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Abstract

This paper addresses a new approach for mono-modal vibration reduction by

means of a piezoelectric shunt. It is based on an innovative shunt impedance

which allows to improve the attenuation performance and the robustness to

mistuning compared to the use of the classical resonant shunt. This result

is achieved by building a network, composed of two inductances, one capaci-

tance and one resistance, which generates two resonances, instead of the single

resonance imposed by the classical resonant shunt. All the theoretical results

discussed in the paper are validated by an experimental campaign on a tailored

set-up. These tests show a good agreement between theoretical and experimen-

tal results and thereby validate the benefits of the new approach.
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1. Introduction1

The use of piezoelectric actuators shunted to electric impedances to attenu-2

ate vibrations is a widely studied topic and has recently been thoroughly inves-3

tigated (e.g. [1, 2, 3, 4]). In this control approach, the piezoelectric transducer4

acts at the same time as a sensor and as an actuator and the layout of the elec-5

tric impedance depends on the required type of attenuation. As an example, an6

impedance composed of either the series or parallel connection of an inductance7

and a resistance (named resonant shunt or LR shunt) is effective for single-mode8

control [5, 6, 7, 8, 9, 10]. Conversely, in case of multi-mode control, the use of a9

resistance coupled to one or two negative capacitances offers good performance10

[11, 12, 13, 14]. Furthermore, other approaches, based on different and more11

complex networks, are also possible, as shown in [15, 16].12

Among all the possible approaches, the use of an LR shunt (even with cou-13

pling to negative capacitances [17, 18]) has been found to be the most effective14

approach for controlling a single mode. Different methods have been proposed15

in the literature to set the values of the inductance L and the resistance R [19].16

They can rely on the shape of the frequency response function (FRF) of the17

controlled system [6, 8] or exploit the pole placement theory, requiring defined18

conditions on the damping associated with the poles of the system [20, 21, 22].19

Among the approaches of the latter category, the so-called balanced calibra-20

tion stands out for desirable features such as its high attenuation levels and21

good robustness to possible mistuning thanks to the way of setting the value22

of the resistance R [21, 22]. The robustness of the control is very important23

in LR shunts because this type of control suffers from significant performance24

loss because of mistuning [19, 23, 24]. Indeed, the effect of the LR shunt can25

be seen as equivalent to that of tuned vibration absorbers (TVAs), with all the26

related advantages and drawbacks, such as sensitivity to possible mistuning and27

parameter uncertainties.28

To overcome this limitation, this paper presents a new shunt impedance29

which uses similar principles as those adopted in [21, 22] for the balanced cali-30
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bration, while improving the attenuation performance both in tuning and with31

respect to mistuning. This is achieved by adding a capacitance and an induc-32

tance to the existing LR shunt (LRLC shunt, see Sections 3.1 and 3.2) to create33

an additional resonance for the whole electro-mechanical system, compared to34

the LR shunt (i.e. the LRLC shunt introduces two resonances in the system,35

while the LR shunt just one). This LRLC shunt is found to improve both the36

robustness and performance of the control action.37

This approach already showed to be effective in the field of mechanical TVAs,38

where multiple TVAs are used to add more than one eigenfrequency to the whole39

system [25, 26] and are tuned for attenuating the vibrations of a single mode40

of the primary system. The technique, applied in different fields, such as for41

example civil engineering [27, 28, 29, 30] and acoustic control [31], has proven42

to be able to improve the attenuation provided by a single TVA. TVAs can43

be used with different layouts, such as series (e.g. [32, 33, 34]), parallel (e.g.44

[33, 34, 35, 36, 37, 38]) or other configurations (e.g. [39, 40]). Moreover, it is45

possible to base this technique on smart materials or electro-magnetic interac-46

tions (e.g. [41, 42, 43]), which allow to develop new configurations for devices47

able to add more than one eigenfrequency to the whole system. Unfortunately,48

most of the time, when smart materials are employed, the obtained equivalent49

mechanical schemes are different from those typical of multiple TVAs and thus,50

in these cases, specific optimisation procedures are needed to set the values of51

all the elements in the control system. Oftentimes, due to the complexity of the52

problem with additional resonances, these techniques rely on either numerical53

minimisation of target functions, without analytical formulas, or the numeri-54

cal solution of a system of polynomial equations and the consequent numerical55

analysis of the obtained solutions.56

The idea of the present work is to exploit the special features of piezoelectric57

materials for developing an LRLC shunt impedance that adds two eigenfrequen-58

cies to the whole system and aims at improving the attenuation performance59

and robustness of the resonant shunt. To do this, a specific procedure based on60

a mixed analytical-numerical approach is proposed for the tuning of the elec-61
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tric parameters, providing closed analytical formulations for the basic circuit62

components.63

The structure of the paper is as follows: Section 2 presents the model used for64

describing the electro-mechanical structure and recalls the balanced calibration65

approach for setting the values of L and R presented in [21, 22] for the tradi-66

tional LR shunt. Section 3 presents the new shunt impedance together with its67

theoretical discussion. Section 4 describes a numerical case aimed at showing68

the advantages provided by the proposed approach and Section 5 explains how69

to predict the attenuation that it provides. Finally, Section 6 addresses the70

experiments carried out to validate the theoretical outcome.71

2. The system model and the balanced calibration72

Figure 1: Vibration attenuation by means of a piezoelectric shunt.

A generic structure excited by an external force fe is considered. A piezo-73

electric actuator is bonded on it, and it is shunted with an electric impedance74

Z (see Fig. 1), composed of a resistance R and an inductance L which can be75

connected either in parallel or series (see Figs. 2a and b). The displacement U76

of any given degree-of-freedom x of the structure at time t can be represented77

in modal coordinates:78
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Figure 2: Traditional resonant shunt impedance in parallel (a) and series (b), and the new

LRLC shunt impedance in parallel (c) and series (d).

U(x, t) =

N∑
s=1

φs(x)us(t) (1)

where N is the number of modes of the system, φs is the s-th eigenvector (scaled79

to the unit modal mass and with the piezoelectric actuator short-circuited) and80

us is the s-th modal coordinate.81

In case of low modal coupling, the motion of the system for ω ' ωs (where82

ω is the angular frequency and ωs is the s-th eigenfrequency of the system with83

the piezoelectric actuator short-circuited) can be approximated as:84

U(x, t) ' φs(x)us(t) (2)

and the equation of motion of the structure becomes:85

(−ω2ms + iωcs + ks)us + f = fe,s (3)

where ms, cs and ks are the modal mass, damping and stiffness (ωs =
√
ks/ms),86

respectively, and fe,s is the modal forcing. Furthermore, i is the imaginary unit.87

From here on, the modal mass will be set equal to 1 (ms=1) and thus the88

eigenvector components are scaled to unit modal mass, as mentioned previ-89

ously. Furthermore, f is the force exerted by the piezoelectric transducer on90

the structure and it is expressed as:91
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f = θsV (4)

where θs is the coupling coefficient and V is the voltage across the electrodes of92

the piezoelectric actuator (see Fig. 1).93

The sensor equation couples the electric and mechanical behaviours:94

Q = −θsus + CsV (5)

where the chargeQ on the transducer surfaces depends on two contributions: the95

mechanical deformation (−θsus) and the capacitive effect (CsV ). For vibration96

damping of a flexible structure with multiple modes, the modal capacitance97

Cs = C0 + C ′s is composed of two contributions: the capacitance associated98

with constrained transducer boundaries C0, and a static correction term C ′s99

accounting for the contribution from higher modes [44, 45].100

If the shunt impedance Z is considered as in Fig. 1, the equation linking the101

charge on the surfaces of the piezoelectric transducer and the voltage across its102

terminals can be written as:103

V = −Z(ω)I = −iωZ(ω)Q (6)

where I is the current flowing in the circuit (see Fig. 1). According to the type104

of shunt impedance used, the expression of Z changes. If the classical LR shunt105

is considered, Z either represents the series or parallel connection of a resistance106

R and an inductance L. These specific cases are shown in Figs. 2a and b and107

treated in the next subsection.108

2.1. The classical resonant shunt and its balanced calibration109

Relying on the electrical analogy of mechanical systems and knowing that an110

electrical series connection corresponds to a parallel mechanical connection and111

vice versa, it is possible to translate the electrical model of Fig. 3a (L and R112

connected in parallel) into an equivalent mechanical model, as shown in Fig. 3b113

(m and c in series). In this equivalent representation, the mechanical parameters114
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Figure 3: Circuit diagram of the parallel LR shunt (a) and its mechanical equivalent (b).

are obtained by multiplying the electrical parameters by θ2s . A similar approach115

can be adopted for the series connection between L and R (see Figs. 4a and b).116

Using Eqs. (4), (5) and (6) in Eq. (3), the FRF of the electro-mechanical117

system is obtained. According to the type of connection between inductance118

L and resistance R (i.e. parallel or series in Figs. 2a and b, respectively), the119

mathematical description of Z changes and two different FRFs are achieved. In120

the case of a parallel link, the FRF is:121

usks
fe,s

=
ks(−ω2 + 2iζeωeω + ω2

e )

[−ω2 + 2iζsωsω + (1 + κ20)ω2
s ](−ω2 + 2iζeωeω + ω2

e )− κ0ω2
s (ω2

e + 2iζeωeω)
(7)

while in case of a series link, the FRF is instead given as:122

usks
fe,s

=
ks(−ω2 + 2iζeωeω + ω2

e )

[−ω2 + 2iζsωsω + (1 + κ20)ω2
s ](−ω2 + 2iζeωeω + ω2

e )− κ0ω2
sω

2
(8)

The symbol ζs indicates the non-dimensional damping ratio associated with the123
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Figure 4: Circuit diagram of the series LR shunt (a) and its mechanical equivalent (b).

structural eigenfrequency ωs, while ωe and ζe are the electric eigenfrequency124

and non-dimensional damping ratio, respectively. The electric eigenfrequency125

ωe is related to L by the following relation:126

ωe =
1√
LCs

(9)

The expression of ζe depends on the connection of L and R. For the parallel127

connection, its expression is:128

ζe =
1

2ωeRCs
(10)

whereas for the series connection, it is given as:129

ζe =
R

2ωeL
(11)
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Moreover, a normalised coupling coefficient κ0 is expressed as (see Figs. 3b130

and 4b):131

κ0 =
k0
ks

=
θ2s
Csks

(12)

It is noted that
√
κ0 is the modal electro-mechanical coupling coefficient [21],132

which can be estimated as [44, 46, 47]:133

κ0 =
θ2s

Csω2
s

' ω̂2
s − ω2

s

ω2
s

(13)

where ω̂s is the system eigenfrequency for the piezoelectric actuator with open-134

circuited electrodes.135

The FRFs in Eqs. (7) and (8) are characterised by four poles. More pre-136

cisely, for low to moderate damping values, they appear as two pairs of complex137

conjugate eigenvalues. The balanced calibration, considered here as the start-138

ing point of the proposed method, is based on the requirement of equal modal139

damping of the eigenvalues. This tuning approach for the shunt impedance has140

already demonstrated to provide simultaneously high attenuation values (close141

to those provided by minimisation criteria on the FRF amplitude) and a high142

robustness to possible mistuning due to an increased value of R (see e.g. [21]).143

As demonstrated in [21, 48, 49], plotting the absolute value of the real and144

imaginary parts of the eigenvalues (normalised by a real-valued reference fre-145

quency ω0) is a good way to investigate whether the condition of equal modal146

damping is fulfilled. Indeed, the condition of equal modal damping is achieved147

when the normalised eigenvalues lie on the same line containing the origin of148

the complex plane (plotting them in terms of absolute value of the real and149

imaginary parts) and thereby appear as inverse points with respect to a unit150

circle. The value of ω0 is automatically obtained when the equal modal damp-151

ing condition is imposed (see [21]) and represents the anti-resonance frequency152

in the FRF when ζe=0. For the parallel connection of L and R, the reference153

frequency is:154
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ω0 = ωs (14)

while, for the series connection, it is:155

ω0 = ωs

√
1 + κ0 (15)

Following this tuning procedure, it is thus possible to derive the expressions156

of ωe and ζe which secure equal modal damping, denoted as ωopt
e and ζopte ,157

respectively. For the parallel connection of L and R, they are:158

ωopt
e = ωs (16)

ζopte =

√
κ0
2

(17)

while, for the series connection, their expressions are:159

ωopt
e = ωs(1 + κ0) (18)

ζopte =

√
κ0

2(1 + κ0)
(19)

From this tuning procedure, obtaining a robust LR shunt, the authors pro-160

pose a new layout for the shunt impedance Z, composed of two inductances (L161

and L0), a capacitance C and a resistance R (see Figs. 2c and d). It is conceived162

to further improve the performance and the robustness of the LR shunt by in-163

troducing an additional resonance in the system. As mentioned, it is referred164

to as an LRLC shunt and introduced in the next section.165

3. The LRLC shunt166

The LRLC shunt proposed in this paper is calibrated based on the require-167

ment of equal modal damping, as introduced for the classical resonant shunt in168

Section 2.1. The shunt circuit, its coupling with the electro-mechanical struc-169

ture and its tuning procedure are presented in this section. Particularly, two170
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different electrical circuits will be considered. The parallel LRLC and the series171

LRLC, discussed in Sections 3.1 and 3.2, respectively. The absorber system172

is similar to a mechanical vibration absorber, suspended by either a shunted173

piezoelectric [50] or electromagnetic [43] transducer. However, in the present174

case, the absorber is realized entirely by a shunt and thus without a physical175

vibratory mass.176

3.1. The parallel LRLC177

Figure 5: Circuit diagram of the parallel LRLC shunt (a) and its mechanical equivalent (b).

The shunt impedance discussed in this section has the layout shown in Fig.178

2c. When it is connected to the piezoelectric actuator, the electrical model of179

Fig. 5a is obtained. Figure 5a shows that a null value of R short-circuits its180

branch. Therefore, no current flows through L and C (i.e. the current flows181

through the short-circuited branch) and, consequently, only a single resonance is182

created by the transducer capacitance Cs and the leading shunt inductance L0.183
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Conversely, when R is not null, current flows through the L and C branches and,184

thus, an additional resonance is introduced. In comparison with the classical LR185

shunt, the proposed layout adds a supplementary resonance that will improve186

performance and robustness, when calibrated properly.187

3.1.1. FRF188

As already mentioned for the LR shunt, using the impedance analogy be-189

tween electrical and mechanical systems, the electrical model of Fig. 5a may be190

translated into the equivalent mechanical model shown in Fig. 5b. The applied191

electro-mechanical equivalence is similar to that employed in the previously192

referenced works [21, 22] related to the balanced calibration of the LR shunt,193

in order to obtain a parallelism between the analytical treatments. Thus, the194

mechanical parameters are again simply obtained by multiplying the electrical195

parameters by θ2s .196

Using the approach employed in Section 2.1, and taking into account the197

parallel impedance layout in Eq. (6), the FRF of the parallel LRLC system can198

be derived as:199

usks
fe,s

=
(−r2µ0 + κ0)G− r2µκ

(−r2 + 2irζs + 1){(−r2µ0 + κ0)G− r2µκ} − r2κ0(µ0G+ κµ)
(20)

where the frequency function G for the parallel circuit in Fig. 5a is:200

G = −r2µ+ ir
µκ

β
+ κ (21)

while r is the normalised frequency:201

r =
ω

ωs
(22)

The remaining system ratios in Eq. (20) are:202

κ0 =
k0
ks
, µ0 =

m0

ms
, κ =

k

ks
, µ =

m

ms
, β =

c√
msks

(23)

where m0, k0, m, c and k are the parameters of the equivalent mechanical203

representation of the LRLC circuit, as defined in Fig. 5b.204

12



The denominator of the FRF in Eq. (20) is of sixth order and, for low205

to moderate values of damping, three complex conjugate pairs of eigenvalues206

thereby exist. For the balanced calibration of the circuit, it is possible to follow207

the same procedure used for the LR shunt calibration, briefly summarised in208

Section 2.1.209

3.1.2. Characteristic equation210

This tuning technique is based on the pole placement principle and the211

optimal parameters for the electrical circuit are derived by imposing some con-212

straints on the system poles when neglecting structural damping (ζs=0). More213

specifically, the first requirement is to have two pairs of eigenvalues with equal214

modal damping. As mentioned, according to [22], this implies that two eigenval-215

ues are inverse points with respect to a circle of radius ω0 in the complex plane.216

This condition is secured by the following characteristic polynomial equation217

[49]:218

ω4 − 2(1 + 2χ2)ω2
0ω

2 + ω4
0 − 4iχτω0ω(ω2 − ω2

0) = 0 (24)

where χ and τ are parameters depending on the frequency and the damping219

associated with the eigenvalues.220

The second requirement on the pole positions is to have the last pair of poles221

at a frequency value equal to ω0, thus leading to the following polynomial form:222

− ω2 + 2iζ3ω0ω + ω2
0 = 0 (25)

where ζ3 is the non-dimensional damping ratio associated with the considered223

eigenvalues. Using the conditions of Eqs. (24) and (25), the following resulting224

equation can be constructed as:225

[ω4 − 2(1 + 2χ2)ω2
0ω

2 + ω4
0 − 4iχτω0ω(ω2 − ω2

0)](−ω2 + 2iζ3ω0ω + ω2
0) = 0 (26)

Equation (26) can also be expressed as a function of the dimensionless root226

ξ = ω/ω0 = r/Ω0 with Ω0 = ω0/ωs, leading to:227
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Table 1: Conditions on the coefficients of Eq. (27)

quantity value

ratio between the coefficients of

the 6-th and 0-th order terms of Eq. (27)
-1

ratio between the coefficients of

the 5-th and 1-st order terms of Eq. (27)
1

ratio between the coefficients of

the 4-th and 2-nd order terms of Eq. (27)
-1

−ξ6 + ξ5(2iζ3 + 4iχτ) + ξ4[1 + 8ζ3χτ + 2(1 + 2χ2)] +

ξ3[−8iχτ − 2iζ3(2 + 4χ2)] + ξ2[−1− 8ζ3χτ − 2(1 + 2χ2)] +

ξ(2iζ3 + 4iχτ) + 1 = 0 (27)

3.1.3. Equal damping calibration228

From Eq. (27), it is evident that the condition of equal modal damping for229

four of the poles and the condition related to the value of the eigenfrequency on230

the other two translate into the three conditions gathered in Tab. 1.231

To derive the tuning conditions it is sufficient to apply the abovementioned232

requirements about the pole locations to the actual poles of the characteristic233

polynomial, which can be obtained from the denominator of Eq. (20). In-234

deed, the denominator of Eq. (20) can be expressed in terms of ξ and posed235

equal to zero in order to derive the eigenvalues in terms of the lumped physical236

parameters:237

−ξ6 + ξ4
1

Ω2
0

(1 + κ0 +
κ+ κ0
µ0

+
κ

µ
)− ξ2 1

Ω4
0

[
κ

µ
(1 + κ0) +

κ0
µ0

(1 +
κ

κ0
+
κ

µ
+ κ)] +

κκ0
Ω6

0µµ0
+ iξ

κ

Ω0β
[ξ4 − ξ2 1

Ω2
0

(1 +
κ0
µ0

+ κ0) +
κ0

Ω4
0µ0

] = 0 (28)

Requiring the equality between the coefficients of Eqs. (28) and (27) (thus238

obtaining six equations: from the 5-th order to the 0-th order) allows to find the239
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values of the physical electrical parameters, which thereby satisfy the condition240

of equal modal damping. Three of these equations can be replaced by imposing241

the three conditions stated in Tab. 1, simplifying the solution process. Applying242

these three conditions to the coefficients of Eq. (28) (terms of order 0, 1, 2, 4,243

5 and 6), the following three equations are obtained:244

κκ0
Ω6

0µµ0
= 1 (29)

κ0
Ω4

0µ0
= 1 (30)

1

Ω2
0

(1 + κ0 +
κ+ κ0
µ0

+
κ

µ
) =

1

Ω4
0

[
κ

µ
(1 + κ0) +

κ0
µ0

(1 +
κ

κ0
+
κ

µ
+ κ)] (31)

whose solution leads to the following parameter relations:245

µ0 =
κ0

(1 + κ0)2
, µ =

κ

1 + κ0
, Ω2

0 = 1 + κ0 (32)

The value of κ0 depends on the physical properties of the electro-mechanical246

system and is therefore considered known, while the value of µ0 (thus L0) can247

be readily found from Eq. (32). When deriving the value of µ (thus L) as a248

function of κ (thus C) using Eq. (32), five parameters are still unknown: κ, β,249

ζ3, χ and τ . Three equations out of the six original equations of the problem250

have been already used to derive Eq. (32) (see Tab. 1). Hence, the problem251

is overdetermined and two parameters must be chosen by the user or derived252

by adding additional constraints to the problem. In this paper, it is chosen to253

formulate an additional control target to derive the values of κ and β. Their254

tuning procedure is described in the next subsection.255

3.1.4. Amplitude minimisation256

The additional requirement in this case is the minimisation of the H∞ norm257

of the FRF. Indeed, the value of β that guarantees, for a given value of κ, the258

minimisation of the peak of the dynamic amplification (i.e. H∞ control) has259
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Figure 6: Trends of the absolute values of the real and imaginary parts of the squared roots

(LRLC in parallel layout): κ = 0.10κ0 (a), κ = 0.15κ0 (b) and κ = 0.20κ0 (c). The value of

κ0 is 0.02.

been chosen in this paper. To find this optimal value, a numerical minimisation260

of the maximum of the FRF amplitude of the electro-mechanical system must be261

carried out. Indeed, an analytical solution is not straightforward to be found. It262

is also noticed that the user can choose the β value according to another control263

target (e.g. H2 control) or to the desired level of vibration mitigation. Once the264

conditions for equal modal damping are set, providing closed-form analytical265

formulas for the values of µ0 and µ, the subsequent numerical minimisation266

finds the optimal κ and β values according to the desired performance target267

(H∞ optimisation in this case).268

The choice of the optimal κ value arises from considerations on the shape of269

the root locus of the controlled system as a function of this parameter. Figure 6270

shows the complex root trajectories in the ξ2-plane for three different values of271

κ/κ0, chosen as an example. In the plots of Fig. 6, the red crosses indicate the272

roots for β →∞, the circles are for β = 0, while the asterisks represent the roots273

obtained with the optimal β value from an H∞-norm optimisation. As expected274

from the requirements imposed on the pole positions in Eqs. (27) and (28), one275

of the squared poles lies on a circle with unit radius, while the other two are276
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inverse points with respect to this circle. It is possible to demonstrate that,277

if the normalised eigenvalues lie on the same line containing the origin of the278

complex plane, and thus represent inverse points with respect to a circle of unit279

radius, the same holds for the squared eigenvalues. Looking at the three loci of280

Fig. 6 (that are all characterised by the equal modal damping condition), it can281

be noticed that, by decreasing the value of κ/κ0, the trajectories described by282

two of the squared poles (those not on the circle with unitary radius) separate283

into two different side lobes (see Fig. 6a) passing through a bifurcation condition284

(see Fig. 6b), where all three squared poles coincide for a certain value of β.285

Although this bifurcation point looks as the best choice from the modal damping286

point of view, it actually leads to a high modal coupling and thereby to a non-287

optimal solution in terms of dynamic amplification, as explained in [21, 48].288

Furthermore, a shunt without roots near a bifurcation point in the complex289

plane is expected to be robust with respect to calibration because the roots are290

well separated. Therefore, the optimal solution in terms of H∞ optimisation is291

achieved with a κ value such that the complex roots are sufficiently separated,292

which is furthermore expected to provide good robustness.293

3.1.5. Bifurcation point294

The condition mentioned above (to guarantee the desired amount of modal295

damping, while keeping the complex roots sufficiently separated) occurs for a κ296

value that is lower than for the bifurcation point, as indicated by the asterisks297

in Fig. 6 (optimal by the H∞ norm of Eq. (20)) and their respective FRF298

amplitudes shown in Fig. 7. The dynamic amplification for the optimal β value299

and κ = 0.1κ0 (see Fig. 7a) is indeed lower than for the other two cases in Figs.300

7b and c. From this analysis, it can be concluded that the optimal value of κ301

must be searched numerically among all the values lower than that leading to302

the bifurcation point of the three squared roots. This threshold κthr,p can be303

derived analytically by noticing that all the three squared poles have the same304

frequency and damping values in the bifurcation point and thus are all placed305

on the circle with unitary radius in the complex ξ2-plane. Therefore, they must306
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Figure 7: Amplitude of the FRF (LRLC in parallel layout, see Eq. (20)): κ = 0.10κ0 (a),

κ = 0.15κ0 (b) and κ = 0.20κ0 (c). The value of κ0 is 0.02 and the β value is set according

to the H∞-norm optimisation (see the asterisks in Fig. 6).

satisfy the following condition:307

(−ξ2 + 2iξζ + 1)3 = 0⇒ −ξ6 + 6ζiξ5

+(3 + 12ζ2)ξ4 − (12ζ + 8ζ3)iξ3 − (3 + 12ζ2)ξ2 + 6ζiξ + 1 = 0 (33)

If the first, second and third order terms of Eq. (33) are equated to those of308

Eq. (28), using the expressions in Eq. (32), the value of κthr,p is found as:309

κthr,p =
8κ20

1 + κ0
(34)

The optimal κ value is then in the following chosen less than κthr,p to avoid310

the bifurcation point (see Section 3.3).311

3.2. The series LRLC312

The shunt discussed in this section has the layout shown in Fig. 2d and313

the approach used to derive the FRF of the controlled system is the same as314

described for the parallel shunt in Section 3.1. As in the case of the parallel315
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Figure 8: Circuit diagram of the series LRLC shunt (a) and its mechanical equivalent (b).

LRLC, the electrical model of Fig. 8a can be converted into the equivalent316

mechanical model shown in Fig. 8b.317

Figure 8a shows that, for R → ∞, a single resonance is created by the318

transducer capacitance Cs and the leading shunt inductance L0, while, for finite319

values of R (i.e. decreasing R from ∞ to zero), an additional resonance is320

introduced by the shunt components C and L.321

3.2.1. FRF322

Using the same approach as employed in Section 3.1, the FRF of the system323

can be derived:324
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usks
fe,s

=
(−r2µ0 + κ0)E − r2µ0κ0

(−r2 + 2irζs + 1){(−r2µ0 + κ0)E − r2µ0κ0} − r2κ0µ0E
(35)

where the frequency function E is defined as:325

E = −r2µ+ irβ + κ (36)

The parameters κ0, µ0, κ, µ and β are defined as in Eq. (23). Furthermore, by326

looking at the functions E and G (see Eq. (21)), it is possible to notice that327

the damping term is defined differently in the series and parallel layouts.328

As already mentioned, the optimal shunt parameters are derived from con-329

ditions on the system poles. The system eigenvalues can be found by expressing330

the denominator of the FRF in Eq. (35) as a function of the dimensionless331

frequency ξ (neglecting the mechanical damping) and letting it equal zero:332

−ξ6 + ξ4
1

Ω2
0

(1 + κ0(1 +
1

µ0
+

1

µ
) +

κ

µ
)− ξ2 1

Ω4
0

[
κ0κ

µ0µ
+ κ0(

1

µ0
+

1 + κ

µ
) +

κ

µ
] +

κκ0
Ω6

0µµ0
+ iξ

β

Ω0µ
[ξ4 − ξ2 1

Ω2
0

(1 + κ0 +
κ0
µ0

) +
κ0

Ω4
0µ0

] = 0 (37)

3.2.2. Equal damping calibration333

The three conditions of Tab. 1 can then be applied to the coefficients (of the334

terms of order 0, 1, 2, 4, 5 and 6) of Eq. (37) to require equal modal damping,335

leading to the following three equations:336

κκ0
Ω6

0µµ0
= 1 (38)

κ0
Ω4

0µ0
= 1 (39)

1

Ω2
0

(1 + κ0(1 +
1

µ0
+

1

µ
) +

κ

µ
) =

1

Ω4
0

[
κ0κ

µ0µ
+ κ0(

1

µ0
+

1 + κ

µ
) +

κ

µ
] (40)

The solution to these equations gives the following three parameter relations:337
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µ0 = κ0, µ = κ, Ω2
0 = 1 (41)

As in the case of the parallel LRLC shunt, the value of µ0 (and thus of338

L0) can be set according to Eq. (41), while the other parameters must be339

derived solving the overdetermined system of three equations and five unknowns.340

Therefore, also in this case, the values of β and κ need to be set by a numerical341

minimisation.342

3.2.3. Amplitude minimisation343
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Figure 9: Trends of the absolute values of the real and imaginary parts of the squared roots

(LRLC in series layout): κ = 5κ0 (a), κ = 10κ0 (b) and κ = 20κ0 (c). The value of κ0 is 0.02.

The value of β is obtained from the same criterion as before, looking for344

the minimisation of the peak of the dynamic amplification for a given value of345

κ relative to κ0. To set the κ value, it is again possible to look at the system346

root locus. Figure 9 shows, for the series LRLC, the trajectories of the squared347

roots in the complex plane for three different values of κ/κ0 with respect to348

varying values of β. The crosses represent the roots when β → ∞, while the349

circles are the roots when β is null. Moreover, the asterisks are related to the350

optimal β value. Also in this case, a condition where the complex poles follow351

separated trajectories is achievable by increasing the κ value above a threshold352
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Figure 10: Amplitude of the FRF (LRLC in series layout, see Eq. (35)): κ = 5κ0 (a), κ = 10κ0

(b) and κ = 20κ0 (c). The value of κ0 is 0.02 and the β value is set according to the H∞-norm

optimisation (see the asterisks in Fig. 9).

value represented by the bifurcation of the roots (see Fig. 9b). By looking at353

the optimal positions of the roots in Fig. 9 (i.e. the asterisks) and their corre-354

sponding FRF amplitudes in Fig. 10, it is found that the situation characterised355

by two separated side lobes provides the highest attenuation level and the de-356

sired separation of the roots relative to the bifurcation point. Therefore, the357

ratio κ/κ0=20 secures the desired damping and response mitigation, as shown358

in Figs. 9c and 10c.359

3.2.4. Bifurcation point360

As in the case of the parallel LRLC, it is possible to find the threshold361

value of κ = κthr,s, above which the separation of the side lobes in Fig. 9c362

is guaranteed. This threshold value is the κ value for which it is possible to363

have the bifurcation point, where all the roots exhibit the same frequency and364

damping and lie on the circumference with a unitary radius in the complex365

ξ2-plane. This condition is achieved if the poles of the system, expressed by366

Eq. (37), satisfy the requirement of Eq. (33). Therefore, by equating the first,367

second and third order terms of these two equations and then applying the equal368
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modal damping conditions in Eq. (41), the value of κthr,s becomes:369

κthr,s =
1

8
(42)

It should be noticed that in this case the value of κ must be increased370

above this value for the two desired individual loci to appear (as in Fig. 9c).371

Conversely, in the parallel case, a decrease of the κ value leads to the desired372

separation of the loci. According to Eqs. (32) and (41), this implies that the373

optimal values of the inductance L will be larger in the series than in the parallel374

LRLC shunt.375

3.3. The optimal value of κ376

Sections 3.1 and 3.2 showed that the optimal value of κ must be sought in a377

range of values either below or above a certain bifurcation threshold, according378

to the circuit layout considered (parallel or series). The optimal κ value will be in379

the considered range that guarantees the maximum attenuation level when the380

corresponding optimal β value minimises the H∞-norm of the FRF amplitude381

in Eqs. (20) or (35). For the case of the parallel LRLC, the value of κ must be382

smaller than κthr,p, and thus obtained between zero and κthr,p. The problem383

is more complicated in the case of the series LRLC. Indeed, from the analysis384

performed in Section 3.2, it has emerged that the value of κ must be larger385

than κthr,s but no information is available regarding a possible upper bound.386

However, it is possible to find the optimal value of κ searching in a range such387

that the value of 1/κ is between zero and 1/κthr,s, which is numerically more388

convenient.389

Section 4 will show a numerical simulation where the classical LR shunt390

with balanced calibration and the new LRLC shunt will be compared in terms391

of attenuation performance and robustness with respect to potential mistuning.392

4. The performances of the LRLC shunt393

This section presents a numerical analysis in which the LRLC shunt is com-394

pared to the classical balanced calibration of the LR shunt in terms of vibration395
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Figure 11: FRF amplitude. κ = 40κ0 for the LRLC shunt. Series configuration for both the

LRLC and LR shunts.

Table 2: Values of the system parameters

ωs/(2π) [Hz] ω̂s/(2π) [Hz] ζs
√
κ0 Cs [nF] |θs| [kg−(1/2)NV−1]

100.00 100.50 3.0·10−3 0.1 40.0 0.0126

attenuation. This comparison has been carried out for both perfect tuning and396

mistuning. Indeed, the situation of mistuning is likely to be faced in real appli-397

cations due to changes of the parameters of either the shunt impedance or the398

primary system to be damped by, for example, thermal shifts. The performance399

analysis in mistuned conditions also allows to validate the overall robustness of400

the proposed LRLC shunt.401

The analysis is presented here considering a specific system chosen as an402

example, whose characteristics are gathered in Tab. 2. Nevertheless, the out-403

comes of the analysis can be generalised to any mechanical system equipped404

with a piezoelectric actuator; just a single example is shown here for the sake405

of conciseness. Figure 11 shows the amplitude of the FRF in perfect tuning for406

the LRLC shunt (series layout) with κ = 40κ0. This value is very close, but not407

exactly equal, to the optimal value of κ. However, this difference is negligible408

in terms of attenuation performance, as the attenuations achieved by κ = 35κ0409
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Figure 12: The value of AdB,num as a function of α. The values used for κ in the LRLC shunt

are: 35κ0, 40κ0 and 45κ0. Series configuration for both the LRLC and LR shunts.

and κ = 45κ0 are marginally worse than that for κ = 40κ0. Therefore, a more410

detailed search for the actual optimum of κ is practically useless. This point411

will be addressed again at the end of this section.412

Looking at the curve related to the LRLC shunt in Fig. 11, it can be413

noticed that the presence of an additional resonance (compared to the classical414

LR shunt) characterises the proposed circuit and provides an improvement in415

terms of attenuation performance over the traditional LR shunt. Figure 11416

shows the FRF amplitudes for both the LRLC and the LR shunt with balanced417

calibration and in series layout, clearly indicating the improved performance418

in terms of H∞ control of the LRLC shunt, with an increase in attenuation of419

approximately 2.3 dB for this specific case.420

Considering the robustness analysis with respect to possible mistuning of421

the shunt, a parameter α has been used and defined as:422

α =
ωcal

ωs
(43)

where ωcal is the frequency to which the shunt impedance has been tuned. The423

parameter α thus represents the amount of mistuning experienced by the system.424
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Figure 12 shows the attenuation value as a function of α, where the attenu-425

ation is expressed as:426

AdB,num = 20log10

Hsc

Hshunt,num
(44)

where Hsc is the maximum of the amplitude of the system FRF with the piezo-427

electric actuator short-circuited, while Hshunt,num is the maximum of the am-428

plitude of the system FRF with the considered shunt circuit in the simulated429

mistuned condition.430

Figure 12 shows that the LRLC shunt improves the attenuation compared431

to the LR shunt, even in presence of mistuning for reasonable values of α. The432

higher robustness of the LRLC shunt is demonstrated by the trend of the curves433

for α values between 0.99 and 1. Indeed, in this range, the LRLC shunt curves434

show an almost flat plateau, while the classical LR shunt exhibits steep curves435

with a very local optimum. Therefore, the LRLC shunt appears more robust436

than the LR shunt, thanks to the additional resonance introduced by the new437

circuit, which allows to obtain a wider and flatter shape of the FRF of the438

controlled system. It is also noticed that a range of α of approximately 1%,439

which corresponds to the plateau of the LRLC curves, is close to the natural440

uncertainty that can be encountered in real applications and to the possible bias441

effects due to, for example, environmental changes. Furthermore, the width442

of the flat plateau increases significantly when the value of κ0 increases, as443

evidenced with the system used in the experiments of Section 6. Therefore, when444

the characteristics of the piezoelectric actuator are optimised for controlling a445

given mode, which is a reasonable assumption in practical applications, the446

coupling factor is large [46] and the LRLC shunt becomes consistently more447

robust than the corresponding LR shunt.448

Furthermore, it is noted that, if it is desired to lift the LRLC curves of449

Fig. 12 far from α=1, it is sufficient to slightly decrease the value of κ (using450

the corresponding optimal value of β), accepting a slight (and often negligible)451

decrease in attenuation for α=1. In addition, this increases the robustness of452
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the shunt due to a corresponding reduced slope of the curves.453

Figure 12 also shows that for a value of κ = 35κ0 (thus, lower than the value454

of κ = 40κ0 used in Fig. 11) and for a value of κ = 45κ0 (thus a higher value455

than in Fig. 11), the attenuation performance for α = 1 (i.e. perfect tuning) is456

sufficiently close to that achieved with κ = 40κ0, which is therefore considered457

optimal, as mentioned at the beginning of this section.458

Outcomes similar to those presented so far for the series layouts are also459

found in case of a comparison between the classical parallel LR shunt and the460

new LRLC shunt in its parallel layout.461

The tuning methods for both the LR and LRLC shunts are developed under462

the hypothesis of low modal coupling, as mentioned in Section 2. This means463

that the contribution of the out-of-band modes to the mechanical behaviour of464

the electro-mechanical system dynamics is neglected. Instead, the contribution465

of the out-of-band modes is taken into account in the electrical behaviour of466

the electro-mechanical system by the term with Cs in the model of Section 2.467

However, it is important to underline that in case the contribution of the out-of-468

band modes to the mechanical part of the electro-mechanical system dynamics469

is not negligible, because they are close in frequency to the target mode, the470

effects on the attenuation provided by the two different shunts is expected to471

be similar. Therefore, this additional effect will not affect the results of the472

comparison between the two shunt impedances and the outcome of the analysis.473

Moreover, looking at Fig. 11, it is evident that the FRFs related to the two474

different shunts differ in a frequency range of about ±10 to 20% of ωs (see also475

Section 6). Therefore, the out-of-band modes can change the results of the476

comparison between the LR and LRLC shunts only in case they are very close477

to the targeted mode, whereby the low modal coupling hypothesis (which is478

the foundation of the proposed method) is not applicable anymore. However,479

since the robustness of the LRLC shunt is higher than that of the LR shunt,480

the LRLC shunt is expected to still provide a higher attenuation level compared481

to the LR shunt, even in case of high influence from the out-of-band modes.482

Finally, it is worth evidencing that even in the case the hypothesis of low modal483
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coupling is not satisfied, the result of the proposed LRLC shunt optimisation484

procedure (as well as in the case of an LR shunt) can be used as the starting485

point for a minimisation aimed at tuning the LRLC impedance using a multi-486

degree-of-freedom model like that described in [15].487

5. Attenuation by the LRLC shunt488
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Figure 13: The value of AdB,num as a function of
√
κ0 for different values of ζs (10−5, 10−4,

10−3, 10−2 and 5 ·10−2) (a) and the corresponding attenuation improvement provided by the

LRLC shunt (b). Series configuration for both the LRLC and LR shunts.

The results shown in Fig. 11, obtained for a system chosen as an example,489

can be generalised noticing that the FRFs associated to the classical LR shunt490

(in normalised form using r in place of ω in Eq. (8)) and the new LRLC491

shunt (see Eq. (35)) are dependent on only two parameters of the electro-492

mechanical system: κ0 and ζs. Therefore, it is possible to numerically compute493

the attenuation provided by the two different impedance layouts as a function494

28



Table 3: Values of the experimental parameters

ωs/(2π) [Hz] ω̂s/(2π) [Hz] ζs
√
κ0 Cs [nF] |θs| [kg−(1/2)NV−1]

34.29 35.44 4.5·10−3 0.2602 39.92 0.0112

of κ0 and ζs. For κ0, the authors chose to consider values from 0.012 (very495

low value) to 0.312 (close to the largest value encountered in practice [46]). For496

ζs, the authors have used five different values (from very low to very high for497

typical mechanical systems).498

Figure 13a shows the resulting attenuation values AdB,num (in tuning) for499

the two different shunts. Usually, the LRLC shunt allows to have attenuation500

improvements between 2 and 2.5 dB (see Fig. 13b), except for low values of501

κ0 coupled to high values of ζs where the improvement decreases. However,502

this improvement is still significant since also the overall attenuation decreases503

in this case. Therefore, Fig. 13 can be used as an abacus for predicting the504

improvement provided by the LRLC shunt compared to the classical LR shunt505

with equal modal damping calibration.506

The improvement provided by the LRLC shunt is most of the time larger507

than 2 dB, and thus, in percentage, the LRLC shunt allows to further decrease508

the peak of the FRF amplitude of more than 25% (and many times of more509

than 30%). This result is in accordance with the results usually obtained from510

multiple-TVA configurations when compared to situations where a single TVA511

is used (e.g. [40, 43]). The result is remarkable, especially in light of the fact512

that the improvement is obtained by a completely passive approach. However,513

it is important to remember that, in case operational amplifiers (OP-AMP) are514

needed to build the inductances of the shunt circuit because of their high values515

(see Section 6), the approach can be considered as passive from a dynamical516

point of view, although not strictly passive with respect to power consumption517

(i.e. OP-AMPs need a power supply).518
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Figure 14: The experimental set-up.

Figure 15: The electrical layout used for the LRLC shunt.

6. Experiments519

This section presents the experimental tests carried out with the aim of520

validating the theoretical outcomes shown previously. The set-up used was521

made from a stainless steel cantilever beam with a length equal to 180 mm, a522

width of 30.5 mm and a thickness of 1.1 mm. Two piezoelectric patches (length523

70 mm, width 30.0 mm and thickness 0.55 mm, material PIC 151) were bonded524

at the clamped end of the beam (one on each side of the beam) and electrically525

connected in series. The system was forced by means of a contactless magnetic526
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Figure 16: Experimental and numerical FRF amplitudes (in terms of displacement over force)

in short-circuit and in tuned condition.

actuator [51] and the corresponding vibration response was collected by using527

a laser velocimeter. This set-up, shown in Fig. 14, is the same already used in528

[18], from which interested readers can find more details.529

The first mode of the structure was considered for the tests because its530

amplitude was higher than that of the other modes in the low frequency range.531

Its eigenfrequencies with the patches in short- (ωs) and open-circuit (ω̂s), as well532

as the mechanical non-dimensional damping ratio ζs, were identified by means of533

Table 4: Values of the electrical parameters of the shunt impedances

type of shunt L [H] R [kΩ] C [nF] L0 [H]

LR shunt (balanced calibration) 472.9 38.89 – –

LRLC 3100.7 367.0 6.95 539.7
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Figure 17: Experimental and numerical attenuation as a function of α.

an experimental modal analysis (see Tab. 3). The value of θs was estimated by534

means of Eq. (13), where knowledge of the Cs value is required. This value was535

estimated by measuring the capacitance of the piezoelectric patch as a function536

of ω with an LCR meter (see [18] for more details). All the estimated system537

parameters are gathered in Tab. 3.538

The classical LR shunt with balanced calibration (see Section 2.1) and the539

new LRLC shunt (see Section 3) were compared in series layout. All the induc-540

tances were built using OP-AMPs with the Antoniou’s circuit [6, 52] because541

of the high inductance values required. The whole electrical layout employed542

for the LRLC impedance is shown in Fig. 15. It is noticed that the layout of543

L0 is different from that of L. Indeed, in the circuit of L0, there is the variable544

resistance P2,0, which is used to compensate for the parasitic resistances usually545

present when employing OP-AMPs to build inductances [6]. The presence of546

this potentiometer for L0 is important because L0 is the only element on its547

branch (see Fig. 2d) and thus the parasitic resistance must be minimised. The548

value of P2,0 was set in order to have a parasitic resistance slightly positive and549

not exactly null, as this would have increased the risk of instabilities from e.g.550
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a thermal shift imposing a negative parasitic resistance. The value of the par-551

asitic resistance was estimated close to 500 Ω. Numerical simulations showed552

that such a resistance would not cause significant changes in the attenuation553

performance compared to the ideal case without parasitic resistance. The vari-554

able resistance P2,0 was not necessary for L because this inductance is in series555

with the resistance R and thus it was easy to compensate the presence of the556

parasitic resistance by changing the value of R accordingly. All the OP-AMPs557

(OPA 445 type) were supplied with a constant voltage of ±30 V.558

Figure 16 shows the numerical and experimental FRF amplitudes (in terms559

of displacement over force) in the tuned condition for the classical LR shunt with560

balanced calibration and the new LRLC impedance. The match between exper-561

imental and numerical data is good. Furthermore, the LRLC shunt achieves,562

as expected, a higher attenuation performance over the classical LR shunt (ex-563

perimental improvement of approximately 2.1 dB). The values of the various564

electrical parameters used for the shunts are provided in Tab. 4. It is noticed565

that the value of the capacitance C for the LRLC shunt is not optimal (opti-566

mal value is 7.36 nF and used value is 6.95 nF). The use of this non-optimal567

value was due to the available capacitors in the laboratory. However, this dif-568

ference does not cause any significant change in terms of vibration attenuation569

(as evidenced by numerical simulations) and thus it was considered acceptable.570

In order to validate the results related to the robustness of the LRLC shunt,571

also tests in mistuned conditions were performed, as shown in Fig. 17. This572

figure presents the value of the attenuation AdB,num as a function of the mistun-573

ing index α (see Eq. (43)). It is worth highlighting that there is a difference in574

the way of causing mistuning in the experiments with respect to what has been575

described in Section 4, where the mistuning was obtained by simulating a shift576

of the actual eigenfrequency value of the system (i.e. simulating a plausible real577

situation). Conversely, the mistuning is here obtained by changing the frequency578

value to which the shunt is optimised, while the actual eigenfrequency of the579

structure does not change. However, the meaning of the coefficient α does not580

differ and it is still an index of mistuning. As can be noticed by looking at the581
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experimental points in Fig. 17, also in this case there is a good match between582

numerical and experimental results. Moreover, the improved performance of the583

new LRLC shunt is experimentally demonstrated, as the LRLC shunt provides584

higher attenuation values compared to the classical LR shunt for all the tested585

values of α. The higher robustness of the LRLC shunt is also demonstrated by586

the trend of the theoretical curves in Fig. 17 for α values between 0.95 and587

1, within which the LRLC shunt curve has an almost flat plateau, while the588

classical LR shunt exhibits steep curves with a very local optimum.589

7. Conclusion590

The paper has presented a new type of impedance to be employed when591

mono-modal vibration control is carried out with a piezoelectric shunt. The592

new impedance can have two different layouts. However, in both cases the593

driving idea is that the shunt impedance must be such that it generates two594

different resonances. To this purpose, it is composed of two inductances, one595

capacitance and one resistance, comprising the resulting LRLC shunt.596

Guidelines are provided for setting all the electrical parameters of the shunt597

impedance. The new shunt network is found to be reliable and to provide598

better attenuation performance than the classical LR shunt based on balanced599

calibration. The benefits of the newly proposed impedance are evident in both600

tuned and mistuned situations.601

The theoretical outcomes have been validated by means of a test set-up in602

which the inductances used for the shunt have been built by OP-AMPs. Good603

agreement between theory and experiments has been obtained, validating the604

proposed shunt concept. A future study should address the power consumption605

by the augmented LRLC shunt when using OP-AMPs to build inductances.606
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