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Abstract. In this communication the problem of transforming the equilibrium equations from the 
Eulerian to the Lagrangian form is discussed with reference to materials governed by second-
gradient energy densities. In particular, novel theoretical achievements are outlined, which 
represent intermediate steps to attain the purpose: the transformation of edge vectors and of 
complementary orthogonal projectors over the boundary surface; a novel formula based on the 
divergence theorem for curved surfaces with boundary, relating material and spatial expressions; 
a remarkable relationship between Lagrangian and Eulerian (hyper-)stress tensors of different 
orders. 
Introduction 
Higher gradient materials constitute a wide class of materials for which the stored energy density 
depends not only on the deformation gradient but also on its higher order derivatives. In the last 
decade, such kind of mathematical models have attracted an increasing number of researchers in 
continuum and computational mechanics. This circumstance is mainly due to the fact that higher 
gradient modelling is capable of describing complex phenomena which cannot be predicted by the 
conventional Cauchy approach. Among others, we can mention size effects taking into account 
characteristic length scales, boundary layers, corner and surface effects, which are crucial in all 
those scenarios in which the separation of scales is not sharp. Moreover, higher gradient materials 
admit “exotic” loading which cannot be sustained by a Cauchy medium, such as double forces, 
expending work under the normal derivative of the virtual placement, edge or wedge loading (see 
e.g. [1-2]): these generalized forces represent versatile tools when investigating surface tension in 
fluids or other interface issues, wave propagation in crystals, fiber nets interacting with the matrix 
in composites and more in general the mechanical behaviour of the so called metamaterials.  

In this study a strategy is proposed, to transport the governing equations for second-gradient 
materials from the Eulerian to the Lagrangian form. Such a study revealed important differential 
geometric features of the equilibrium problem, and is expected to play an important role for the 
formulation and the implementation of advanced mechanical theories.  
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Variational approach 
In the present approach, the deformation process of a continuum body is described as a bijection 
between two configurations, namely a reference configuration 3Ω ⊆å R , referred to as material or 
Lagrangian, and another one, usually referred to as spatial or Eulerian 3Ω⊆ R . Such a map is 
continuous and differentiable, being its inverse also continuous and differentiable, and is denoted 
by the symbol : ∈Ω → ∈Ωχ X xå . It represents a diffeomorphism between submanifolds with 
boundary, for which we have det( ) 0J = >F , where symbol /= ∂ ∂F χ X  denotes the deformation 
gradient. We assume moreover that the (differential and topological) boundary of the above 
domains is constituted of the union of regular faces, having in common two by two parts of their 
border, referred to as edges, which represent discontinuity loci for the face normals. In this study 
we consider an energy density depending on the first and second gradient of the placement map, 
namely W( , , )∇X F F , see [1]. The objectivity of such an energy is guaranteed by prescribing the 
dependence on the right Cauchy-Green tensor T=C F F . The equilibrium configuration 
corresponds to the placement minimizing the total potential energy functional [3], namely 

( ){ }TOT EXTˆ arg min ( ) W , ( , )K d
Ω

= = ∇ Ω − ∇∫χ χ F F χ χ
å

åE E  (1) 

Symbol K  denotes herein an admissible set of functions sufficiently regular (also as for their 
trace) which incorporate the essential boundary conditions on the placement map and its normal 
derivative. According to a variational approach, the stationarity condition follows by imposing the 
first variation of the above functional to vanish. As for the inner virtual work, one obtains 
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In the above equation the parts of the energy variation relevant to the first and second gradient 
were marked by subscript I and II. As a key ingredient of the present formulation for second-
gradient materials, the inner work depends not only on the second-rank Piola stress tensor, denoted 
above by 1

A
iP , but also on a third-rank tensor 2

AB
iP , referred to as hyper-stress tensor (or double-

stress), see [2]. The present variational approach (and the more general principle of the virtual 
work which does not require any constitutive assumptions, see [4]) leads naturally to nonstandard 
boundary conditions and allows one to specify the admissible classes of external actions not known 
a priori. By the reiterated application of the integration by parts and of the divergence theorem 
extended to curved surfaces with boundary, we obtain a representation of the inner virtual work as 
the sum of diverse terms, including a novel surface action expending work versus the normal 
derivative of the virtual placement, an edge term, and contact pressures over the surface in which 
the linear dependence on the normal (according to the Cauchy’s postulate) is superseded by the 
sum of nonlinear expressions involving the product of normals and of their derivatives: in 
particular, the dependence on the local mean curvature is made explicit, see [5].  
Work-conjugate variables 
The above formulation, based on the definition of a suitable energy density, is truly Lagrangian. 
However, the equilibrium problem can be formulated in an abstract setting by a proper choice of 
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work-conjugate variables: then the governing equations assume the same form in the Lagrangian 
and in the Eulerian configuration. In fact, after computing the Eulerian counterparts of the virtual 
placement gradients, namely 
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equating the expressions of the Lagrangian and of the Eulerian inner virtual work, one obtains 
remarkable relationships between the Eulerian and Lagrangian hyper-stress tensors [6], namely 
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These relationships highlight a top-down structure typical of higher gradient modelling: in fact, 
the Lagrangian hyperstress affects both lower order Eulerian tensors, whilst the Piola stress tensor 
affects only the Cauchy stress 1

j
iT . 

Edge vectors 
In the classical treatises of continuum mechanics a few formulae were already available to 
transform vectors defined over the boundary faces from the Lagrangian to the Eulerian 
configuration, such as those concerning the contravariant tangent vector and the covariant normal. 
However, the authors proposed novel relationships for the covariant and contravariant form of the 
border normal, namely the normal to the border edge which is orthogonal to the tangent and 
belongs to the face tangent plane. By assuming as ansatz an affine function of the Lagrangian 
variable, and exploiting the above mentioned orthogonality conditions the following relationship 
was derived for the contravariant form of the edge normal 
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An analogous formula can also be provided for the covariant form of the edge normal, see [6]. It 
is worth emphasizing that such transformations are not unique and alternative expressions may 
exist: not necessarily they are available in closed form for both the contravariant and covariant 
representation of the same vector. The above formula can be regarded as an application of Gram-
Schmidt orthonormalization procedure, where a key role is played by the pull-back metric tensor. 
Transport of surface projectors 
As well known, at each point of a surface a pair of complementary orthogonal projectors can be 
defined, referred to as normal and tangential, and denoted by symbols [ ] S

V
S

V
M N N⊥ =  and  

[𝑀𝑀∥]𝑉𝑉𝑆𝑆 = 𝛿𝛿𝑉𝑉𝑆𝑆 − 𝑁𝑁𝑆𝑆𝑁𝑁𝑉𝑉 respectively, apt to project any vector of the space environment onto the 
normal or the tangent space at that point. We provided effective transformation formulae for such 
projectors from the Lagrangian to the Eulerian configuration. For the normal projector, exploiting 
the transformation rule for the covariant normal we get 
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whilst a more complex relationship is met for the tangential projector. It is worth underlying 
that the Eulerian tangential projector depends on both the Lagrangian projectors: hence, an 
Eulerian vector normal to an Eulerian surface when transported to the Lagrangian configuration is 
expected to possess non-vanishing components in both the normal and the tangent space at the 
corresponding point. 
Divergence theorem revisited 
In the present approach recourse is made to the divergence theorem formulated for submanifolds 
with boundary, which represents an important result of differential geometry, e.g. see [6]. Such a 
theorem was revisited, providing a novel relationship between spatial and material expressions 
extremely useful for the analytical developments, namely 
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 (7) 

In a sense, this formula generalizes Piola's bulk transformation, see [4]. 
Closing remarks and future prospects 
In this study the transport from the Eulerian to the Lagrangian configuration of the equilibrium 
equations was addressed for the first time with reference to second-gradient modelling. To attain 
the purpose, novel theoretical results were achieved, which represent intermediate steps and 
however exhibit a general interest. The methodology proposed above can be easily extended to 
higher-order gradient materials (see e.g. [7]), possibly enriched by damage and plasticity. 
Moreover the novel results are expected to play a role for advanced mechanical theories and their 
implementation (see e.g. [8]), possibly concerning fracture propagation and contact mechanics. 
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