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Model simulations unveil the structure-function-
dynamics relationship of the cerebellar cortical
microcircuit
Robin De Schepper 1, Alice Geminiani1, Stefano Masoli 1, Martina Francesca Rizza1, Alberto Antonietti 1,

Claudia Casellato 1,3✉ & Egidio D’Angelo 1,2,3✉

The cerebellar network is renowned for its regular architecture that has inspired foundational

computational theories. However, the relationship between circuit structure, function and

dynamics remains elusive. To tackle the issue, we developed an advanced computational

modeling framework that allows us to reconstruct and simulate the structure and function of

the mouse cerebellar cortex using morphologically realistic multi-compartmental neuron

models. The cerebellar connectome is generated through appropriate connection rules,

unifying a collection of scattered experimental data into a coherent construct and providing a

new model-based ground-truth about circuit organization. Naturalistic background and

sensory-burst stimulation are used for functional validation against recordings in vivo,

monitoring the impact of cellular mechanisms on signal propagation, inhibitory control, and

long-term synaptic plasticity. Our simulations show how mossy fibers entrain the local

neuronal microcircuit, boosting the formation of columns of activity travelling from the

granular to the molecular layer providing a new resource for the investigation of local

microcircuit computation and of the neural correlates of behavior.

https://doi.org/10.1038/s42003-022-04213-y OPEN

1 Department of Brain and Behavioral Sciences, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy. 2 IRCCS Mondino Foundation, Brain Connectivity
Center, Via Mondino 2, 27100 Pavia, Italy. 3These authors jointly supervised this work: Claudia Casellato, Egidio D’Angelo. ✉email: claudia.casellato@unipv.it;
egidiougo.dangelo@unipv.it

COMMUNICATIONS BIOLOGY |          (2022) 5:1240 | https://doi.org/10.1038/s42003-022-04213-y | www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04213-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04213-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04213-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04213-y&domain=pdf
http://orcid.org/0000-0001-8224-9341
http://orcid.org/0000-0001-8224-9341
http://orcid.org/0000-0001-8224-9341
http://orcid.org/0000-0001-8224-9341
http://orcid.org/0000-0001-8224-9341
http://orcid.org/0000-0003-0660-9952
http://orcid.org/0000-0003-0660-9952
http://orcid.org/0000-0003-0660-9952
http://orcid.org/0000-0003-0660-9952
http://orcid.org/0000-0003-0660-9952
http://orcid.org/0000-0003-0388-6321
http://orcid.org/0000-0003-0388-6321
http://orcid.org/0000-0003-0388-6321
http://orcid.org/0000-0003-0388-6321
http://orcid.org/0000-0003-0388-6321
http://orcid.org/0000-0002-8729-0391
http://orcid.org/0000-0002-8729-0391
http://orcid.org/0000-0002-8729-0391
http://orcid.org/0000-0002-8729-0391
http://orcid.org/0000-0002-8729-0391
http://orcid.org/0000-0002-6007-7187
http://orcid.org/0000-0002-6007-7187
http://orcid.org/0000-0002-6007-7187
http://orcid.org/0000-0002-6007-7187
http://orcid.org/0000-0002-6007-7187
mailto:claudia.casellato@unipv.it
mailto:egidiougo.dangelo@unipv.it
www.nature.com/commsbio
www.nature.com/commsbio


The relationship between structure, function and dynamics
in brain circuits is still poorly understood posing a for-
midable challenge to neuroscience1. The core of the issue is

how to deal with the distribution and causality of neural pro-
cessing across multiple spatio-temporal scales. While experi-
mental measurements remain essential, they can now be
supported and complemented by realistic computational models.
In principle, such models could take into account multi-modal
datasets representing morphology, connectivity and activity of
different cell populations and make it possible to simulate the
propagation of microscopic phenomena into large-scale network
dynamics2–4. These models can incorporate a broad range of
biological data becoming highly constrained and providing the
best proxies of the corresponding natural circuits. Eventually,
once properly configured and validated, these models can gen-
erate their own ground-truth by binding the many parameters,
provided by independent measurements and intrinsically prone
to experimental error, into a coherent construct, and can be used
to test various functional hypotheses5 using specific simulations
platforms, like NEURON6 and NEST7. There are several exam-
ples of advanced computational models that have been mostly
developed to simulate activities in the cerebral cortex8–10. Here
we have developed a framework, the Brain Scaffold Builder (BSB),
to cope with the organization of the cerebellar network.

The cerebellar cortical microcircuit has inspired foundational the-
ories on brain functioning11 but still challenges realistic computational
modeling12. Previous network models using ionic conductance-based
neurons have been developed only for the granular layer13,14. The
only model encompassing the granular and molecular layer altogether
made use of single-point neurons with a simplified representation of
membrane excitability15. Although those models showed a remark-
able predictive power against specific target parameters, their main
limitation was that connectivity was set independently from neuronal
morphology13–15 preventing a direct link between microcircuit
structure, function and dynamics. In the meanwhile, detailed com-
putational models of the main cerebellar cortical neurons, which were
based on morphological reconstructions embedding multiple mem-
brane ionic channels and synaptic receptors, have been developed,
tested and validated16–20. Thus, with the BSB, we have been able to
generate the first computational model of the entire cerebellar cortical
microcircuit including both the granular and molecular layer, in
which multicompartmental neuron models were wired through a
connectome defined by the anisotropy of dendritic and axonal pro-
cesses through principled rules. The model allowed then to simulate
network dynamics and validate it against naturalistic inputs21–23.

This work generates de facto a new model-based ground truth for
the cerebellar cortical microcircuit, predicting the weight that some
connections should have to balance the internal activity. On the scale
used here, we observed a set of emerging spatio-temporal dynamics.
First, background mossy fiber bombardment induced coherent
oscillations throughout the granular layer under gap-junction con-
trol. Secondly, collimated mossy fibre bursts mimicking punctuate
sensory stimulation generated dense clusters of granule cell activity
that propagated vertically invading the overlaying molecular layer,
where inhibitory interneurons controlled the emission of burst-
pause patterns from Purkinje cells. Finally, synaptic changes
mimicked the long-term plasticity of neuronal discharge observed
during cerebellar learning. Thus, simulations unveil local micro-
circuit computations explaining the neural correlates of behaviour,
suggesting that the BSB cerebellar model provides a valid resource
for future experimental and theoretical investigations.

Results
The Brain Scaffold Builder (BSB). Cerebellar modelling using
realistic morphologies poses specific problems, mostly related to

the anisotropy and regular geometry of the network, that are not
easily manageable with existing modeling tools8–10 so that we
developed the BSB, the first component framework (i.e., a set of
well-defined interfaces that establish the protocols for component
cooperation within the framework) for multiscale neural circuit
modeling. The BSB allowed to easily solve construction problems
like the precise orientation of neuronal processes in the 3D space,
the connectivity of neurons through prescribed rules dictated by
anatomo-physiological measurements and the choice of a variety
of intersection rules depending on network geometry. The BSB
operated through a sequence of independent steps: network
configuration, reconstruction and simulation (Fig. 1a). The net-
work volume was defined first along with cell types, then the BSB
proceeded with cell placement and connectivity, reconstructing
the microcircuit network (Fig. 1b, c). Finally, the BSB was
interfaced with the NEURON simulator and network activity was
simulated and the results visualized. Details on BSB operations
are given in the Methods and Supplemental Material.

Cerebellar network reconstruction. The BSB was applied to the
mouse cerebellar cortical network, which has a geometrically
organized architecture that has been suggested to imply its com-
putational properties11,12. The reconstruction and simulation of a
network volume of 17.7 10−3 mm3 is reported, including the fol-
lowing cell and fiber types: mossy fiber (mf), glomerulus (glom),
granule cell (GrC) with ascending axon (aa) and parallel fiber (pf),
Golgi cell (GoC), Purkinje cell (PC), and molecular layer inter-
neurons (MLI) comprising stellate cells (SC) and basket cells (BC).

Neuron placement. The network elements summed up to 29˙230
neurons (GrC, GoC, PC, SC, BC) plus 2˙453 other elements (mf,
glom), which were placed in the network volume according to
anatomical data12,13,24 (Fig. 2a). The density values matched the
targets given in the configuration file, the nearest neighbour and
the pairwise distance distribution always exceeded cell diameter,
and radial distribution function demonstrated the homogeneity of
cell distribution without overlapping (Fig. S1).

Neuron connectivity. The network connections summed up to
1˙500˙000 chemical synapses and 2˙100 electrical synapses. The
cerebellar connectome was modelled combining probabilistic and
geometric rules that were chosen depending on available data and
the nature of fiber (axon and dendrites) crossing (Fig. 2b–d; see
Methods for details). This flexible management of connection
rules is unique and fixes problems not easy to solve with cerebral
cortex simulators, which deal with isotropic cellular organizations
and adopt a limited number of intersection rules for all neurons
and connections8–10.

The well-known connectivity of mf and glom was entirely
accounted for by literature data. The BSB generated local
anisotropic glom clusters extending 60 µm along the x-axis and
20 µm along the z-axis25, with ~20 gloms per mf26. Imposing that
each GrC sends its 4 dendrites to gloms belonging to different mfs
within about 30 µm, the BSB yielded 49 GrCs per glom on
average27,28. Each of the 4 GrC dendrites, in addition to a single
excitatory synapse on the terminal compartment, also hosted 1
inhibitory synapse on the preterminal compartment, mostly
originating from different GoCs (Fig. 2c)29,30.

The connectivity of GoCs was faced using either literature data
(glom-GoC) or adopting various intersection rules (aa-GoC,
pf-GoC, GoC-GoC). In fair agreement with literature, each GoC
received excitation from 56 different gloms and each glom
collected basolateral dendrites from ~2 GoCs31. There were 320
aa synapses on basolateral dendrites and 910 pf synapses on
apical dendrites per GoC, all from different GrCs (Fig. 2b)32.
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Moreover, each GoC received inhibition from 16 other GoCs33 on
basolateral dendrites (subsequent functional calibration implied
~160 synapses per pair, see below). Finally, there were ~8 GoCs
that formed gap junctions on other GoCs, with ~3.5 gap junctions
per pair34.

The connectivity of PCs and MLIs was recovered using
suitable intersection rules (aa-PC, pf-PC, and all MLI synapses).
The BSB identified 1˙500 pf synapses per PC (this figure was
limited by the 200-μm network size along z-axis but it would
range up by 1 order of magnitude in an unbounded
volume18,35) and 197 aa synapses per PC from 82 different

GrCs36. There were 480 pf synapses per SC and 740 pf synapses
per BC, while MLI reciprocal inhibition37 involved 14 SC-SC
and 14 BC-BC connections with ~100 synapses per pair. The SC
axon, mainly extending on the coronal plane, innervated ~2
PCs38 and each PC received synapses from ~5 SCs (Fig. S2). The
BC axon, mainly extending on the sagittal plane, innervated ~14
PCs and each PC received synapses from ~20 BCs (akin with the
figure of 3-50 baskets around the PC soma and 7-10 PCs per
BC)38,39. These predictions of structural parameters were
further assessed and tuned through functional simulations
(see below).

Fig. 1 The Brain Scaffold Builder. a Core BSB operations. In the reconstruction phase, BSB proceeds by sequentially defining the network volume, cell types,
cell placement, cell connectivity. Once neurons and fibers are positioned, their geometries/morphologies are imported, and connection rules allow to wire
them up and to build the network connectome. In the simulation phase, neuron and synapse models are linked to simulators, like NEURON in the present
case, by a specific adapter and interfaced to a set of devices for stimulation and recording. In the post-simulation phase, graphic tools are made available for
data representation. This workflow is applicable to any kind of brain neuronal network. b Infographic representations of the main placement strategies
available in BSB, using kd-tree partitioning of the 3D space (particle placement, parallel array placement, satellite placement). c Infographic representations
of the main connection strategies available in BSB: distance-based in/out degree probability functions, voxel (or fiber) intersection based on voxelization of
morphologies, touch detection.
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Cerebellar network simulations. Network simulations were car-
ried out using detailed neuronal and synaptic models written in
NEURON for GrC17, GoC16, PC18,20, SC and BC19. Local micro-
circuit responses to input patterns were tracked back to individual
neurons and used to follow signal propagation with unprecedented

resolution. All simulations were carried out in the presence of
background noise to improve comparison with recordings in vivo.
The emerging spatio-temporal dynamics provided functional
model validation beyond constructive validity based on internal
connectivity and single neuron responses (Movie S1).

Fig. 2 Reconstruction of the microcircuit of cerebellar cortex. a Positioning of cell bodies in a 3D slab (300 × 295 x 200 μm3) of mouse cerebellar cortex.
Cell numbers are indicated (the symbols reflect soma size). In this and the following figures, the xyz reference system is defined by x-y (sagittal plane), x-z
(horizontal plane), z-y (coronal plane), as in standard anatomical representation. Thus, y measures cortex thickness (aa direction), while z identifies the
major lamellar axis (pf direction). b Example of 3D morphologies illustrating GrC-GoC connections through aa and pf. One GrC and two GoCs are shown: the
synapse along aa is identified by touch detection, while synapses along pf are identified by fiber intersection. c glom-GrC and GoC-GrC connections. A glom
contacts a group of 38 GrCs forming an excitatory synapse on the terminal compartment of 1 of their 4 dendrites. The glom, in turn, is contacted by a GoC
nearby, which forms an inhibitory synapse on the preterminal dendritic compartment of the same GrCs. The inset shows a GrC with 1 excitatory synapse
and 1 inhibitory synapse on each dendrite. d The cerebellar cortical connectome generated by BSB reporting convergence (on the postsynaptic element),
divergence (from the presynaptic element), total number of synapses, and number of synapses for each connected pair. It should be noted that mf-glom is
not a proper synapse but just a branching.
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Resting state activity of the cerebellar network. A random input at
low frequency (4 Hz Poisson) on all mfs22 was used to simulate
the cerebellar network in resting state in vivo. Since anatomical
data about the connectivity of cerebellar neurons are incomplete,
but their resting discharge frequency is known, we finetuned the
number of connections per pair against target values of basal
discharge. The turning point was to calibrate GoC-GoC inhibi-
tion, which influenced resting state activity of the entire network.
Since the synaptic conductance (~ 3200 pS) and the number of
interconnected GoCs (about 15) are known33, we tuned the
number of GoC-GoC synapses until basal discharge frequency
was achieved. Eventually, the background frequency of all cere-
bellar neuron types fell in the ranges reported in vivo in anaes-
thetized rodents (mfs: 4.2 ± 2.6 Hz; GrCs: 0.81 ± 1.3 Hz; GoCs:
19 ± 15 Hz; PCs: 31 ± 1.6 Hz; BCs: 11 ± 5.1 Hz; SCs: 9.4 ± 12 Hz)
[GrCs40, GoCs,16,41,42, PCs43, SCs and BCs44–46].

Granular layer oscillations and synchrony. Background mf activity
is known to generate synchronous low-frequency oscillations in the
granular layer47. Indeed, in the model, the FFT of GoC and GrC
firing revealed a synchronous oscillatory behaviour in the theta band,
with the first harmonic peaking at 9.7 Hz. When GoC-GoC gap
junctions were disabled, the regularity of the oscillation decreased
and the first FFT harmonic moved out of theta band (Fig. 3a)48.

To investigate the sensitivity of Golgi cell synchrony to gap
junction density49, we compared the cross-correlation of Golgi
cell discharge with the degree of coupling (electrotonic distance,
Fig. S3) in GoC pairs, when the network was activated with 4-Hz
Poisson mossy fibre activity. The cross-correlation of Golgi cell
discharge decreased smoothly with the increase of electrotonic
distance (Fig. 4a), tending toward a non-zero level. This non-zero
level, that indicates the vanishing of gap-junction effects,
corresponded to that observed by disabling the gap junctions
and unveiled the synchronizing effect of the feedback loops
passing through the granule cell – Golgi cell circuit reported
earlier14,50 (see below). (Fig. 4a). This loose synchronization due
to shared input from GrCs was still correlated to spatial
proximity. In Golgi cell pairs with direct coupling (n= 384 out
of 4830 pairs), increasing the gap-junction density by 2.5 times
caused two discrete peaks (at −1ms and + 1 ms) in the mean
cross-correlogram (Fig. 4b). A spike could either precede or
follow the one emitted by a neighbouring Golgi cell with
millisecond precision as observed experimentally49. In Golgi cell
pairs with indirect coupling (i.e., 2 or more cells away, n= 842
pairs), the two peaks in the mean cross-correlogram disappeared,
as much as when gap junctions were disabled. The percentage of
synchronous spikes across all GoC pairs located within 100 µm
reached about 27% with a 5-ms time lag window, again consistent
with experimental findings49 (Fig. 4c). Following this functional
validation, the model was used to compute the probability density
of spike coincidence in the granular layer, predicting that the
effects of Golgi cell coupling can extend over an ellipsoidal
volume over ~100 × 200 μm.

Impulsive response of the cerebellar network. Short stimulus bursts
were delivered to a bundle of 4 mfs connected to ~80 gloms to
emulate whisker/facial sensory stimulation in vivo22,40. The burst
propagated through the network, temporarily raising neuronal
firing (Fig. 3b, Movie S1). The relationship between the number
of spikes at afferent synapses and the response frequency to the
mf burst was robustly captured by multiple linear regression
(Fig. 3c; Fig. S4,a; Table S1).

GrC responses: Fundamental predictions on how GrCs respond
to incoming bursts derive from current clamp recordings in situ51

and simulations17, which revealed the role of synaptic receptors

and ionic channels. In BSB simulations, bursts on a collimated mf
bundle activated a dense cluster of GrCs15,21,52. The relationship
between the number of input spikes (both at GoC-GrC and glom-
GrC synapses) and GrC response frequency unveiled 4 groups of
GrCs with a corresponding number of synaptically activated
dendrites (Fig. 3c). The number of GrC spikes, first spike latency
and dendritic [Ca2+]in correlated with the number of active
dendrites (NMI= 0.71, 0.86, 0.59, respectively) (Fig. 5a, b).

When the inhibitory mechanisms (comprising transient and
persistent inhibition) were disabled to simulate a pharmacological
GABAA receptor blockade, (i) GrC baseline frequency increased,
(ii) a tail discharge appeared after the burst, (iii) responses
including more spikes appeared, (iv) the first spike latency
decreased, and (v) response variability decreased (Fig. 5a, b). The
number of GrC spikes, first spike latency and dendritic [Ca2+]in
still correlated with the number of active dendrites (NMI= 0.79,
0.85, 0.61, respectively) (Fig. 5b). Interestingly, inhibition caused
a reduction in the number of active GrCs (i.e. those firing >=
1 spike in the 40 ms after the mf burst onset were 3390 ± 431, and
8348 ± 1724 with GABA-A off; n= 10 simulations; p < 0.001,
unpaired t-test) but enriched the spike pattern, as predicted
theoretically11,53.

Recordings in vivo disclosed precise integration of quanta and
high-fidelity transmission in the granular layer22,54–57. In BSB
simulations, GrCs receiving maximum excitation generated one
action potential for each spike of the input burst, with short
latency (<2 ms), and faithfully followed the input up to 250 Hz
(Fig. 5a) (Movie S2).

GoC responses: Following punctuate sensory stimulation in vivo,
GoCs have been reported to respond with short bursts of
2–3 spikes at up to 200–300 Hz58. In BSB simulations, GoCs
immersed in the GrC active cluster generated a burst of 2-5 spikes
with a maximum instantaneous frequency of 213 ± 29 Hz
(Fig. 5c). When GABA synapses and gap junctions between GoCs
were disabled, the response bursts showed up to 6 spikes, with a
higher maximum instantaneous frequency (308 ± 16 Hz) (n= 70
GoCs; p < 0.001, paired t-test) (Fig. 5c). The burst was caused by
synaptic excitation relayed by gloms and GrCs (through both aas
and pfs), which generated AMPA and NMDA currents in GoC
dendrites (Movie S3). The “silent pause” appearing after the burst
was caused both by an intrinsic phase-reset mechanism58–60 and
by reciprocal inhibition between GoCs, demonstrating marked
dendritic processing capabilities16.

PC and MLI responses: PCs in vivo are known to respond to
punctuate stimulation with burst-pause patterns23,61. In BSB
simulations, PC responses depended on cell position relative to
the mf active bundle (Fig. 6a). The PCs placed vertically on top of
the GrC active cluster received the largest number of aa and pf
synaptic inputs producing typical burst-pause patterns18. The
burst coefficient was correlated with the number of synaptic
inputs from pf and aa (multiple regression analysis: R2= 0.91)
(Fig. 6b). The pause coefficient was correlated with the burst
coefficient (NMI= 0.79) and with the number of spikes from
MLIs (NMI= 0.66) (Fig. 6b), reflecting the origin of the pause
from both intrinsic after-hyperpolarizing mechanisms and MLI
inhibition62. Indeed, MLIs are known to narrow the time window
and reduce the intensity of PC responses44. In BSB simulations,
the PC AMPA current arose soon after the spikes emitted by
GrCs, while the PC GABA current was delayed by 2.6 ms
(Fig. 6c). In summary, the di-synaptic IPSCs produced by MLIs
quickly counteracted the monosynaptic EPSCs produced by aas
and pfs, providing precise time control over PC activation52,63.

BCs in vivo are known to generate lateral inhibition reducing
PC discharge below baseline causing contrast enhancement44,53.
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In BSB simulations, this pattern emerged during stimulation of a
mf bundle (100 ms @ 50 Hz stimulation on 24 neighboring mfs).
The PCs placed in a band 150-200 μm beside the active cluster
along the x-axis were inhibited, bringing their frequency below
baseline. When MLI-PC synapses were disabled, the effect
disappeared revealing contrast enhancement due to lateral
inhibition (Fig. 6d).

The response of MLIs in vivo is only partially known53. In BSB
simulations, SCs and BCs intersected by active pfs responded to
input bursts and their activity remained higher than baseline for
several hundreds of milliseconds, especially in SCs19 (Fig. S4,b).

Modification of model parameters to simulate neural correlates of
behavior. Two conditions modifying PC firing patterns and their
modulation were explored in order to test whether our network
model was able to predict neural correlates of behavior: i) knock-out

(KO) of MLI inhibition on PCs, which impacts on vestibulo-ocular
reflex (VOR) adaptation64, and ii) long-term plasticity at pf- PC
synapses, which drives learning in associative tasks like eye-blink
classical conditioning (EBCC)65.

KO of MLI inhibition on PCs: GABAA receptor–mediated
synaptic inhibition was selectively disabled in Purkinje cells
(KO condition), and a single stimulus pulse was delivered to a
bundle of 13 mfs. The burst response of PCs was broader and
with a strong temporal dispersion (jitter) of simple spikes in KO
than control condition (control: 0.49 ms; KO: 1.01 ms; p < 0.01
t-test) (Fig. 7). These alterations of PC activity patterns repro-
duced the dysregulation of cerebellar signal coding and adap-
tation observed in PC-Δγ2, a mouse line in which GABAA

receptor-mediated synaptic inhibition was selectively knocked-
out in Purkinje cells64.

Fig. 3 Network responses to background noise and mf bursts. a Power spectra of GrC and GoC activity are computed with Fast Fourier Transform (FFT) of
spike time series (total population spike-counts in 2.5 ms time-bins). The periodicity of peaks in power spectra reveals synchronous low-frequency
oscillations in the granular layer. The grey curves represent the power spectra when GoC-GoC gap junctions were disabled, showing a marked decrease in
periodicity. The grey bands correspond to mouse theta-band (5-10 Hz). b The Peri-Stimulus-Time-Histograms (PSTH) of each neuronal population show
the effect of the localized mf burst (onset indicated by arrowhead) emerging over background noise. The PSTHs show number of spikes/5ms time-bins
normalized by the number of cells, averaged over 10 simulations. c Example of multiple linear regression of GrC responses (firing rate) against the number
of synaptic spikes from gloms and GoCs, during 40ms after stimulus onset. The grey surface is the fitted plane to the points (each point corresponds to a
GrC receiving the mf burst on at least 1 dendrite).
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Long-term plasticity at pf-PC synapses: Reduced values of the
AMPA receptor-mediated synaptic conductance (gsyn) were used
to simulate long-term depression (LTD) at pf-PC synapses. In
EBCC, a level of suppression of about 15% was found to correlate
with a stable generation of associative blink responses at the end
of the learning process65. In BSB simulations using a stimulus at
50 Hz on a mf-bundle, different LTD levels caused a corre-
sponding amount of PC simple spike suppression (Fig. 8). A 15%
PC simple spike suppression emerged with pf-PC LTD of about
35%, predicting the number of synapses that should undergo LTD
in order to explain the experimental observation.

Discussion
This work shows the first detailed model reconstruction and
simulations of the cerebellar cortical network and predicts neu-
ronal activities involved in the propagation of mossy fiber input
signals from the granular to the PC and molecular layer. By
means of the BSB model, we have combined heterogenous data
using suitable placement and connectivity rules with accurate
multi-compartmental neuron models. In the optimization pro-
cess, the model extracted information from the interdependence
of parameters, bound at high-level through ensuing network
dynamics, allowing us to fill gaps in knowledge through con-
structive rules. In the validation process, the model demonstrated
its compatibility with a wealth of experimental literature data
collected over the last decades and a parameters sensitivity able to
uncover the neural correlates of specific physio-pathological
conditions.

A model-based ground-truth for the cerebellar cortical net-
work. The statistical and geometrical rules derived from

anatomical and physiological works12,26 almost completely
anticipated network connectivity at the cerebellar input stage.
In the BSB model, each glom hosted ~50 excitatory and ~50
inhibitory synapses on as many GrC dendrites, plus ~2 excita-
tory synapse on basolateral dendrites of as many GoCs, sum-
ming up to ~102 synapses per glom, in agreement with the
anatomical upper limit of ∼20030. Each one of the 4 GrC
dendrites received an excitatory and (in most cases) an inhi-
bitory input from as many different mfs and GoCs,
respectively29,31. Each GoC received ∼320 aa synapses on
basolateral dendrites and ∼910 pf synapses on apical dendrites,
according to the figure of ∼400 and ∼120032, and there were ~3
electrical synapses per GoC-GoC pair48. Functional tuning
suggested that the number of gap-junction could actually be 2.5
time higher, i.e., ~7-8 per GoC-GoC pair48. Only the number of
GoC-GoC GABAergic synapses, which amounted to a figure of
160 after functional tuning, lacked any experimental counter-
part. In the molecular layer, under geometric and functional
constraints, the BSB model placed limits to the debated num-
bers determining PC and MLI connectivity. The model pre-
dicted that ∼25% of aas contacted the distal dendrites of the
overlaying PCs (7˙133 out of 28˙615 GrCs), each aa forming
2.4 synapses on average, supporting the important role pre-
dicted for the aa63,66, while pfs formed 1 synapse per PC den-
dritic intersection. In summary, each PC received 12% of the
whole GrC inputs from aas, matching the empirical estimate of
7-24%67. The BSB generated ∼25 SC-PC and BC-PC synapses
altogether, which compares well with the experimental estimate
of ∼2068. Moreover, there were ∼17˙600 pf-MLI-PC synapses
(∼2˙600 pf-SC-PC and ∼15˙000 pf-BC-PC synapses), compa-
tible with the prediction that the pf -MLIs-PC input is larger

Fig. 4 GoC millisecond synchronization by gap junctions. a Maximum cross-correlation in pairs of Golgi cells as a function of electrotonic distance. The
three curves represent control condition (4-Hz Poisson mossy fibre activity), with gap-junctions disabled, and with random spike patterns of GoCs. All
values were calculated using a sliding window of+−0.2 electrotonic distance. At large electronic distances, the z-score in control conditions tends toward
the value set by random input patterns. b The average cross-correlograms (0.5 ms bins) is calculated in control condition for GoC pairs at <100 μm
distance with either direct coupling (n= 384), indirect coupling (n= 842), all pairs located <100 µm distance from each other when gap junctions were
disabled when gap-junctions are disabled. The z-score shows two distinct peaks indicating GoC-GoC correlation with ms spike precision with on average 7.5
gap-junctions per direct pair. c The percentage of spikes that fall within distinct time-lag windows across all pairs located <100 µm distance in control
condition, with gap-junctions disabled, and with random spike patterns of GoCs. Points are mean ± SEM (n= 1181). d Probability density of spike
coincidence in the granular layer horizontal plane. This plot indicates that, with a GoC spike in [0,0], there is a certain probability that GoCs around it will
fire a spike within a ± 5ms time-window. The integral of the probability density function over the whole network corresponds to the average spike
coincidence for the same time window in (c).
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than the pf-PC input on the same PC69. In general, since all
dendritic trees in the molecular layer are orthogonal to pfs, the
BSB reconstruction ranked the number of synapses according to
dendritic size - PC (∼1˙500) > GoC (∼900) > BC (∼700) > SC
(∼500) – a figure that would increase proportionately by scaling
the model slab to include full-length pfs70.

Accurate single-neuron models with realistic morphology
proved also critical to carry out simulations allowing us to
finetune the connectome. In particular, the number of inhibitory
synapses per GoC-GoC pair was increased in order to make them
fire at ∼19 Hz [2-30 Hz range40,58]. Similarly, the number of
inhibitory synapses per SC-SC and per BC-BC pairs was tuned in
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order to make them fire at ∼10 Hz [1–35 Hz range44,45] and to
bring PCs into their resting state frequency range of ∼31 Hz
[36.4 ± 11.5 Hz43,71] in vivo. The number of gap-junctions per
GoC-GoC pair was tuned to obtained millisecond synchrony49.

Thus, a reconstruction of model connectivity purely based on
geometrical rules was not sufficient and a careful tuning against
functional data was needed. This two-pronged (structural and
functional) approach ensured that all parameters were bound at
high-level through the basal neuronal firing frequency at rest
in vivo1. Eventually, the network connectome is in fair agreement
with a wealth of disparate anatomical and functional determina-
tions, suggesting that the emerging picture provides a new model-
based ground-truth for the cerebellar cortical network.

Cerebellar network model validation and predictive capacity.
The functional validation of single neuron models was previously
reported in specific studies16,17,19,62, so that these neurons could
be directly plugged in and used to simulate spatio-temporal
network dynamics in vivo. The functional validation of the cer-
ebellar network model implied first to analyse responses to dif-
fused background noise, which is reported to generate coherent
large-scale oscillations47. The BSB model showed indeed that
GrCs and GoCs were entrained into low-frequency coherent
oscillations in resting state and, interestingly, this happened
under gap junction control as observed experimentally48. Fur-
thermore, the BSB model showed that Golgi cell synchronization
through gap junctions occurred with millisecond precision49.
Thus, gap junctions refined and potentiated the synchronizing
effect of massive shared excitatory inputs from GrCs reported
earlier14,50. As a whole, these simulations predict that the spatial
organization of Golgi cell inhibitory control depends on the
distance among GoCs and on their specific morphology and
orientation supporting a modular circuit organization: a marked
correlation and synchronicity can be observed within an assem-
bly, while it tends to decrease between assemblies, indicating
Golgi cells coordinate segregation and integration of activities in
the granular layer of cerebellum72.

The functional validation was extended by simulating responses
to naturalistic mf bursts, which rapidly propagated through the
GrC-PC neuronal chain (Fig. 9) (Movie S1). GrCs responded in a
dense cluster52 regulated by GoCs and activated soon thereafter
the overlaying PCs andMLIs. In the cluster, 45% of the GrCs fired
at least one spike, in agreement with results reported
previously12,52. Not unexpectedly, SCs and BCs effectively reduced
activation of PCs placed either along or beside the active pfs,
respectively, generating feedforward and lateral inhibition11,12.

Model predictions of neural correlates of behavior. Network
simulations with the BSB cerebellar model predicted the neural
correlates of behaviour in different physio-pathological condi-
tions. First, PCs showed the typical burst-pause responses that are
thought to correlate with cerebellar-dependent motor control61.
These responses were seriously altered by changing mf-GrC

neurotransmitter release probability17, whose effect propagated
from the cerebellar input stage throughout the whole thickness of
the cerebellar cortical network, suggesting a possible substrate for
pattern regulation in the cerebellum73. Secondly, selective
removal of GABAA receptor-mediated synaptic inhibition from
PCs reproduced the neuronal alterations correlated to dysfunc-
tional VOR adaptation in the PC-Δγ2 mouse line64. Thirdly,
plasticity remapping predicted that LTD in 35% of pf-PC
synapses could explain the 15% PC simple spike suppression
observed during EBCC65.

Comparison with previous cerebellar models. Since Marr’s
work11, the cerebellum has been amongst the most intensely
modelled brain microcircuits and has provided a workbench to
test biophysical principles of excitability and connectivity. The
incorporation of biologically realistic features into models has
progressed along the last three decades, as sketched below by
considering just some of the many published works.

Spiking models of the granular layer with active membrane
mechanisms in neurons. The first one50 had only the granular
layer, neurons were single compartment and with generic
excitable mechanisms, synapses did not have short-term
plasticity. A second model used cell-specific membrane mechan-
isms and synapses with short-term plasticity14. However, neurons
did not have realistic multicompartment morphology yet. In both
cases, connections respected proportions reported in literature
without prescribed connectivity rules.

Spiking models including both the cerebellar cortical network
and deep cerebellar nuclei. The first model74 used integrate and
fire point neurons and a canonical formulation of neuronal
numbers and connectivity. A second set of models used a
cerebellar network scaffold strategy with general rules for cell
positioning and connectivity based on the probability cloud
algorithm13. An extended version75 included deep cerebellar
nuclei and the inferior olive. Neurons were single compartment
with non-linear discharge properties and synapses did not have
short-term plasticity.

The current model of the cerebellar cortical network integrates
and extended all the previous realizations by featuring an integrated
reconstruction and simulation strategy, using multi-compartment
neurons with cell-specific membrane mechanisms, using synapses
with intrinsic neurotransmitter release dynamics and short-term
plasticity, and adopting multiple connection rules including
morphology-based touch-detection and voxel-intersection. These
advancements reflect into the ability of the model to capture a large
set of biological properties of the network under various physio-
pathological conditions.

Limitations and future challenges. The most relevant problem of
this kind of microcircuit models is to incorporate variables that
remain underconstrained. Here we have 5 cell types, 16 synaptic
types and as many ranges for synaptic density. Almost all of them
were carefully validated beforehand, except the BC model with its

Fig. 5 Granular layer activation. a Membrane potential of 4 representative GrCs with 1 to 4 dendrites activated by the mf burst (20ms@200Hz over
background noise, onset indicated by arrowhead), in control condition and after GABA-A receptors blockade (“GABA-A off”). The burst response of the
GrC with 4 active dendrites is enlarged on the right to highlight spike-timing (dashed lines indicate the mf burst spikes). b Number of spikes (measured in
the 40ms from mf burst onset), first spike latency, and dendritic [Ca2+]in (measured in the 500ms from mf burst onset) in subgroups of GrCs with the
same number of activated dendrites (Ndend). Means ± sd are reported (n= 21068 with Ndend= 0, n= 2361 with Ndend= 1, n= 892 with Ndend= 2, n= 164
with Ndend= 3, n= 6 with Ndend= 4). The graphs compare responses in control and during “GABA-A off”. c Synapses of a GoC activated by GrCs. Bigger
markers correspond to presynaptic GrCs more activated by the mf burst. The GABAergic synapses from other GoCs are on basolateral dendrites, aa
synapses are on basolateral dendrites, pf synapses are on apical dendrites. In this example, the GoC receives 30% of its aa synapses and 6% of its pf
synapses from GrCs with at least 2 active dendrites. Traces on the right show the GoCmembrane potential in response to the mf burst (same stimulation as
in (a), grey band) in control and during GABA-A receptors and gap junctions switch-off.
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Fig. 6 Purkinje cell activation. a The PC placed on top of the GrC active cluster and the PC placed at its margin show different synaptic inputs. GABAergic
synapses from SCs are on medium-thickness dendrites (those from BCs on PC soma are not shown), aa synapses are located on thin dendrites and pf
synapses on thick dendrites. Bigger markers correspond to presynaptic GrCs more activated by the mf burst. In this example, the on-beam PC receives 23%
of its aa synapses and 6% of its pf synapses from GrCs with at least 2 active dendrites, the off-beam PC 0% of its aa synapses and 0.6% of its pf synapses
from GrCs with at least 2 active dendrites. The corresponding membrane potential traces are shown at the bottom (the 20ms mf burst is highlighted by
grey band). b Analysis of the burst-pause response of PCs to the mf burst (20ms@200Hz over background noise). The burst coefficient (i.e. the shortening
of the inter-spike interval due to the mf burst, with respect to baseline) is reported against the number of spikes from aas and from pfs (multivariate
regression analysis: R2= 0.91). The pause coefficient (i.e. the elongation of the inter-spike interval after the mf burst response, with respect to baseline) is
reported against either the burst coefficient (NMI= 0.79) or the number of spikes from SCs and BCs (NMI= 0.66). c Synaptic currents recorded from the
PC on top of the GrC active cluster (same as in (a)), in voltage-clamp. The traces are the sum of all excitatory (AMPA) and inhibitory (GABA) dendritic
currents during the mf burst. They are rectified, normalized and cross-correlated (inset) unveiling a GABA current lag of 2.6 ms with respect to AMPA
current. d By stimulating a mf bundle (100ms@50Hz Poisson stimulation on 24 adjacent mfs), the PC response (modulation with respect to baseline) was
quantified by the relative change of Inter-Spike-Interval (ISI), during the stimulus, where 0 corresponds to baseline. The two series of points compare PC
response modulation when SCs and BCs were either connected (“control”) or disconnected from PCs (“MLI-PC off”). The curves are regression fittings to
the points (Kernel Ridge Regression using a radial basis pairwise function, from Python scikit-learn library). The GrC active cluster (“GrC activation”) was
identified by a threshold on the stimulation-induced activity by using kernel density estimation.
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synapses and the density of reciprocal interneuron inhibitory
synapses, which warrants specific investigation. Thus, although
the parameterization of the cerebellar network model relies on
one of the best-defined anatomical and physiological datasets in
the brain12–14,76, it cannot be excluded that other parameter
combinations might also be effective. Indeed, some structural
data were missing (e.g., not measured experimentally) or error-
prone and their estimates were provided by network recon-
struction and simulation. The emergent structural parameters
were then confronted with available knowledge for constructive
validity. The scaffold configuration allows to easily host new data
and to update the existing ones when new experimental data
become available.

Here we have enforced a connectivity principle largely based
on proximity rules between neurites and tuned the connection
algorithms to bring the connectivity within the anatomo-
physiological range (see Methods). Alternative algorithms for
automatic parameter tuning may also be used to predict the
cerebellar cortical network connectome77 and compared to the
present results. Finally, while we have used two most representa-
tive functional templates (background oscillations and response
to sensory-burst stimulation in vivo), others could be envisaged.
It should be noted that often functional validation relies on sparse
experimental data quantifying single-neuron responses to sensory
stimuli. Therefore, multi-layer mesoscale recordings would be
useful to further validate model predictions about the mechan-
isms of microcircuit computation in the cerebellum, e.g.,
following whisker stimulation or along EBCC training.

Although it is validated on a small network scale (30 k neurons
and 1.5 M synapses), the model is about 1000 times smaller than
the whole mouse cerebellum. This would not be a problem if the
model would be a small-scale representation of the cerebellar
cortex, but this is not the case given the anisotropy of cerebellar
network architecture. The first issue is that signal propagation
along the transverse plane would require longer modules. Here
we have observed the formation of vertical columns63,67 but it
would be important now to assess78,79 the beam hypothesis along
with spatial signal filtering and plasticity11,16–19,53. Moreover, the
cerebellar cortex is subdivided into microzones with different
biochemical and functional properties, while the present model

can just be taken as a good proxy of the Z+microzone80–82.
Therefore, the model should be extended and diversified to
explore effects on a larger scale.

Another issue is that, in the model, all neurons of the same type
are identical one to another. However, there is morphological and
functional variability among neurons of the same type. Moreover,
there are known variants of granule cells, Golgi cells and Purkinje
cells16–18,20. It would therefore be important to explore the
impact of neuronal variability, which can bring about relevant
computational effect83. The same also applies to synapses, which
now have the same release probability and gain at homologous
connections but are tuned by plasticity in real life16,21,23,35,69,76,81

and could therefore change network dynamics. The future
introduction of plasticity, which now is present only in simplified
models84,85 and cerebellar subnetworks11–15, will allow to refine
the effective functional organization of the connectome and test
hypotheses on network functioning.

Finally, the operations of the cerebellar cortex are tightly bound to
those of the deep cerebellar nuclei and of the inferior olive. However,
to date the only available representations on the mesoscale are
reconstructed using simplified single point neurons84,85 and a fine
grain realistic representation is missing. Therefore, the model could
be extended to the mesoscale to investigate how the cerebellar cortex
operates inside the olivo-cerebellar system.

Conclusions
In aggregate, the BSB model shows that the geometrical organization
of neurites largely determines cerebellar cortical connectivity and
microcircuit dynamics, supporting the original intuition of J.C. Eccles
in the late 60’s11,53. A similar conclusion was recently reported for the
cortical microcolumn4. With appropriate extension, the model could
allow to simulate cerebellar modules including differentiated micro-
zones and microcomplexes80–82 and more complex patterns of stimuli
in the sensorimotor and cognitive domain76. Given the “scaffold”
design, new neurons and mechanisms can be plugged-in to address
ontogenesis, species differences (for example in humans) and
pathology. For example, the model may be used to predict the
emerging dynamics caused by genetic or epigenetic alterations in
neuron (morphology and function) and synaptic properties, as it is

Fig. 7 Molecular layer interneurons modulate PC discharge. Raster plots of PC spikes following an impulse on a bundle of 13 mfs (time 0) in (a) control
condition and in (b) KO condition, in which GABAA receptors are blocked from PCs to uncover the neural correlates of dysfunctional VOR adaptation in the
PC-Δγ2 KO mouse line (c) Probability density functions of spike count (time bins of 0.2 ms) in the 10-ms window following stimulation in the two
conditions. Note the more scattered firing response in KO condition.
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supposed to happen in ataxia, dystonia and autism86,87. The model
may also be used to predict the impact of drugs acting on ionic
channels and synaptic receptors. In conclusion, the model can be
regarded as a new resource for investigating the structure-function-
dynamics relationships in the cerebellar network.

Materials and Methods
The BSB modeling framework. The BSB is a Python package (RRID:SCR_008394,
version 3.8+ ) that can be installed on any device where Python is available (pip
install bsb) and is open source with source code documentation and topical
tutorials. It includes workflows and building tools for multiscale modeling of
networks (both reconstruction and simulation) and is compatible with a wide
variety of target systems such as personal computers, clusters or supercomputers
and provides effortless parallelization using MPI.

Effective frameworks for microcircuit modelling have recently appeared for
Python such as the BMTK10,88, NetPyNE9 and PyNN89. The BSB aims to offer a
broader set of tools that encompasses not just the high-level description of models like
existing tools do, but also an architecture to accommodate well-designed reusable
user code as components. In aggregate, the code-free descriptions of the components
sum up to the model description. NeuroConstruct90 fulfils a similar purpose to the
BSB, but at the moment only supports extension in Java rather than Python.

On top of that, a subset of modeling problems remained unaddressed by
existing frameworks, mostly related to the manipulation of neurons as individuals

(rather than populations) and as spatial entities: synthesis, elongation, pruning, or
restricting morphologies to fit in the volume, individual determination of
connection and synapse pairs, for example through intersection with other
morphologies or special targets on those morphologies. The BSB addresses these
needs with a set of user-friendly APIs designed to work with complex network
topologies, cell morphologies and many other spatial and n-point problems.
Intricate and heterogenous complexities of large-scale neural networks such as
anisotropy, unique microstructures, or non-neuronal elements can be taken into
account, so that any brain region may be modelled. These properties allow the BSB
to fully empower a “scaffold” modeling strategy. The separation between model
description and algorithm implementations makes scaffold models exceptionally
easy to understand, and specific cell placement or connectivity datasets can be
changed without having to regenerate the entire network.

There are 3 main phases in the scaffold modeling workflow that can be visited
iteratively when changes need to bemade: configuration, reconstruction and simulation.
The core concepts of the framework during the reconstruction phase are i) the network
volume, with the definition of various partitions such as layers, meshes or voxel sets
(from brain atlases) and arranging elements which can be structured hierarchically to
give rise a complex description of the entire region under consideration, ii) the cell types
which determine the properties of cell populations, such as their spatial representation
(soma radius, geometrical extension and/or morphologies) and density information, iii)
the placement of said cell types into subspaces of the network volume using certain
placement strategies, and iv) the connectivity between cell types using certain connection
strategies. With this information, the framework places and connects the cells, storing
the result in a network reconstruction file. Then the simulation phase follows, where cell

Fig. 8 pf-PC plasticity modulates PC discharge. The scheme on top shows the simulation protocol that emulates an EBCC paradigm, in which a
conditioned stimulus (CS) is delivered to the mfs. Our simulations reproduce the final state (“post-learning”) by exploring multiple levels of pf-PC LTD. The
relationship between these LTD levels and PC firing modulation (relative to “pre-learning” state with 0% LTD) is shown. The points are mean ± SEM across
all PCs (n= 99). Two representative traces illustrating PC discharge are shown for 0% LTD and 35% LTD in the insets.
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models, synapse models and devices define the simulator-specific representation of
neuron and connection types and input/output variables (Fig. 1). The BSB is the only
framework to offer arbitrary parallelization of non-parallel user codes through the
interplay between network topology, a tiling paradigm (cutting the volume into smaller
rhomboid pieces) determining the region of interest for each tile, and a process stitching
the seams that the tiling might have created. All the steps of the scaffold workflow are
available both as versatile CLI commands and library functions. The scaffold builder
compiles its models into HDF5 or SONATA files, a format standard for neural models
proposed by the Blue Brain Project and Allen Institute for Brain Science91.

Placement. The placement is organized into placement objects that consider certain
cell types, and a subspace of the volume. These objects determine the number,
position, morphology and orientation of each cell, according to the desired pla-
cement strategy. A variety of configuration mechanisms exist to define the number
of elements to be placed, such as a fixed count, a specific density (volumetric or
planar) or a ratio to the density of another type. Other elements can be instantiated
as well, with or without 3D positions for other purposes (e.g., fibers with their
somatic origin outside the considered brain circuit). A post-processing step after
placement may be enabled, where the elements can be pruned, moved, or labelled
(e.g., labelling separate zones with their own connectivity patterns or identifying
individuals to be hubs in a modular network). Each morphology can be rotated
based on the voxel orientation in which it is placed, and fibers crossing multiple

voxels can be bent, in order to follow the surface folding of the region. The main
placement strategies are (Fig. 1b):

Particle placement. The neurons are placed randomly and then checked for
collisions, using kd-tree partitioning of the 3D space92. Colliding particles repel
each other, the inertia of the particles is proportional to their radius. It is
computationally efficient, yields uniform placement in 3D space, working
properly even in irregular shapes, and it can deal with multiple cell types of
different size. A pruning step can be enabled to remove cells positioned outside
the desired subspace.
Parallel array placement. The neurons are placed in parallel rows on a desired
surface, with a certain angle and specific distances between adjacent cells. A
direction-specific jitter can be configured.
Satellite placement. The neurons are placed near each cell of an associated type
(planet cells). Satellite positions are chosen at a random distance within a range
based on the radii of the planet cells, so that each planet cell has a certain
number of satellite cells around it.

Connectivity. Each connection identifies a presynaptic element and a postsynaptic
element. When multi-compartmental neuron models are used, the synaptic loca-
tions on specific morphology compartments are also identified. Connections may

Fig. 9 Activation of a vertical neuronal column in the cerebellar cortex. A whisker air-puff stimulus (the mf burst) is delivered to 4 adjacent mfs, which
branch in 4 glom clusters. GrCs respond rapidly with a burst when at least 2 dendrites are activated. A GrC dense cluster is formed and the signal
propagates up through an aa bundle and transversally along a pf beam. GoCs receive the signal both on basolateral and apical dendrites. PCs vertically on
top of the active cluster are invested by aa and pf synaptic inputs. On-beam SCs and BCs receive signals through pf synapses; SC axons inhibit mainly on-
beam PCs, while BC axons inhibit mainly off-beam PCs. The membrane potential traces (mf burst starts at 500ms) are shown for each neuronal population.
Traces in the three columns correspond to three different release probabilities at the mf-GrC synapses: u= 0.1, u= 0.43 (control condition used in the rest
of the paper), u= 0.9. The lower and higher u-values are typical of long-term synaptic depression and potentiation in the granular layer.
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target either populations, subpopulations, or only specific regions of the cell
morphologies. A post-processing step after connectivity may be enabled, where the
identified synapse locations can be re-distributed (e.g. pruning or moving the
synapses). The use of cell morphologies can be combined with soma-only
approaches. Multiple synapses per pair can be requested, following a probability
distribution.

The main connectivity strategies provided by the BSB implement different
proximity-probability rules (Fig. 1c):

Touch detection. The 3D space is partitioned using a kd-tree to search for
potentially intersecting cell pairs. Then, the actual points of intersection are
determined using another kd-tree specific to the pair morphologies, with a
maximum intersection distance parameter.
Voxel intersection. Each presynaptic cell is represented by a voxelized
morphology and these voxels are tested for intersections with the voxels of
the postsynaptic cells, using R-tree 3D space partitioning. When matching
voxels are found, random compartments in each voxel are selected, introducing
variability. It is, in this respect, less deterministic than the touch detection
strategy93. A Fiber intersection variant exists to optimize the case of long, thin
neurites, whose path can be deformed through space according to a 3D field of
direction vectors.
Distance-based in/out degree. A probability distribution is applied to the
distance between cells. Optionally 2 additional probability distributions can be
given for the indegree and outdegree distribution of the network. The number
of postsynaptic elements per presynaptic element is determined by samples of
the outdegree distribution. Each postsynaptic target is weighted according to its
distance probability, and the probability to transition from their current
indegree N to indegree N+ 1, as dictated by the indegree distribution. To
optimize the algorithm, a kd-tree is queried for cells within a maximum search
radius derived from the cumulative probability function of the distance
distribution.

Simulation. The BSB can instruct simulators to run the configured models.
Although multiple adapters to different simulators are provided (NEURON -
RRID:SCR_005393; NEST - RRID:SCR_002963; Arbor - 10.5281/zenodo.4428108),
there is no common high-level language to send instructions across simulators.
Instead, sets of simulator-specific configuration expose the simulator underlying
APIs more directly. These classes contain the simulator-specific logic to fully define
inputs, execute, monitor progress, and collect output of simulations. The interface
to the NEURON simulator has been applied specifically in this work.

NEURON94 cooperates with our Python packages: Arborize to create high-level
descriptions of cell models [https://github.com/dbbs-lab/arborize], Patch to
provide a convenience layer on top of NEURON [https://github.com/Helveg/
patch], and Glia to manage NMODL file dependencies and versioning [https://
github.com/dbbs-lab/glia]. Together, these packages and the NEURON adapter
provide out-of-the-box load balanced parallel simulations in NEURON. The
adapter is capable of creating and connecting these arborized cell models over
multiple cores, implements device models such as spike generators, voltage and
synapse recorders and collects the recorded measurements in an HDF5 result file.
The recorders can specify targets at the cellular or subcellular level, recording
membrane or synapse voltages, conductances, currents and ionic concentrations.
These easy configurable devices allow to monitor all signals propagating across the
network to reproduce results at multiple scales.

Visualization. The BSB provides a plotting module to directly visualize simulation
results including 3D network plots, cell activity in 3D space, PSTH, raster plots,
synaptic currents mapped on cell morphologies, and more. The BSB provides a
Blender module containing a complete blender pipeline for rendering videos of the
network activity on a single machine or a cluster. The BSB can be used in Blender
Python environment and provides functions to synchronize the state of the net-
work with the Blender scene, to animate results or to generate debug frames, to
troubleshoot placement, connectivity or simulation issues.

The cerebellar cortical model. Using the BSB, a mouse cerebellar cortical
microcircuit was reconstructed and simulated. The example reported here refers to
a volume partitioned into a granular, Purkinje and molecular layer. Specifically, the
volume extended 300 μm along x, 200 μm along z, and 295 μm along y (y= layer
thickness; 130 μm granular layer, 15 μm Purkinje cell layer, 150 μm molecular
layer). In the reference system, x-y is the sagittal plane, x-z the horizontal plane, z-y
the coronal plane. The reconstructed volume was 17.7·10−3 mm3. The model was
filled with biophysically detailed compartmental neurons for each cell type. Some
structural data and multiple observations from electrical recordings in vivo and
in vitro were used as constraints in building the model, further experimental
measurements were used for structural and functional validation.

Neuron placement. Both the granular layer and the molecular layer were filled using
particle placement. The granular layer is made up of densely packed granule cells
(GrC) and glomeruli (glom) intercalated with Golgi cells (GoC). Furthermore, a
certain number of mossy fibers (mf) was created (without any 3D position), each

terminating in about 20 glomeruli. Each GrC emits an ascending axon (aa) that
raises perpendicularly to the overlying cerebellar surface and reaches the molecular
layer bifurcating into two opposite branches of a parallel fiber (pf) elongating on
the z-axis (major lamellar axis).

The molecular layer was divided into a superficial sublayer (2/3 of the thickness)
hosting the stellate cells (SC) and a deep sublayer (1/3 of the thickness) hosting the
basket cells (BC)24,95.

The Purkinje cells (PC) were placed on a horizontal plane (x-z) using parallel
array placement. PCs were placed along parallel lines, with an inclination angle of
about 70° with respect to the major lamellar axis. The dendritic tree of the PC is
flattened on the sagittal plane and extends for about 150 µm20. The parallel arrays
were placed at such a distance that the PC dendritic trees did not overlap, while
along the major lamellar axis their somata could be packed closely together. For
each neuronal population, the nearest neighbour, the pairwise distance
distribution, and the radial distribution function were computed.

Knowledge base for microcircuit connectivity. This chapter summarizes the fun-
damental knowledge used to reconstruct cerebellar microcircuit connectivity and
highlights which parameters are reported or absent in literature, implying the
different strategies adopted in the BSB.

The connectivity of mfs and gloms is supported by an extended anatomo-
physiological analysis indicating that (i) each mf spreads the input signal into a
cluster of gloms25, (ii) each GrC sends its 4 dendrites to gloms belonging to different
mfs within about 30 µm26, (iii) 1 excitatory synapse is formed on the terminal
compartment of each GrC dendrite27,28, (iv) 1 excitatory synapse is formed on GoC
basolateral dendrites31, (v) 1 inhibitory synapse is formed on the preterminal
compartment of each GrC dendrite96.

The connectivity of GoCs is also supported by a robust experimental dataset.
(i) GoCs receive an undetermined number of excitatory inputs from mfs through
gloms, that in turn host ∼2 GoC basolateral dendrites each31. (ii) Given that
GoC-GrC synapses are inside gloms, each GrC dendrite receives inhibition from
a GoC whose axon reaches the glom contacting that dendrite29,30. (iii) GoCs may
receive as many as ∼400 aa synapses on basolateral dendrites and ∼1200 pf
synapses on apical dendrites32. (iv) GoCs make GABAergic synapses onto other
GoCs33, but their number was not reported. (v) There are 2-4 gap junctions per
GoC pair34. Therefore, geometrical rules were used to extract the missing
parameters.

The connectivity of PCs can be derived by the axons intercepting their dendritic
tree. (i) There is one single synapse per pf-PC crossing. As a whole, the number of
pf -PC synapses may range up to ~100˙000 35, many of which would be silent97.
Based on spines density98 and the total length of a PC dendritic tree18,20, the
number of possible pf synapses was estimated to be 15˙000-20˙000, with a
minimum of ~100 synapses needed to generate a simple spike36. (ii) The number of
aa-PC synapses is not known but there would be multiple synapses per aa-PC
pair36.

The connectivity of MLI is not completely defined. It is known that (i) MLIs
receive excitatory input from pfs, (ii) MLIs form inhibitory connections with other
MLIs of the same type37, (iii) collaterals of a SC axon mainly extend on the coronal
plane, while collaterals of a BC axon mainly extend on the horizontal plane,
innervating multiple PCs38, (iv) each PC receives 3-50 baskets around the soma
from as many different BCs39, while SC axons terminate on intermediate PC
dendritic branches with 0.3-1.6 μm diameter38,62,66.

Selection of microcircuit connectivity rules. The connectome of the cerebellar net-
work took into consideration 16 connection types (identified by their source and
target neuronal population): mf-glom, glom-GrC, glom-GoC, GoC-GrC, GoC-GoC,
GrC(aa)-GoC, GrC(aa) -PC, GrC(pf)-GoC, GrC(pf)-PC, GrC(pf)-SC, GrC(pf)-BC,
SC-PC, BC-PC, SC-SC, BC-BC, GoC-GoC, GoC-GoC gap junctions.

Glomerular connectivity is a special case since it is largely constrained by
prescribed neuroanatomical and neurophysiological information. Then, since the
glom did not have a defined morphological model, they were connected through
probability strategies (distance-based in/out degree) to identify nearby
compartments for synaptic locations on the target cell types, for which a realistic
morphology was used.

Specifically, glomerular connectivity was largely based on prescribed anatomo-
physiological rules:

mf-glom. The mf arborization creates anisotropic clusters of glomeruli and
clusters originating from different mfs mixed up with each other to some
degree25. Taking into account short branches since the small reconstructed
volume, a local branching algorithm grouped glomeruli (20 ± 3 per cluster,
normally distributed) receiving signals from the same mf by a distance-based
probability rule.
glom-GrC. For each GrC, a pool of nearby gloms were selected based on the
distance between the glom barycentre and the GrC soma center, and a
maximum extension of GrC dendrites of 30-40 µm28. From the pool, 4 gloms,
each from a different cluster, were randomly sampled and connected with one
of the 4 GrC dendrites.
glom-GoC. For each glom, all GoCs with their soma at a radial distance less than
50 µm (corresponding to an average extension of GoC basolateral dendrites,
isotropically in 3D14,32) were connected. The synapse was placed on a
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basolateral dendrite using an exponential distribution favouring the compart-
ments closer to the centre of the glom.
GoC-GrC. This connection absorbed the connection GoC-glom which was
generated using 3D proximity and a mean divergence (out-degree) of 40; then,
each GoC synapsed directly on all GrCs that shared those gloms.

The rest of the cerebellar connectome was reconstructed by applying voxel and
fiber intersection, and touch detection. Voxel intersection was preferred when 3D
morphologies were intersecting. This strategy, by introducing a cubic convolution
and randomization, reduced overfitting artifacts arising from the intersection of
identical morphologies arranged in the quasi-crystalline cerebellar microcircuit.
Touch detection and fiber intersection were preferred when dealing with 2D fibers
(i.e. aa and pf), for which the voxel intersection would create cubic volumes not
representative of the fibers as line segments. Therefore, for the connections
involving aas (GrC(aa)-GoC and GrC(aa)-PC), touch detection was applied with a
tolerance distance of 3 µm. For the connections involving pfs (GrC(pf)-GoC,
GrC(pf)-PC, GrC(pf)-SC, GrC(pf)-BC), fiber intersection was applied with affinity
=0.1 and resolution =20 µm. For the other connections, voxel intersection was
applied: GoC-GoC, SC-SC, and BC-BC with affinity =0.5; SC-PC with affinity =0.1;
BC-PC with affinity =1, GoC-GoC gap junctions with affinity= 0.2. For chemical
synapses, the presynaptic compartment was always axonal and the postsynaptic
compartment was dendritic or somatic (as for the BC-PC connection). For
electrical synapses, gap junctions were created between dendrites. Following
biological indications, specific sectors of morphologies were selected as source or
target for synaptic localization, and, for each connected cell pair, the desired
number of synapses was defined, eventually as a normal distribution (mean ± sd)
(see table in Fig. 2d).

Specific sectors of the dendritic trees of GoC and PC were used as targets for
synapse formation. GoCs receive inhibitory and electrical synapses from other GoCs
as well as aa synapses on basolateral dendrites in the granular layer, while pf synapses
impinge on apical dendrites in the molecular layer32. PCs receive aa and pf synaptic
inputs on different parts of the dendritic tree, and also SCs and BCs target different
parts of the neuron62,66. (i) GrC(aa)➜ PC dendrites with diameter < 0.75 μm18,20,40.
(ii) GrC(pf) ➜ PC dendrites with diameter between 0.75 and 1.6 μm. (iii) SC ➜ PC
dendrites with diameter between 0.3 and 1.6 μm38,62,66. (iv) BC ➜ PC soma.

Multi-compartmental neuron models and synaptic models. Detailed multi-
compartmental models of GrC, GoC, PC, SC, BC are available, in which den-
dritic and axonal processes are endowed with voltage-dependent ionic channels
and synaptic receptors (Table S2). In each model, cell-specific aspects critical for
function are reproduced, e.g., the role of the axon initial segment, spontaneous
firing and burst-pause behaviour. The following receptor-channel models, all
validated against in vitro recordings, and generic gap junction models were inserted
in the appropriate neuron compartments:

GrC synapses17,99. mf-GrC: AMPA and NMDA receptors; GoC-GrC: GABAal-
pha1/6 receptors.
GoC synapses16. pf-GoC: AMPA; aa-GoC: AMPA and NMDA; mf -GoC: AMPA
and NMDA; GoC-GoC: GABAalpha1, gap junctions34,100.
PC (Z+ type) synapses62. pf-PC and aa-PC: AMPA; SC-PC and BC-PC:
GABAalpha1.
SC and BC synapses19. pf -SC and pf -BC: AMPA and NMDA; SC-SC and BC-
BC: GABAalpha1.

Chemical neurotransmission was modelled using the Tzodyks and Markram
scheme101,102 for neurotransmitter release, and receptors kinetic schemes for
postsynaptic receptor activation. Glutamatergic neurotransmission could activate either
only AMPA or both AMPA and NMDA receptors103. GABAergic neurotransmission
activated GABA-A receptors104. A neurotransmitter impulse was followed by a slow
diffusion wave generating both a transient and a sustained component of the
postsynaptic response, as observed experimentally. Parameters describing release
probability, diffusion, ionic receptor mechanisms, vesicle cycling, recovery time
constant, electrical conduction were derived from the corresponding original papers.

Network simulations: stimulation and analysis. All simulations used the NEURON
adapter of the BSB and were run in parallel through MPI on the CSCS Piz Daint
supercomputer, with a time resolution of 0.025 ms. Simulations started with a 5-s
stabilization period followed by a 100 ms initialization period, in which random mf
inputs desynchronized the network. In all simulations, spikes and voltage traces at
soma of all neurons were recorded. Depending on specific analyses, in some
simulations further microscopic variables were recorded, as explained below. A set
of stimulation protocols reproducing specific spatio-temporal patterns of mf
activity was used to functionally validate the cerebellar network model; in some
cases, the protocols were repeated using an altered version of the network model in
terms of connectome (“by-lesion” approach), to quantitatively check the relative
roles of the connection types.

Diffused background stimulation: The cerebellum in vivo is constantly bombarded
by a diffused background noise, which determines the resting state activity of
neurons and is thought to entrain the network into coherent low-frequency
oscillations47,58,59. Therefore, we first explored the response of the network model

to a random Poisson noise at 4 Hz22 on all mfs for 4 seconds, proving a testbench to
validate the structural and functional network balance.

Steady state analysis. We compared basal discharges in the network to those
recorded at rest in vivo. The mean frequency of each population was computed.
Oscillatory state analysis. We investigated the emergence of low-frequency
coherent oscillations in the GoC and GrC populations. The power spectrum of
GoC and GrC firing activity was computed by Fast Fourier Transform (FFT),
applied to time-binned spike-counts (2.5 ms bins). The zero-component was cut
off and the FFT was smoothed using a Savitzki-Golay filter (6th order
polynomial, window of 51 bins). The same analysis was performed when GoC-
GoC gap junctions were disabled, in order to check the role of electrical
coupling in oscillatory behaviour of the granular layer.
Coupling and synchrony. This analysis involved the calculation of the coupling
degree and of spike correlations and was applied to GoCs. GoCs can have either
direct coupling, when two cells communicate directly via gap-junctions or
indirect coupling otherwise. The coupling degree was evaluated as the
electrotonic distance in cell pairs49, which was calculated as the inverse of the
number of gap-junctions on the shortest path between any GoC pairs in the
network. According to this metric, a higher distance means to have less gap
junctions or more GoCs in between. The cross-correlogram was calculated with
a 0.5 ms time bin considering all pairs located <100 µm distance from each
other, i) on pairs with direct coupling, ii) on pairs with indirect coupling, and
iii) all pairs when gap junctions were disabled. The relation between the
electrotonic distance and the maximum cross-correlation of spikes in the pairs
was calculated in different conditions that include: (i) 4-Hz Poisson mossy fibre
activity (control), (ii) disabling the gap junctions, (iii) random spike times
(when the same number of spikes per GoC were assigned uniformly random
times in the same interval, to serve as a non-synchronous baseline). The
percentage of synchronous spikes was calculated using different time-lag
windows and the probability density of spike coincidence (with ± 5 ms
windows) was spatially mapped on the granular layer plane.

mf burst stimulation: The cerebellum in vivo responds with localized burst-burst
patterns to facial or whisker sensory stimulation22,54. These bursts are supposed to
run on collimated mf bundles generating dense response clusters in the granular
layer and thereby activating the neuronal network downstream21,23,52,99. To
simulate this functional response, we delivered a mf stimulus burst, superimposed
on background noise at 4 Hz, to 4 mfs in the center of the horizontal plane,
activating about 80 gloms. The mf burst lasted 20 ms and was made of 5 spikes at
fixed time instants (on average 200 Hz, maximum 250 Hz), within range of in vivo
patterns22,40,54. Ten simulations were run to account for random variability of the
background input and the network responses. Multiple variables over time were
recorded: spike times and membrane voltages of every cell, synaptic currents in the
dendrites of some cells, the internal calcium concentration [Ca2+]in in the den-
drites of all GrCs and of some GoCs. Further simulations were carried out using
different values of neurotransmitter release probability at the mf-GrC synapse
(from u= 0.43 to u= 0.1 and to u= 0.9).

General analysis of response patterns. For each neuronal population, a raster
plot and a PSTH (peri-stimulus time histogram) was computed. Each
population was described using Multiple Regression Analysis: the dependent
variable was the average firing frequency during 40 ms after the stimulus onset,
over 10 simulations, and the independent variables were the average numbers of
spikes received from each presynaptic population. The linear regression was
reported as direction coefficients and R2 score.
Analysis of granular layer responses. For GrCs we related the number of
dendrites activated by the mf burst with the number of output spikes and the
first spike latency. The same protocol was carried out while switching-off phasic
and tonic inhibition from GoCs (GABA-A receptor blockade). This allowed us
to investigate excitatory-inhibitory loops in the granular layer, by estimating the
response patterns of GrCs, their latencies, and the fraction of GrCs activated
compared with the control condition. Furthermore, for each GrC, the level of
[Ca2+]in in the dendrites averaged on 500 ms from the mf burst was extracted
and these [Ca2+]in values were related to the number of dendrites activated by
the stimulus. The correlation analysis used Normalized Mutual Information
(NMI)105.
Analysis of PC responses. The PC response was analyzed to evaluate the burst-
pause behavior. For each PC, an automatic algorithm extracted any shortening
of the inter-spike intervals during the stimulus window (burst coeff.) and any
elongation after the stimulus (pause coeff.) compared to baseline. The burst
coeff. was correlated with the number of excitatory synaptic inputs (from pfs
and aas) by multiple regression analysis. The pause coeff. was correlated with
the number of inhibitory synaptic inputs (from MLIs) received during the burst
stimulation (20 ms mf burst + 20 ms of delayed effects), by calculating the
Normalized Mutual Information (NMI). Furthermore, the relation between the
burst and pause coefficients themselves was analysed, by NMI. Further
simulations were run clamping an on-beam PC at −70 mV, recording all
synaptic currents. All excitatory synaptic currents (AMPA from aas and pfs)
and all inhibitory synaptic currents (GABA from SCs and BCs) were summed
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up, then the cross-correlation among these two rectified and normalized
currents was calculated, to identify the time lag between them.
Visualization of subcellular variables. In some cases, ad-hoc computationally
expensive recordings of multiple microscopic variables were performed. In an
example focused on a GoC, all synaptic currents (AMPA and NMDA from gloms
on basolateral dendrites, AMPA and NMDA from aas on basolateral dendrites,
AMPA from pfs on apical dendrites, GABA from other GoCs on basolateral
dendrites), and [Ca2+]in were recorded and animated (see Visualization).

Lateral Poisson stimulation: The lateral inhibition from MLIs to PCs comes from
activated MLIs providing inhibition to off-beam PCs, mainly from BCs due to their
axon orientation44. To simulate this functional response, we delivered a 50 Hz
Poisson distributed stimulus, lasting 100 ms, superimposed on the background
noise (at 4 Hz), on 24 mfs on one side of the volume, to monitor the modulation of
MLI inhibitory effects on PCs at different distances from the active cluster. Two
conditions were evaluated: i) control and ii) MLIs disconnected from PCs. Ten
simulations for each condition were carried out.

Analysis of PC responses. For each PC, the average Inter-Spike-Interval (ISI)
during 200 ms baseline and the average ISI during the 100-ms stimulus was
computed. The relationship between the distance of a PC from the active cluster
and its activity modulation (balance between GrCs excitation and MLIs
inhibition) was investigated in control condition and in the “no MLI-PC”
condition.

Disabled MLI inhibition on PCs: Feedforward inhibition from molecular layer
interneurons regulates adaptation of the vestibulo-ocular reflex, as shown in
behaving mice with GABAA receptor–mediated synaptic inhibition selectively
blocked from Purkinje cells64. To simulate this condition and functional response,
we disabled the inhibitory synapses on PCs and delivered a single impulse to a
bundle of 13 mfs. The temporal dispersion (jitter) of evoked Purkinje cell simple
spikes was quantified as the standard deviation of spike latency in a 10-ms window
following stimulation.

Long-term plasticity at pf-PC synapses: Simple spike suppression of PCs is the
main outcome of long-term plasticity mechanisms involved in learning tasks, as eye
blink classical conditioning paradigm65. To test the effect of LTD, we delivered an
input of 50 Hz106 lasting 160 ms on a bundle of 4 mfs and set different values of
synaptic conductance (gsyn) at AMPA-mediated pf-PC synapses. The default value
of 1200 pS was lowered progressively to 30% in 10 steps (5 simulations were
performed for each case and the average of results was taken). The PC firing
modulation was computed as the difference between the frequency during stimulus
and the baseline frequency for each PC, in pre-learning (gsyn default value) and in
post-learning (after LTD). The amount of suppression was then estimated as ratio
between firing modulation in post-learning and the one in pre-learning.

Statistics and reproducibility
Analysis of population responses and oscillations to sensory burst stimulation. A
40 ms window, beginning at the onset of the stimulus, of spikes at the soma of each
cell was considered and combined with the connectome, to determine how many
spikes each cell received during the window. Across 10 simulations, the mean
amount of spikes per cell was aggregated. Linear regression provided by
sklearn.linear_model.LinearRegression was applied with the mean
(n= 10 simulations) number of spikes produced during the window per cell as
independent variable, and the mean (n= the same 10 simulations) amount of
spikes received as a dependent variable per presynaptic cell type. E.g.: The Golgi
cell receives excitatory glomerulus and Granule cell stimulation, and inhibiting
Golgi cell stimulation. So the mean amounts of glomerulus spikes, granule cell
spikes, and Golgi cell spikes, were compared to the amount of spikes each Golgi cell
produced. This allows a factor and correlation coefficient to be established between
each cell type: The factor tells us how many presynaptic spikes are required per
additional or suppressed spike of the postsynaptic cell, and the correlation coef-
ficient tells us the confidence we can place in the observation in the data.

The oscillations were analysed by time-binning the population spikes in 2.5ms
bins, and applying a discrete Fast Fourier Transform provided by scipy.fft, using
Blackmann windowing (parameter-free) to reduce spectral leakage, and Savitzky-
Golay filtering (window width 51 bins, 6th order polynomial fitting) to filter and
smoothen the results to increase the signal to noise ratio, all provided by scipy.

Golgi cell spike coincidence analysis. Coincidence matrices were constructed by
creating a square matrix representing all Golgi-to-Golgi pairs, and comparing each
pair’s spikes produced at the soma. All spike pairs less than dt time separated from
each other counted towards the coincidence value in that cell pair’s M(dt) coin-
cidence matrix value. This value is then divided by the amount of spikes in the first
cell. So a spike train [0, 1, 2, 5.8] compared to a spike train [1.1, 1.2, 4, 6, 7] would
yield a coincidence of 3, for dt = 0.3.

The knockout conditions were always obtained by removing the gap junctions,
and the random conditions were always obtained by assigning a new uniformly

random timestamp (within the same time interval) to each spike in the dataset, and
repeating identical procedures.

The Z-scores (Fig. 4a) were calculated by binning the spikes into 5 ms bins, and
counting the amount of bins that contained spikes in both cells. Now offsetting the
signals from −100ms to 100 ms in 0.5 ms steps, obtaining 400 different overlapping
bin values, the Z-scores were calculated for these 400 values. The maximum z-
score, the best overlap, was retained per cell pair. A sliding-window average of the
electrotonic distance (width= 0.2) versus the max-z score is shown. Figure 4b
shows the average Z-score for all selected pairs with a time lag from −5 to 5 ms in
100 steps. The “direct pairs” were selected by taking all Golgi cell pairs that form
synapses with another, the “indirect pairs” by selecting all other pairs.

The spike coincidence line plot (Fig. 4c) was constructed by, per time lag
window on the X-axis, summing up all the coincidence matrix values, and dividing
them by the number of spikes produced in the population, yielding a coincident
spike pairs / total spikes ratio. The error bars show the standard error of the mean
for N= 1181 pairs.

To investigate the spatial relationship of spike coincidence, a kernel density
estimation of the coincidence matrix was performed by taking each Golgi-Golgi
pair’s relative position to each other (XY position cell 1 minus XY position cell 2)
(Fig. 4d). During KDE, each pair’s relative position was then weighted by the
coincidence matrix value, normalized by the amount of spikes produced by cell 1.
The KDE was provided by scipy.stats.gaussian_kde. Contour plotting
was provided by plotly.Contour

Burst pause analysis. The burst pause plots (Fig. 5b, all 3 panels) were created by
following the protocol described in the Methods to obtain the burst and pause
coefficients. The coefficients were then used as the dependent variable with
sklearn.linear_model.LinearRegression providing the linear
regression.Feedforward inhibition analysis

The synaptic currents were aggregated by taking all the synapses on a cell of the
same type (AMPA, GABA) and summing them up to the total current for
1 simulation. The mean (n= 10 simulations) was calculated. The averages were
normalized (divided by the max value for the positive GABA current, and by the
min value for negative AMPA current). Cross correlation of the 2 signals was
performed provided by numpy.correlate.

Lateral inhibition analysis. The GrC activation was calculated by kernel density
estimation of the all the granule cell spikes, with each spike becoming an equally
weighted sample in the KDE on the XY position where the spike occurred. The
estimated density was then calculated for each granule cell based on their XY
position, and all granule cells binned into 30 equal bins (10um bins) according to
their X position. The GrC activation is the normalized mean activation per bin.

The relative change in Purkinje cell activity was calculated as stimulus activity
divided by baseline activity minus one, to show the relative increase in activity
during stimulus. The baseline is measured by taking the mean (n= 10 simulations)
frequency of spikes during a 200 ms window in absence of any stimulation of the
network per cell, and the stimulus activity as the mean (n= 10 simulations)
frequency during a 100 ms window starting from stimulus onset. This was plotted
versus the X position of each Purkinje cell, and Kernel Ridge Regression (KRR,
provided by sklearn.kernel_ridge.KernelRidge, with RBF kernel.
Alpha and gamma parameters were optimized with a grid search by
sklearn.model_selection.GridSearchCV, alpha between 0.001 and 1
in 4 steps, and gamma between 10e-100 and 10e20 in 200 logarithmically spaced
steps).

Feedforward jitter analysis. To find the spread of the Purkinje cell population
(n= 91) response to a single stimulus, a probability density function (PDF) of their
first spike response to the stimulus was calculated. The spikes were selected by
taking the population spikes of the Purkinje cells, binning them and selecting the
spikes belonging only to the largest possible interval around the maximum bin that
would not contain any empty bins. A normal distribution was fitted on all the
spikes belonging to the selected bins, fitting provided by scipy.s-
tats.norm.fit, and then extrapolated to the entire visualised interval.

Purkinje plasticity modulation analysis. To measure PC activity, for the stimulus-
response a 150 ms window starting at the stimulus was considered, and a 300 ms
window before the stimulus used as baseline comparison. The mean (n= 14 cells)
absolute increase in firing frequency (stimulus-response frequency minus baseline
frequency) and the standard error of the mean were reported for each plasticity
condition.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Code availability
The BSB can be cited from https://doi.org/10.5281/zenodo.7243999. The source code is
available at https://github.com/dbbs-lab/bsb.
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The code of the analysis of the data, and generation of the graphs is available at https://
github.com/Helveg/deschepper-etal-2022-source, including the steps needed to
reproduce the findings (README).
The exact versions of each used package is included in the text file “requirements.txt”.

The BSB directly depends on NumPy107, SciPy108, Scikit-learn109, rtree110, pynrrd,
MorphIO111 and mpi4py112.

Data availability
All datasets obtained from reconstruction and simulations are available at the
following DOIs:
Morphology repository and reconstructed network
• https://doi.org/10.5281/zenodo.7230455
• https://doi.org/10.5281/zenodo.7230288
Simulation protocols and results
• https://doi.org/10.5281/zenodo.7235526
• https://doi.org/10.5281/zenodo.7235462
• https://doi.org/10.5281/zenodo.7235428
• https://doi.org/10.5281/zenodo.7235051
• https://doi.org/10.5281/zenodo.7235095
• https://doi.org/10.5281/zenodo.7230798
• https://doi.org/10.5281/zenodo.7230830
• https://doi.org/10.5281/zenodo.7230836
• https://doi.org/10.5281/zenodo.7231068
• https://doi.org/10.5281/zenodo.7231161
• https://doi.org/10.5281/zenodo.7231187
• https://doi.org/10.5281/zenodo.7230239
• https://doi.org/10.5281/zenodo.7248336
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