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Abstract

Understanding of the driving scenario represents a necessary condition for au-
tonomous driving. Within the control routine of an autonomous vehicle, it
represents the preliminary step for the motion planning system. Estimation
algorithms hence need to handle a considerable number of information coming
from multiple sensors, to provide estimates regarding the motion of ego-vehicle
and surrounding obstacles. Furthermore, tracking is crucial in obstacles state
estimation, because it ensures obstacles recognition during time. This paper
presents an integrated algorithm for the estimation of ego-vehicle and obstacles’
positioning and motion along a given road, modeled in curvilinear coordinates.
Sensor fusion deals with information coming from two Radars and a Lidar to
identify and track obstacles. The algorithm has been validated through experi-
mental tests carried on a prototype of an autonomous vehicle.

Keywords: Obstacles tracking, Sensor fusion, State estimation, Autonomous
driving

1. Introduction1

State estimation represents an essential part of the control routine of an2

autonomous vehicle. Together with the behavioral layer and the higher-level3

route planner, it provides the initial and boundary conditions for the motion4

planning system, and it feeds information to the trajectory planner and the low-5

level trajectory follower, which actuates the vehicle [1]. Initial and boundary6

conditions (IC, BC ) are usually provided in terms of road geometry, limitations7

given by regulations, ego-vehicle and obstacles current positions, and velocities.8

This overall architecture is schematized in the control loop presented in Fig.1.9

The importance of vehicle state estimation has increased starting from 90s,10

when it became a fundamental task for the incoming active safety systems like11
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Figure 1. Representation of the control loop for an autonomous vehicle

ABS and ESP [2]. The measurements of yaw rate, wheels rotational speeds, and12

oil pressure in the brake circuit were provided to ensure the feedback control13

for vehicle handling. Moreover, kinematic quantities like vehicle sideslip were14

estimated to account for saturation effects in the tire contact patch. However,15

an autonomous vehicle’s control routine requires further information about its16

relative motion with respect to road bounds and other vehicles.17

For these reasons, one of the biggest challenges for the development and18

deployment of autonomous driving has been understanding the environment19

it operates in, which is extremely dynamic and uncertain. Various perception20

sensors have been developed and then used for this scope: ranging from stand-21

alone ones to full-suites, allowing localizing and perceiving the environment22

around the vehicle. Devices like Radars, Lidars, and cameras are very popular23

in this field, even though they provide different performances and information in24

terms of perception. Hence, various cost-effective combinations of sensor suites25

have been proposed to perceive the surrounding environment. The use of Radars26

[3], stereo cameras [4, 5] and Lidars [6] as stand-alone sensors has been done27

in the past for obstacle state estimation. Numerous studies have then been28

conducted based on the fusion of information coming from multiple sensors:29

camera, Lidar, and Radar [7, 8, 9], Radar and Lidar [10, 11]. Each of those30

sensors can provide heterogeneous information with different accuracy levels,31

which explains why they are usually combined to provide a fused representation32

of the environment. Among them, Radar is considered the most accurate sensor33

for what concerns the measurement of velocities as it exploits the Doppler effect.34

About positioning, the accuracy of Lidar measurements are considered better35

[10], while object classification is usually performed by cameras thanks to the36

high semantic content they provide[12].37

Perception involves two major tasks: Simultaneous Localization and Map-38

ping (SLAM) and Detection and Tracking of Moving Objects (DATMO). SLAM39

allows the map generation around the ego-vehicle while it simultaneously local-40

izes itself through the sensor measurements. DATMO requires the ego-vehicle to41

detect any obstacle within the road bounds and keeps track of them in time, en-42

abling the control system to account for each one’s behavior within the current43

driving scenario. This must be guaranteed even during sensors malfunctioning,44

lack of sensors measurements due to asynchronous time sampling, abnormal45
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weather conditions, occlusions, and any other circumstance leading to missing46

measurements that could cause blackouts. Hence, the estimation routine has to47

guarantee that this lack of information does not induce the motion planner to48

make wrong decisions.49

Moreover, a proper modeling of the road environment close to the au-50

tonomous vehicle, besides allowing navigation, guarantees an efficient prediction51

of the relative positioning with respect to pedestrians, bicycles, other vehicles,52

and road bounds. The most common road definition models are: poly-line53

model, lane-let model, and Hermite spline model with increasing complexity54

and computational need in given order [13]. According to the different motion55

planners presented in [14, 15], the road map model of the track can be approx-56

imated through cubic Hermite spline interpolation [16]. The most important57

advantage of curvilinear coordinates (s − n) with respect to Cartesian coordi-58

nates (X −Y ) is that each road characteristic can be described as a function of59

only one parameter (i.e., the abscissa s); thus, each function that approximates60

the centerline is at least surjective.61

This paper focuses on state estimation for autonomous driving and presents62

an integrated algorithm that provides state estimates for the ego-vehicle and the63

surrounding obstacles. For the former, information about positioning, heading64

angle, and velocity of the vehicle itself are provided by two GPS receivers,65

inertial units, and odometry. About the latter, measurements are provided66

by a multi-sensor framework, which includes two Radars located within the67

vehicle front and rear bumpers and a Lidar mounted on the vehicle’s top in68

correspondence of the center of gravity. Information about the surroundings is69

fused and provided to the tracking routine, according to DATMO. Exploiting70

the knowledge of the road map, the ego-vehicle is localized along the track71

within the road’s local reference frame, from which the relative positioning and72

motion of each obstacle can be derived in curvilinear coordinates as shown in73

Fig. 2. Throughout this work, information about road boundaries and road74

shape is considered as known. This integrated algorithm has been implemented75

on the prototype of an autonomous vehicle presented in [17], and it has been76

validated through experimental tests carried in the Monza Eni Circuit [18].77

The algorithm works at 20Hz on a soft real-time system based on ROS (Robot78

Operating System) [19], which allows dealing with asynchronous sensors.79

This paper is articulated through the following sections: the state of the art80

on sensor fusion, state estimation and DATMO is reported in Section 2 while the81

general structure of the algorithm is presented in Section 3. Section 4 presents82

the ego-vehicle state estimation procedure, while obstacles state estimation and83

tracking are described in Sections 5 and 6. The validation of the estimation84

procedure is given in Section 7, where the experimental framework is presented85

together with results.86

2. Related works87

As stated in the previous section, DATMO can provide the estimate for each88

obstacle close to a vehicle even in uncertain conditions. Measurements filtering,89
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Figure 2. Coordinates transformation

data association, and data fusion are the main tasks for a multi-sensors and90

multi-objects estimation problem: this section presents a summary of the state91

of the art for each of them.92

2.1. Filtering techniques93

The measurements obtained from sensors in a real scenario are affected by94

noise and a high degree of uncertainty. Hence, filtering procedures are usu-95

ally applied to ensure accurate estimates and tracking. Bayesian filters are96

widespread in literature: these filters exploit the Chapman-Kolmogorov the-97

orem through the system transition density to achieve predicted probability98

density functions (PDF) for the objects under consideration. Measurements are99

then used to update the predicted PDF to find the posterior PDF, from which100

the estimates can be obtained. Prediction and update steps in Bayesian filtering101

involve complicated integrals that lead to a high computational burden. When102

the model of the observed system is linear, and noise is Gaussian distributed,103

the integrals can be computed analytically: in these conditions, Kalman filter-104

ing [3, 5, 12, 20] provides the optimal solution, that can also be derived through105

the minimization of the mean squared error. However, if the system behavior is106

nonlinear, Extended Kalman Filter (EKF) [7, 8] and Unscented Kalman Filter107

(UKF) [21, 22] are favored solutions. In particular, when nonlinearities become108

huge, EKF provides less accurate solutions due to the first-order linearization109

of the system’s equations through Taylor-series expansion. Conversely, UKF is110

based on the so-called unscented transformation, which approximately provides111
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Gaussian distributed outputs even when dealing with nonlinear transforma-112

tions. Particle filters or Sequential Monte Carlo (SMC) filters are other variants113

of Bayesian Filters that can be used for nonlinear systems and non-Gaussian114

Noise Distributions. As the name suggests, they use weighted particles, each115

represented by possible state estimation and posterior distribution. The us-116

age of Random Finite Set (RFS) statistics is common in Multi-Object-Tracking117

(MOT). In particular, RFS enables MOT without a priori measurement asso-118

ciation through the implementation of recursive Bayes filtering. When dealing119

with scenarios in which the birth and death of objects are regular, with a sig-120

nificant amount of clutter and false positives, the association process provided121

by traditional Bayes filters leads to erroneous results. Conversely, RFS allows122

accounting for objects birth (regular or spawning), occlusions, misdetections,123

and disappearances by taking the number of objects under consideration as a124

stochastic variable. Gaussian Mean-Probability Hypotheses Density (GM-PHD)125

Filter [23], Multi-Bernoulli Mixture (MBM) Filter, Poisson Multi-Bernoulli Mix-126

ture (PMBM) Filter, etc. are other filters adopted in the literature. A detailed127

study for these filters is presented in [24].128

2.2. Pointcloud elaboration129

As anticipated in the previous section, throughout this work, multi-sensors130

data fusion is considered to be done between two Radars and a Lidar. Contrary131

to the general case, Radars used in this work already provide preprocessed clus-132

tered point detections coming from an object. The processing for the 3D point-133

clould coming from a Lidar sensor represents a more complex task. Referring to134

the robotics literature, obstacle detection from 3D pointcloud can be provided135

through a map-based approach or with deep learning-based techniques.136

Authors in [25] implemented an occupancy grid for the space surrounding a137

robot in which each cell is labeled as empty or occupied. Scenarios with a large138

number of sensors usually employ multilayers based solution [26, 27], where each139

sensor provides a different occupancy grid, then fused to retrieve a representa-140

tion of the environment. Other scenarios, where the terrain presents significant141

changes in height, require instead using more complex maps, which also con-142

siders changes in elevation [28, 29]. More straightforward solutions, based on143

2.5D maps [30, 31], merge the reduced dimensions and limited computational144

requirements of a 2D grid with the height of the 3D approach. Recent ap-145

proaches, specially designed for autonomous driving scenarios, also implement146

combinations of 2D and 3D based processing [32] using the original pointcloud147

to label the obstacles and the grid to perform planning. In general, most of the148

classification oriented systems prefer 3D pointcloud to identify and label the149

obstacles [33, 34, 35].150

In the last years, a different approach to pointcloud elaboration has emerged,151

the usage of deep learning techniques, particularly Convolutional Neural Net-152

work (CNN). The most successful solutions in the autonomous driving field do153

not try to label each pixel of the pointcloud but predict 3D bounding box around154

obstacles [36], [37], [38]. This guarantees low processing time and the ability to155
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run in real-time. Nevertheless some approaches of 3D points semantic segmen-156

tation, mainly based on the PointNet [39] and PointNet++ [40] architecture,157

has emerged. Lastly, hybrid approaches, which combine the usage of occupancy158

grids and CNN has been proposed [41] to reduce the required computational159

power. Those solutions first reduce the pointcloud to a 2D occupancy grid and160

then process it with a classical 2D neural network; in such a way, the input size161

is considerably reduced compared to the original 3D pointcloud, and it can be162

processed much faster. The main disadvantage of those solutions is the need for163

dense pointcloud to feed the network with feature-rich data. This is possible164

with 32 and 64 planes Lidars. Still, with smaller sensors, with fewer planes,165

the obstacles become less defined, and the networks are generally not able to166

extract enough features to detect the obstacles, as shown in [42].167

2.3. Sensor fusion168

Data Association is one of the crucial steps in MOT problems. A critical169

assumption for this task, among others, is that the number of objects (n) is not170

a random variable, but it is considered as known during each filtering iteration.171

Global Nearest Neighbour (GNN) filters, Joint Probabilistic Data Association172

(JPDA) filters, and Multi Hypothesis Tracking (MHT) filters are the most com-173

monly adopted approaches in MOT. These filters are presented in detail in174

[24, 43]. Kalman filtering and its advanced versions (EKF and UKF) are usu-175

ally employed to ensure objects tracking. GNN filters perform association of176

measurements and estimates under the best association hypotheses (i.e., the177

one with the lowest association cost is considered while others are pruned). Al-178

though computationally cheap and fairly accurate in case of high Signal to Noise179

Ratio (SNR), performances can degrade in moderate or low SNR. However,180

JPDA considers a certain number of best assignment hypotheses for the asso-181

ciation and computes marginal posterior densities with corresponding marginal182

association probability. Weighted merging of these posterior densities is done183

to extract the estimated state. With increased computational burden, JPDA184

performs better in low to medium SNR scenarios compared to GNN. MHT filter185

requires calculating a pre-defined number of best association hypotheses while186

pruning all others: in this way, posterior densities retains a certain number of187

most probable hypotheses. This allows for corrections in previous association188

decisions when new information from sensors is given.189

Multi-sensors data fusion for autonomous driving can be described as cen-190

tralized, decentralized, or hybrid architectures [44]. In centralized data fusion,191

also referenced as central level fusion, the sensors’ raw data are minimally pre-192

processed at sensor level and then forwarded to be fused in the central module.193

Object discrimination and tracking are handled at central level. In decentral-194

ized data fusion, each sensor is tasked to identify and track objects. Fusion of195

these tracks is done in a centralized module and may involve feedback to the196

sensor module. Hybrid data fusion architectures are a combination of previ-197

ous approaches. Two sets of information are conveyed from the sensor module:198

minimally pre-processed data to the central module and simultaneously tracks199
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to decentralized fusion modules. The outputs of the decentralized modules are200

fed again to the central module for fusion purposes.201

2.4. State estimation202

In obstacles state estimation, algorithms have to deal with a large number of203

measurements collected by sensors. Hence, any possibility of filtering in advance204

any unwanted noise or false positives may help in reducing the computational205

burden. For this reason, the filtering process can be improved by exploiting the206

knowledge of road bounds leading to higher estimates accuracy [3, 13, 20]. In207

particular, authors in [20] have studied the possibility of providing estimates in208

curvilinear coordinates by tracking fusion and behavioral reasoning of obstacles209

within the road bounds. As anticipated in the previous section, conversion210

from Cartesian to curvilinear coordinates can be beneficial in multiple aspects211

of autonomous driving but even for communication systems between different212

vehicles [13]. Authors in [3] have presented estimates in curvilinear coordinates213

to analyze obstacles motion close to the ego-vehicle. Estimation and tracking214

are given through decentralized fusion mode based on a Radar sensor, while215

nearest neighbor filter ensures track-measurement association. Obstacles state216

estimation is done in Cartesian coordinates and later converted into curvilinear217

ones through traditional Kalman filtering. However, this conversion process is218

highly nonlinear, so estimates can be vulnerable to faulty results.219

As presented in [45], road definition adaptation in the estimation process220

has allowed for the development of a cooperative algorithm between two vehi-221

cles expediting their lane level localization. Authors in [46] have represented the222

status of ego-vehicle, objects, and traffic participants in road coordinates (i.e.,223

Curvilinear Coordinates). This conversion enabled them to accelerate and sim-224

plify the trajectory planning of the ego vehicle. Knowledge of the road curvature225

and geometry allows the planning task to be performed in a simplified environ-226

ment by eliminating the road curvature and performing the planning task in a227

straight line. This reduced the computational burden and time consumed for228

performing an optimization task. The planned motion is again interpreted in a229

road environment for defining the designated motion.230

For what concerns the ego-vehicle positioning, GPS sensors with RTK cor-231

rection systems are becoming widespread in autonomous and intelligent vehicles.232

These sensors can be equipped with 6-DOFs inertial units (IMU), ensuring a233

cheap setup for the inertial navigation system. Authors in [47, 48] integrate234

a GPS receiver in the estimation process based on a kinematic vehicle model.235

They demonstrate how these sensors can improve the estimate accuracy even for236

the vehicle lateral velocity. This consideration, applied to autonomous driving,237

allows avoiding a complex reverse engineering process to tune parameters like238

tire cornering stiffness and relaxation lengths, mass, and moment of inertia (at239

least along the vertical axis) [49, 50]. Moreover, a couple of GPS receivers can240

be installed on the same vehicle to provide an estimation of the absolute heading241

angle [48, 51]. Accuracy increases if the receivers are located on the longitu-242

dinal axis. About the vehicle motion, lateral velocity in the center of gravity243

(CoG) can be derived by kinematic relationships assuming pure rolling contact244
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Figure 3. Scheme of the integrated estimation algorithm

and low longitudinal speed [52, 53]. Then, the estimated accuracy can be im-245

proved, accounting for vehicle lateral dynamics. In the literature, performances246

related to these two different modeling approaches have been compared many247

times [54, 55, 56, 57]. In general, dynamic and physical vehicle models ensure248

more accurate estimates as the vehicle speed increases, but a higher number of249

parameters must be tuned, and the computational cost increases. Authors in250

[51] implemented an EKF to provide positioning, heading angle, and lateral ve-251

locity for autonomous vehicles based on a kinematic single-track vehicle model.252

Authors in [58] compared performances between EKF and UKF for a similar253

estimation procedure. Results assess that UKF provides more accurate results,254

ensuring fast computational time.255

Compared to the current state of the art, the presented work aims to esti-256

mate obstacles positioning and relative motion referenced to the ego-vehicle in257

curvilinear coordinates, which involves a highly non-linear measurement model.258

Hence, a UKF has been implemented as it represents a compromise between259

accuracy, computational effort, and ease of implementation.260

3. Architecture of the estimation system261

As stated in previous sections, the aim of the presented estimation system262

is to compute ego-vehicle and obstacles state vectors in curvilinear coordinates.263

As shown in Fig.3, measurements for ego-vehicle state estimation are given by264

GPS receivers, inertial units, and odometry. The estimation algorithm is then265

based on a UKF to provide vehicle positioning and heading angle in the global266

Cartesian reference frame. At the same time, longitudinal and lateral velocities267

are given according to the moving reference system centered with the vehicle268

(i.e., the vehicle reference frame, VRF).269

xe, abs =
[
xGabs

yGabs
ψabs Vx Vy

]T
(1)
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The G-subscript in (1) means that positioning is given in the vehicle center270

of gravity, which also represents the center of the moving reference system, in271

which velocities Vx and Vy are estimated. As stated in the previous section, the272

curvilinear framework provides many advantages compared to the Cartesian273

one when applied to autonomous driving. As shown in Fig. 2, through the pre-274

computed road map description it is possible to move from global coordinates275

to the local reference frame along the road centerline. Doing so, ego-vehicle276

positioning in (1) can be converted to curvilinear coordinates:277

xe, loc =
[
nGloc

ξloc Vx Vy
]T

(2)

where ξloc = ψabs − θe represents the current relative heading direction of the278

ego-vehicle with respect to the road angle (θe). Once ego-vehicle positioning279

is computed with respect to the road centerline, the pre-computed road map280

provides the road description in terms of road angle and curvature (θ(s) and281

κ(s), respectively) for the current local reference frame. The road description282

is given in terms of Hermite spline curves for the following 50m, which corre-283

sponds to the overall estimation process’s field of view (FoV). The state vector284

in (2) does not include the vehicle’s absolute position along the track (i.e., the285

curvilinear abscissa sG). Aiming to provide obstacles’ positioning with respect286

to the ego-vehicle, this variable is not required because the vehicle is localized287

at any time step in a different local reference frame, to which the road map288

associates the corresponding road description.289

Measurements of obstacles are provided by two Radar sensors and by a Lidar290

in VRF (i.e., the same one in which longitudinal and lateral velocities are given).291

For each tracked obstacle i = 1, . . . , Nobs, state estimation (3) is provided in local292

reference frame in terms of longitudinal distance with respect to ego-vehicle si, loc293

and lateral distance with respect to road centre line ni, loc. Moreover, absolute294

velocities are given according to road tangential and orthogonal directions (Vsi295

and Vni
, respectively).296

xoi, loc =
[
si, loc ni,loc Vsi Vni

]T
(3)

Throughout this work, the small objects assumption is adopted (i.e., an object297

is represented by a point, and its state is defined with positional and velocity298

values only, neglecting the orientation information). Hence, the relative orien-299

tation of obstacles with respect to the road is not included in the state vector.300

Even though an obstacle’s orientation is an important information in the over-301

all perception module, it is not considered in this application to speed up the302

implementation and ensure real-time. However, all the estimates are provided303

in the road reference, whose direction and limits are known in advance, and the304

algorithm computes magnitude and direction of the velocity’s vector for each305

detected obstacle. Thus, if coupled together, these pieces of information can306

eventually provide a motion planner with an estimate of the obstacle’s trajec-307

tory.308
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4. Ego-vehicle state estimation309

Kalman filtering usage for vehicle state estimation, with EKF and UKF,310

is well-established to account for model nonlinearities. Furthermore, Kalman311

filtering requires a reasonable computational effort and allows managing differ-312

ent sampling frequencies from sensors: this guarantees that estimates can be313

provided even in a real-time control routine.314

As stated in previous sections, ego-vehicle state estimation is provided in315

terms of positioning and velocity. According to the works presented in Section316

2, a kinematic single-track vehicle model can be implemented within a range of317

speed typical of urban driving scenarios. Although a simple kinematic model318

guarantees fast implementation and interchangeability on different vehicles, the319

lack of accuracy can lead to estimation errors. These errors are mainly related320

to the lateral velocity estimation, which is strongly affected by tire cornering321

stiffness, geometry of the suspensions, saturation of friction in the tire contact322

patch, and load transfers. Even the vehicle’s longitudinal dynamic is crucial323

when dealing with strong braking maneuvers that are very common, especially324

in the urban environment. Despite this, the estimate accuracy can be improved325

utilizing a GPS receiver with real-time kinematic (RTK) correction. In this326

way, the motion planning system will continuously receive precise and accurate327

estimates, at least in terms of positioning. Furthermore, including the vehicle’s328

heading angle in (1) can lead to the motion planner to account for the car’s329

mutual direction with respect to the road and other obstacles.330

The discrete time definition of the UKF is based on the nonlinear systems of331

equations (4) and (5), where process disturbance wk and measurement noise vk332

are assumed to be additive and zero mean distributed with covariance matrices333

Qk and Rk as indicated in (6).334

xk = xk−1 + fk−1(xk−1, uk−1, wk−1)δt (4)

yk = hk(xk, vk) (5)

335

wk−1 ∼ (0, Qk−1)

vk ∼ (0, Rk)
(6)

The system is modeled based on a kinematic single-track vehicle model, which336

considers the IMU measurements as input with included disturbances (7). These337

measurements are the longitudinal and lateral accelerations in the vehicle CoG338

(aG,x and aG,y), and the yaw rate ω. The sensor bias is eliminated during the339

initialization phase when the vehicle is standstill.340

fk−1 =





ẋG = Vxcosψ − Vysinψ
ẏG = Vxsinψ + Vycosψ

ψ̇ = ω

V̇x = Vyψ̇ + ax,G

V̇y = −Vxψ̇ + ay,G

(7)
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Figure 4. Representation of sensors orientation on the vehicle

The filter update equations integrate velocities and positions provided by341

the GPS receivers together with odometry (8). GPS measures velocities in the342

absolute reference system (ENU) through the Doppler effect, while odometry343

can be considered as given from exciters and encoders located on the ego-vehicle.344

hk =





VFE = Vxcosψ − (Vy + lf ψ̇)sinψ

VFN = Vxsinψ + (Vy + lf ψ̇)cosψ

VRE = Vxcosψ − (Vy − lrψ̇)sinψ

VRN = Vxsinψ + (Vy − lrψ̇)cosψ

Vx, odom = Vx

xG = (xF lR + xRlF )/(lF + lR)

yG = (yF lR + yRlF )/(lF + lR)

(8)

Parameters li and lI , with i ∈ [f, r] and I ∈ [F, R] refer respectively to: distance345

between vehicle CoG and vehicle front and rear axis and distance between vehicle346

CoG and front and rear GPS receiver. Then, VFE , VFN , VRE , and VRN are the347

velocities in ENU coordinates measured by the GPS receivers, while Vx, odom348

is the longitudinal speed of the vehicle given by odometry. The measurement349

model is represented by Fig. 4.350

The unscented transformation (9) is applied to the estimated state vector351
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x̃+k−1 based on the state covariance matrix P+
k−1.352

x̂
(i)
k−1 = x̃+k−1 + χ(i) i ∈ [1, . . . , 2n]

χ(i) =

(√
nP+

k−1

)T

i

i ∈ [1, . . . , n]

χ(n+i) = −
(√

nP+
k−1

)T

i

i ∈ [1, . . . , n]

(9)

The number of sigma points n can double the length of the state vector to353

speed-up calculations. Sigma points are passed through (4) to compute the ma-354

trix x̂
(i)
k , which is used to evaluate the predicted state vector x̃−k and covariance355

matrix P−k as indicated in (10) and (11). In both the equations, each sigma356

point is properly weighted through the parameter wi = 1/2n.357

x̃−k =

2n∑

i=1

wix̂
(i)
k (10)

P−k =
2n∑

i=1

wi[x̂
(i)
k − x̃−k ][x̂

(i)
k − x̃−k ]T +Qk−1 (11)

A further unscented transformation (9) based on x̃−k and P−k is required to358

evaluate a new set of sigma points (x̂
(i)
k ) to update the state vector prediction.359

This set of points is then propagated through the update equations of the filter360

(8) to calculate the predicted measurement matrix ŷ
(i)
k from which the predicted361

measurements vector and the innovation covariance matrix Py are evaluated362

according to (12) and (13).363

ỹk =
2n∑

i=1

wiŷ
(i)
k (12)

Py =
2n∑

i=1

wi[ŷ
(i)
k − ỹk][ŷ

(i)
k − ỹk]T +Rk (13)

Pxy =

2n∑

i=1

wi[x̂
(i)
k − x̃−k ][ŷ

(i)
k − ỹk]T (14)

To conclude, the measurement update of the state estimates can be per-364

formed accounting for the cross covariance matrix given by (14), that is required365

to compute the Kalman gain matrix as indicated in (15). The updated state366

vector (x̃+k ) and covariance (P+
k ) are obtained from equations (16) and (17).367
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Kk = PxyP
−1
y (15)

x̃+k = x̃−k +Kk[yk − ỹk] (16)

P+
k = P−k −KkPyK

T
k (17)

The estimation process presented in this section provides the vehicle posi-368

tioning and heading in global coordinates (i.e., in the absolute reference frame).369

Longitudinal and lateral velocities in the state vector (1) are given in the mov-370

ing reference system centered with the vehicle CoG. Since positioning must be371

provided in the road local reference frame, as indicated by the state vector in372

(2), we have to solve an optimization problem before performing the estima-373

tion to position the vehicle within the road map. The pre-computed road map374

describes the road centerline in terms of heading and curvature in curvilinear375

coordinates with a discretization step of ds = 0.5m. A minimization algorithm376

computes the two smallest distances between the ego-vehicle position and each377

of the sampled map points through the euclidean norm. This brute force ap-378

proach is performed only during the filter initialization phase: starting from379

the second iteration, a warm start is used to account for the previous vehicle380

position, to reduce the computational effort. Once the closest points are found,381

the algorithm computes the tangent to the road centerline close to the vehicle382

θe to provide the lateral position in this local reference frame nGloc
and the383

relative heading angle ξloc. Thus, the experimental setup required to provide384

initial conditions to a motion planner shall include a GPS receiver coupled with385

an inertial unit (IMU), an encoder on the steering shaft, and a couple of exciters386

for the measurement of the longitudinal vehicle’s speed. Then, as explained in387

section 2, adding a GPS receiver located along the longitudinal axis of the car,388

it becomes possible to give an accurate estimate of the absolute heading angle.389

5. Data processing and sensor fusion390

The sensing architecture for obstacles state estimation consists of two Radar391

sensors mounted respectively on the front and the rear bumpers of the car, and392

a Lidar mounted on the roof. The Continental ARS 408-21 long-range Radar393

sensor retains a 180◦field of view in the horizontal plane, while a Velodyne VLP-394

16 Lidar guarantees a 360◦coverage.395

5.1. Radar data396

Data coming from the Radar sensors are already pre-processed and provided397

as clusters of detections in VRF. Those clusters give information on real objects398

and not single points. For each of them, the Radar measures the longitudinal399

and lateral distance in the VRF. Moreover, in the same reference frame, it also400

returns the longitudinal and lateral components of the relative velocity with401

respect to the ego-vehicle (V V RFx, rel and V V RFy, rel respectively). To compute these402

two velocities, the Radar sensors require the current ego-vehicle longitudinal403
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speed and yaw rate, received through CAN-bus communication. Hence, the raw404

measurements available for each object can be summarized in the following:405

yr oV RF
i

=
[
xV RFPi

yV RFPi
V V RFxi

V V RFyi

]T
(18)

where V V RFxi
and V V RFyi are respectively the longitudinal and later components406

in the VRF of the i−object absolute velocity. These components can be com-407

puted as reported in (19) because Radar sensors evaluate each detected object’s408

relative velocity with respect to the ego-vehicle accounting for the yaw rate of409

the VRF (i.e., accordingly to the relative motions theorem).410

{
V V RFxi

= V V RFx + V V RFx, rel

V V RFyi = V V RFy + V V RFy, rel

(19)

For what concerns every single object’s relative positioning, the measures can411

be considered related to the closest part of the leading (or following) vehicle.412

As indicated in (20), longitudinal and lateral distances from objects are derived413

accounting for the displacement between the sensors and the ego-vehicle CoG,414

i.e. lRi
with i ∈ [front, rear].415

{
xV RFPi, front

= xPi, front
+ lRfront

xV RFPi, rear
= −xPi, rear

− lRrear

(20)

A complete list of the provided data for each cluster identified by the Radar416

is provided in Table 1. As reported, the internal pre-processing of raw Radar417

detections guarantees not only objects measurements in VRF, but also tracking418

of the cluster in time, and an estimation of the related probability of existence419

and class.420

Object tracking is already performed by the Radar sensor (ID(oi)), but this in-421

formation is not considered within the presented algorithm because it is strongly422

affected by noise. Nevertheless, the related probability of existence is used to423

filter out objects characterized by p(oi) ≤ 99%. Indeed, some preliminary ex-424

perimental tests demonstrated that lower probability measures are mostly due425

to misleading and false positive. For this reason, all clusters with a probabil-426

ity of existence lower than this threshold are removed. The filtering process is427

completed by clustering all the object detections within a pre-defined spatial428

threshold, whose value changes according to the object class indicated by the429

Radar sensor. During clustering, all measurements related to positioning and430

relative motion of each object are mediated between them. To conclude, this431

sensor provides an estimation of the standard deviation for each measurement of432

a given cluster (σ∀meas). This information is used during the following filtering433

process to account for the noise that affects measurements. During clustering,434

only the largest standard deviation for any different measurement is considered.435

5.2. Lidar elaboration436

Lidar measurements are provided as 3D pointclouds referenced to the sensor437

position, located in the ego-vehicle CoG. Thus, pointclouds processing is re-438

quired to derive objects information in a similar form to that given by the Radar439

14

Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
data description

ID(oi) ID of the tracked object

xV RFPi
longitudinal distance in VRF

yV RFPi
lateral distance in VRF

V V RFx, rel longitudinal relative speed in VRF

V V RFy, rel lateral relative speed in VRF

σ∀meas standard deviation for all measurements

Class(oi) object typology (pedestrian, motorcycle, car)

p(oi) probability of existence

Table 1. Information provided by the Radar for each identified cluster

to ensure sensor fusion and state estimation. The low number of planes of the440

VLP-16 Lidar made impossible to implement one of the deep learning-based441

approaches presented in Section 2.2, due to the sparseness of the Pointcloud442

and the low number of features. Thus, a solution based on a 2D occupancy443

grid, similar to the one used in mobile robotics, has been adapted. Unlike the444

classical robotics scenarios, where the area of interest is limited to only a few445

meters around the robot, and the ground plane is generally flat. In this case,446

the obstacles can be at a high distance (i.e., 20 meters), move at high speed, and447

be as big as a truck. For all these reasons, we had to implement our pipeline for448

Lidar obstacle detection, leveraging on the classical occupancy grid approach,449

but adapting it to this new scenario. The pipelines in Fig. 5 and 6 show the450

operations required to convert a set of 3D points into a list of obstacles on the451

horizontal plane. In particular, this pipeline can be divided into two blocks: the452

first one concerns the conversion from 3D points to a 2D occupancy grid, while453

the latter deals with obstacle identification and tracking on the bi-dimensional454

grid.455

The conversion of a 3D pointcloud into a 2D occupancy grid can be divided456

into some fundamental steps, shown in Fig. 5. The first block consists of the ro-457

tation of the pointcloud and ground plane fitting. The sensor is indeed mounted458

on the ego-vehicle roof with a slightly negative pitch to cover the frontal area459

better. Ground plane removal allows excluding all points belonging to the road460

surface to reject false positive. To perform this task, an approach similar to the461

one presented in [59] is implemented, in which the plane fitting problem is based462

on RANSAC (RANdom SAmple Consensus). An initial guess for the normal463

direction to the horizontal plane can be derived in standstill conditions by mea-464

suring the projection of the acceleration of gravity along each dimension of the465

triaxial accelerometer of the vehicle’s inertial unit (IMU); while the distance of466

the plane has been previously measured in a controlled environment. During467
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Pointcloud Ground plane removal

Ground plane projec�on Discre�za�on

(a) (b)

(c) (d)

Figure 5. Pointcloud elaboration pipeline. The input pointcloud (a) is first processed to
remove the ground plane point (b). Then is projected on a 2D plane parallel to the ground
(c), and lastly converted into a binary grid map (d).

this step, all points above a fixed threshold, in our case 4.0m, are also removed.468

This operation prevents the projection of noise from trees or traffic sign above469

the car clearance on the occupancy grid.470

Once the ground plane is removed, the pointcloud includes only points be-471

longing to obstacles. Thus, it is possible to project each one of them on a 2D472

plane using the normal direction retrieved in the previous step: the result is473

a set of 2D points on a plane parallel to the road surface. Although this pro-474

cess provides a significant simplification of the data, the set of measurements is475

still too complex to be directly used. Discretization is then carried out through476

the application of a grid on the identified horizontal plane. In particular, the477

grid is divided into square cells with side equal to 0.3m: by iterating through478

each element, if the number of points in the cell is higher than a pre-computed479

threshold, the cell is set to occupied. The squared cells’ size, equal to 0.3m, is480

a good trade-off between accuracy and computational power. This value allows481

us to have a small occupancy grid, which can be computed and processed in482

real-time, but also retrieve the obstacle position with low error. The output of483

this filtering phase is a binary grid that describes the ego-vehicle surroundings484
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2D Grid Morphological

Clustering Tracking

(a) (b)

(c) (d)

Figure 6. Occupancy grid elaboration pipeline. The occupancy grid (a) is first elaborated using
morphological operations to remove noise and connect components (b). Then is processed
using a clustering algorithm to identify all objects (c). Lastly, tracking is performed through
consecutive frames of the identified obstacles (d).

with only a few thousand cells. The use of a threshold parameter is needed485

as it allows to reduce further the detection of false positives related to noise.486

Its value can be tuned based on experimental measurements with a decreasing487

value depending on the radial distance to consider the variable density of the488

pointcloud, as shown in [27].489

The previous phase’s output is a simplified representation of the area sur-490

rounding the ego-vehicle compared to a 3D dense pointcloud. However, this in-491

formation cannot be directly supplied to the control routine of an autonomous492

vehicle. For this reason, a further elaboration block takes as input the 2D493

occupancy grid to return a small list of fully characterized obstacles.494

The occupancy grid provides information regarding objects in each cell, but495

contiguous elements, which are parts of the same object, are considered sep-496

arately. Thus, clustering is required to merge elements in the 2D-grid. As a497

preliminary step, a set of morphological operations is needed to connect areas498

that might belong to the same object but are not directly connected. This499
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might happen due to some obstructions or the particular shape of the object500

itself, causing the number of points belonging to a specific cell to be lower than501

the filtering threshold explained before. This operation also filters single points502

in the occupancy grid, which are imputable to noise in the sensors, and can503

easily generate false positives. The result is still an occupancy grid where all504

elements belonging to an obstacle are connected. Further filtering is performed505

by discharging merged elements that are detected more than 50m meters ahead506

of the ego-vehicle, and ±15m in the lateral direction.507

Clustering is based on the OpenCV [60] implementation of SAUF (Scan508

plus Arraybased Union-Find) [61]; the output is a list of all the connected509

components in the occupancy grid which belong to real obstacles, defined by510

the relative position of the respective center of symmetry (CoS) with respect to511

the ego-vehicle and its equivalent dimension ρoi . The length and width of each512

identified object are not considered because the mesh adopted for the 2D grid513

is not sufficiently fine to provide a measure of the heading. This causes a loss of514

accuracy in the estimation routine but allows us to provide obstacle measures515

at high frequency.516

Obstacles tracking ensures accurate state estimation for many reasons. It517

allows to predict the relative positioning of obstacles with respect to the ego-518

vehicle also if measurements are not available; moreover, data coming from519

sensors that are not synchronized can be used for sensor fusion. For what con-520

cerns Lidar data processing, a feature-based approach guarantees preliminary521

obstacle tracking. In particular, for this stage, we use an object descriptor522

built using the obstacle dimensions and position. The first time the algorithm523

detects a specific obstacle, it assigns a unique ID and the respective features524

(i.e., dimensions and position). At each successive Lidar reading, the algorithm525

compares the previously detected obstacles with the current ones starting from526

the previously known locations. Warm starts are used to speed up calculations,527

together with a growing window that expands from given locations to search in528

the neighborhoods for objects with similar sizes. If a candidate tracked obstacle529

is found close enough to the previous one and with comparable dimensions, the530

same obstacle ID is assigned. When this process is completed for all obstacles,531

different IDs are automatically set for all elements coming from new readings532

that have not yet been tracked. Moreover, to account for noisy measurements533

or sensor misreadings, the algorithm keeps track of the older obstacles for which534

the matching has not been satisfied for 5 iterations (i.e., 0.25 s). Doing so, the535

algorithm can reassign IDs to un-tracked obstacles. To conclude, Lidar data536

processing provides a list of tracked obstacles characterized by relative posi-537

tions with respect to ego-vehicle, size, and ID.538

5.3. Sensor fusion539

All measurements obtained through the processing of raw data from the540

two Radar sensors and the Lidar are expressed in VRF. The knowledge of the541

road limits is exploited for clutter removal, applied to all the processed mea-542

surements. Any measurement out of the road bounds is assumed to be clutter543
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and hence removed. Radar measurements reported in (18) provide relative po-544

sitioning and motion of the clustered detections belonging to the same obstacle545

with respect to the ego-vehicle. On the other hand, Lidar measurements pro-546

vide relative positioning of each obstacle with respect to the ego-vehicle, and547

information about obstacle identification during time. Although the presented548

pre-processing of Lidar data already ensures tracking, the multi-sensors data549

fusion architecture proposed in this work can be considered centralized. Indeed,550

multi-sensors data pre-processing represents the input for a central module in551

which object discrimination and tracking are performed basing on the complete552

set of data.553

Measurements from the two Radar sensors are synchronized with respect to554

each other, while they are asynchronous with respect to the data coming from555

Lidar. Thus, they are received associated with different timestamps. More-556

over, as explained in Section 7, the estimation routine is driven at 20Hz, while557

Radar and Lidar data processing are provided respectively at 14 and 16Hz.558

Thus, it can happen that both sensors measurements do not retain the same559

timestamp and that no new measurements are available at a given time instant.560

For these reasons, sensor fusion is based on a LIFO routine (last in first out)561

in case of different timestamps. If Radar and Lidar measurements are available562

at the same time, fusion is performed through weighted averaging. In this case,563

the fused obstacle retains velocity measurements from the Radar, while posi-564

tioning is computed assuming that Lidar measurements are more accurate, as565

they are related to the obstacle CoS. For a Radar measurement yV RFr oj , a Lidar566

measurement yV RFl oi
is considered for fusion if two criteria are satisfied:567

1. For all i ∈ [1, 2....Nobs, l] the Euclidean norm between yV RFr oj and yV RFl oi
is568

minimum;569

2. This minimum distance is smaller than the size of the object ρoi estimated570

through Lidar processing.571





xV RFFj
= 0.8xV RFl, oi

+ 0.2xV RFr, oj

yV RFFj
= 0.8 yV RFl, oi

+ 0.2 yV RFr, oj

V V RFx, Fj
= V V RFx, rj

V V RFy, Fj
= V V RFy, rj

(21)

Sensor Id Assignment: To each measurement is assigned an Id based572

on the sensor it was originated from. The knowledge of the origin of the mea-573

surements was deemed helpful to perform gating task and measurement to track574

association. Since Lidar measurements do not provide information regarding ve-575

locity of detections, the gating task needs to be customized completely, basing576

it only on positional values. Similarly, the predicted state update by measure-577

ments needs to consider the unavailability of velocity measurement from the578

Lidar sensor as only positional values are used for update.579
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Idik = A, zik Radar object detection without fusion with Lidar

Idik = AB, zik Radar and Lidar Fused object detection

Idik = B, zik is Lidar object detection without fusion with Radar

(22)

Where, A, AB and B are some numerical constants used to identify the mea-580

surement origination in further estimation steps. Numerical values of these581

constants are not relevant as they are used solely for the purpose of identifica-582

tion of measurement origination. Whenever the measurement vector is specified583

in following sections, it must be implicitly understood that the Sensor ID comes584

assigned to it.585

The fused measurement vector is calculated as in Equation (21). The objects586

identified by the Lidar sensor that do not satisfy these fusion criteria mentioned587

above, with respect to an object found by a Radar sensor, are assigned with588

different fusion Id, signifying that the measurement was obtained from Lidar589

only and was not fused with Radar data.590

6. Obstacles state estimation and tracking591

Tracking obstacles in autonomous driving allows establishing a control rou-592

tine that considers the same obstacle during time to define proper control poli-593

cies. This is mandatory both during vehicle following and overtaking maneuvers.594

Tracking can be performed only once the state estimation routine has provided595

measurement prediction for each obstacle, that must be defined in VRF ac-596

cording to Radar and Lidar data processing algorithms. For each obstacle, the597

state vector (3) defined in curvilinear coordinates according to the local ref-598

erence frame of the road requires a highly nonlinear transformation to move599

each measurement prediction to VRF. For this reason, Unscented Kalman Fil-600

tering has been adopted to provide obstacles state estimates, which represents601

a compromise between accuracy and computational effort. The discrete-time602

implementation of the UKF is equal to the one defined in equations (4) and (5)603

with process disturbance and measurement noise assumed as additive and zero604

mean distributed (6). In the following, the model and measurement equations605

are presented.606

The state variable si, loc represents the distance computed along the road607

centerline in the local reference frame, between the ego-vehicle and the obstacle.608

While the variable ni, loc represents a measure of how much the obstacle is609

displaced with respect to the centerline, and Vsi and Vni
are the components of610

the obstacle absolute velocity in curvilinear coordinates. Since the small objects’611

hypothesis is adopted throughout this work, each obstacle is considered a single612

point (i.e., its heading angle is not estimated).613

The two different reference frames are represented in Fig. 7, where θe and614

θo are the heading angles of the road centerline in correspondence of ego-vehicle615

and obstacle respectively. About ~se and ~ne, they are the tangential and nor-616

mal directions to the local reference frame of the road, that is centered in the617
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Figure 7. Representation of road and vehicle reference frame

closest point corresponding to the ego-vehicle belonging to the road centerline.618

Similarly, ~so and ~no are the main directions of the road in correspondence of619

the obstacle. Finally, ψ is the estimated heading angle of the ego-vehicle in the620

absolute reference frame.621

The definition of the nonlinear transformation that allows moving from curvi-622

linear to Cartesian coordinates in VRF is required to ensure the measurement623

prediction during the filtering process. For this purpose, an Euler-based conver-624

sion model is devised. In particular, this model allows computing the Cartesian625

coordinates (xc, yc) corresponding to the point that is si, loc away from the ego-626

vehicle, measured along the road centreline (Fig. 8). The calculation is based627

on Euler integration with step size equal to δs = 0.5m. Once the ego-vehicle628

is localized on the track, the road map provides the road heading for the next629

50m. Given N the required number of steps, with N = si, loc/δs, the model630

computes:631

{
xk+1 = xk + cos(θsk)δs

yk+1 = yk + sin(θsk)δs
(23)

where the point (xN , yN ) is approximately equal to (xc, yc), and θsk is the road632

heading angle for each step. Then, the lateral displacement of the obstacle from633

the road centerline ni, loc is used to compute its position in the Global Reference634

Frame.635 {
xg = xc + cos(π2 − θ0)ni, loc

yg = yc + sin(π2 − θ0)ni, loc
(24)

Finally, the rotation matrix based on the heading angle of the ego vehicle ψabs636
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Figure 8. Coordinate conversion between curvilinear and Cartesian reference frame

allows computing the relative positioning in VRF.637

[
xV RFoi
yV RFoi

]
=

[
cos(ψabs) −sin(ψabs)
sin(ψabs) cos(ψabs)

] [
xg
yg

]
(25)

The presented mathematical model assumes that the ego-vehicle is located on638

the road centerline. However, the estimated lateral displacement is considered639

through the following equation:640

yV RFoi = yV RFoi + cos(ψabs − θe)nGloc
(26)

The conversion of the obstacle absolute velocity from curvilinear coordinates641

to VRF can be done rotating the velocity vector two times as in (27). The642

former accounts for the road’s heading angle in correspondence of the obstacle643

θo to transform velocity components from road to Cartesian global reference644

frame. About the latter one, it moves the two components in VRF through the645

ego-vehicle absolute heading angle(ψabs).646

[
V V RFx, oi

V V RFy, oi

]
=

[
cos(ψabs) −sin(ψabs)
sin(ψabs) cos(ψabs)

] [
cos(θo) sin(θo)
−sin(θo) cos(θo)

] [
Vsi
Vni

]
(27)
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The filter initialization is performed with the measurements obtained from647

sensor fusion. During the first iteration, these processed measurements in VRF648

are equated into Curvilinear Co-ordinate frame to initialize tentative tracks.649

Concurrently, initialization of the tracking routine is done using these tentative650

tracks. If they are retained during the next second (i.e., for 20 iterations), the651

tracked hypothesis is converted to a confirmed tracked obstacle. If not, any652

other tentative track is deleted.653

Once initialization is completed, state prediction is performed based directly654

on the previously tracked obstacles state estimates and covariance. Indeed, the655

constant velocity lane changing model (CVLC) [20], which defines the obstacles656

motion in curvilinear coordinates, it is a linear model, as shown in (28).657

x̃−oi k =




si, loc
ni, loc
Vsi
Vni



k

=




1 0 δt 0
0 1 0 δt
0 0 1 0
0 0 0 1




︸ ︷︷ ︸
Fk−1




si, loc
ni, loc
Vsi − Vs
Vni



k−1

+




ωas(δt2/2)
ωan(δt2/2)

Vs k−1
+ ωasδt

ωanδt


 (28)

The terms ωas and ωan are used to add Gaussian noise within the linear658

model that describes obstacle motion in curvilinear coordinates. They can be659

considered with zero mean and associated to the standard deviation of accelera-660

tions in curvilinear coordinates respectively as N(0, σ2
as) and N(0, σ2

an). More-661

over, according to linear Kalman filtering in discrete time, the state prediction662

covariance for each obstacle can be computed as in (29), where Fk−1 is the ma-663

trix of the linear model and P+
oi k−1 is the covariance matrix of the state updated664

by the measurements at the previous step. Nevertheless, the unscented trans-665

formation is still performed as in (9) to allow computing the cross covariance666

matrix (14). In practice, among all the 2n+ 1 sigma points, only one is used to667

perform state prediction and covariance, while the remaining 2n are required to668

compute Pxy, oi .669

P−oi k = Fk−1P
+
oi k−1F

T
k−1 +Qk−1 i = 1, . . . , Nobs (29)

It is important to notice that while obstacle positioning is relative to the670

road reference frame, Vsi and Vni are the components of the absolute velocity671

of a tracked obstacle. Thus, to ensure the correct prediction of si, loc at the672

current time step, it is required to consider the difference between obstacle673

and vehicle velocity along the road direction Vs. This is valid in case of both674

positive and negative values of si, loc. Equation (30) summarizes the clockwise675

rotation required to obtain the components of the ego-vehicle absolute velocity676

in curvilinear coordinates.677

Vs = cos(ξloc)Vx + sin(ξloc)Vy (30)

The predicted state vector x̃−oi k for each tracked obstacle is used to perform678

the unscented transformation (9) through the covariance matrix P−oi k. The new679

sigma points (2n) are then used to compute the predicted measurements matrix680
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ŷ
(i)
oi k

. As shown in Section 4, this matrix is computed by feeding measurements681

equations (23) to (27) with sigma points to obtain the predicted measurements682

vectors for each obstacle ỹoi k and the related innovation covariance matrix Py, oi .683

This is shown in (12) and (13).684

To reduce the number of association hypotheses required to compare pre-685

dicted measurements with the ones received from sensor fusion module yoi k,686

fused measurements are taken into account only if they fall within a gate cre-687

ated around predicted measurements ỹoi k. Under the assumption of Gaussian688

distributed noise, it is possible to adopt ellipsoidal gates [24]. In particular,689

an ellipsoidal gate is defined through a gating probability PG, which represents690

the probability that the object measurement is inside the gate, together with a691

cumulative distribution χ2(n) required to compute the gate size G. Then, the692

so-called Mahalanobis distance can be calculated as in (31) to find which fused693

measurements are inside the gates:694

D2(yoj k, ỹoi k) = [yoj k − ỹoi k]T (Py, oi)
−1[yoj k − ỹoi k] (31)

for i = 1, · · · , n and j = 1, · · · ,m. About n andm, they indicate respectively the695

number of predicted measurements during the current time step and the number696

of tracked objects at the previous one. Any measurement yoj k that does not697

satisfy the criterion (32) is hence disregarded from the association set and will698

be used to initialize new tentative obstacles. Conversely, all the measurements699

included in ellipsoidal gates are collected and used for association.700

D2(yoj k, ỹoi k) < G (32)

Association is done gathering all the selected measurements in one single701

matrix. Although grouping by gating is computationally cheaper, for a moder-702

ate number of tracked obstacles the exhaustive method does not reduce perfor-703

mances. Association is then performed through a GNN algorithm that considers704

only the best association hypotheses due to the lowest cost while discharging all705

the others. To do so, the cost matrix L is defined through the likelihoods of as-706

sociation between tracked objects and measurements inside gates, together with707

the likelihoods of misdetection. These likelihoods can be calculated by know-708

ing the probability of detection p(d) as in (33), assuming that the one assigned709

by the Radar (p(oi) > 0.99) is much lower with respect to the one guaranteed710

through the processing of Lidar data.711

li,0k = log(1− p(d)) (33)

li,jk =log
(p(d)

λ(c)

)
− 1

2
log
(
det(2πPy, oi)

)
+

− 1

2
[yoj k − ỹoi k]T (Py, oi)

−1[yoj k − ỹoi k]

(34)

This formulation is valid only if the value of p(d) is assumed as constant and712

the clutter intensity λ(c) = λ/FoV is positive and constant, where λ(c) can713
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be considered as the average number of clutters along the bounded FoV per714

time step. The average number of clutters for each time step λ = 2 has been715

determined through simulation based on real data, processed as stated in Section716

5.717

The cost matrix L is hence a [n·(m+n)] rectangular matrix, as shown in (35),718

in which the [n ·m] left sub-matrix considers only real detections and is defined719

by likelihoods of association between tracked objects and measurements. On the720

other hand, the [n ·n] right sub-matrix collects all the misdetections determined721

by the corresponding likelihoods.722

L =




−l1,1 −l1,2 · · · −l1,m −l1,0 ∞ · · · ∞
−l2,1 −l2,2 · · · −l2,m ∞ −l2,0 · · · ∞

...
...

. . .
...

...
...

. . .
...

−ln,1 −ln,2 · · · −ln,m ∞ ∞ · · · −ln,0


 (35)

Moreover, given the assignment matrix A, the corresponding assignment cost723

can be defined by solving the optimization problem (36). The solution to this724

problem is found adopting the 2D assignment algorithm described in [62].725

min tr(ATL) =
n∑

i=1

m+n∑

j=1

Ai,jLi,j (36a)

subject to:

Ai,j ∈
{

0 1
}

(36b)

n+m∑

j=1

Ai,j = 1 (36c)

n∑

i=1

Ai,j ∈
{

0 1
}

(36d)

The optimal solution ensures the optimal correspondence between tracked726

objects and measurements required to update state prediction and covariance727

for each obstacle as in (16) and (17). If no measurements are provided from728

sensor fusion or there are no measurements inside any gate, equations (37) and729

(38) are adopted.730

x̃+k = x̃−k (37)

P+
k = P−k (38)

As previously stated, non associated measurements are used as new genera-731

tions to initialize the tracking process. If a tentative obstacle is updated with732

the assigned measurement throughout 1 second (i.e., for 20 iterations), it is733
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Figure 9. Picture of the vehicle, the Lidar sensor is visible on the roof, while the two Radar
are incorporated in the rear and front bumpers

confirmed as a real obstacle. Moreover, a warning can be provided to the con-734

troller if an object suddenly appears close to the ego-vehicle but then it is not735

confirmed. Although this could be justified to enhance safety, simulation tests736

carried on experimental data showed that objects that suddenly appear close737

to the ego-vehicle without being tracked earlier could be considered as clutters.738

On the other hand, if no measurements are assigned to a tentative obstacle739

during the following 5 iterations (i.e., 0.25 s), this is deleted. An obstacle that740

has already been confirmed is kept in record for 10 iterations (i.e., 0.5 s): if any741

measurement is associated with it, this obstacle is still seen as confirmed and742

state estimation provided.743

7. Experimental results744

The presented algorithm provides ego-vehicle and obstacles state estimation745

in curvilinear coordinates for an autonomous vehicle. Ego-vehicle state estima-746

tion is computed in the global reference frame and then collocated in the road’s747

local reference frame. This is done by exploiting the map’s knowledge, which748

associates to each point of the centerline the description of the road heading and749

curvature along the considered FoV. Once the ego-vehicle is collocated within750

the road map, raw data coming from Radar sensors and Lidar are processed and751

fused in VRF to provide tentative obstacles to the tracker. Then, state estima-752

tion is performed in curvilinear coordinates. The algorithm has been validated753

during some experimental campaigns carried on Monza Eni Circuit.754

The instrumented vehicle, showed in Fig. 9, is a prototype for an autonomous755

driving car [17] equipped with sensors for the measurement of absolute position-756

ing, odometry, and motion. In particular, the sensor suite includes:757
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• two Piksi Multi GPS receivers are located along the vehicle’s longitudinal758

axis, coupled with a ground station through 4G connection. They provide759

positioning in absolute coordinates with RTK correction and velocities in760

East-Nord-UP (ENU) reference frame. As shown in section 4, velocities761

allow predicting the measurement of the ego-vehicle heading angle within762

the UKF. Measurements are provided at 10Hz;763

• an IMU located in correspondence of the vehicle CoG, which measures764

linear accelerations and angular velocities on the three principal axes.765

Measurements are available at 100Hz.766

• odometry is given at 20Hz by an encoder mounted on the steering wheel767

to measure the steering angle, while two exciters on the rear axle provide768

the longitudinal speed of the vehicle;769

• two Continental ARS 408-21 Radar sensors provide relative positioning770

and motion of obstacles in VRF at 14Hz. They are located in the front771

and rear bumpers of the vehicle;772

• a Velodyne VLP-16 Lidar mounted on the roof provides 3D pointclouds773

at 20Hz.774

The overall estimation routine runs at 20Hz on a soft real-time system based775

on ROS (Robot Operating System). This allows managing the different sam-776

pling frequencies, because triggering can be based on ROS timestamps. If no777

measurements arrive from the GPS receivers state prediction is used instead of778

state estimation ((37), (38)).779

Concerning ego-vehicle estimates, accuracy can be assessed by analyzing the780

predicted heading angle and the lateral speed in the vehicle CoG, which are not781

measured by any sensor included within the listed suite. To do so, a further782

automotive optical sensor has been mounted on the vehicle during some exper-783

imental campaigns to collect ground truth data regarding vehicle sideslip. The784

comparison between measured and estimated longitudinal and lateral speeds is785

presented in Fig.10. The figure points out the comparison between measure-786

ments and estimates during a steering pad maneuver completed on a circle with787

a radius equal to 27m. As shown in the first two subplots, the vehicle’s longi-788

tudinal speed increases approximately from 20 to 40 km/h, while the steering789

angle is worth about 100 deg. The third and last subplot points out a strong790

correlation between estimated and measured lateral speed. Moreover, during791

the presented maneuver the vehicle is close to the tires’ friction saturation: this792

is highlighted to assess the effectiveness of the estimation algorithm.793

For what concerns the estimation of heading angle, it is not possible to define794

a ground truth basing on the angle between the horizontal and the straight line795

that connects the measures given by the GPS receivers at the same time step.796

Although the RTK correction ensures that the measurement error for positioning797

decreases up to a few centimeters, this still affects the heading angle’s estimate798

with an error that depends on the distance between the two receivers. For799

the presented vehicle, these drift effects produce an error that varies in the800
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Figure 10. Comparison between estimated and measured lateral speed during a steering pad
manoeuvre performed at increasing speed

range ±10 deg, which is too high to guarantee a significant ground truth. A801

further possibility is to analyze in time the angle found by tracking subsequent802

positions of the rear GPS receiver (i.e., the one less affected by steering effects).803

However, this angle is the tangent to the trajectory completed by the rear part804

of the vehicle (γR), which is related to the vehicle heading angle as indicated by805

Eq.(39).806

{
γR − βR = ψabs

βR = atan((Vy − ψ̇lR)/Vx)
(39)

Here, the vehicle’s sideslip angle is reported to the rear’s GPS receiver, consid-807

ering the variation of lateral speed. This is done accounting for the distance to808

the vehicle CoG and the yaw rate. Given that the heading angle ψabs is con-809

stant along the vehicle, it is possible to state that the estimate is correct if the810

difference γR−ψabs−βR is null for any time instant. This difference is reported811

for the aforementioned steering pad in Fig.11, whose offset from null is constant812

and equal to +0.06 deg. This result assesses the performance of the estimation813

also during a challenging driving maneuver. Indeed, although the sideslip angle814

βR increases from 1 to 5 deg, the offset remains constant. Regarding the high815

level of noise in the plot, this is due to the lateral speed measurements provided816
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Figure 11. Validation of the estimation of the ego-vehicle heading angle. The difference
between trajectory angle and sideslip angle at the rear, and the heading angle must be null

by the automotive optical sensor. Furthermore, a qualitative representation of817

the vehicle’s estimated heading angle is reported in Fig. 12. Two different818

plots point out the vehicle’s direction during the first two tight chicanes of the819

track that the vehicle performs respectively from the bottom to the top of the820

first plot, and from left to right in the second one. The quality of the estimate821

can be evaluated observing the direction during straights, superimposed to the822

predicted position of the vehicle CoG. At the same time, during curving, the823

heading angle is comparable to the tangent to the trajectory.824

The validation of the obstacles’ state estimation module is allowed by a set825

of experimental data collected in some significant mutual maneuvers between826

the ego-vehicle and a designated obstacle vehicle (FIAT Talento, a van whose827

dimensions are 5x2x2m). To assess the accuracy of the algorithm, the absence of828

false positives, and the accuracy of the estimated state vector are analyzed. The829

results discussed in this section derives from a vehicle-following maneuver: the830

obstacle is driving ahead of the autonomous vehicle between turn 3 and turn 6,831

hence the road curvature changes significantly during the test. The algorithm832

performs well in filtering clutters within and out of road bounds. Moreover,833

the presented results prove that it performs well also during tight curvature834

scenarios.835

A snapshot from the described scenario is reported in Fig. 13. For ease of836

viewing, the overall framework with ego-vehicle, measurements, and obstacles837

is shown in Cartesian coordinates, in the global reference frame. Nevertheless,838

the plot reports the estimated positioning of the obstacle in curvilinear coordi-839

nates in the road reference frame, i.e., the longitudinal distance si, loc, and the840
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Figure 12. Heading angle estimate for the ego-vehicle

lateral displacement to centreline ni, loc. The ego-vehicle estimated position is841

represented by a ( ).842

The plot shows multiple measurements obtained from Radar and Lidar sen-843

sors. The ( ) marks are clustered Radar objects fed to the road filtering module844

which provides (*) as output. These results are the inputs to the next sen-845

sor fusion module. Similarly, the ( ) mark represents the output of the Lidar846

processing module and (*) are the Lidar measurements within road boundaries847

fed as inputs to the sensor fusion module. As shown in the plot, information848

about road width allows filtering all the measurements related to any obstacle849

or object out of interest. In this particular instance, measurements coming from850

both the Lidar and the Radar processing modules are simultaneously available851

for the fusion module. Thus, fused measurements computed by Eq. 21, are852

represented by the ( ) mark. As explained in previous sections, this output is853

used for object initialization and association in the remaining steps of the esti-854

mation routine. The algorithm is also able to ensure the accuracy of the object855

cardinality, which in this scenario is consistently equal to one, by implement-856

ing a track confirmation and removal routine. Although the figure illustrates857

two detections from the sensor fusion module, the tracking algorithm accurately858

confirms a single object while providing its state estimate as confirmed. The859
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Figure 13. Visual representation of obstacle identification and tracking. The green box rep-
resents the ego-vehicle, while the circles represent the obstacles identified by the different
sensors. (attached video V1.avi)

obstacle state estimate is represented by ( ), while the estimated distances in860

curvilinear co-ordinates are mentioned in the bottom part of the figure. More-861

over, for those clusters or estimates whose velocity is known or computed, the862

plot points out a vector that represents its magnitude and direction.863

To conclude, Fig. (14) illustrates the comparison of the estimated obstacle’s864

state vector with the ground truth given by the GPS receiver installed on the865

tracked obstacle vehicle with RTK correction. Both the GPS measurements866

and the estimates are represented in vehicle reference frame (VRF). Due to un-867

availability of ground truth in curvilinear co-ordinates, estimates are converted868

from curvilinear coordinates to VRF by applying the Euler model presented869

in the previous section. The root mean square error (RMSE) is computed870

as the distance between the estimated position of the obstacle vehicle and the871

real one. In the described scenario, the algorithm performs the estimation with872

RMSE = 0.6039m, that is reasonable compared to the size of the obstacle.873
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Figure 14. Comparison between the estimated relative position between the obstacle and the
ego-vehicle, and the ground truth given by the GPS receiver

8. Conclusions874

The presented paper focuses on state estimation applied to autonomous vehi-875

cles. It describes an integrated algorithm that computes ego-vehicle and obsta-876

cles’ state estimation in curvilinear coordinates, according to the road reference877

frame. The ego-vehicle’s state vector includes positioning, heading angle, and878

the longitudinal and lateral components of velocity in the vehicle reference frame879

(VRF). Estimates are provided in Cartesian coordinates and then converted to880

the local reference frame of the road. About the obstacles in the surround-881

ing of the ego-vehicle, the presented algorithm computes their relative position882

and absolute velocity in curvilinear coordinates according to the road reference883

frame, under the assumption of small dimensions. Measurements of obstacles884

are provided by a multi-sensor framework, which includes two Radars located885

within the vehicle front and read bumpers and a Lidar mounted on the vehicle886

top in correspondence of the center of gravity. Sensor fusion provides the track-887

ing module with filtered measurements, allowing to associate each of them to888

the respective obstacle. Association is performed through GNN. Due to strong889

nonlinearities in each measurement model of the two filters, both the estimation890

routines are based on Unscented Kalman Filters. The integrated algorithm has891

been validated through experimental tests carried in the Monza ENI circuit.892

The overall estimation routine runs at 20Hz on a soft real-time system based893

on ROS: this allows managing the different sampling frequencies of each sensor.894

To conclude, the presented estimation algorithm provides a detailed set of895

initial conditions for any motion planning routine for autonomous vehicles. In896

future works, ego-vehicle dynamic behavior will be considered at least in the897
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lateral direction; moreover, a camera will be installed on the car, to improve898

sensor fusion and object tracking, basing on the high semantic content of images.899
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An integrated algorithm for ego-vehicle and obstacles state estimation for
autonomous driving
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hts:

The estimation process is a fundamental task for autonomous driving.
Estimates are related to the ego-vehicle and the surrounding obstacles.
The estimation routine handles in proper way the model nonlinearities.
Estimates are provided in the local reference frame of the road.
The algorithm performs sensor-fusion and estimation in real-time.
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