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Abstract Optimal cloud configuration of recurring big data analytic jobs is a
relevant and challenging task in the industry. To this end, Bayesian Optimization is a
promising method for efficiently finding optimal or near-optimal configurations for
such applications, which are often executed in the cloud. On the other hand, Machine
Learning methods can provide useful knowledge about the application at hand thanks
to the quality of their estimations. In this paper, we propose a hybrid algorithm that
is based on Bayesian Optimization and integrates elements from Machine Learning
techniques to tackle time-constrained optimization problems in a cloud computing
setting. We consider a recurring job scenario, where unfeasible points are to be
avoided by all means, as they are a waste of resources. In such a context, Machine
Learning helps to convey valuable information about the violation of constraints.
Experiments on big data applications have shown that our algorithm significantly
reduces the amount of unfeasible executions with respect to a pure constrained BO
approach.
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1 Introduction

Big data analytics are employed in several industrial fields to allow organizations
and companies to make better decisions. The most suitable execution environment
of big data analytic applications is a cluster of virtual machines (VMs) which allows
the adjustment of the allocated resources (CPU, memory, disk, network) to match
the application current needs. Choosing the right cloud configuration to minimize
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execution times and reduce costs is essential to service quality and business com-
petitiveness. This is especially crucial for recurring cloud jobs, i.e., applications that
need to be executed multiple times, which constitute a significant part of the total
amount of analytic jobs running in the cloud [2, 20]. However, variability in the
progress and resource requirements of analytic jobs imply that choosing the best
configuration for a broad spectrum of applications is a challenging process [2].

Bayesian Optimization (BO) has recently gained notoriety as a powerful tool
to solve global optimization problems in which expensive black-box functions are
involved; see the recent paper [15] or the popular tutorial paper [5]. BO is a se-
quential design strategy that requires few steps to get sufficiently close to the true
optimum, while requiring no derivative information on the optimized function. Most
commonly, it is initialized by choosing and evaluating a small handful of starting
points, then fitting a Gaussian process (GP) on these points. This approach can be
interpreted as assuming a prior distribution for the unknown infinite-dimensional pa-
rameter 𝑓 , i.e., the function to be optimized. The posterior distribution of the fitted
GP provides an estimate of both the function value at each point and the uncertainty
around the estimate. BO then iteratively chooses new points at which to evaluate the
function in a such a way to balance exploration (high uncertainty) and exploitation
(best estimated function value); see, for instance, [11]. The topic of constrained BO
has also received attention in the literature [8, 11].

The goal of this work is to integrate Bayesian Optimization algorithms with Ma-
chine Learning (ML) techniques in the context of cloud computing optimization for
recurring jobs. The former techniques have proven to be successful [2, 16] in explor-
ing and finding optimal or near-optimal cloud configurations after a small amount of
exploratory runs. On the other hand, the latter can provide useful information to be
incorporated into the BO mechanism in several ways to improve its performance, for
instance in the form of cheap estimates of target quantities to guide the exploration
process.

This work builds on previous results found in [2], in which the CherryPick
system has been successfully applied to benchmark applications on cloud computing
frameworks such as Apache Spark. This system exploits pure constrained BO to find
optimal cloud configurations. Our work is motivated by the belief that ML models
can lend their estimation capabilities to BO to further improve its effectiveness.
This topic has been explored in [13], which examines the performance of several
ML models in carrying out prediction of execution times of Spark cloud jobs with
different types of workloads. The hybrid BO algorithm we propose here is promising
since it shows the usefulness of ML in the context of cloud computing configuration.

The setup of this paper is as follows. Sect. 2 describes the mathematical formula-
tion of the problem, Sect. 3 presents our proposal of a BO algorithm, while Sect. 4
collects a few experimental results. We conclude the paper with a short discussion
in Sect. 5.
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2 Background and mathematical formulation

The goal of Bayesian Optimization is to estimate, using an iterative method, the
minimum of a given function 𝑓 , called objective function, by using as few iterations
as possible. We focus here on the minimum of the function 𝑓 , though we could
consider the maximum with similar arguments. Specifically, we want to find �̂� such
that

�̂� = arg min
𝑥∈A

𝑓 (𝑥).

Strong assumptions on 𝑓 or on the minimization domain A are not required, and
BO algorithms are derivative-free, i.e., they do not require any knowledge about the
derivatives of 𝑓 . For these reasons, BO is often used to optimize expensive black-box
objective functions (see [3]), that is, functions for which little to no information is
available and whose evaluation has significant time, resource, and/or monetary costs.

We consider the mathematical formulation for our constrained global optimization
problem similarly to [2]. Let 𝑥 ∈ A denote the 𝑑-dimensional vector representing a
configuration for the cloud job, including information such as the number of cores
used for the job, with A ⊂ R𝑑 being the domain of all feasible configurations.
The objective function to be minimized is the total cost 𝑓 (𝑥) = 𝑃(𝑥)𝑇 (𝑥), where
𝑇 (𝑥) is the unknown execution time and 𝑃(𝑥) is the price per unit (it is a known,
deterministic function). We also assume the constraint that 𝑇 (𝑥) ≤ 𝑇𝑚𝑎𝑥 , where
𝑇𝑚𝑎𝑥 is a given threshold. By making this model explicit in 𝑓 , we obtain:

min
𝑥∈A

𝑓 (𝑥) = 𝑃(𝑥)𝑇 (𝑥)

s.t. 𝑓 (𝑥) ≤ 𝑃(𝑥) 𝑇𝑚𝑎𝑥 .
(1)

In this paper, we assume the deterministic price function 𝑃(𝑥) as being proportional
to the number of virtual machines or cores used by the application job, which is
always included in the cloud configuration vector 𝑥. Other choices of the price
function are possible.

The key idea of BO comes from the Bayesian approach to statistics, in which values
taken by 𝑓 are treated as random variables, and a prior distribution represents the
a-priori information on the modeled phenomenon – in the case of BO, information on
the location of the minimum. The prior distribution is then iteratively updated with
information coming from the observed data, obtaining the posterior distribution.
For the rest of the paper, we assume that observed data, i.e., the evaluations of 𝑓 ,
are noise-free. This is justified by the analysis in [13] on the data considered for
validation. In a more general scenario, data can be assumed to have independent,
normally distributed additive noise with variance [2. In this context, the parameter
[2 is usually estimated in a preliminary step.

In the BO framework, the Gaussian process (GP) is the preferred choice for the
prior for 𝑓 . This implies that for any 𝑥 ∈ A,

𝑓 (𝑥) ∼ 𝜋𝑥 (·) = N(`0 (𝑥), 𝜎2
0 (𝑥, 𝑥)).
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The functions `0 (·) and 𝜎2
0 (·, ·) are called mean and kernel functions, respectively,

and are the GP model hyperparameters. These functions serve as the “initial guesses”
on values of 𝑓 (·) and on their uncertainty, and they will be iteratively updated with
observed values. A constant mean function `0 (·) ≡ `0 is often adopted, whereas
the choice of the kernel is more delicate, since it influences the smoothness of the
process. Commonly used kernels include the squared exponential or Radial Basis
Function and the Matérn kernel [19]. The former gives the GP an excessively large
degree of smoothness, which is unrealistic in many practical scenarios. Therefore,
in this work, we assume `0 (·) ≡ `0 and we use the Matérn kernel with smoothness
parameter a = 5/2 (see [5]):

𝜎2
0 (𝑥, 𝑥

′) B 1
23/2Γ(5/2)

(√
5∥𝑥 − 𝑥′∥

)5/2
𝐾5/2

(√
5∥𝑥 − 𝑥′∥

)
. (2)

In Eq. (2), ∥·∥ denotes the Euclidean norm, while 𝐾 is the modified Bessel function
of the second type [1]. As usual, Γ(·) is the gamma function.

Having observed values 𝐻𝑛 = {(𝑥1, 𝑓 (𝑥1)), . . . , (𝑥𝑛, 𝑓 (𝑥𝑛))} of the objective
function, one computes the posterior distribution of 𝑓 (𝑥), for any 𝑥. This distribution
is Gaussian as well, with posterior mean `𝑛 (·) and variance 𝜎2

𝑛 (·), i.e.

𝑓 (𝑥) |𝐻𝑛 ∼ 𝜋𝑥 (·|𝐻𝑛) = N(`𝑛 (𝑥), 𝜎2
𝑛 (𝑥)),

and is computed by well-known properties of GPs (see [5]) as

`𝑛 (𝑥) = `0 (𝑥) + 𝜎2
0 (𝑥, 𝑥1:𝑛)𝑇 𝜎2

0 (𝑥1:𝑛, 𝑥1:𝑛)−1 ( 𝑓 (𝑥1:𝑛) − `0 (𝑥1:𝑛)
)
, (3)

𝜎2
𝑛 (𝑥) = 𝜎2

0 (𝑥, 𝑥) − 𝜎
2
0 (𝑥, 𝑥1:𝑛)𝑇 𝜎2

0 (𝑥1:𝑛, 𝑥1:𝑛)−1𝜎2
0 (𝑥, 𝑥1:𝑛). (4)

In Eqq. (3) and (4), 𝜎2
0 (𝑥, 𝑥1:𝑛) indicates the column vector of values of the 𝜎2

0 (·, ·)
function applied to pairs (𝑥, 𝑥1), . . . , (𝑥, 𝑥𝑛), and similarly for 𝑓 (𝑥1:𝑛) and `0 (𝑥1:𝑛).
Analogously, 𝜎2

0 (𝑥1:𝑛, 𝑥1:𝑛) is the matrix of values of 𝜎2
0 (𝑥𝑖 , 𝑥 𝑗 ) with 𝑖, 𝑗 = 1, . . . , 𝑛.

Bayesian Optimization is an iterative algorithm that obtains a new observation
at each iteration by solving a proxy problem – the maximization of the acquisition
function 𝑔(𝑥), which depends on the fitted GP model and measures the utility
of evaluating the objective function at a given configuration 𝑥. This function is
optimized at each round of the iterative algorithm, instead of directly optimizing
the objective function itself, since it is available in closed form and inexpensive to
evaluate. The acquisition function must strike a delicate balance – the exploration-
exploitation trade-off. On the one hand, there are points to which large uncertainty
is attached, for instance because they lie in a region of the domain which has not
been explored yet. Choosing such points to evaluate the objective 𝑓 (·) is appealing,
especially early on in the optimization procedure, since this would allow a large
decrease of the uncertainty on the position of the optimum. On the other hand, the
algorithm does seek to find the optimum of the objective function, therefore it should
also choose to evaluate points which most likely (according to the GP model) give
small values of 𝑓 (·). This is done by exploiting the information already available
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on the location of the optimum, especially in the late iterations of the algorithm.
Convergence of the BO algorithm is guaranteed under mild conditions [3, 14].

The BO procedure is summarized in Algorithm 1. In step 1, a small number 𝑛0

Algorithm 1 Generic Bayesian Optimization algorithm
1: choose 𝑛0 initial points
2: evaluate 𝑓 ( ·) in the initial points, add evaluations to history 𝐻

3: for iterations 𝑛 = 1 : 𝑁 do
4: update the current posterior distribution of the GP model with data in 𝐻

5: find point 𝑥𝑛+1 which maximizes the acquisition function 𝑔 ( ·) under the current model
6: evaluate 𝑓 (𝑥𝑛+1 ) , add performed evaluation to 𝐻

7: end for
8: return estimated optimum �̂�

of initial points (i.e., cloud configurations in our specific application) are selected,
usually 3 to 10, in order to initialize the algorithm. These points should be chosen so
as to cover the maximum domain area possible, for instance using a Latin hypercube
design [10]. We then evaluate these points (in practical terms, this means executing
the application using these configurations), and we record the points and their evalu-
ations (step 2). After the initialization phase, we enter the algorithm loop, where we
update the posterior distribution (step 4), choose the next point 𝑥𝑛+1 by maximizing
the acquisition function (step 5), and evaluate it (step 6). The algorithm stops when
the iteration budget 𝑁 runs out.

Fig. 1 shows how BO works. Specifically, in the top panel, the objective function

Fig. 1 Bayesian Optimization after 3 iterations. Top panel: the objective function and its Bayesian
estimate. Bottom panel: acquisition function.

to be minimized (the solid line) is estimated by the posterior mean function (the
dashed line) and 95% credible interval (the highlighted area in the background)
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of the associated Gaussian process, after evaluating 3 points (the large dots). Both
estimates are updated whenever a new observation is received, therefore getting
more and more accurate over time. The vertical bell curve represents the Gaussian
distribution which is assumed for each point 𝑥 of the optimization domain; we recall
that both the mean and variance of this distribution depend on 𝑥. Instead, the bottom
panel shows the acquisition function given the current posterior distribution. Its
values are lower in points which have already been sampled, because the utility of
repeating an observation is generally smaller than evaluating a brand new point.
The crossed point indicates the maximum of the acquisition function, i.e., the next
point which will be evaluated. Note that such point is at the center of a region
which has both large expected value and large variance, making it appealing in the
exploration-exploitation trade-off.

In this paper, we compare different acquisition functions. All of them are based
on two popular acquisition functions, which have been shown to be effective in the
literature [6, 7, 18]. The Expected Improvement (EI) over the best value 𝑓 ∗𝑛 found by
the optimization process so far is defined as

𝐸𝐼𝑛 (𝑥) B E𝜋𝑥 ( · |𝐻𝑛 ) [max( 𝑓 ∗𝑛 − 𝑓 (𝑥), 0)] with 𝑓 ∗𝑛 = min
𝑖≤𝑛

𝑓 (𝑥𝑖).

The expectation is taken under the current posterior distribution 𝜋( · |𝐻𝑛) of 𝑓 (𝑥),
given history 𝐻𝑛. We consider a generalization of EI to the constrained optimization
setting – the Expected Improvement with Constraints (EIC) acquisition function
[10, 17], which accounts for the probability of a point of satisfying the constraints
(see Eq. (1)):

𝐸𝐼𝐶𝑛 (𝑥) B 𝐸𝐼𝑛 (𝑥) · P𝜋𝑥 ( · |𝐻𝑛 )
(
𝑓 (𝑥) ≤ 𝑃(𝑥) 𝑇𝑚𝑎𝑥

)
. (5)

Note that the second factor in Eq. (5), which is equal to the posterior probability
of respecting the constraint, is used as a correction factor for the basic Expected
Improvement acquisition function.

3 Our hybrid algorithm

As mentioned in the Introduction, ML estimation techniques can provide useful
information to be incorporated into the Bayesian Optimization mechanism to improve
its performance, for instance in the form of cheap estimates of target quantities to
guide the exploration process.

We first summarize the complete procedure in Algorithm 2. Our algorithm is
based on pure BO, but it integrates elements coming from ML techniques. We
use a first-in-first-out memory queue for discrete features to prevent exploration of
already visited values, similarly to the taboo search meta-heuristic methods [4]. In
this memory queue, we save the last 𝑞 points visited by the algorithm. Configurations
currently in the queue are excluded from being selected again until they have shifted
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Algorithm 2 Proposed algorithm
1: choose 𝑛0 initial points
2: evaluate 𝑓 ( ·) in the initial points, add evaluations to history 𝐻

3: for iterations 𝑛 = 1 : 𝑁 do
4: update the current posterior distribution of the GP model with data in 𝐻

5: train model 𝑇 ( ·) with data in 𝐻, to be used in 𝑔 ( ·)
6: find point 𝑥𝑛+1 which maximizes the acquisition function 𝑔 ( ·) under the current model
7: evaluate 𝑓 (𝑥𝑛+1 ) , add performed evaluation to 𝐻

8: update memory queue with 𝑥𝑛+1
9: if stopping criteria are met then

10: terminate the algorithm
11: end if
12: end for
13: return estimated optimum �̂�

out of the queue, i.e., after 𝑞 iterations. At each round, we train an ML model 𝑇 (·)
(step 5) with all points evaluated so far by the algorithm. Then, similarly to regular
BO, we maximize the acquisition function of choice, which now incorporates the
trained ML model. Note that we have used ML language (i.e., we train an ML model
𝑇 (·)) here, but these ML models consist of statistical estimation methods which
have become very popular in the ML community. After that, we evaluate the newly
chosen configuration (step 7) as usual, and we update the aforementioned memory
queue (step 8). The algorithm continues until the evaluated execution time at the
current iteration is sufficiently close to the time threshold: 𝑇 (𝑥𝑛) ∈ [𝛼𝑇𝑚𝑎𝑥 , 𝑇𝑚𝑎𝑥],
with 𝛼 ∈ (0, 1) (step 10). This is because our goal is to obtain a configuration
that is compliant with the time threshold, but also uses as few resources as possible.
Generally speaking, using more resources results in a lower execution time – meaning
that a time which is just under the threshold likely consumes the least amount of
resources for that configuration to be feasible. After termination of this algorithm, it
is likely that we have found the true optimal configuration. Afterwards, we perform
subsequent executions using such optimal or near-optimal configuration (recall that
we are dealing with recurring jobs, whose periodic execution does not stop with the
termination of the optimization procedure).

In the application of interest, our goal is ultimately to find optimal (or near-
optimal) configurations which are also feasible, i.e., points 𝑥 s.t. 𝑇 (𝑥) ≤ 𝑇𝑚𝑎𝑥 .
Unfeasible points are to be avoided by all means, since they represent a waste of
resources in a recurring job setting, providing additional unnecessary costs. Inte-
grating ML models into the acquisition function is crucial in assessing the feasibility
of the points under consideration. Hence, ML methods can prove to be useful addi-
tions to the acquisition function in a setting where evaluating the objective function
𝑓 (·) is expensive. Indeed, a cheap estimation of values of 𝑓 (·) can compensate for
the scarcity of direct information on them. In our case, ML models can be used to
convey valuable information about the violation of constraints. Specifically, we use
ML models to compute 𝑇 (·) and use this estimate to correct the acquisition function
𝐸𝐼𝐶 (·).

We therefore propose the following acquisition functions:
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• 𝑔𝐴(𝑥) = 𝐸𝐼𝐶 (𝑥): the original Expected Improvement with Constraints acquisi-
tion function [10, 17], used by CherryPick [2], which we use as baseline;

• 𝑔𝐵 (𝑥) = 𝑔𝐴(𝑥) · exp(−𝑘 𝑇 (𝑥)), the latter term being a [0, 1]-valued weight
for 𝑔𝐴. This correction factor is called nascent minima distribution function
[12], and it serves the purpose of turning 𝑇 (𝑥) into an acquisition-like function.
More precisely, the correction factor takes on values close to 1 if the estimated
execution time 𝑇 (𝑥) is small, thus making 𝑥 a desirable point, while it is closer
to 0 if such estimate is large;

• 𝑔𝐶 (𝑥) = 𝑔𝐴(𝑥) · 𝐼{𝑇 (𝑥 )≤𝑇𝑚𝑎𝑥 } , with 𝐼 being the indicator function: the search
is prevented in areas where the current estimated execution time violates the
threshold 𝑇𝑚𝑎𝑥 . Here we are using the model 𝑇 (𝑥) to estimate the current
feasible domain;

• 𝑔𝐷 (𝑥) = 𝑔𝐴(𝑥) · exp(−𝑘 𝑇 (𝑥)) · 𝐼{𝑇 (𝑥 )≤𝑇𝑚𝑎𝑥 } : the combination of cases B and
C.

Note that the original definition of the nascent minima distribution functions (used
in variants B and D) includes the normalization constant 1/𝐶𝑘 as a multiplicative
factor, with 𝐶𝑘 =

∫
A exp(−𝑘 𝑇 (𝑤)) d𝑤 > 0, as described in [12]. However, this

value is independent of 𝑥, therefore we can omit it when maximizing the acquisition
function in 𝑥.

Note that at each step of the algorithm, we train the ML regression model 𝑇 (·),
e.g., we fit the model with the data we have collected so far, obtaining a model which
can estimate 𝑇 (𝑥) for any 𝑥 ∈ A.

4 Experiments

We present experimental results using the techniques we have discussed in Sect. 3.
We test variants B, C, and D of the algorithm, as well as pure constrained BO
(represented by variant A), on two different big data applications, run with the
Apache Spark analytics engine. The first is Query26 application from the TPC-DS
industry benchmark, which we execute with input data size equal to 250 GB and time
threshold equal to 150 seconds (s). The second is an application performing K-means
clustering algorithm on a dataset with 15 million rows, under a time threshold equal
to 330 s. In both cases, we optimize the total cost in Eq. (1) on the number of cores 𝑥,
i.e., the minimization domain is uni-dimensional. The same three fixed initial points
were used for all variants (𝑛0 = 3).

Fig. 2 shows the comparison of pure constrained BO (top row) with our three
variants (other rows) at each algorithm iteration, when applied to Query26. In the left
panel, we represent the number of cores chosen by the algorithm at each iteration. The
solid horizontal line is the true optimum of the constrained optimization problem.
The vertical dashed line indicates the execution at which the stopping criterion kicks
in, and after which the recurring application at hand sticks to the best configuration
found by the algorithm. In the center panel, each bar represents a single execution.
The width of a bar represents the execution time of the job, while its height represents
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Fig. 2 Comparison of pure constrained BO (top row) with variants B, C, and D at each algorithm
iteration for Query26. Left panel: number of cores 𝑥 visited by the algorithm; center panel: cost of
each configuration; right panel: percentage error of the ML model.

the number of cores used. Therefore, the area of a bar is proportional to the cost
𝑓 (𝑥) for that particular execution (see Eq. (1)). We highlight the bars corresponding
to feasible and unfeasible configurations in different shades. The signed percentage
errors of the ML model for the execution time are displayed in the right panel. In
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Fig. 3 Comparison of pure constrained BO (top row) with variants B, C, and D at each algorithm
iteration for K-means. Left panel: number of cores 𝑥 visited by the algorithm; center panel: cost of
each configuration; right panel: percentage error of the ML model.

this case, we have used the Ridge regression method to estimate the execution time
𝑇 (𝑥), since [13] show that it is the most accurate regression method in this context,
with a mean absolute error smaller than 5%. In particular, 𝑇 (𝑥) = 𝑥⊤ 𝛽, where 𝛽 is
the estimate of the regression parameters under the Ridge regression method.



Bayesian optimization for cloud resource management through machine learning 11

At each iteration, the model is trained with all data from previous iterations, and
the error is evaluated on the new configuration chosen by the algorithm. We see in
the right panel of Fig. 2 that after one initial iteration with a large error, our ML
models quickly converge to errors very close to zero. This initial spike in the error
can be explained by the large distance between the 𝑛0 initialized points and the first
point selected by the algorithm. Indeed, in this particular experiment, the initial
points have a small number of cores. Therefore the algorithm, which is still in the
exploration phase, selects a configuration with a large number of cores (as seen in the
leftmost spike of the left panel), because it lies in a region of the domain that is still
unexplored. For this reason, the ML model struggles to perform accurate estimations
in the first iteration. After that, the ML model has accumulated enough information
and consequently it is able to produce more accurate estimates, as shown in the
following iterations in the right panel of Fig. 2. Finally, the termination criterion (see
the vertical dotted line) correctly assesses the optimality of the configuration, and
stops the exploration phase.

We show a similar plot for the K-means application in Fig. 3, for which we used
the same ML model as Query26. Furthermore, Table 1 summarizes a few noteworthy
average metrics from multiple runs of the algorithm, for both Query26 and K-means.
It is clear that each of our algorithm variants (B-D) outperforms the constrained
vanilla BO technique in [2] (variant A) with respect to multiple metrics. First of all,
in Figg. 2 and 3, we can see that the number of “wasted” unfeasible executions, i.e.,
ones whose execution time is over the threshold 𝑇𝑚𝑎𝑥 , decreases from 10-22 to just 1
or 2. In variants B-D, the ML model guides the exploration process towards feasible
points, by excluding those that are likely to be unfeasible. These variants reach
termination before the 6th iteration, whereas variant A does even struggle to reach
convergence. On average (see Table 1), the total amount of unfeasible executions
drops by two to three times. Furthermore, we measure the ratio of the total cost
of unfeasible executions over the total cost of all executions (i.e., over the entire
iteration budget), displayed as “ratio of unfeasible costs” in Table 1. With respect to
variant A, this ratio also decreases by two to three times. Finally, the average cost of
the feasible configuration (which we normalize over the cost of variant A in Table 1
for the sake of clarity) decreases by about 13% in Query26, while always remaining
competitive with variant A in the K-means case.

Table 1 Measured metrics for variants A-D of the algorithm
scenario var. A var. B var. C var. D

Query26
unfeasible executions 11.23 4.34 4.11 4.31

ratio of unfeasible costs 0.36 0.14 0.13 0.14
norm. mean feasible cost 1.00 0.87 0.87 0.88
K-means

unfeasible executions 10.52 5.74 5.93 5.96
ratio of unfeasible costs 0.34 0.20 0.21 0.21
norm. mean feasible cost 1.00 1.00 1.01 1.00
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5 Discussion

In this paper, we have presented a novel BO algorithm integrated with ML techniques,
to find the optimal configuration for a recurring job running in the cloud, under a given
time threshold. ML models help in the crucial task of recognizing configurations
which lead to unfeasible executions, saving on unnecessary additional costs. Indeed,
experiments on big data applications show that our algorithm significantly reduces
the amount of unfeasible executions with respect to a pure constrained BO approach,
as well as reducing the average cost of the configuration. Overall, each of our
algorithm variants outperforms the state-of-the-art BO technique used as benchmark.

Convergence guarantees for BO shown in [3, 14] may no longer hold when
introducing ML models in the expression of the acquisition function. However,
we stress that in the context of cloud computing optimization, the reduction of
exploration iterations is prioritized over the quality of the solution, which can also
be near-optimal rather than optimal. Therefore, the issue of convergence is not
relevant in this context. In such a setting, if the given iteration budget were limited
enough, a traditional BO algorithm would not be able to reach convergence in the
proper sense either. Besides this remark, note that our algorithm does have a sensible
termination criterion, which assesses whether the current configuration is likely to
be near-optimal, therefore taking the role of the former convergence guarantees.

A preliminary version of this manuscript has appeared as [9].
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