the data assimilation process in an
advanced high-resolution NWP forecasting system.
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Introduction

The High Resolution Limited Area Model (HIRLAM; Undén et al., 2002) is developed as
a cooperative effort among the national weather services of Denmark, Estonia, Finland,
Iceland, Ireland, the Netherlands, Norway, Spain and Sweden. The analysis scheme used
in the HIRLAM model is 3D/4D- variational data assimilation (Gustafsson et al., 2001;
Lindskog et al., 2001). This article gives an overview of the use of radar observations in the
HIRLAM framework. The HIRLAM reference code includes all the needed tools for radar
radial wind data assimilation. The details are discussed in the following. An observation
operator for radar reflectivity observations is not included in the HIRLAM data assimilation
system at the moment. However, a radar simulation model (RSM) is used for real-time
monitoring and validation of the model. An example of the use of RSM is shown. In the
end, a short outlook is given.

Radial wind observations

The HIRLAM strategy is to generate spatial averages, so called superobservations, from the
raw radial wind observations prior to data assimilation. This preprocessing step reduces
random observation errors effectively and can also be used to decrease the impact of repre-
sentativity errors. The desired resolution for the superobservation is defined with two free
parameters, range bin spacing (R), and azimuthal averaging (φ). Near the radar, the raw
observations used in the averaging are selected from a circle area limited by the arc distance
of the two adjacent output azimuth gates. After the arc distance exceeds the value of range
bin spacing, the data selection area is defined by R. With this approach fewer raw observa-
tions influence on superobservation near the radar than at longer measurement ranges. Each
raw observation is allowed to influence one superobservation only. Model experiments indi-
cate that the best fit between the superobservations and the model counterparts is obtained
when values of the order of R ≃ 10 km and φ ≃ 2◦ are used. In more general terms these
parameter values correspond at 50 km measurement range approximately a 1.75 km × 1.75
km averaging area with a 10 km range spacing.

In variational data assimilation, a model counterpart for the observation is calculated with
an observation operator. The radar radial wind observation operator implemented in the
HIRLAM data assimilation system interpolates the model profiles of the horizontal wind
components u and v to the observation location and projects them on the horizontal plane
towards the radar and on the vertical plane to the slanted direction towards the radar
(Salonen et al., 2003). The horizontal interpolation is done with bi-linear interpolation, and a
Gaussian averaging kernel is used in the vertical interpolation. The Gaussian averaging kernel
takes into account the broadening of the radar pulse volume as a function of measurement
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range. The observation operator takes into account also the pulse path bending. Modelling
the pulse path bending has two effects, the observation height at range d is different from
the one obtained with the 4

3r -law, and the effective elevation angle of the radar pulse path
is different from the antenna elevation angle.

Specific tools for radar radial wind data monitoring have been developed in the HIRLAM
framework. Aggregation of the radar radial wind observation minus model counterpart
(OmB) values for different azimuth directions in the bias calculation can result in a zero
bias even in the presence of systematic differences in the observed and modelled wind speed
and/or direction. This is due to the symmetric nature of the radial wind component as a
function of azimuth angle. The bias estimation method introduced in Salonen et al. (2007)
is applied in monitoring the OmB bias in the radar measurements in HIRLAM. Random
errors do not have such an azimuthal dependence and thus the OmB standard deviation of
the radial wind component can be studied directly.

Figure 5.1 shows an example of the cycle to cycle monitoring for radar Anjalankoski, Finland,
8th Feabruary 2008 06UTC. Upper panel of Fig. 5.1 shows a scatterplot of radial wind
observations as a function of model counterparts. The observed wind varies between –
18...+12 ms−1 which is well inside the limits of the unambiguous velocity interval of ±36
ms−1. In an ideal case the observations would follow the one-to-one line shown with black
solid line. In this case, the observations follow quite nicely the ideal case line. The middle
panel of Fig. 5.1 shows the observations (black dots) and the model counterparts (red dots)
as a function of azimuth angle. It can be concluded from the figure that the wind field
has been nearly uniform, as the observations and their model counterparts have a clear
indication of cosine form. The lower panel of Fig. 5.1 shows the OmB standard deviation
as a function of measurement range (black solid line) and the number of observations at
each range (grey bars). In this cycle, radar observations originate mainly from measurement
ranges shorter than 65 km, and until that range the OmB standard deviation is low, varying
between 1.5...2.5 ms−1. For longer measurement ranges the number of observations decreases
rapidly and the standard deviation increases close to 4 ms−1. These observations originate
from altitudes 3 – 6 km and they may represent isolated scatterers.

Reflectivity observations

A radar simulation model (RSM, Haase and Fortelius, 2001) has been implemented into
HIRLAM for verification and monitoring purposes. RSM is a software package that simulates
radar reflectivity measurements corresponding to the output of a NWP model. The assumed
location, frequency and scan pattern can all be chosen to match any available radar data
within the model domain. RSM then computes the local reflectivity at each grid point of the
model, and generates a simulated measurement by taking into account the beam propagation
and attenuation within the simulated atmosphere. The purpose of RSM is to make it possible
to use radar measurements for forecast verification directly, without having to solve the
difficult problem of linking the observed reflectivity to precipitation at the ground.

At the moment, RSM is not used with the HIRLAM model operationally, since the model
treats the precipitation as a diagnostic process. The RSM approach is more useful if the
model has a prognostic precipitation scheme. Therefore, RSM has been utilized mainly with
the meso-scale NWP model AROME, which is part of the HARMONIE-system (Hirlam-
ALADIN Research on Mesoscale Operational NWP In Europe).

Figure 5.2 shows a comparison of radar reflectivities on 9th October, 2008, at 18 UTC,
simulated from AROME data by RSM (upper panel) and observed by radars located at
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Figure 5.1: Upper panel: Scatterplot of radial wind observations as a function of model
counterparts for cycle 29. The black solid line indicates the ideal fit. Middle panel: Observa-
tions (black dots) and model counterparts (red dots) as a function of azimuth angle. Lower
panel: OmB standard deviation as a function of measurement range (black solid line). Grey
bars show the number of radar radial wind observations at each range.

Anjalankoski, Ikaalinen, Korppoo, Kuopio, Vantaa, and Vimpeli with elevation angle 0.3◦.
A cold front was passing over Southern Finland at the time. The cold front moved faster
than predicted and Fig. 5.2 reveals the phase difference at 18 UTC. The observed reflectivity
pattern is also more scattered than the model prediction. RSM is a very effective tool for
cycle to cycle monitoring of the NWP model predictions
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Figure 5.2: Comparison of radar reflectivities simulated with RSM (upper panel) and ob-
served by the FMI radar network (lower panel).

Outlook

HIRLAM model includes all the needed components for operational data assimilation of
Doppler radar radial wind observations. Preparations to start the operational use are on-
going. The measurement tasks in the Finnish radar network have been renewed during
summer 2007. The special needs of the NWP community have been taken into account
in the renewal process and a task designed for radial wind data assimilation purposes has
been implemented. Radial wind data has been passively monitored against HIRLAM and
operational use in data assimilation is in near future plans.

The impact of using radar radial wind observations in HIRLAM 4D-var is now investigated
by performing comprehensive impact studies (CIS) in which the joint impact of a variety
of observation types is studied. The focus in the CIS experiments including radial wind
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observations is on summertime synoptic scale forecasting of convection. The experiments are
carried out at ∼ 10 km horizontal resolution. Mesoscale CIS are planned to be performed
after the synoptic scale studies have been completed.

In the future, the NWP model monitoring with RSM is planned to be extended to cover the
dual-polarimetric features. This would enhance the knowledge on how the microphysics of
the NWP model is able to handle the phase change processes in the atmosphere.
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Introduction

Numerical Weather Prediction based on high resolution models, with grid resolution in the
range of 1-4 km, undergoes intensive research and development especially to improve local
weather predictions and the forecast of severe weather events.

At very high resolution the use of dense and highly frequent observations becomes crucial
in assimilation systems. Radar derived surface rain rate could serve the scope of feeding
rapidly updating cycle but the challenge remains to create an operational framework able to
handle moist process necessary for rain assimilation. Here a variational approach is proposed
in which the retrieval of temperature and humidity profiles from radar derived surface rain
rate is performed by employing two linearised parametrizations of large-scale condensation
and convection. The retrieved profiles are then used as pseudo observations into the nudging
scheme of the COSMO model which ARPA-SIM run operationally to provide weather forecast
for Italy.

The variational scheme was initially developed at ECMWF for active satellite observations
and is now adapted for the Italian radar network. It has the advantage of tackling the difficult
problem of how to vertically re-distribute in a coherent way the heat released by the rain
formation process. Former works just assumed constant/climatological profile. Sensitivity
studies of the variational scheme to input parameters are presented and the quality of the
retrieved profiles are assessed by means of statistical analyses.

Methodology

1D-VAR algorithm

The goal of the 1D-Var retrieval system is to find the optimal model state xa, that simulta-
neously minimises the distance to the observations, y0, and the background model state, xb.
The model state consists of the vertical profiles of temperature and specific humidity, which
are the control variables. A quasi-Newton algorithm is employed to minimise the following
cost function

J =
1

2
(x− xb)

TB−1(x− xb) +
1

2
(y0 −H(x))TR−1(y0 −H(x)) (5.1)

Where B and R are the background and observation error covariance matrices and H is the
observation operator which projects the model state into the observation space.
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The proposed scheme tackles the unresolved question on how to vertically re-distribute the
heat released by the rain formation process. Former works assumed constant/climatological
profile. The proposed one performs the retrieval of temperature and humidity profiles from
radar derived surface rain rate, employing two linearized parameterizations of large-scale
condensation [Tompkins Janiskova 2004] and convection [Lopez Moreau 2005] firstly de-
veloped at ECMWF and now adapted for our regional radar network. In 1DVAR moist
physical schemes are necessary to convert the model state into precipitation rates that can
be compared with radar observations [Lopez Bauer 2007].

Data

The forecast model used in this work is the COSMO-I2 which is a non-hydrostatic model
used operationally at ARPA-SIM with a grid resolution of 2.8 km. Forecasts with lead times
of 15 minutes are used as input of the variational algorithm.

Radar data are from Emilia-Romagna composit. Reflectivity measures are acquired every 15
minutes on a range of 125 km with an horizontal resolution of 1 km and then are converted
in rain rate. The use of very high spatial and temporal data resolution should guarantee
improvements in the initial condition knowledge. Nevertheless, highly correlated observations
could introduce unwanted correlation error into the analysis. Since this can create spurious
structures an observation thinning has been performed. The error on rain rate observations
has been estimated to 30% of the measured value as a first guess. An effort will be performed
in the future to estimate a more space related error.

Radar data thinning

Data thinning is performed by an autocorrelation analysis of reflectivity radar fields. Using
all data images acquired during the day under study a correlation histogram has been cal-
culated as a function of distances between two variables data points. Smaller the distance
higher the correlation between two points, being the correlation at zero distance equal to
one by definition. Figure 5.1 shows the result of the analysis.
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Figure 5.1: Correlation histogram as function of distances between two variables data points.
Fitting function is displayed.
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To fit the histogram a parametric function

f(x) = a0e
a1x (5.2)

has been used with parameters a0=0.87 and a1=-0.03. The e-folding distance of 32 km is
chosen as decorrelation (i.e. thinning length).

Off-line 1D-Var: test case

The selected case study is a convective event occurred in Northern Italy on 4-6 May 2007.
It was characterized by intense precipitation. Figure 5.2 presents some of the stages of the
event during the 4th of May as seen by the radar composit and predicted by the COSMO
model. Both radar and model data are then bilinearly interpolated on a regular grid.

Figure 5.3 shows the profiles of different cloud parameters as computed by the 1D-Var
package. In figure 5.3(a) the surface observed rain rate (black diamond) is displayed together
with first-guess and analysis profiles.

Summary and Outlook

Examining the retrieved profiles it can be noticed that the 1D-Var algorithm is able to
vertically redistribute heat released by the rain formation process in a coherent way. All
cloud parameters are modified in a physically consistent fashion. The mean temperature
and specific humidity increments (Fig. 5.4) provided by the 1D-Var package over the whole
experiment are remarkably small signifying that the observations are not affected by large
biases.

In the scatterplot of figure 5.5 model rain rate is plotted against observed rain rate for all of
the points analysed in the whole event. As a zero order the analysed rain rate is closer to
the observed rain rate when compared to the background as shown by the scatterplot. The
1D-Var package is therefore able to bring the model closer to the observed quantities.

In the future the impact on the assimilation technique on the COSMO 3D-integration will
be analysed.
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Figure 5.2: Surface rain rate at 03:00, 06:00 and 09:00 UTC of 4 May 2007 as forecasted
by the model and seen by the radar. Images in the last row show model and radar data
interpolated on the same regular grid.
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Figure 5.3: Vertical profiles of different cloud parameters for the first-guess (solid) and the
analysis (dashed).

Figure 5.4: Mean temperature (left) and specific humidity increments (right).
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Figure 5.5: Model rain rate against observed rain rate for first-guess (red diamonds) and
analysis (blue diamonds).
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Abstract

The Cyprus Meteorological Service has recently migrated to the Weather Research and Fore-
casting Model (WRF), which is now being used as the primary forecasting tool for operational
and research purposes. In order to check the forecast accuracy and better understand the
propagation of uncertainties through the model, we have performed simulated data assimi-
lation tests. In this preliminary study, we present model output as well as output following
assimilation of artificial temperature data at 850 hPa. Following this preliminary study,
further work is currently on the way to assimilate both radiosonde and radar data.

Introduction

The Weather Research and Forecasting Model (WRF) is a widely used atmospheric model for
both research and operational weather forecasting applications. The Cyprus Meteorological
Service has recently migrated to WRF, which is currently being used as the primary tool
for research purposes as well as for day-to-day operational weather forecasting. Preliminary
model verification has so far indicated that WRF performs relatively well in describing
and forecasting the weather in the Cyprus area. Formal model verification procedures are
currently being deployed in order to fully assess the performance of the model and determine
various ways of improving it.

WRF also allows for three-dimensional variational data assimilation (3DVAR) which can be
used to assimilate meteorological observations, radiosonde, radar and other data (Xiao et
al., 2008). The aim of the 3DVAR procedure is to calculate an optimal estimate of the true
state of the atmosphere at a particular time. This is usually accomplished by the iterative
extremisation of a prescribed cost-function—see Skamarock et al. (2005) and Kalnay (2003)
for more details.

In an attempt to study the propagation of uncertainties and hence approximately assess
the predictability of the model, we have used the 3DVAR procedure to assimilate simulated
data into the model and study the effect of the assimilation on the forecast output. The
various technical details of our study are presented in the next section followed by our results,
conclusions and suggestions for further work.

Technical Details

As a first attempt at using the 3DVAR process to assimilate meteorological data into the
model, we have generated artificial temperature values for all grid points used by WRF,
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corresponding to the p0 = 850 hPa level. For simplificity, we have used a cylindrically-
symmetric Gaussian distribution of temperature, that is of the form

T (x, y, p0) = 〈T 〉0 + (Tp − 〈T 〉0) exp
{
− 1

2σ2

[
(x− x0)

2 + (y − y0)
2
]}
, (1)

where 〈T 〉0 is average temperature over the p0 surface corresponding to the t + 0 model
output before performing data assimilation, i.e.

〈T 〉0 ≡ 1

A

∫∫

A
dxdy T (x, y, p0), (2)

A being the area of the forecast domain. The centre of the Gaussian distribution is located at
(x0, y0); its peak value is Tp and its full width at half maximum (FWHM) is approximately
given by the parameter σ.

In our study, we have chosen Tp = 290 K. The background average temperature was found
to be 〈T 〉0 = 274.42 K, corresponding to the t+ 0 model output for 17 February, 2008. The
Gaussian temperature distribution was centred at 29.5◦E and 35.5◦N. The model resolution
was 29 km, corresponding to 51 pixels in the E-W direction and 39 pixels in the N-S direc-
tion. The value of the parameter σ was set to an integral multiple of the model resolution;
in particular, we have used σ values corresponding to 1, 2, 3, 4, 5 and 10 times the model
resolution, labelled as S1, . . . , S10 in our results. Thus, S1 corresponds to a very sharp tem-
perature anomaly which falls off to the average value rather quickly, whereas S10 represents
a rather broad distribution of temperature, affecting the whole domain. The model was ini-
tialised using meteorological data from the National Centres for Environmental Prediction
(NCEP) every 6 hours and run for 72 hours, providing forecast output every 3 hours.

Results

The results both with and without artificial data assimilation are shown in Figs. 5.1–5.3. The
temperature field resulting from the model after assimilating artificial data produced from
eq. (1) is represented by solid contour lines; model output without any data assimilation
is displayed with dotted contours. Also shown are colour plots indicating the numerical
difference between the above mentioned temperature fields. Note that we only present results
corresponding to S1, S5 and S10 since these are the most representative of our study, with
S2, S3 and S4 exhibiting similar behaviour.

The temperature anomalies present over parts of Turkey are due to orography: the model
assigns the special temperature value of 1035 K to any points with pressure altitude less than
850 hPa and hence such points were ignored in our calculations. The corresponding numerical
difference shown in our colour plots is solely due to the Gaussian-distributed temperature
values of eq. (1).

We have also assimilated uniformly-distributed temperature values as opposed to Gaussian-
distributed ones and have observed very similar overall behaviour but also certain differences,
see Fig. 5.4.

Conclusions and Further Work

The results indicate that after approximately 36 hours, the two model runs appear to converge
to a large degree; this behaviour is reproducible for all values of the FWHM of the assimilated
Gaussian temperature distribution. We believe that this can be attributed to the fact that
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Figure 5.1: Model output for the temperature field at 850 hPa, on 17 February 2008, 00 UTC.
The solid temperature contours (top row) correspond to model output following the assimila-
tion of the artificial temperature data described by eq. (1). The dotted contours correspond
to the model output without data assimilation. Shown along the bottom row is a colour plot
of the difference between the data plotted along the top row.
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Figure 5.2: Corresponding model output for the temperature field at 850 hPa, on 17 February
2008, 18 UTC.

the model uses initial data every 6 hours and thus the forecast is “guided” by the initial
conditions.

During the first few forecast times, there appears to be a significant difference between the
two runs throughout the domain used for our study. However, after approximately 18 hours,
the area where the two runs differ significantly appears to be concentrated around the point
where the Gaussian temperature distribution was originally applied (marked by a cross
sign), as one might naively expect. We would also like to draw attention to the rightmost
pair of graphs of Fig. 5.4 in comparison with the corresponding pair of graphs shown in
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Figure 5.3: Corresponding model output for the temperature field at 850 hPa, on 18 February
2008, 12 UTC.
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Figure 5.4: As for Figs. 5.1–5.3 but for uniformly distributed assimilated temperature values.
Note that each pair of plots now corresponds to a different time instant: 17 Feb. 2008 at
00 UTC (leftmost), 18 UTC (middle) and 18 Feb. 2008 at 12 UTC (rightmost).

Fig. 5.3: there seems to be a significant difference between the model output following the
assimilation of large FWHM-Gaussian-distributed data and uniformly distributed data at
t + 36. In fact, we have found that the two runs (that is, with and without assimilation
of uniformly distributed data) converge after t + 51, i.e. at a much later time than those
corresponding to Gaussian-distributed data.

Further tests are currently being carried out to investigate both qualitatively and quantita-
tively the exact cause of the convergece described above as well as of the slight difference
in behaviour between the two types of assimilated data (uniformly distributed vs Gaussian
distributed). These tests involve running the model using initial conditions only for the t+0
frame as well as using different temperature distributions.
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Finally, we would like to emphasize that this is a preliminary study. We are currently working
on the assimilation of both radiosonde and radar data, using artificial and actual data sets
and investigating the effect of the assimilation on model variables at various pressure levels.
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Employment of a Laser Disdrometer in Torino: data validation and
comparison with Bric della Croce radar data

R. Cremonini , R. Bechini , V. Campana , L. Tomassone

ARPA Piemonte Area Previsione e Monitoraggio Ambientale, Torino, Italy

Abstract

The disdrometer is an instrument allowing the retrieval of some informations concerning rain-
drops characteristics. In particular it allows the reconstruction of the drop size distribution
(DSD). It thus can be useful to calibrate meteorological radars, which measure reflectivity,
function of the sixth power of the hydrometeors diameter. It is an important task to re-
construct the drop size distribution according to the precipitation type (such as stratiform
rain or convective rain), with the aim to get better estimation of precipitation at ground. In
this work the data registered by the disdrometer located in Torino have been analysed. We
considered five precipitation events occurred in 2006: disdrometer data have been compared
to rain registered at ground by raingauges located in Torino area, in order to evaluate the
reliability of the instrument. Secondly the DSD parameters have been derived, averaging
disdrometer data over 10 minutes intervals, and used to calculate theoretical reflectivity and
differential reflectivity, under the hypotesis of drop shape model proposed by Andsager et
al. in 1999. Such reflectivities have been compared to the reflectivities measured by the
polarimetric weather radar located in Bric della Croce, 6 km far from the disdrometer.

Instruments description

Thies-Clima disdrometer

The Thies-Clima disdrometer, installed in Torino, Piedmont region, at a height of 270 m
s.l.m., at the end of 2005 (Fig. 1), samples precipitation with one minute time resolution,
using a laser beam having a 45 cm2 surface, and a 0.75 mm thickness. In presence of hydrom-
eteors the laser beam is partly hidden, and the receiving signal is reduced; the diameter of
the particle is calculated from the amplitude of the reduction. The fall speed of the particle
is calculated from the duration in time of the reduced signal. The instrument, for a minute
of sampling, provides the following important informations:� the total number N of identified hydrometeors, classified according to diameter (20

classes, 0.16 to > 8 mm diameter) and vertical velocities (20 classes, 0.2 to > 20 m/s).
A matrix is given, with dimensions 20×20, resuming the characteristics of raindrops
in the considered time interval (60 sec);� precipitation intensity averaged on the last minute, calculated converting the total
water volume through the sampling surface in 60 seconds, in millimetres per hour.� precipitation intensity averaged on the last five minutes, calculated as the average of
the last five single minute intensity.

Other characteristics, concerning the identified hydrometeors type, are very useful in case
of solid precipitation, but were not considered in the present study, mainly oriented to the
analysis of rain precipitation.
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Figure 5.1: This–Clima disdrometer installed in Torino, C.so Unione Sovietica 216.

Other instruments

In this study were also used data retrieved by:� a polarimetric doppler weather radar, located in Bric della Croce, at about 6.4 Km far
from the disdrometer, at an altitude of 736 m s.l.m.� Torino Vallere raingauge, located 3.7 Km far from the disdrometer.

Case study

Some rainfall events occurred in Piedmont region during the year 2006 (see Table 1), and
involving Torino in particular, have been considered and selected:� 08/05/2006, convective event in Torino area� 10/05/2006, mainly stratiform event� 14/09/2006, mainly stratiform, but characterised by intensity peaks during the night

and the first morning� 25/09/2006, mainly stratiform� 06/12/2006, stratiform event without snow
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Table 1: Rainfall events.

Disdrometer data validation

Comparison with raingauges

As a first step, in order to evaluate the reliability of data supplied by Thies-Clima disdrom-
eter, rain rates averaged on 10 minutes intervals have been calculated and compared with
data provided by Torino Vallere raingauge. In Fig.2a and Fig.2b are plotted data from the
two instruments, during a convective and a stratiform event. It is possible to notice a good
agreement in the measurements, with a general little underestimation by the disdrometer
(blue lines). The rainfall intensity retrieved by the instrument has been calculated using
intervals of 10 minutes, summing the volume of fallen drops on the considered interval.

Velocity field validation

In order to calculate DSD using reliable data, was carried on an analysis of the velocity
field data. For all the considered events we compared velocity data from disdrometer with
theoretical velocity associated to each diameter by the following formula

V (D) = 9.65 − 10.3 e−0.6D

proposed in 1973 by D. Atlas [1]. We obtained some unphysical velocities for the first three
diameter classes (0.125÷0.250 mm, 0.250÷0.375 mm, and 0.375÷0.500), and for this reason
we excluded all the drops having velocity V not lying between the two curves: (VATLAS(D)
2 m/s) and (VATLAS(D) + 2 m/s). Finally we decided to omit the last class of diameter
and velocity, as the superior boundary is not known. An example is shown in Fig. 3.

DSD calculation

The drop size distribution varies spatially and temporally within a single rainfall event, fur-
thermore it is influenced by other factors such as the storm type or the climatic regime.
This variability causes important errors in rainfall estimation by meteorological radar, be-
cause the application of a fixed Marshall-Palmer equation (Z = aRb, where Z is the radar
reflectivity in dbZ, R the rain rate in mm/h and a, b two parameters associated to the DSD,
fixed according to the pluviometric climatological regime) does not consider the variation
in precipitation characteristics. The drop size distribution has been calculated averaging
disdrometer data on 10 minutes of measurement, using the formula suggested by Kruger and
Krajewski in 2001 [2], taking into account detected diameters and measured velocities as
well:

N(Di) =
1

∆t ∆Di

Mi∑

j=1

1

A vj
.
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In this formula N(Di) is the distribution of drops (in m−3m−1) characterised by a diameter
in the interval [Di −∆Di/2,Di +∆Di/2], Mi is the number of drops in size class i measured
in ∆t, which represents the sample time interval, A is the measuring area and vj the vertical
velocity of the j th drop with diameter Dj .

In this way we obtained a discrete DSD averaged each ten minutes, having one value of
N(D) for every diameter classified by the disdrometer. In Fig. 4, are shown images of DSDs
and associated precipitation percentages for two of the events listed before. A general good
agreement with results in literature was found, as we obtained:� distributions mostly characterised by bigger drops, in case of convective intense pre-

cipitation (Fig. 4a)� distributions with smaller drops, in stratiform weak precipitation events (Fig. 4b)
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Reflectivity calculation and comparison with radar

Once the discrete DSD has been computed, it has been possible to recalculate the precip-
itation intensity according to the following formula presented in Doviak and Zrnic, 1993
[4]:

R =
6π

104

n∑

i=1

N(Di)D
3
i v(Di) ∆Di

At the same time, using the same distribution and formula, the horizontal reflectivity ZH
referred to each 10 minutes interval has been computed. Then, for each considered case
study, ZH and R have been fitted, and two coefficients a and b, linked to the precipita-
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tion characteristics, have been extracted. Considering the variability of the precipitation
character during the selected events, it makes sense to separate stratiform rain case studies
from convective ones, and calculate distinctly parameters a and b. In Fig. 5a and 5b the
classical parameters values (Marshall-Palmer M-P, and Joss-Waldvogel J-W) are compared
with the ones obtained using disdrometer data for the 5 events, separated according to the
precipitation character.

As a final verification, the results obtained for horizontal reflectivity by disdrometer have
been compared to reflectivities measured by Bric della Croce radar, in the first radar cell
exactly above the disdrometer. As evident in Fig. 6, we obtained a good agreement of the
reflectivity trends by the two instruments, but a general heavy underestimation by the radar
(of about 4 dBZ), that needs to be deeply investigated.
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