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ABSTRACT

Developing algorithms to detect temporal and spatial changes
in radar targets is paramount. This paper specifically ad-
dresses the temporal change detection aspect, introducing
a rapid non-parametric Coherent Change Detection (CCD)
algorithm named Fast-Permutational Change Detection (F-
PCD). The F-PCD identifies temporal Change Points (CPs)
in a radar target by recognizing block structures in the coher-
ence matrix, showing great robustness against non-stationary
noise sources that generally affect the performance of the
standard approaches. Moreover, the F-PCD is characterized
by an accelerated inference process, ensuring efficiency with-
out substantial performance loss. The F-PCD algorithm can
be applied to different scenarios, for example, where DEM
changes happen, e.g., mining sites, volcano eruptions, and
earthquakes. For this reason, an example of the F-PCD ap-
plication on an active open-pit mining site is presented to
validate its effectiveness. Moreover, its generalization capa-
bility is demonstrated by a multi frequency-geometry analysis
conducted on the same mining site. Finally, fully exploiting
the F-PCD outcomes contributes to a broader understand-
ing of temporal changes in SAR data and introduces new
perspectives for interpreting InSAR datasets.

Index Terms— SAR, Coherent Change Detection, Per-
mutation Tests, Object Counter, Open Pit Mine

1. INTRODUCTION

Over the past two decades, Synthetic Aperture Radar (SAR)
has proven highly effective in studying surface deformation
phenomena (InSAR). Radar targets can be point-wise or PS
[1] widely available in urban areas but also distributed DS
[2][3], present mainly in non-urban areas. Current algorithms
face challenges adapting to changes in the analyzed scenario.
Whether PS or DS can evolve, potentially disappearing, while
new measurement points may emerge. The proposed method,
called Fast-Permutational Change Detection (F-PCD), oper-
ates within the Coherent Change Detection (CCD) [4] [5] [6]
[7] framework, aiming to detect significant temporal changes
that manifest as block structures in the coherence matrix of

the radar target. It does so rapidly, flexibly, and straightfor-
wardly, exhibiting great robustness even in the presence of
non-stationary noise sources. The algorithm’s intricacies are
expounded in Section 2 following a theoretical introduction
to the coherence matrix and permutation tests. Subsequently,
in Section 3, the F-PCD is compared with the GLRT algo-
rithm presented in [7] and then applied to real data in an ac-
tive open-pit mine area, chosen for its rapid environmental
changes. Finally, a multi frequency-geometry analysis is per-
formed on the same area of interest to validate the algorithm
and to show its generalization capability.

2. FAST-PERMUTATIONAL CHANGE DETECTION

The Fast-Permutational Change Detection (F-PCD) [8] is
a non-parametric CCD algorithm that estimates changes in
coherence of a radar target and block structure in the co-
herence matrix Γ̂. It consists of a single step, the Permuta-
tional Screener, which contemporary detects and validates
the change points (CPs). The output is the Change Detec-
tion Matrix (CDM) detailed in the Sub-Section 2.2. For a
more comprehensive grasp of the mathematical intricacies,
the Sub-Section 2.1 provides an overview of the most crucial
theoretical concepts.

2.1. Coherence Matrix and Permutation Tests

2.1.1. Coherence Matrix

Given a SAR data stack of NI images, Γ̂ is the [NI,NI] ma-
trix containing the modulus of the interferometric coherence
γ̂ij between the ith and jth image, estimated over a window
of dimension L number of looks. By following [9] [10] [11]
[12] [13] [14], it can be approximated as

Γ̂ ≃ γ0γtγbγn, (1)

where

• γ0: maximum theoretical coherence, the value of the
coherence under ideal conditions;

• γt = e−
|Btij |

τ : temporal decorrelation with time con-
stant τ [13];



• γb =
(
1− Bnij

Bc

)
: geometrical decorrelation with Bc

critical baseline [15];

• γn: decorrelation due to other noise sources.

Whenever a radar target undergoes an abrupt change, Γ̂
presents blocks structure, implying that the change is not
reversible. Mathematically, a block B is a submatrix of Γ̂
determined by a group of consecutive coherence estimates
much greater than the ones outside the block. Being

D = {1, 2, ..., NI},

the set of the observations’ indexes, y(l) ∈ CNI the vector
collecting the temporal samples of the l-th pixel, and

I =

{
k ∈ D

∣∣ 1
L
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L∑

l=1

yk(l)yh
H(l)

∣∣∣∣∣ > ϵ∀h ∈ D and h ̸= k

}
,

the groups of observations’ indexes satisfying the condition
above, then a block B is

B = {γ̂ij ∈ Γ̂ | i, j ∈ I}. (2)

Then, it is possible to write the ij − th element of Γ̂ as

γ̂ij ≃ γBij
γtijγbijγnij

, (3)

where γtij , γbij and γnij
are respectively the values of the tem-

poral and geometrical decorrelation and of the noise for the
given interferometric pair. Instead, γBij

is the ij− th element

of the block model of Γ̂, which is always zero except for the
case when i, j ∈ I where it is equal to one.

2.1.2. Permutation Tests

The permutation test [16], operates on a straightforward prin-
ciple. Given two statistical populations, A and B, of any size,
the test aims to assess a hypothesis H0 or H1, achieved by
defining a test statistic T (X) and estimating the p−value(p̂).
The estimation involves repeating P times the measurement
T (X) over new populations Ã and B̃ with the same cardinal-
ities as the original ones, randomly sampled from the com-
bined ensemble [17]. Then p̂ is expressed as

p̂ =
#(T ∗ > T0)

P
, (4)

where T0 is the value of T (X) over the original population.
The transformation must preserve any relationships among
the populations, to ensure the exactness of the test. In the
end, the significance test affirms H0 with a significance level
α if p̂ < α, where α can be fixed at a specific value [17].

2.1.3. Permutational Screener

The Permutational Screener constitutes a fully permutational
step, where the populations under examination are directly
derived from the exploitation of the double dimension of Γ̂.
The approach involves opening a squared window with an ini-
tial size wm along the main diagonal and progressively com-
paring the statistical population inside it, i.e., candidate B,
with the corresponding candidate noise block N = Bc. The
initial size wm is iteratively increased by a factor of one until
a change point is identified. Then, it is re-initialized com-
mencing from the next line. A critical consideration is the
wise selection of P , which depends on the cardinality of the
populations. Assume to have a Γ̂[NI,NI], and assume to mea-
sure the cardinalities of the populations from a generic index
i and with a window size w > wm, then

N = Γ̂(i : i+w, i+w+1 : NI) =⇒ #N = (NI−i−w)w,
(5)

and

B = Γ̂(i : i+ w, i : i+ w) =⇒ #B =
w(w − 1)

2
. (6)

In this scenario P is is entirely uncontrollable, in fact

P ∝ Ptot =

(
#B + #N

#N

)
= f(w,NI, i), (7)

that implies the impossibility of uniquely limiting them. The
suggested solution involves reducing the coherence observa-
tion bandwidth Bw, i.e., represent Γ̂ through a smaller set of
γ̂ij values. In formulas, considering γ̂i as the generic i − th

row Γ̂, it follows (8)

γ̂i =

{
γ̂ij if i−Bw < j < i+Bw,

0 otherwise.
(8)

Then, making sure that BW ≥ wm, Equation (5) becomes
(9)

N = Γ̂(i : w(i), w(i)+1 : w(i)+Bw) =⇒ #N = (Bw−1)w,
(9)

where w(i) = i + w for compactness. Because only a few
elements of N are non-zero (8), and by enforcing #B = #N
with the selection the last unique #N samples of B, Equation
(7) can be simplified as (10)

P ∝ Ptot =

(
2#N
#N

)
= f(Bw). (10)

In this way, the F-PCD directs its attention towards the tran-
sitions between adjacent blocks within the matrix.
The proposed test statistic T (X) to measure the statistical dis-
tance between the two populations is

T (X) =
med(B)

σ2
B

− med(N )

σ2
N

, (11)

the weighted difference of the medians of the populations.



Table 1: Simulation Parameters.

tr τ Bn Bc Bw L #B NI
[days] [days] [m] [m]

12 90 [-200, 200] 1300 4 5, ...,30 2,3 30

Fig. 1: Performance comparison between F-PCD and GLRT
in terms of F1-score (left) and computational time (right).

2.2. F-PCD Outputs

The F-PCD produces as output the Change Detection Ma-
trix (CDM), an [NI,NI] matrix showing the estimated block
model for Γ̂. It is filled following these rules:

• Assigns 0.5 to all the rows whose maximum in Γ̂ is
below the noise threshold thn [8] (bad images);

• Whenever a CP is detected, fill the corresponding block
B with 1.

3. RESULTS FROM SIMULATED AND REAL DATA

The algorithm is firstly compared with the GLRT approach
[7], in terms of computational time and their F1-score [18].
The performance has been measured on synthetic data out of
5000 Monte Carlo simulations assuming blocks of equal ex-
tension. The settings are shown in Table 1. As anticipated,
a thorough examination of Figure 1 reveals that the F-PCD
outperforms the GLRT, especially under conditions of a low
number of looks. The improvement in performance for the
GLRT algorithm is noticeable only when #B = 2. This indi-
cates that in highly dynamic environments, the F-PCD may be
the preferred choice, as indicated by the performance curve
for #B = 3. Regarding computational time, the F-PCD is
faster than the GLRT and is less influenced by the number of
looks. Shifting to real-world data, the chosen case study is an
open-pit mine area due to the rapid and dynamic environmen-
tal changes. The dataset comprises the descending track 20
TerraSAR-X, SL 037 mode, and VV polarization. The tem-
poral interval spans from January 2022 to December 2022,

Fig. 2: Examples of F-PCD result over an open-pit mine area.
In the center is the Target Classification, and on the left and
right are examples of CDM, respectively taken from the roads
inside the pit (red) and the bottom part of the pit (blue).

consisting of 33 images acquired every 11 days, with only one
missing acquisition. For this analysis, Bw is set equal to four,
resulting in a reduction of P to 10. It is possible to demon-
strate that this value represents the minimum number of per-
mutations, ensuring that RMSE affecting p̂ remains within ac-
ceptable limits, still guaranteeing overall good performance.
Figure 2 illustrates examples of CDM generated by the al-
gorithm and the target classification map, where the targets
are labeled as Always Coherent (AC), Never Coherent (NC),
or changed (CHANGE). As it is possible to note, the F-PCD
shows great robustness against non-stationary noise sources.
This feature can be appreciated by the inspection of the sec-
ond block detected in the red case example in Figure 2, as
well as the fourth of the blue one: for both cases, the detection
is challenging because of the presence of randomly decorre-
lated pairs, which generally imply false alarms in standard ap-
proaches. The F-PCD can correctly handle this kind of case
by directly inspecting the data and building statistics on the
observable (Sub-Section 2.1.3). Generating general CD maps
is somewhat restrictive when contemplating the algorithm’s
full potential. The F-PCD outputs offer a more comprehen-
sive understanding of the nature of radar scatterers within
the Area of Interest (AOI). By utilizing the pixel-wise infor-
mation in the CDM, a thorough interpretation of the entire
scene, encompassing targets unaffected by changes, becomes
achievable. As illustrated in Figure 3, this more detailed in-
terpretation can be addressed by associating each pixel with
the corresponding number of objects defined in relation to the
block structure (Sub-Section 2.1) and including the informa-
tion about the number of changes and the number of bad im-
ages associated with each pixel. Finally, the F-PCD has been
applied in the same area and during the same time frame on
the data collected by the TerraSAR-X ascending SM005 track
134 and the ascending track 47 of Sentinel-1 IW, both in VV
polarization. The results of the three different analyses have
been then intersected on a common georeferenced grid, and
the changed areas have been dated based on the three different



Fig. 3: The Object Counter, the Change Point Counter, and
the Bad Image counter in SAR coordinates, respectively, on
the top left, top right, and bottom, of the descending track 20
TerraSAR-X.

datasets. The result of the multi frequency-geometry analysis
is shown in Figure 4. The multi-frequency-geometry cumula-
tive change map is at the top, reporting the number of sensors
highlighting that change for each changed pixel. The changed
areas characterized by pixel values of 1 or 2 are affected by
geometric distortions, at least in one of the considered geome-
tries. The missing areas are the ones characterized by many
bad images (Figure 3). Instead, at the center and the bottom
are the intersections between the TerraSAR-X Sentinel-1 as-
cending geometries and the TerraSAR-X geometries. As it is
possible to note, the main difference is related to the resolu-
tion of the two maps due to the different paired-sensors reso-
lution. However, the colored areas are dating the changes ex-
actly in the same period, allowing users to locate the change in
the spatio-temporal framework precisely. These final results
not only validate the effectiveness of the proposed method but
also definitely highlight its generalization capabilities.

4. CONCLUSIONS

This paper introduces the Fast Permutational Change Detec-
tion (F-PCD), whose significant innovation lies in its appli-
cation without imposing stringent assumptions and without
necessitating the modeling of parameters because it moves
directly on the data observation; because of this, F-PCD

Fig. 4: Change Maps from the multi frequency-geometry
analysis on a common georeferenced grid. On the top is the
map cumulative change map, where the pixel values highlight
the number of sensors detecting that change. On the bottom
and the center are the intersections of the changes between
the TerraSAR-X geometries and the TerraSAR-X Sentinel-1
ascending geometries, with their relative time period.

has proved to be very robust in detecting changes in co-
herence across various scenarios, even in the presence of
non-stationary noise sources. The quantitative comparison
with the GLRT algorithm highlights its robustness, especially
at a low number of looks, along with a competitive com-
putational time. Furthermore, real data analysis proposes
a new perspective for interpreting InSAR datasets. In fact,
by leveraging the outputs of F-PCD, it becomes possible to
describe each target based on the number of its coherent lives
(objects), the number of temporal changes, and the number of
noisy acquisitions affecting it. This approach facilitates a di-
rect and intuitive association between possible measurement
points and their reliability. Finally, the method has been vali-
dated through a multi frequency-geometry analysis, allowing
the users to date the changes precisely and highlighting the
capabilities of generalization of the F-PCD.
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