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Abstract

In this paper, a novel fractional-order recursive integral terminal sliding mode
(FORITSM) control is proposed for nonlinear systems in the presence of external dis-
turbances with unknown bounds. The proposed control approach provides an easy-to
implement solution capable of zeroing the sliding variable in a finite-time (FnT) by
adding a fractional-order command filter.Moreover, the reaching phase is eliminated,
and FnT convergence of the system states is proved. The proposed technique has also
a chattering alleviation property, which is beneficial for practical cases, as the con-
trol of quadrotor UAVs presented in the paper. Finally, a simulation case study on a
quadrotor system is illustrated to show the effectiveness of the proposed FORITSM
control, also with respect to classical methods.
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1 INTRODUCTION

Sliding mode control (SMC) is a powerful easy-to-implement control technique with remarkable robustness properties in case
of systems affected by disturbances and unavoidable modelling uncertainties1,2,4. The goal of SMC in its classical version is to
compel the behavior of a dynamical system according to a manifold, i.e., the so-called “sliding surface”, specified by a function
known as “sliding variable”, via a discontinuous controller depending on the sliding variable itself.
Once the sliding variable is zeroed, that is a "sliding mode” is enabled, it can be proved that the controlled system is insensitive

to the uncertainty terms fulfilling a matched condition. Moreover, the key feature of the SMCmethod is the capability to enable a
finite-time convergence of the sliding variable towards the sliding surface, thus implying an equivalent reduced order dynamics,
for which asymptotic stability of the system trajectories is guaranteed. However, more recently, advanced techniques extended
the original SMC concept by enhancing the robustness properties of the controlled system through the introduction of integral
methods3, or by introducing state constraints5, or enabling also a FnT convergence of the system trajectories by using terminal
sliding modes7.

1.1 Background and motivations
In this paper, we consider the family of the terminal sliding mode (TSM) controllers. As previously mentioned, this type of
control law guarantees that, if the sliding mode exists, this allows to regulate the system trajectories in FnT. Nevertheless, the
main drawback of TSM is the occurrence of singularity in the control signal, which could cause system instability8. Specifically,



2 M. Labbadi ET AL

in8 such technical concerns and future challenges have been discussed in the perspective of a broader scope of technological
advances such as cyber-physical systems, artificial intelligence, and network systems, providing a summary of the state of the
art in TSM control theory and applications.
To avoid the singularity problem, nonsingular TSM (NTSM) controllers have been developed in recent years, see9 or11,

where a finite-time stabilizing method based on the SMC strategy was devised to handle this issue. Aside from singularity,
TSM and NTSM control approaches suffer the generation of chattering phenomenon due to the discontinuity of the control
function, resulting in high-frequency oscillations of the system states, which can damage mechanical components and lead to
input saturation when employed in nonlinear systems10,12.
Several methods have been introduced in the literature for reducing chattering, including the boundary layer method13, the

high-order sliding-mode method14,15, and the disturbance estimation method16. In the case of boundary layer approach, the
saturation function or sigmoid function are adopted. This choice gives rise to a "pseudo-sliding mode”, since only a vicinity of
the sliding surface is reached, thus possibly causing the loss of robustness of the system in front of disturbances. As for high-
order sliding-mode (HOSM) control approaches, they allow to confine the discontinuity to the derivative of the control input
while the signal actually fed into the plant is continuous. The disturbance estimation method is instead based on the design of
an asymptotic disturbance observer to compensate for the disturbance, thus allowing a smoother control signal16. Among many
other approaches, recently, the combination of internal model principle and adaptive sliding mode control, as proposed in6,
allows a reduction of the control authority to dominate the uncertainties with a consequent chattering reduction.
Another drawback of the presented SMCs is the length of the reaching phase (RP) and the sensitivity of the controlled system

to perturbation during such an interval. Many works have been developed to address these problems, see e.g.,18,19,20. As for
integral HOSM controllers, these are instead discussed in21 for uncertain nonlinear systems to remove the RP, although the
input singularity generated by the sliding function is not studied in depth.
Moreover, to avoid the problem of “complexity explosion”, command filtering can be used. For example, in22 a command

filtered and adaptive control is proposed, while a command filter-using fractional-order dynamics in the design of sliding mode
manifold is presented in23,24. A command filtered based-backstepping technique is suggested in27, and a FnT adaptive control
is developed in28. Also command-filter-based adaptive fuzzy FnT control approaches have been proposed as those in25,26,28.

1.2 Contributions
This main contribution of this paper is the design of a novel robust fractional-order FnT control for perturbed nonlinear systems,
capable of alleviating chattering phenomena and without singularity. Differently from the existing literature, where a reduction
of the reaching phase is adopted9,10, here, making reference to12, a command-filter based fractional-order (FO) recursive non-
singular terminal SMC is presented for the first time, to the best of the authors’ knowledge. By employing the fractional-order of
the input in the controller, chattering reduction of the input is achieved. In the presence of external perturbations, the presented
Lyapunov-based analysis shows that the system trajectories under the proposed control action can converge to the origin in FnT.
Finally, to assess the proposed strategy in a practical example, a quadrotor dynamics is considered and several simulations in
different scenarios are provided. Overall, more in detail, the contributions of this paper are summarized as follows:

(i) To improve the convergence of the standard integer-order FnT command filter and avoid an “explosion of complexity”,
a fractional-order finite-time command filter based on recursive nonsingular terminal SMC is introduced for full-order
nonlinear system.

(ii) The fractional-order control input is produced in a nonsingular fractional-order integral form rather than a standard signum
function, which is useful for reducing control input chattering. Furthermore, when compared to integral HOSM con-
trollers17, the FORITSM control only has two layers of sliding manifolds, which makes it easier to build for high-order
systems.

(iii) Based on this fractional-order recursive structure of the control law, the RP is eliminated, thus enhancing the robustness
of the controlled system.

(iv) The proposed control method has been applied for quadrotor dynamics and compared with the work developed in12.
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1.3 Outline of the paper
The paper is organized as follows. After some preliminaries and the problem statement in Section 2, the main results on the pro-
posed fractional-order finite-time control are given in Section 3. The application to the tracking control problem for a quadrotor
dynamics is addressed in Section 4, while simulations are illsutrated in Section 5. Finally, some conclusions are gathered in
Section 6.

Notation
The main notation and opertators used in the paper are hereafter recalled. Let x ∈ ℝ, then the absolute value of x, denoted by
|x|, is defined as |x| = x if x ≥ 0, and |x| = −x if x < 0. The function sign(x) is defined as sign(x) = 1 for x > 0, sign(x) = −1
for x < 0, and sign(x) = 0 for x = 0. For 
 ≥ 0, one has that sig
 (x) = |x|
 sign(x), so that sig0(x) = sign(x).

2 PRELIMINARIES AND PROBLEM FORMULATION

In this section, some preliminaries on fractional calculus and Mittag-leffler functions are recalled. Then, the considered control
problem is formulated.

2.1 Preliminaries on fractional calculus
Let us recall some definitions concerning fractional order derivatives. For any real number � > 0 (namely, the derivative order),
the Riemann-Liouville fractional derivative for a function Ψ ∶ [a,∞)→ ℝ is given by29,30

RL
a D�

t Ψ(t) =
1

Γ(Υ − �)
dΥ

dtΥ

t

∫
a

Ψ(�)
(t − �)�−Υ+1

d�, (1)

where Υ ∈ ℕ∗ is such that (Υ − 1) < � < Υ and Γ(⋅) is the Gamma function expressed as

Γ(K) =

∞

∫
0

e−ttK−1dt. (2)

Furthermore, for any real number � > 0, the Caputo fractional derivative (CFD) for a function Ψ ∶ [a,∞)→ ℝ is given by30,31

C
aD

�
t Ψ(t) =

1
Γ(� − Υ)

t

∫
a

Ψ(Υ)(�)
(t − �)�−Υ+1

d�. (3)

Some important properties are recalled hereafter.

Property 1. For any real numbers � ≥ � ≥ 0, the CFD for a function Ψ ∶ [t0,∞)→ ℝ satisfies
C
t0
D�
t (
C
t0
D−�
t Ψ(t)) =

C
t0 D

�−�
t Ψ(t). (4)

Property 2. Let 0 < � < 1 and Ψ ∶ [t0,∞)→ ℝ, then the following equality holds:
C
t0
D1−�
t (Ct0D

�
t Ψ(t)) =

C
t0
D�
t (
C
t0
D1−�
t Ψ(t)) = Ψ̇(t). (5)

In the following, the operator Ct0D
�
t will be replaced by D� throughout this paper.

2.2 Mittag-Leffler type functions
The Mittag-Leffler function29,30 can be defined as:

E�(X) =
∞
∑

�=0

X�

Γ(�� + 1)
, (6)
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with � being a strictly positive constant. When two arguments are taken into account, the Mittag-Leffler function becomes

E�1,�2(X) =
∞
∑

�=0

X�

Γ(��1 + �2)
, (7)

with �1, �2 > 0. Hence, one has E�(X) = E�1,1(X) and E1,1(X) = e
X .

2.3 Problem statement
Consider the following nonlinear system

⎧

⎪

⎪

⎨

⎪

⎪

⎩

̇1 = 2
̇2 = 3

⋮
̇n−1 = n
̇n =  () + () +(, t),

(8)

where the state vector is  = [1,2, ...,n]T ∈ ℝn and the control input is ∈ ℝ. Furthermore,  () and () ≠ 0 are two
known nonlinear functions, while (, t) represents uncertainties and external disturbances.

Assumption 1. It is assumed that (, t) < ΥT and ̇(, t) < Υd where ΥT > and Υd >.

The control objective is to design a robust controller which guarantees FnT stability of the origin of the closed-loop system
(8) without knowing the upper bound of the disturbances. The following lemmas will be useful to derive the main results.

Lemma 1 (12). Consider the sliding variable

 = ̇n + �nsign
(

n
)

|

|

n
|

|

�n + ... + �1sign
(

1
)

|

|

1
|

|

�1 , (9)

where �j and �j (j = 1, 2, ..., n) are positive constants such that the polynomial pn + �npn−1 + ... + �2p + �1 is Hurwitz and
{

�1 = �,
�j−1 =

�j�j+1
2�j+1−�j

, j = 1, 2, ..., n, ∀n ≥ 2 (10)

with �n+1 = 1, �n = �, � ∈ (1 − �, 1) and � ∈ (0, 1). Once the sliding mode is established (i.e.,  = 0), the system state
converges to zero in FnT.

Theorem 1. (Refer to Reference12) If the sliding-mode surface s is selected as (9) and the control is built as follows (11), the
nonlinear system (??) will approach  = 0 in finite time and then converge to zero along  = 0 in FnT.

 = 1
()

(

0 +1
)

, (11)

0 = − () − �nsign
(

n
)

|

|

n
|

|

�n − ... − �1sign
(

1
)

|

|

1
|

|

�1 (12)

̇1 +  1 =&,
& = −

(

Υd + ΥT + &0
)

sign(�) (13)

where Υd , ΥT , & are positive parameters.

Lemma 2 (17). Consider the first-order nonlinear differential equation

Υ̇ + Λsig
(

Υ
)� = 0, (14)

with Λ > 0, 0 < � < 1. Then, Υ converges to zero in a finite-time given by

tf =
|Υ(0)|1−�

Λ(1 − �)
. (15)
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3 THE PROPOSED FORITSM CONTROL LAW

To design the proposed robust controller, let us consider the following fractional-order integral terminal sliding variable, i.e.,

� = + ΛD�−1I (16)

with Λ > 0, 0 < � < 1. The sliding variable  is given in (9) and I can be designed as:

D�I =sign()||� , (17)

with initial value
I (0) = −

1
Λ
D1−�(0). (18)

From Eqs. (16)-(18) , one can easily see that �(0) = 0. Hence, the reaching phase to the sliding surface � = 0 is removed.

Remark 1. The proposed recursive form terminal sliding variable (16) combines two sliding variables (i.e., (9) and (17)). If
an appropriate control input is designed such that the sliding mode is established (i.e., � = 0), the system trajectories will be
constrained to the sliding surface � = 0, and then to the origin in FnT. Because of the integral initial condition in (18), the
RP is cancelled in comparison to conventional TSM control. Moreover, compared to integral HOSM control, only two layers
of sliding manifolds are adopted in the integral TSM, which is simpler for practical implementations. In addition, the proposed
sliding manifold offers extract degree to increase the performance tracking of the full nonlinear system.

Compute now the time derivative of �, i.e.,

�̇ =̇ + ΛD�I�
=̈n + �n�n ||n

|

|

�n−1 ̇n + ... + �n�n ||1
|

|

�1−1 ̇1 + ΛD�I� .
(19)

Theorem 2. Given the nonlinear system (8), consider the sliding variable (16) and the following controller

 = ()−1
(

0 +1
)

(20)
0 = − () − �nsign

(

n
)

|

|

n
|

|

�n − ... − �1sign
(

1
)

|

|

1
|

|

�1 − ΛD�I (21)
D�1 +  1 = �I ,

�I = −
(

Υd + ΥT + &0
)

D�−1sign(�) −KfD
�−1�, (22)

with �j > 0, Υd ,ΥT , &0 being positive constants, � being a fractional operator, and the two constants Υd and ΥT chosen such
that ΥT >  �. Then, the trajectories of (8), constrained to � = 0, will converge to zero in a FnT.

Proof. Making reference to system (8), the sliding variable (16) can be expressed as

� =̇n + �nsign
(

n
)

|

|

n
|

|

�n + ... + �1sign
(

1
)

|

|

1
|

|

�1 + ΛD�−1I
= () + () +(, t) + �nsign

(

n
)

|

|

n
|

|

�n + ... + �1sign
(

1
)

|

|

1
|

|

�1 + ΛD�−1I .
(23)

Replacing the control (20) into equation (23) yields

� = () +0 +1 +() + �nsign
(

n
)

|

|

n
|

|

�n + ... + �1sign
(

1
)

|

|

1
|

|

�1 + ΛD�−1I
=1 +().

(24)

The FO switching law can be written as

D�1 +  1 = −
(

Υd + ΥT + &0
)

D�−1sign(�) −KfD
�−1� (25)

= −D�−1 [(Υd + ΥT + &0
)

sign(�) −Kf�
]

. (26)

After simple calculation, one has

̇1 +  D1−�1 = −
(

Υd + ΥT + &0
)

sign(�) −Kf�
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

�I

. (27)

Since the Laplace transform of Eq. (27) is

s1(s) −1(0) +  s1−�1(s) −  s−�1(0) = �I (s), (28)



6 M. Labbadi ET AL

with non negative constant 1(0) = 1(0, �(0)), then Eq. (28) can be defined as

1(s) =
�I (s)s−1 +1(0)s−1 + s−1−�1(0)

1 +  s−�
(29)

The unique solution of (29) arises from the uniqueness and existence theorem of fractional equations29 and the properties of
inverse Laplace transform since 1(t, �) is locally Lipschitz with respect to �. The solution of (25) is given by:

1(t) = 1(0)t−�E−�,−�+1
(

− t−�
)

+1(0)E−�
(

− t−�
)

+

t

∫
0

(

t − �
)−� E−�,−�+1

(

−
(

t − �
)−�

)

�I (�)d�, (30)

where E−�
(

− t�
)

and E−�,−�+1
(

− t�
)

are Mittag-Leffler functions.
Using the condition ΥT >  � and from (24) and (30), under the condition 1(0) = 0, one obtains ΥT ≥  , Υd ≥  , and

|

|

1
|

|max ≥  |

|

1(t)||, which in turn implies  |

|

1(t)|| ≤ ΥT . The fractional derivative of the terminal sliding manifold (24) is

D�� = D�() +D�1 (31)
= D�() +D�1 +  1 −  1 (32)
= D�() + �I −  1 (33)
= D�() −D�−1 [(Υd + ΥT + &0

)

sign(�) −Kf�
]

−  1. (34)

Consider now the Lyapunov function and its time-derivative as  = 1
2
�2 and ̇ = ��̇ = �D1−�(D��). One gets

̇ = �D1−�{D�() −D�−1 [(Υd + ΥT + &0
)

sign(�) −Kf�
]

−  1} (35)
= �{̇() −

[(

Υd + ΥT + &0
)

sign(�) −Kf�
]

−  D1−�1} (36)
= ̇()� −

(

Υd + ΥT + &0
)

|�| −Kf�
2 −  D1−�1� (37)

≤ |

|

̇()|
|

|�| − Υd |�| +
[

− D1−�1� − ΥT |�|
]

− &0 |�| −Kf�
2 (38)

According to the Assumption (1) and exploiting (35), one gets

̇ = ��̇ ≤ −&0 |�| −Kf�
2. (39)

To demonstrate the finite-time stability, (39) can be rewritten as

̇ ⩽ −2Kf −
√

2&0
1
2 . (40)

Dividing (40) by 
1
2 , one obtains

dt ⩽ − −
1
2

2Kf
1
2 +

√

2&0
d . (41)

By integrating (41) from t0 to tc and after a simple calculation, it yields

tc − t0 ⩽ −

0

∫
(tx0)

−
1
2

2Kf
1
2 +

√

2&0
d (42)

= 1
Kf

ln
2Kf

1
2 (tx0) +

√

2&0
√

2&0
. (43)

On the other hand, this implies that, in a finite amount of time, one has � = 0, and the trajectories of system (8) will converge
to zero in FnT as well, under � = 0. In fact, if � = 0 holds in (16), the sliding variable will converge to zero in a FnT according
to Lemma 2, i.e.,

� = + ΛD�−1I� = 0
D�I� =sig

(


)� .

(44)

Hence, one has
D�I� =sig

(

ΛD�−1I�
)�

= −Λ�D�−1sig�
(

I�
)

,
(45)
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which, after a simple calculation, implies
̇I� = −Λ�sig

� (I�
)

. (46)

Finally, making reference to Lemma 2, the convergence time ts is given by

ts =
|�(0)|1−�

Λ(1 − �)
. (47)

Remark 2. The control signal (22) is the same as a fractional-order high-pass filter (FOHPF), with "(t) as the input and 1 as
the filter’s output. The fractional-order filter’s Laplace transfer function (22) is given by

1(t)
"(t)

= s�−1

s� + 
, (48)

where  is the FOHPF’s bandwidth, while1(t) in (20) is the output of the FOHPF (22) which is softened to be a smooth signal
by the switch function, despite the fact that "(t) is non-smooth due to the switching function (22).

Remark 3. The disadvantage of the strategies proposed in9,12,10 is that the reaching phase is still present. The reaching phase
is instead removed in our method due to the proposed recursive fractional-order integral terminal sliding manifold, and the
system begins to move on the sliding surface since the initial time instant. Moreover, the proposal exhibits certain noteworthy
characteristics with respect to existing methods in9,12,10, which are outlined as follows:

• First, for the existing nonsingular terminal sliding manifold9,12,10, the designed surface variable following the non-
recursive manner can only admit an existence condition for FnT stability.

• It can be seen from the existing works12,17,32 that the proposed FORITSM offers an additional degree of freedom, due to
the designed FO filter.

4 APPLICATION TO TRACKING CONTROL FOR A QUADROTOR UAV

In this section, the proposed control approach is applied to the dynamics of a quadrotor UAV, showing its applicability in a
practical case.

4.1 Modelling and tracking control problem
Consider a quadrotor system33 captured by the following equations

�̈ = �̇ ̇
(JY Y − JZZ)

JXX
−

Irr
JXX

Ωr�̇ −
#�
JXX

�̇2 + 1
JXX

�� +�

�̈ = �̇ ̇
(JZZ − JXX)

JY Y
+
Irr
JY Y

Ωr�̇ −
#�
JY Y

̇�2 + 1
JY Y

�� +�

 ̈ = �̇�̇
(JXX − JY Y )

JZZ
−

# 
JZZ

 ̇2 + 1
JZZ

� + 

ẍ = −
#x
m
ẋ + (cos� sin � cos + sin� sin )T

m
+x

ÿ = −
#y
m
ẏ + (cos� sin � sin − sin� cos )T

m
+y

z̈ = −
#z
m
ż − g + (cos� cos �)T

m
+z,

(49)

where the Euler angles of the quadrotor are expressed as Υ� = [� �  ]T , and Υ̇� = [�̇ �̇  ̇]T are the angular rates. As shown
in Fig. (1), the absolute position of the the quadrotor is Υq = [x y z]T , and Υ̇q = [ẋ ẏ ż]T represents the linear velocity, where
JXX , JY Y , and JZZ are inertia moments of the vehicle around bx, by, bz axes, m is the mass of the body, �, � ,  , x, y
andz denote the external disturbances, and g is the gravitational acceleration. Moreover, #i|x,y,z,�,�, are drag coefficients, and



8 M. Labbadi ET AL

Yaw

Roll

Pitch

d
B}{

{ }

FIGURE 1 Quadrotor configuration.

[T �� �� � ]T are the control inputs. In order to generate the total thrust T and the tilting angles (�d , �d), the virtual control
input can be defined as follows

Px = (cos� sin � cos + sin� sin )
T
m

(50)

Py = (cos� sin � sin − sin� cos )
T
m

(51)

Pz = −g + (cos� cos �)
T
m
. (52)

Quadrotor
UAV

Dynamics

Decoupling

(Px, Py, Pz)
T

(ϕd,θd)T

(ϕ, θ, ψ)T

ψd

(xd, yd, zd)
T

External
Disturbances

position
controller  

attitude
controller  

(x, y, z)T

(𝜏ϕ, 𝜏θ, 𝜏ψ)T 
FOCF-RNTSMC 

FOCF-RNTSMC 

Desired

Trajectory

T

FIGURE 2 The proposed control scheme for the quadrotor UAV.

We are now in a position to formulate the considered tracking control problem. Specifically, the control objective is to design
a FORITSM control for the system (49) in order to make the quadrotor follow a reference trajectory. In this context, the virtual
signal Pi = [Px, Py, Pz]T will be designed in order to generate the total thrust T , the titling anglers (�d , �d) for the outer loop,
and the torque controls (��, �� , � ), as shown in Fig. (2).

4.2 FORITSM control design for the quadrotor
Let us define the tracking errors and their derivatives for the quadrotor position as follows

ex =x − xd , ex = y − yd , ez =z − xd (53)

and
ėx =ẋ − ẋd , ėx = ẏ − ẏd , ėz =ż − ẋd (54)
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Similarly, the tracking errors and their derivatives are defined for the attitude as follows

e� =� − �d , e� = � − �d , e = −  d (55)

and

ė� =�̇ − �̇d , ė� = �̇ − �̇d , ė = ̇ −  ̇d (56)

Now, in order to design the proposed FORITSM control, the fast nonsingular terminal sliding manifolds for the position need
to be defined as

x = ëx + �2xsign
(

ėx
)

|

|

ėx||
�x2 + �x1sign

(

ex
)

|

|

ex||
�x1 (57)

y = ëy + �2ysign
(

ėy
)

|

|

|

ėy
|

|

|

�y2 + �y1sign
(

ey
)

|

|

|

ey
|

|

|

�y1 (58)

z = ëz + �2zsign
(

ėz
)

|

|

ėz||
�x2 + �z1sign

(

ez
)

|

|

ez||
�z1 . (59)

The fast nonsingular terminal sliding manifolds for the attitude are instead given by

� = ë� + �2�sign
(

ė�
)

|ė�|��2 + ��1sign
(

e�
)

|

|

|

e�
|

|

|

��1 (60)

� = ë� + �2�sign
(

ė�
)

|

|

ė�||
��2 + ��1sign

(

e�
)

|

|

e�||
��1 (61)

 = ë + �2 sign
(

ė 
)

|

|

|

ė 
|

|

|

� 2 + � 1sign
(

e 
)

|

|

|

e 
|

|

|

� 1 . (62)

The control parameters �i1 and �i1 for (i = x, y, z, �, �,  ) are selected according to Lemma 1, while �i1 and �i2 are positive
coefficients.
The fractional-order integral terminal sliding manifolds for the position and attitude are respectively

�x =x + ΛxD�x−1I�x , �y = y + ΛyD�y−1I�y , �z =z + ΛzD�z−1I�z , (63)

and

�� =� + Λ�D��−1I�� , �� = � + Λ�D��−1I�� , � = + Λ D� −1I� , (64)

where Λi are positive coefficients and i as in (57) and (62), while I�i can be designed as

D�xI�x =sig
(

x
)�x , D�yI�y = sig

(

y
)�y , D�zI�z =sig

(

z
)�z , (65)

and

D��I�� =sig
(

�
)�� , D��I�� = sig

(

�
)�� , D� I� =sig

(

 
)� . (66)

Assumption 2. The functioni is assumed to be unknown, but its amplitude and derivative are bounded so thati < ΥT i and
̇i < Υdi.

Theorem 3. Given the quadrotor dynamics (49), controlled via the FORITSM control laws (67)-(84), that is, for the x-subsystem

Px =
(

Px0 + Px1
)

(67)

Px0 = −
#x
m
ẋ − �2xsign

(

ėx
)

|

|

ėx||
�x2 − �x1sign

(

ex
)

|

|

ex||
�x1 − ΛxD�xI�x (68)

D�xPx1 + xPx1 = &x,
&x = −

(

Υdx + ΥTx + &x0
)

D�x−1sign(�x) −KfxD
�x−1�x, (69)

for the y-subsystem

Py =
(

Py0 + Py1
)

(70)

Py0 = −
#y
m
ẏ − �2ysign

(

ėy
)

|

|

|

ėy
|

|

|

�y2 − �y1sign
(

ey
)

|

|

|

ey
|

|

|

�y1 − ΛyD�yI�y (71)

D�yPx1 + yPy1 = &y,
&y = −

(

Υdy + ΥT y + &y0
)

D�y−1sign(�y) −KfyD
�y−1�y, (72)
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for the z-subsystem

Pz =
(

Pz0 + Pz1
)

(73)

Pz0 = −
#z
m
ż + g − �2zsign

(

ėz
)

|

|

ėz||
�z2 − �z1sign

(

ez
)

|

|

ez||
�z1 − ΛzD�zI�z (74)

D�zPz1 + zPz1 = &z,
&z = −

(

Υdz + ΥT z + &z0
)

D�z−1sign(�z) −KfzD
�z−1�z, (75)

for the �-subsystem

�� = JXX
(

��0 + ��1
)

(76)

��0 = −{�̇ ̇
(JY Y − JZZ)

JXX
−

Irr
JXX

Ωr�̇ −
#�
JXX

�̇2} − �2�sign
(

ė�
)

|

|

|

ė�
|

|

|

��2 − ��1sign
(

e�
)

|

|

|

e�
|

|

|

��1 − Λ�D��I�� (77)

D����1 + ���1 = &�,
&� = −

(

Υd� + ΥT� + &�0
)

D��−1sign(��) −Kf�D
��−1��, (78)

for the �-subsystem

�� = JY Y
(

��0 + ��1
)

(79)

��0 = −{�̇ ̇
(JZZ − JXX)

JY Y
+
Irr
JY Y

Ωr�̇ −
#�
JY Y

̇�2} − �2�sign
(

ė�
)

|

|

ė�||
��2 − ��1sign

(

e�
)

|

|

e�||
��1 − Λ�D��I�� (80)

D����1 + ���1 = &� ,
&� = −

(

Υd� + ΥT � + &�0
)

D��−1sign(��) −Kf�D
�tℎeta−1�� , (81)

for the  -subsystem

� = JZZ
(

� 0 + � 1
)

(82)

� 0 = −{�̇�̇
(JXX − JY Y )

JZZ
−

# 
JZZ

 ̇2} − �2 sign
(

ė 
)

|

|

|

ė 
|

|

|

� 2 − � 1sign
(

e 
)

|

|

|

e 
|

|

|

� 1 − Λ D� I� (83)

D� � 1 +  � 1 = & ,
& = −

(

Υd + ΥT + & 0
)

D� −1sign(� ) −Kf D
� −1� , (84)

where �i1, �i2 > 0, Υdi,ΥT i, and &0i are positive constants, �i is fractional operator, and Υdi and ΥT i are two constants, if
ΥT i > i�i, then �x, �y, �z, ��,�� , and � are zeroed in a finite time. Moreover, the position and attitude dynamics in (49) are
regulated to their references in a finite time, constrained to the sliding mode on �x = �y = �z = �� = �� = � = 0.

Proof. Taking into account the sliding manifolds in (57), (62), and substituting the proposed control laws (67)-(84) to (63), (64),
one has

�x =Px1 +x, �y Py1 +y, �z =Pz1 +z, (85)
and

�� =��1 +�, �� = ��1 +� , � =� 1 + . (86)
Using the results of the Theorem 2, the solutions of the control inputs (69), (72), (75), (78), (81), and (84) are

Py1(t) = Px1(0)t−�xE−�x,−�x+1
(

−xt−�x
)

+ Px1(0)E−�x
(

−xt−�x
)

+

t

∫
0

(

t − �
)−�x E−�x,−�x+1

(

−x
(

t − �
)−�x

)

�x(�)d� (87)

Py1(t) = Py1(0)t−�yE−�y,−�y+1
(

−yt−�y
)

+ Px1(0)E−�y
(

−yt−�y
)

+

t

∫
0

(

t − �
)−�y E−�y,−�y+1

(

−y
(

t − �
)−�y

)

�y(�)d� (88)

Pz1(t) = Pz1(0)t−�zE−�z,−�z+1
(

−zt−�z
)

+ Px1(0)E−�z
(

−zt−�z
)

+

t

∫
0

(

t − �
)−�z E−�z,−�z+1

(

−z
(

t − �
)−�z

)

�z(�)d� (89)
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��1(t) = ��1(0)t−��E−��,−��+1
(

−�t−��
)

+ Px1(0)E−��
(

−�t−��
)

+

t

∫
0

(

t − �
)−�� E−��,−��+1

(

−�
(

t − �
)−��

)

��(�)d�

(90)

��1(t) = ��1(0)t−��E−�� ,−��+1
(

−�t−��
)

+ Px1(0)E−��
(

−�t−��
)

+

t

∫
0

(

t − �
)−�� E−�� ,−��+1

(

−�
(

t − �
)−��

)

��(�)d� (91)

� 1(t) = � 1(0)t−� E−� ,−� +1
(

− t−� 
)

+ Px1(0)E−� 
(

− t−� 
)

+

t

∫
0

(

t − �
)−� E−� ,−� +1

(

− 
(

t − �
)−� 

)

� (�)d�

(92)

Using the condition ΥT i > i�i and from (24) and (87)-(92), under the condition Px(0) = Py(0) = Pz(0) = ��(0) =
��(0) = � = 0 one obtains ΥT i ≥ i, Υdi ≥ i

|

|

|

Px1, Py1, Pz1, ��1, ��1, � 1
|

|

|max
≥ i

|

|

|

Px1, Py1, Pz1, ��1, ��1, � 1
|

|

|

, i.e.,

i
|

|

|

Px1, Py1, Pz1, ��1, ��1, � 1
|

|

|

≤ ΥT i.

Consider now the global Lyapunov function for overall quadrotor system g =
1
2

[

�2x + �
2
y + �

2
z + �

2
� + �

2
� + �

2
 .
]

The FO
derivative of terminal sliding manifold is

D�i�i = D�ii +D�iΓ (93)
= D�ii +D�

i Γ + iΓ − iΓ (94)
= D�ii + �i − iΓ (95)
= D�ii −D�i−1

[(

Υdi + ΥT i + &0i
)

sign(�i) −Kfi�i
]

− iΓ. (96)

with Γ representing the input controls Px, Py, Pz, ��, �� , � . Hence,

�i�̇i = ̇i�i −
(

Υdi + ΥT i + &0i
)

|

|

�i|| −Kfi�
2
i − iD1−�iΓ�i (97)

≤ |

|

̇i
|

|

|

|

�i|| − Υdi ||�i|| +
[

−iD1−�iΓ�i − ΥT i ||�i||
]

− &0i ||�i|| −Kfi�
2
i (98)

According to Assumption (2) and exploiting (97), one has

̇g = �x�̇x + �y�̇y + �z�̇z + ���̇� + ���̇� + � �̇ (99)
≤ −(

∑

i=x,y,z,�,�, 
&0i ||�i|| +Kfi�

2
i ) < 0. (100)

This implies that �i = 0 in a FnT, as well as the quadrotor system trajectories will converge to zero in FnT, under �i = 0.

5 SIMULATION RESULTS

In this section, realistic simulation results are illustrated to assess the proposed control approach, even in comparison with the
control law proposed in12.

5.1 Settings
In the following a wide simulation campaign is discussed. More specifically, the following scenarios are considered:

Nominal model: In this scenario the proposed FORITSM control for position tracking is considered by using nominal param-
eters of the quadrotor. In addition, the simulation results of the proposed controller are compared with those achieve by
using the control law in12.

Increasing disturbance amplitudes: In this scenario the proposed controller and the controller proposed in12 are tested con-
sidering the disturbances in (101) and (102) applied respectively for position and attitude of the quadrotor, by increasing
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their amplitudes with respect to time:

x = sin(4t) + cos(4t), t ∈ [0, �]
x =1.3 sin(4t) + 1.3 cos(4t), t ∈]�, 80]

y = sin(5t) + cos(5t), t ∈ [0,
5
7
�]

y =1.1 sin(5t) + 1.4 cos(5t), t ∈]
5
7
�, 80]

z = sin(5t) + cos(5t), t ∈ [0, 2�]
z =2 sin(4t) + 2 cos(5t), t ∈]2�, 80]

(101)

and
� =1.3 sin(5t) + 1.3 cos(5t), t ∈ [0, 2�]
� =4 sin((5t) + 4 cos(5t), t ∈]2�, 80]
� =1.6 sin(5t) + 1.6 cos(5t), t ∈ [0, 2�]
� =4 sin(5t) + 4 cos(5t), t ∈]2�, 80]
� =1.5 sin(5t) + 2 cos(5t), t ∈ [0, 2�]
� =5 sin(4t) + 5 cos(5t), t ∈]2�, 80].

(102)

Increasing disturbance frequencies: In this scenario the proposed control method and the controller proposed in12 are tested
considering the disturbances in (103) and (104) applied respectively for position and attitude of the quadrotor, by increasing
their frequencies with respect to time.

x = sin(4t) + cos(4t), t ∈ [0, �]
x = sin(40t) + cos(40t), t ∈]�, 80]

y = sin(5t) + cos(5t), t ∈ [0,
5
7
�]

y = sin(50t) + cos(50t), t ∈]
5
7
�, 80]

z = sin(5t) + cos(5t), t ∈ [0, 2�]
z = sin(100t) + cos(100t), t ∈]2�, 80]

(103)

and
� =3 sin(5t) + 3 cos(5t), t ∈ [0, 2�]
� = sin((100t) + cos(100t), t ∈]2�, 80]
� =1.6 sin(5t) + 1.6 cos(5t), t ∈ [0, 2�]
� =1.6 sin(5t) + 1.6 cos(5t), t ∈]2�, 80]
 =5 sin(100t) + 2 cos(100t), t ∈ [0, 2�]
 = sin(100t) + cos(100t), t ∈]2�, 80]

(104)

The quadrotor parameters for the considered scenarios are reported in Table 1, while the control parameters are given by
�i1 =

9
16
, �i2 =

9
23
, �i1 = 0.2, �i2 = 72, Λ1 = 0.05, �0i = 0.5, �2i = 72, �1i = 192, Υdi = 14, and ΥT i = 2.4.

5.2 Nominal model
Now the first scenario in nominal conditions is discussed. Fig. 3 shows the reference position tracking results. It can be observed
that, by using the proposed method, fast and precise trajectory tracking is achieved, differently from the case when the method
proposed in12 is adopted. Indeed, the latter determines a big overshoot in the position outputs. The tracking performance of
the attitude is instead plotted in Fig. 4, with satisfactory results when using the proposal. The tracking errors including ex, ey,
ez, and e are zeroed as expected and displayed in Fig. 5. The results of the tracking in 2D and 3D environments are plotted
respectively in Fig. 6 and Fig. 7. Fig. 8 finally shows the results of the control inputs whose amplitudes are small and converge
to their nominal values.
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TABLE 1 Quadrotor parameters.

Parameter Value Parameter Value

g(s−2.m) 9.8 #y (Nms2) 0.01
m(kg) 0.486 #z (Nms2) 0.01

JXX(m−2.kg) 3.8278e-3 #�(Nrads2) 0.012
JY Y (m−2.kg) 3.8278e-3 #�(Nrads2) 0.012
JZZ(m−2.kg) 7.6566e-3 # (Nrads2) 0.012
Irr(m−2.kg) 2.8385e-5 bℵ(N.s2) 2.9842e-3
#x (Nms2) 0.01 cd(N.m.s2) 3.2320e-2
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FIGURE 3 Simulation results showing the position performance of each controller: reference ( ), control in Feng et al. (2014)
( ), and proposed method ( ) (Nominal model).

5.3 Increasing disturbance amplitudes
The results of the second scenario are now discussed. It can be seen that the proposed controller drives the outputs to converge
to their desired trajectories in FnT. Moreover, the negative effect caused by the presence of the disturbances is removed. On the
other hand, it can be noticed that the results provided by the control law in12 are less satisfactory than the ones achieved via
the proposed method, see, for example, Fig. 9 where high oscillation are present. The attitude and tracking errors are plotted
respectively in Fig. 10 and 11. Again, it can be observed that the attitude and tracking errors are zeroed. Finally, Figs. 12 and 13
show that the proposed controller allows to achieve a good tracking performance compared to12. The amplitudes of the inputs
presented in Fig. 14 are small and with a reduced chattering phenomenon.

5.4 Increasing disturbance frequencies
The results of the third scenario are illustrated hereafter. In terms of the convergence rate, rejection of the disturbances, and
tracking performance, the proposed controller outperforms the one in12 as shown in Figs. 15 and 16 for position and attitude
respectively, as well as in terms of tracking errors. In fact, the proposed approach ensures fast convergence rate with lower
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FIGURE 4 Simulation results showing the attitude performance of each controller: reference ( ), control in Feng et al. (2014)
( ), and proposed method ( ) (Nominal model).

undershoot of the system-controlled outputs. Indeed, the tracking performance of the 2D and 3D trajectories are displayed in
Figs. 18 and 19. On the other hand, the proposed method generates continuous control signals as displayed in Fig. 20, which
reduces chattering and improves the closed-loop system tracking control performance.

6 CONCLUSIONS

This paper proposed a FO command filtered-based recursive finite-time control using a nonsingular terminal sliding mode tech-
nique for high-order uncertain nonlinear systems under disturbances with unknown bounds. The proposed control is developed
to get beyond the limitations of existing finite-time tracking controllers like the TSM control. Furthermore, in the proposed
approach, the reaching phase is removed, the explosion of complexity in the control problem is avoided, and a chattering allevi-
ation property is achieved. Then, this fractional-order strategy has been applied to control a quadrotor UAV system in different
scenarios affected by increasing disturbance amplitudes and frequencies. This technique has been proved to be an appropriate
solution for controlling such systems and ensuring the needed tracking. Furthermore, simulation results have demonstrated the
effectiveness of the proposal even in comparison with an existing approach in the literature.
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FIGURE 7 Simulation results showing the quadrotor trajectory performance in the 3D environment of each controller: control
in Feng et al. (2014) ( ) and proposed method ( ) (Nominal model).
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FIGURE 9 Simulation results showing the position performance of each controller;: reference ( ), control in Feng et al. (2014)
( ), and proposed method ( ) (Increasing disturbance amplitudes).
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FIGURE 10 Simulation results showing the attitude performance of each controller; reference ( ), control in Feng et al. (2014)
( ), and proposed method ( ) (Increasing disturbance amplitudes).
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and proposed method ( ) (Increasing disturbance amplitudes).
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FIGURE 14 Simulation results showing the quadrotor control inputs (Increasing disturbance amplitudes).
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FIGURE 15 Simulation results showing the position performance of each controller: reference ( ), control in Feng et al.
(2014) ( ), and proposed method ( ) (Increasing disturbance frequencies).
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and Proposed method ( ) (Increasing disturbance frequencies).

26. Zhang, J., Xia, J., Sun, W., Wang, Z., and Shen, H. (2019) Command filter-based finite-time adaptive fuzzy control for
nonlinear systems with uncertain disturbance. J. Franklin Inst., 356 (18), 11270-11284.

27. Zhu, X., Ding, W., and Zhang, T. (2021) Command filter-based adaptive prescribed performance tracking control for uncer-
tain pure-feedback nonlinear systems with full-state time-varying constraints. Int. J. Robust Nonlinear Control, 31 (11),
5312-5329.



M. Labbadi ET AL 21

0 5 10 15 20 25 30 35 40

-0.4

-0.2

0

0 5 10 15 20 25 30 35 40

0

0.05

0.1

0 5 10 15 20 25 30 35 40
time  (s)

-0.1

0

0.1

Feng et al. (2014)
Proposed methode 1

 (
m

)
e 3

 (
m

)
e 5

 (
m

)
e 1

1
 (

ra
d
)

0 5 10 15 20 25 30 35 40
-0.04

-0.02

0

0.02

Feng et al. (2014)
Proposed method

Feng et al. (2014)
Proposed method

Feng et al. (2014)
Proposed method

FIGURE 17 Simulation results showing the tracking errors performance of each controller; Feng et al. (2014) ( ) and Proposed
method ( ) (Increasing disturbance frequencies).
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FIGURE 19 Simulation results showing the quadrotor trajectory performance in the 3D environment of each controller: Feng
et al. (2014) ( ), and proposed method ( ) (Increasing disturbance frequencies).
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