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Abstract

Spatio-temporal areal data can be seen as a collection of time series which are spatially
correlated according to a specific neighboring structure. Incorporating the temporal and spatial
dimension into a statistical model poses challenges regarding the underlying theoretical frame-
work as well as the implementation of efficient computational methods. We propose to include
spatio-temporal random effects using a conditional autoregressive prior, where the temporal cor-
relation is modeled through an autoregressive mean decomposition and the spatial correlation
by the precision matrix inheriting the neighboring structure. Their joint distribution constitutes
a Gaussian Markov random field, whose sparse precision matrix enables the usage of efficient
sampling algorithms. We cluster the areal units using a nonparametric prior, thereby learning
latent partitions of the areal units. The performance of the model is assessed via an applica-
tion to study regional unemployment patterns in Italy. When compared to other spatial and
spatio-temporal competitors, the proposed model shows more precise estimates and the addi-
tional information obtained from the clustering allows for an extended economic interpretation
of the unemployment rates of the Italian provinces.

1. Introduction
Data representing spatial features collected at different time points have witnessed an increase in availability in

recent years. The underlying areal units can be defined by geographical boundaries (e.g., regions, countries, munic-
ipalities) or by a tessellation of the territory of interest. This type of spatio-temporal data is commonly encountered
in fields such as Social Sciences, Telecommunications, Economics, Epidemiology, and Image Analysis. A current
example is the count of COVID-19 registered cases, often communicated on a daily basis per country and region. We
can therefore think of spatio-temporal areal data as a collection of time series, whose spatial correlation depends on
the geographical location of the underlying areal units.

In this work, we focus on the analysis of data regarding the evolution of unemployment rates in Italy. Italy has one
of the highest unemployment rates in the European Union and exhibits well-known economic disparities between the
northern and the southern regions (see Brunello et al., 2001). The global economic and the following eurozone crisis
had a destructive impact on the Italian economy, leading to a sharp rise of unemployment across the entire country
(see Di Quirico, 2010; Bull, 2018). The geographical dichotomy as well as the upward trend of the unemployment rate
motivates the need for a flexible modeling approach, explicitly incorporating both spatial and temporal dimensions.
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In addition to modeling the data in space and time, we are interested in uncovering economic patterns across
provinces, allowing for the identification of groups of areal units sharing similar features. To this end, we adopt a
model-based clustering approach exploiting tools from the Bayesian nonparametric (BNP) literature. More specifi-
cally, we make use of the popular Dirichlet Process (DP) prior (Ferguson, 1973), which avoids the need of fixing the
number of clusters in the model. See Quintana and Iglesias (2003) for the relationship between model-based clustering
and the DP prior.

The body of literature on Bayesian spatio-temporal models for areal data in regional science and quantitative
spatial analysis is large. Pars pro toto, we mention the textbooks by Banerjee et al. (2014), Haining and Li (2020),
and Sahu (2022). A widely used class of models for the study of areal data is that of conditional autoregressive
(CAR) models, introduced in Besag (1974, 1975). In a CAR model, the spatial dependence among the observations is
captured by a correlation matrix containing information on the neighboring structure of the data. This approach can be
used to define a prior distribution for random effects in a Bayesian hierarchical model. Bayesian hierarchical models
are particularly useful in modeling related observations, such as in the case of areal time-varying data, allowing to
capture the underlying dependence structures and providing full inference and uncertainty quantification. Different
CAR prior specifications can be found in the literature, such as the intrinsic-CAR (ICAR) and Besag-York-Mollié
priors (both in Besag et al., 1991). Here, we follow Leroux et al. (2000), who specify a set of spatially correlated
random effects within a generalized regression setting. CAR models can be thought of as the conditional specification
of a (Gaussian) Markov random field (GMRF). The different CAR models proposed in the literature correspond to
a specific choice of the precision matrix of the corresponding GMRF (see Rue and Held, 2005, for more details).
Thanks to the Markov property, the precision matrix of a GMRF is usually sparse, enabling efficient computations
through algorithms for sparse matrices based on results from linear algebra. An algorithm for block updating for
Markov random fields models can be found in Knorr-Held and Rue (2002).

In a Bayesian framework, approaches for dealing with both spatial and temporal dependence in areal data can
be found, among others, in Ugarte et al. (2012), Rushworth et al. (2014), Lawson (2018), and Napier et al. (2018).
Beraha et al. (2021) consider the problem of spatially dependent areal data and propose modeling the data collected
for each areal unit through a finite mixture of Gaussian distributions. The spatial dependence is introduced via a joint
distribution for a collection of vectors on the simplex, which is a logistic transformation of Gaussian multivariate
CAR models. Nicoletta et al. (2022) propose a Bayesian model for spatio-temporal data based on a generalized linear
mixed effects model. In the spirit of the current paper, Fischer and LeSage (2015) calculate the posterior predictive
probabilities for the assignment of areal units to clusters using a spatio-temporal stochastic panel relationship of
economic variables such as income and human capital.

Of particular interest is the model by Lee and Lawson (2016), introducing temporal dependence among areal units
through an autoregressive structure on the means of the GMRF over time. The model in Lee and Lawson (2016)
allows for clustering by modeling the spatio-temporal parameters through a parametric mixture. The model proposed
in this work can be seen as an extension of Lee and Lawson (2016). We introduce location-specific autoregressive
parameters and use a nonparametric prior for model-based clustering of the areal-specific time series. In particular,
we employ the popular Dirichlet process prior (Ferguson, 1973) to jointly model the effects of the time- and areal-
specific covariates on the evolution of the unemployment rates and the autoregressive coefficients used to specify the
distribution of the spatially correlated random effects. From a computational point of view, we exploit the fact that the
proposed spatio-temporal model can be seen as a GMRF and combine the algorithms in Knorr-Held and Rue (2002)
and McCausland et al. (2011) to propose an MCMC algorithm for efficient posterior simulation.

A preliminary version of the model proposed in this work can be found in Cadonna et al. (2019), where the authors
study the use of mobile phones in the municipality of Milan with the goal of investigating the local population density
dynamics. However, while they use harmonic components which are constant across the areal units, we include time-
and areal-specific predictors and cluster the areal units. Moreover, the spatial domain in Cadonna et al. (2019) is
a regular bivariate grid of the metropolitan area of Milan, while here the proximity matrix is given by neighboring
Italian administrative provinces. We point out that we introduce a Bayesian model for clustering the areal-specific
time series of the unemployment rates with cluster estimates that do not vary with time. Time-varying clustering of
the provinces would require a different modeling approach, see, for instance, Page et al. (2022), and De Iorio et al.
(2019). Nieto-Barajas and Contreras-Cristán (2014), instead, use subject-specific parameters from a BNP prior to
cluster time series of share prices in the Mexican stock exchange.

The main contributions of this paper to the analysis of spatio-temporal areal data are the following: (a) perform
model-based clustering of areal time series through the effects of time- and areal-specific predictors as well as CAR-
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modeled random effects; (b) account for spatio-temporal random effects using the CAR specification; (c) implement
an efficient MCMC algorithm based on the GMRF interpretation of the CAR prior by exploiting the sparse structure
of the spatial correlation matrix; (d) provide interpretable estimates of the evolution of unemployment rates in Italy
and its connection to economic factors; (e) offer a thorough comparison of the proposed model with competitors,
illustrating the advantages of the proposed approach. This work shows the merits of Bayesian modeling in terms of
interpretability, outperforming existing complex nonlinear models such as the one in Mínguez et al. (2020) and can
help economists and policy-makers to better understand the evolution of important macroeconomic quantities.

The remainder of this paper is organized as follows. Section 2 describes the motivating application and introduces
a preliminary exploratory analysis of the data under study. In Section 3, we present the spatio-temporal clustering
model including random effects and a BNP prior, which induces clustering through a mixture of the spatio-temporal
parameters. Section 4 displays a sketch of the MCMC algorithm used for posterior inference and Section 5 presents
the results of the empirical application. Finally, Section 6 concludes the paper with a discussion. Appendices A and B
provide details on the derivation of the full conditional distributions and the MCMC algorithm. Appendix C shows
the results of an extensive sensitivity analysis assessing the effect of the method of loss calculation used to estimate
the partition of the areal units. Appendix D provides a comparison of the proposed model with alternative model
specifications. Finally, Appendix E presents the results of a simulation study with synthetic data.

2. Data and exploratory analysis
In this section, we illustrate the data motivating the development of the proposed approach. We base the choice of

dataset on Mínguez et al. (2020), who approach the problem of modeling spatio-temporal data using a semiparametric
model including P-splines. The authors provide a thorough economic background for the choice of data, which is
briefly reviewed here. First, we describe the response variable used in the analysis, the unemployment rate in Italy,
and how it varies over time and across provinces. Then, we introduce the explanatory variables and elaborate on their
correlations and distinctions between the North and the South.

2.1. Unemployment Data
This study focuses on I = 110 Italian provinces and on T = 13 years from 2005 to 2017. Specifically, we use the

third level of the “nomenclature des unitès territoriales statistiques” (NUTS) hierarchy. For each Italian province and
each year, provincial unemployment rates are provided by the Italian National Institute of Statistics (ISTAT). More
specifically, for province i at year t, the unemployment rate is defined as unratei,t = 100×Ui,t∕LFi,t, where Ui,t is the
number of unemployed people and LFi,t is the labor force, including both the employed and unemployed. Figure 1
shows the average magnitude of the unemployment rate across Italian provinces. The economic differences between
northern and southern provinces are clearly visible. This dichotomy has further increased over the years from 2012 to
2017, as can be observed in Figure 2, displaying the evolution of unemployment rates from 2005 to 2017. Apart from
distinctively higher unemployment rates, we additionally see a stronger upwards trend in recent years for the southern
provinces. We draw the border between the North and the South according to the first level of the NUTS hierarchy
above the regions Abruzzo, Molise, and Campania.

As exploratory measures of spatial autocorrelation we compute Moran’s I (MI, Moran, 1950) and Geary’s C
(GC, Geary, 1954). These can be interpreted as the spatial couterpart of the lagged autocorrelation coefficient. MI
ranges from −1 to 1, indicating negative and positive spatial autocorrelation, respectively. Values of GC between 0
and 1 indicate positive, and values above 1 negative spatial autocorrelation. For the raw data, we obtain an average
value over all years of MI = 0.78 and GC = 0.21, both values signifying strong positive spatial autocorrelation.
Assuming differences between northern and southern provinces, we regress the unemployment rates on the latitude
of the provinces and compute both measures on the residuals. The new results are MI = 0.21 and GC = 0.76. We
conclude that when controlling for the known dichotomy, the statistics are significantly lower, but still indicate spatial
autocorrelation in the data.

2.2. Explanatory variables
As mentioned before, the choice of explanatory variables follows Mínguez et al. (2020). Seven explanatory

variables are selected for the econometric analysis, representing either so-called equilibrium or disequilibrium factors
(Partridge and Rickman, 1997). The variable representing the disequilibrium view is the employment growth rate
(empgrowtℎ), defined as the annual change of employment for each province. The remaining variables account for
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Figure 1: Average unemployment rates in Italian provinces from 2005 to 2017.
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Figure 2: Unemployment rates over time from year 2005 to 2017.

the equilibrium view. In order to capture the economic structure of the individual provinces, we include the share of
people working in the economic sectors agriculture (agri), industry (ind), construction (cons), and services (serv).
We distinguish between urban and rural areas by including the logarithm of the population density (lpopdens). The
participation rate (partrate) is defined as the ratio between the total labor force and the working population and serves
as a proxy for labor supply. Table 1 shows summary statistics of the variables used in this work.
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variable Mean St. Dev. Min 1st Qu. 3rd Qu. Max

unrate 9.942 5.484 1.873 5.774 12.927 31.456
agri 5.229 4.017 0.037 2.227 7.416 24.782
ind 20.252 8.902 4.486 12.908 26.531 47.86
cons 8.142 2.178 3.242 6.481 9.525 16.579
serv 66.366 7.674 45.155 61.351 71.624 88.15
partrate 63.42 8.124 40.615 56.584 69.746 76.058
empgrowth -0.006 4.222 -45.892 -1.689 1.924 60.524
lpopdens -1.762 0.809 -3.482 -2.271 -1.304 0.961

Table 1: Summary statistics of the response and predictors.

Figure 3: Scatter plots, histograms and correlations of pairs of variables separated into North and South.

Figure 3 shows scatter plots, histograms, and Pearson correlations of the unemployment rate and the seven covari-
ates, grouped into northern and southern provinces. Additionally, the Pearson correlation coefficient is displayed for
all pairs as well as for their northern and southern parts separately. The figure shows that, while variables like unrate,
agri, ind or partrate exhibit the described dichotomy, there is no clear distinction between the North and the South
for the remaining variables. We observe a negative correlation between the unemployment rate and ind, and a positive
one with serv. The sign of the correlation can change when looking at the North and South separately, as in the case
of partrate or agri. Furthermore, we see a strong negative correlation between the employment in the industry and
service sector. The response and explanatory variables are standardized separately by subtracting the overall sample
mean and dividing by the overall sample standard deviation. Due to political reformation in Italy and the abolishment
of seven provinces, missing data was imputed using the predictive mean matching method via the R package mice
(van Buuren and Groothuis-Oudshoorn, 2011).1

3. Model specification
In this section, we introduce a novel Bayesian hierarchical model that allows for the study of spatio-temporal

dependencies and uncovering the underlying clustering structure of areal data. The former is achieved by including
1As a robustness check and to avoid problems with compositional data, we additonally estimated the model on log-ratios of agri, ind, and serv

against cons as baseline economic sector. The results are comparable and show only minor qualitative differences. For this reason and in order to
stay consistent with Mínguez et al. (2020), we continue our analysis with the original dataset.
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random effects via a CAR prior and is described in Section 3.1. The latter is achieved by using a Bayesian nonpara-
metric prior for the areal-specific parameters. Section 3.2 describes this feature and gives a brief overview of the
DP.

3.1. Likelihood and spatio-temporal random effects
Let Y =

[

Yit
]

, i = 1,… , I , t = 1,… , T , be a matrix of areal observations, such that Y ∈ ℝI×T . Each entry
Yit represents the observed value of interest at the i-th areal unit at time t, which in the application under study
corresponds to the unemployment rate in province i at year t. For each areal unit and at each time point, we consider a
set of p predictors and encode them together with an intercept term in the (p + 1)-dimensional column vector xit. For
i = 1,… , I and t = 1,… , T , we model Yit as follows:

Yit = xit′�i +wit + �it, �it
iid∼ N

(

0, �2
)

(1)

where xit′ represents the transpose of the vector xit, �i the vector of regression parameters for area i, and wit a spatio-
temporal random effect, discussed later in detail. Furthermore, we assume areal-specific Gaussian error terms with
variance �2.

Let Xt =
[

x1t,x2t,… ,xIt
]′ be the matrix of predictors at time t and let wt =

(

w1t,… , wIt
)′ and �t =

(

�1t,… , �It
)′ be the vectors of random effects and error terms, respectively. Moreover, let B =

[

�1, �2,… , �I
]

be a matrix containing the regression coefficients. Eq. (1) can then be re-written in vector form, for each t = 1,… , T ,
as follows:

Yt = diag
(

XtB
)

+wt + �t (2)

where diag
(

XtB
)

indicates the main diagonal of the matrix XtB and Yt the observations for all areal units at time
t. The notation adopted in Eq. (2) is convenient, as it allows modeling of the spatio-temporal random effects at time
t directly. In this work, we opt for an autoregressive decomposition similar to the one described by Rushworth et al.
(2014) and Lee and Lawson (2016). The temporal correlation is induced through the conditional expected value, while
the precision matrix induces the spatial correlation. Specifically:

wt|wt−1 ∼ NI
(

diag (�)wt−1, �
2Q (�,W )−1

)

, t = 2,… , T (3)

w1 ∼ NI
(

0, �2Q (�,W )−1
)

where � = (�1,… , �I ) is a vector of autoregressive coefficients and diag (�) is a diagonal matrix with � as its entries.
The random effects in Eq. (3) are modeled as a vector autoregressive process of order one, in short VAR(1). The
covariance matrix is composed of the scale parameter �2 and the inverse of the matrix Q (�,W ).

From Eq. (3) it is clear that the choice of Q (�,W ) plays a crucial role in modeling the spatial correlation. The
matrix Q (�,W ) is of dimension I × I and depends on two quantities, namely the scalar parameter � and the neigh-
boring matrix W . The neighboring matrix W ∈ {0, 1}I×I is application-specific and reflects the contiguity structure
of the I areal units. Specifically, Wi,j = 1 if areal units i and j are adjacent (i.e., they are neighbors), and Wi,j = 0
otherwise. Following Leroux et al. (2000), we define Q (�,W ) = � (diag (W 1) −W ) + (1 − �) II , where II is the
I-dimensional identity matrix and 1 is a T -dimensional vector of ones. Let vi be the number of neighbors of site i.
The matrix diag (W 1) −W has elements equal to vi if i = j, equal to −1 if i and j are neighbors, and equal to 0
otherwise. The parameter � allows modeling the spatial correlation among the random effects: � = 0 corresponds to
independent spatial random effects, while � = 1 corresponds to the ICAR prior. In the latter case, the expectation for
the random effect in areal unit i at time t, namely wit, conditionally on the previous times and the other areal units, is
given by the sum of �iwit−1 and the average of the random effects in geographically adjacent areal units at time t. It
is important to point out that the parameter � itself is not a correlation parameter, and its precise interpretation can be
difficult. While Lee and Lawson (2016) choose to fix � = 1 to enforce spatial smoothing, we assume that � follows a
beta distribution a priori. The choice of the hyper-parameters of this distribution is specified in Section 5.1.

The joint distribution of w̃ =
[

w1,… ,wT
]

is a GMRF. Specifically, it has mean zero and its precision matrix
Ω is tri-block diagonal with T blocks of dimension I × I . See Section A.2 for details on the derivation of Ω. This
representation enables the use of known algorithms for posterior sampling of the time varying effectswt. In particular,
we implement the algorithm proposed in McCausland et al. (2011). The efficiency of the algorithm for banded
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matrices increases with lower bandwidths. As the precision matrix Q inherits the bandwidth from W , we capitalize
on this efficiency gain by first reorganizing W into a banded matrix and then minimizing its bandwidth using the
algorithm of Cuthill and McKee (1969). The choice of the hyperparameters is specified in Section 5.1.

3.2. Bayesian nonparametric areal clustering
As mentioned in Section 1, we are interested in detecting which areal units exhibit similar patterns. To this end,

we allow for clustering through the inclusion of the DP prior for some of the areal-specific parameters. A process P
distributed as a DP can be seen as an infinite mixture of point-masses at i.i.d. locations:

P (⋅) =
+∞
∑

j=1
!j��j (⋅)

where ��(x) is the Dirac’s delta, equal to 1 when x = �, and zero otherwise. The other elements specifying the

mixture are the infinite sequence of locations �1, �2,…
iid∼ P0 and the infinite sequence of weights, which follows the

stick-breaking construction (Sethuraman, 1994):

!j = vj
∏

l<j
(1 − vl), j = 2, 3,… , !1 = v1

v1, v2,…
iid∼ Beta(1, �)

with Beta(a, b) representing the beta distribution with mean a∕(a + b) and variance ab∕((a + b)2(a + b + 1)). The
distribution P0 is the base measure and represents the mean distribution around which the DP is centered, while the
mass parameter � > 0 indicates its variability around P0. This definition of the DP highlights the discreetness of its
trajectories, which in turn implicitly induces clustering. Letting �i =

(

�i, �i
)

∈ ℝp+2, i = 1,… , I , and placing a DP
prior on the vectors �1,… ,�I allows for clustering the regression coefficients �i as well as the temporal persistencies
�i. We write:

�1,… ,�I |P
iid∼ P

P ∼ DP (�, P0)

This can be equivalently represented through the introduction of a vector of areal-specific allocation variables s =
(s1,… , sI )′ and a set of unique values �⋆ =

(

�⋆1 ,… ,�⋆KI

)

, with KI ≤ I and such that si = j ⟺ �i = �⋆j .
This representation defines a partition {C1, C2,…CKI } composed of KI clusters Cj = {i ∈ {1,… , I}|si = j}, for
j = 1,… , KI . To each cluster corresponds a distinct value of the parameter vector �⋆j . The vector of allocations s
follows, a priori, a Pólya urn scheme with allocation probabilities:

PólyaUrn(s ∣ �) = P (s1)
I
∏

i=2
P
(

si ∣ s1,… , si−1
)

P
(

si ∣ s1,… , si−1
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

nij
i − 1 + �

, j = 1,… , KI

�
i − 1 + �

, j = KI + 1

where nij is the size of the j-th cluster before we assign the i-th observation, that is the size of {i′ < i|si′ = j}. This
means that the joint prior of s can be computed as the product of all conditional distributions of si, given s1,… , si−1,
for all i = 1,… , I . The value assumed by si in this conditional distribution is either an “old” value among already
observed s1,… , si−1 or a “new” value, corresponding to an additional cluster. The first item is always allocated to

cluster 1, i.e. P (s1 = 1) = 1, and it is associated to the first unique value �⋆1 . Let us define �⋆s =
(

�⋆s1 ,… , �⋆sI

)

and
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B⋆s =
(

�⋆s1 ,… , �⋆sI
)

. Conditioning on the allocation variables s and specifying priors for the remaining parameters,
we can write the full model as follows, for all i = 1,… , N and t = 1,… , T :

Yit ∣ xit, �⋆si , wit, �
2, si

ind∼ N
(

x′it�
⋆
si
+wit, �2

)

wt ∣ wt−1, �⋆s , s, �
2, �,W ∼ NI

(

diag(�⋆s )wt−1, �
2Q(�,W )−1

)

w1 ∣ �2, �,W ∼ NI
(

0, �2Q(�,W )−1
)

(4)

�2 ∼ Inv-Gamma
(

a�2 , b�2
)

�2 ∼ Inv-Gamma
(

a�2 , b�2
)

� ∼ Beta
(

��, ��
)

(5)

s ∣ � ∼ PólyaUrn(s ∣ �)
� ∼ Gamma

(

a� , b�
)

�⋆1 ,… ,�⋆KI |�� ,Σ� , a� , b�
iid∼ P0, �⋆j =

(

�⋆j , �
⋆
j

)

, j = 1,… , KI

P0
(

d�⋆
)

= Np+1
(

d�⋆ ∣ �0,Σ0
)

Beta(−1,1)
(

d�⋆ ∣ a� .b�
)

which completes the model description by specifying the prior distribution for the location parameters, P0(d�⋆), and
for the hyperparameters �2, �2, and �. In Eq. (4), Beta(−1,1)(a, b) stands for the transformed beta distribution over
the interval (−1, 1) with parameters a, b > 0, obtained by applying a linear transformation 2B − 1 to a standard
Beta(0,1)(a, b)-distributed random variable B. We denote by Inv-Gamma (a, b) the inverse-gamma distribution with
mean b∕(a − 1) and mode b∕(a + 1), where a and b are the shape and scale parameter respectively. Moreover, we
denote with Gamma (a, b) the gamma distribution with shape parameter a and rate parameter b.

Note that, since we are clustering the areal-specific time series Yi, i = 1,… , I , the proposed model implies a
clustering of time series. Cluster estimates of the areal units are based on the posterior distribution of the vector
of allocation variables s, obtained minimizing the posterior expectation of a suitable loss function. Some of the
most popular choices of loss functions for partitions include the Binder loss function (Binder, 1978), the variation
of information (VI, Meilă, 2007; Wade and Ghahramani, 2018), or generalizations thereof (Dahl et al., forthcoming).
Since the estimated number of clusters largely depends on the chosen method of loss calculation, we conduct an
extensive sensitivity analysis that can be found in Appendix C. The flexibility of Bayesian hierarchical models allows
for a multitude of similar alternative model specifications, especially regarding the choice of the prior. To this end, we
compare possible alternatives and present the results in Appendix D.

4. Algorithm
Let # be the vector of unknown model parameters, that is # = (�⋆, �2, �⋆, s,w1,… ,wT , �2, �, �). To obtain

posterior samples from the joint distribution of the parameters, we implement a Metropolis-Hastings within Gibbs
sampler. After setting initial values for the parameters �⋆, �2, �⋆, s,w1,… ,wT , �2, �, and �, at each iteration of the
MCMC algorithm we perform the following steps:

1. Sample the allocation variables si, i = 1, ..., I , through the algorithm described in Favaro and Teh (2013),
which in our case amounts to an extension of the popular Algorithm 8 by Neal (2000), that includes a re-use
step. Details can be found in Appendix B.

2. Sample the unique values (�⋆, �⋆) conditioned on all the other parameters and the allocation variables s . The
full conditional distribution for �⋆ is conjugate and Gaussian, while sampling �⋆ requires a Metropolis-Hastings
step. Further details can be found in Appendix B.

3. Sample � from a mixture of gamma distributions using the auxiliary variable sampler by West (1992). Details
can be found in Appendix B.

4. Sample the spatio-temporal random effects (w1,… ,wT )′ from a multivariate normal distribution using the
algorithm proposed in McCausland et al. (2011). Details can be found in Appendix A.

5. Sample �2 from an inverse-gamma distribution. Details can be found in Appendix B.
6. Sample �2 from an inverse-gamma distribution. Details can be found in Appendix B.
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Cluster (size) intercept agri ind cons serv partrate empgrowth lpopdens
Cluster 1 (55) -0.282 -0.402 -0.947 -0.201 -0.784 -0.090 -0.056 0.057
Cluster 2 (22) 0.056 0.433 0.620 0.157 0.755 0.022 -0.030 -0.002
Cluster 3 (9) -0.536 -0.150 -0.092 0.036 -0.050 0.764 -0.212 0.114
Cluster 4 (9) 1.924 0.042 0.590 -0.226 0.459 0.633 -0.171 0.130
Cluster 5 (9) 2.786 0.119 0.299 0.067 0.318 1.034 -0.166 -0.251
Cluster 6 (1) 1.268 -1.710 -0.108 0.227 0.491 -0.064 -0.314 -1.448
Cluster 7 (5) 0.481 -0.687 -1.151 -0.344 -1.021 0.658 -0.163 -0.319

Table 2: Posterior means of the regression coefficients � within each cluster of the estimated, selected partition.

7. Sample � using a Metropolis-Hastings step, specifically a random walk on the logit transformation of �. Details
can be found in Appendix B.

5. Empirical application
In the following, we analyze the Italian unemployment data using the proposed model and algorithm introduced

in Sections 3 and 4, respectively. We carefully elicit the prior distributions used in the model, discuss strategies
to choose a representative partition and interpret the implied economic findings. To conclude, we benchmark the
proposed approach in terms of out-of-sample forecasting capabilities against a variety of competitor models.

5.1. Prior elicitation and sampling details
We set the hyperparameters of P0 to be �0 = 0, Σ0 = Ip+1, �� = 1, �� = 1, representing weak prior information.

For �2 and �2 we choose an inverse-gamma distribution with parameters ��2 = ��2 = 3 and ��2 = ��2 = 2, implying
unitary a-priori mean and variance for both parameters. In line with the literature (e.g., Banerjee et al., 2014), we set
an informative prior for � via a beta distribution with �� = 6 and �� = 1, so that E[�] = 6∕7 and V [�] ≈ 0.015.

Due to its influential nature on the posterior, in particular on the number of clusters, we do not fix the mass
parameter � but instead assume that a priori it follows gamma distribution with parameters a� = 3 and b� = 2,
yielding E[KI ] ≈ 6.75 and V [KI ] ≈ 7.32 . These numbers are in agreement with prior information on the number
of groups of provinces where the economic development of Italian regions is different, e.g. north-west, north-east,
center, south, and the two islands.

The use of a Bayesian nonparametric prior in the proposed model allows for clustering of the areal units (i.e., the
Italian provinces). To provide an point estimate of the partition of the provinces, we minimize the posterior expecta-
tion of specific loss functions, namely the Binder loss (Binder, 1978) and the Variation of Information (VI, Wade and
Ghahramani, 2018). These methods of expected loss calculation are invariant to the label-switching problem and can
therefore be applied directly to the posterior samples of s.An extensive comparison of these methods is presented in
Appendix C. In what follows, we present details based on the chosen partition estimated by minimizing the posterior
expectation of the Binder loss function. The comparison metrics in Appendix C confirm that the model retains pre-
dictive accuracy under the chosen partition, while the lower number of clusters of mostly contiguous provinces allows
for a clearer economic analysis. The partition is displayed in Figure 4.

5.2. Posterior Inference
We continue by analyzing the clustering in Figure 4 and its implications on the underlying unemployment differen-

tials. To this aim, we re-run the MCMC algorithm conditionally on the Binder loss partition estimate and summarize
the estimated � coefficients within each cluster. We discard 10,000 draws as burn-in and keep every 3rd draw of the
remaining 15,000 draws, thus using the 5,000 remaining draws for posterior inference. The posterior means of the
covariate effects are reported in Table 2.

Figure 4 shows that Cluster 1 is predominantly made up of northern and central provinces, constituting the largest
cluster. Interestingly, the province Taranto as well as the southern regions Abruzzo and Basilicata are also assigned to
this cluster. A possible reason could be that, amongst all southern provinces, these have strikingly low unemployment
rates. The second cluster contains provinces which are scattered geographically and three out of eight provinces of
Sardinia. The third cluster is made up of a small group of northern provinces like for example Alessandria, Vercelli,
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Figure 4: Partition of the Italian provinces obtained by minimizing the posterior expectation of the Binder loss func-
tion. A detailed sensitivity analysis motivating the choice of the method of loss calculation can be found in Ap-
pendix C.

and Novara, while the fourth contains a few southern provinces: Carbonia-Iglesias in Sardinia, Napoli, Caserta, Lecce,
in Calabria the provinces Cosenza, Catanzaro, and Reggio Calabria, and Messina, and Trapani in Sicily. Cluster 5
contains almost all of Sicily, Foggia, Barletta-Andria-Trani, and Crotone. Cluster 6 is a singleton cluster made up of
the province Medio Campidano. Its classification as a single cluster is consistent among most partitions examined
in Appendix C and is attributable to the highly negative coefficients of agri and lpopdens. Cluster 7 contains the
provinces Imperia, Massa Carrara, Frosinone, Oristano, and Ogliastra. We can observe in Figure 1 that they exhibit
similar average unemployment rates. Note that it is the only cluster where the coefficients corresponding to the
economic sectors are all significantly negative.

One of the most pronounced results are the positive and negative intercepts for the southern and northern provinces,
respectively. This result clearly captures the well-known North-South dichotomy, also displayed in Figure 1. In order
to facilitate the interpretation of the cluster-specific coefficients, Figures 5 and 6 depict the average unstandardized
observed covariates, the corresponding posterior mean �̂ and the kernel density estimates of the posterior distribution
of �. As every cluster has only one set of � coefficients, each of the maps depicting the estimated values shows seven
different hues of the chosen color.

Observing both a negative and a positive effect of the participation rate might seem ambiguous, but is in line with
the literature according to Elhorst (2003). A negative effect can stem from the fact that low participation rates are often
coupled with low investments in human capital and low commitment to work, both attributes spurring unemployment.

A. Mozdzen, A. Cremaschi, A. Cadonna, A. Guglielmi and G. Kastner Page 10 of 27



Bayesian modeling and clustering for spatio-temporal areal data: An application to Italian unemployment

5

10

15

20

36°N

38°N

40°N

42°N

44°N

46°N

 8°E 10°E 12°E 14°E 16°E 18°E

Cluster 3
Cluster 1
Cluster 2
Cluster 7
Cluster 6
Cluster 4
Cluster 5

36°N

38°N

40°N

42°N

44°N

46°N

 8°E 10°E 12°E 14°E 16°E 18°E

Cluster_1

Cluster_2

Cluster_3

Cluster_4

Cluster_5

Cluster_6

Cluster_7

−2 0 2 4

Intercept

5

10

15

20

36°N

38°N

40°N

42°N

44°N

46°N

 8°E 10°E 12°E 14°E 16°E 18°E

Cluster 6
Cluster 7
Cluster 1
Cluster 3
Cluster 4
Cluster 5
Cluster 2

36°N

38°N

40°N

42°N

44°N

46°N

 8°E 10°E 12°E 14°E 16°E 18°E

Cluster_1

Cluster_2

Cluster_3

Cluster_4

Cluster_5

Cluster_6

Cluster_7

−2 −1 0 1

Agriculture (agri)

10

20

30

36°N

38°N

40°N

42°N

44°N

46°N

 8°E 10°E 12°E 14°E 16°E 18°E

Cluster 7
Cluster 1
Cluster 6
Cluster 3
Cluster 5
Cluster 4
Cluster 2

36°N

38°N

40°N

42°N

44°N

46°N

 8°E 10°E 12°E 14°E 16°E 18°E

Cluster_1

Cluster_2

Cluster_3

Cluster_4

Cluster_5

Cluster_6

Cluster_7

−2 −1 0 1 2

Industry (ind)

6

8

10

12

36°N

38°N

40°N

42°N

44°N

46°N

 8°E 10°E 12°E 14°E 16°E 18°E

Cluster 7
Cluster 4
Cluster 1
Cluster 3
Cluster 5
Cluster 2
Cluster 6

36°N

38°N

40°N

42°N

44°N

46°N

 8°E 10°E 12°E 14°E 16°E 18°E

Cluster_1

Cluster_2

Cluster_3

Cluster_4

Cluster_5

Cluster_6

Cluster_7

−0.4 0.0 0.4

Construction (cons)

Figure 5: Visualization of intercept, agri, ind, cons (top to bottom). Unstandardized covariates, averaged over time
(left). Posterior means (middle) and posterior kernel density estimates with 5%, 50%, and 95% quantiles (right) of the
corresponding regression coefficients. The first map (top-left) shows the average unstandardized response.
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Figure 6: Visualization of serv, partrate, empgrowtℎ, lpopdens (top to bottom). Unstandardized covariates, averaged
over time (left). Posterior means (middle) and posterior kernel density estimates with 5%, 50%, and 95% quantiles
(right) of the corresponding regression coefficients.
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Figure 7: Average estimated spatio-temporal random effects (left panel) and the estimated time series for each province
(right panel). The yellow and orange outlines on the map delineate the northern and southern Italian provinces,
respectively.

The positive effect on the other hand could indicate an insufficient job offer.
Cluster 2 includes provinces with a somewhat puzzling variety of economic and social characteristics. It encom-

passes the wealthier Bergamo as well as Torino, where the social fabric of the metropolitan area is speckled, and some
southern provinces. The latter, however, exhibit comparably low unemployment rates among the South. As a result,
the estimates of the intercept and the � coefficients associated to partrate, lpopdend, and empgrowtℎ are close to
zero, as can be seen in Table 2 and Figures 5 and 6. Attributes that distinguish Cluster 3 from the rest of the North are
most notably the comparably high coefficients of partrate as well as the low coefficient of empgrowtℎ. The maps in
Figure 6, corresponding to the latter, show that the provinces included in Cluster 3 have moderate values of employ-
ment growth and a very low � estimate, clearly standing out among the surrounding provinces. These results, together
with the high �̂partrate, suggest an insufficient offer in jobs in this cluster. Member provinces of the southern Clusters
4 and 5 are characterized by similar social issues, in addition to high values of the unemployment rates. However,
Table 2 shows that the two clusters differ by the effect of the population density on the unemployment rate. The
main driver of this distinction is possibly the province Napoli which, as we can observe in Figure 6, has the highest
population density among all provinces. In addition, Cluster 5 shows an overall higher level of unemployment.

A one to one comparison of the estimated effects with the results in Mínguez et al. (2020) is not possible, as
our model estimates an individual set of coefficients for every cluster and additionally includes an intercept term.
However, Section 5.3 presents a comparison in terms of out-of-sample prediction.

The estimated spatio-temporal random effects are depicted in Figure 7. Both the map and the time series show a
clear distinction between northern and southern provinces. The map strongly resembles Figure 1, implying that the
random effects capture the differing levels of unemployment rates among the provinces. The pattern of the time series
resembles Figure 2, showing an upwards trend among all provinces.

5.3. Competitor models
In order to assess the performance and accuracy of the proposed model, we compare it to competitor models

found in the literature on spatio-temporal data analysis. To ensure convergence and improve mixing for the proposed
Bayesian spatio-temporal clustering model (BSTC), we run 25 independent MCMC chains, each initialized to different
starting values. After discarding a burn-in of 5,000 iterations and keeping the remaining 4,000 draws per chain, we
merge the results and obtain a final sample of 100,000 posterior draws.

In the following, we introduce the details for six increasingly elaborate frequentist models as well as the Bayesian
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spatio-temporal CAR model including a temporal autoregressive process (ST.CARar) proposed by Lee et al. (2018).
The simplest model we use for comparison is a standard linear pooling model (Pooled), where the (p + 1) × 1 vector
of coefficients � is restricted to be the same across time t and space i:

Yit = x′it� + uit, uit ∼ N(0, �2) (6)

In order to model province-specific heterogeneity, we also consider splitting the error term ui,t into a province-specific
fixed part alongside the i.i.d. random part, obtaining the individual fixed effects (IFE) model (Baltagi, 2021):

Yit = x′it� + ũit, ũit = �i + vit, vit ∼ N(0, �̃2) (7)

The estimation of the two models is performed via the R-package plm by Croissant and Millo (2008).
Both models can be augmented by a spatial-autoregressive (SAR) component �

∑

i≠jWijYjt, where � is the spatial
autocorrelation coefficient andWij is the entry of W corresponding to the areal units i and j. Model (6) then becomes

Yit = �
∑

i≠j
WijYjt + x′it� + uit, uit ∼ (0, �2) (8)

and is termed the Pooled-SAR model. Likewise, Model (7) becomes

Yit = �
∑

i≠j
WijYjt + x′it� + ũit, ũit ∼ N(�i, �̃2) (9)

and it is referred to as the IFE-SAR model. The augmented models (8) and (9) are estimated via the R-package splm
by Millo and Piras (2012).

In order to incorporate smoothing across the spatial and temporal dimension simultaneously, Lee and Durbàn
(2011) propose to explicitly model the interaction between space and time through some function f depending on
the spatial coordinates s1 and s2 and the temporal dimension t. They develop an ANOVA method based on P-splines
(PS-ANOVA) with the following model specification:

Yit = f (s1i, s2i, t) + x′it� + �it

Mínguez et al. (2020) augment the model with the spatial autoregressive component leading to the following specifi-
cation of their PS-ANOVA spatial-autoregressive (PS-ANOVA-SAR) model:

Yit = f (s1i, s2i, t) + �
N
∑

j=1
WijYjt + x′it� + �it

The Bayesian competitor to the proposed model is the ST.CARar model implemented in the R package CARBayesST
(Lee et al., 2018). To facilitate comparison, we align the model specification with the proposed model by choosing
Gaussian errors �it and the same prior distributions for wit, �2 and �2:

Yit = x′it� +wit + �it, i = 1,… , I, t = 1,… , T
� ∼ N(�� ,Σ�)

wt|wt−1 ∼ N(�wt−1, �
2Q(W , �)−1), t = 2, ..., T , w1 ∼ N(0, �2Q(W , �)−1)

�2 ∼ Inv-Gamma(3, 2), �2 ∼ Inv-Gamma(3, 2)
� ∼ Uniform(0, 1), � ∼ Uniform(0, 1)

The vector � is modeled as a multivariate Normal distribution with zero mean and the identity matrix as covariance
matrix, the same prior specification used in the base distribution of the Dirichlet process in the proposed model.

Using the data from Section 2, we compute and compare commonly used model comparison metrics, namely
the out-of-sample root mean squared error (RMSE) and the out-of-sample mean absolute error (MAE). RMSE and
MAE are computed using the 1-year ahead forecast starting from the 5-th year (2009), using all previous years as
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Model 2009 2010 2011 2012 2013 2014 2015 2016 2017 Average
Pooled 1.055 0.949 0.841 0.516 0.522 0.715 0.620 0.681 0.663 0.729
IFE 0.353 0.306 0.268 0.585 0.680 0.741 0.520 0.471 0.532 0.495
Pooled-SAR 0.516 0.479 0.421 0.791 0.839 0.907 0.659 0.706 0.656 0.664
IFE-SAR 0.469 0.359 0.320 0.589 0.610 0.609 0.406 0.418 0.463 0.471
PS-ANOVA 0.364 0.316 0.293 0.608 0.510 0.444 0.393 0.440 0.438 0.423
PS-ANOVA-SAR 0.364 0.316 0.293 0.608 0.510 0.444 0.393 0.440 0.438 0.423
ST.CARar 0.417 0.377 0.439 0.825 1.005 1.151 0.350 0.366 0.775 0.634
BSTC 0.382 0.302 0.292 0.640 0.471 0.500 0.313 0.319 0.384 0.400

Table 3: Out-of-sample RMSE of the competing models and the Bayesian spatio-temporal clustering model.

training set. The Bayesian models are additionally compared via the widely applicable information criterion (WAIC,
Watanabe, 2013) and the log marginal likelihood (LML). The marginal likelihood is obtained as the product of the
one-step-ahead predictive likelihoods (cf. Geweke and Amisano, 2010):

p(Y1∶T ) = p(Y1)
T
∏

t=2
p(Yt|Y1∶t−1) = ∫Θ

p(Y1|�)p(�)d�
T
∏

t=2
∫Θ

p(Yt|Y1∶t−1,�)p(�|Y1∶t−1)d�

where � is the vector of all unknown parameters and Θ the corresponding parameter space. The logarithm of the
marginal likelihood can therefore be decomposed into the sum of the logarithms of the one-step-ahead predictive
likelihoods. To be consistent with the RMSE and MAE evaluation and to avoid excessive prior dependence, we
report p(Y5∶T |Y1∶4), i.e., we begin the evaluation in the 5th year, treating data up to the 4th year as part of the prior
information.

Following Gelman et al. (2014), the WAIC is obtained by calculating the log pointwise posterior predictive density
(10) and then adjusting for overfitting with the correction term (11):

comp_lppd =
I
∑

i=1
log

(

1
M

M
∑

m=1
p(Yi|�m)

)

(10)

comp_pWAIC = 2
I
∑

i=1

(

log

(

1
M

M
∑

m=1
p(Yi|�m)

)

− 1
M

M
∑

m=1
log p(Yi|�m)

)

(11)

WAIC = −2 ⋅
(

comp_lppd − comp_pWAIC
)

where �m denotes the m-th posterior draw from a total of M MCMC draws. Note that the metrics for the Bayesian
models are computed using samples from the posterior. Therefore, they entail the posterior uncertainty for all parame-
ters including, for the BSTC model, the estimated number of clusters. The results summarized in Tables 3 and 4 show
similar patterns for both RMSE and MAE. For the first half of the testing period, no model stands out as the clear
winner. The IFE and BSTC models alternate in proving the least erroneous except for the year 2012, where the Pooled
model, which does not capture any heterogeneity nor spatial correlation, performs best. Adding the SAR component
mostly improves the estimates for the IFE and the Pooled model, and has almost no effect on the PS-ANOVA model.
On average, the best frequentist models are the PS-ANOVA and the PS-ANOVA-SAR model, being outperformed
only by the BSTC model. Table 5 focuses on the Bayesian models, showing the logarithms of the one-step-ahead pre-
dictive likelihoods and the WAIC. Note that higher values of predictive likelihoods indicate better predictions, while
higher values of WAIC indicate worse. The results resemble the RMSE and MAE, showing close metrics between
the two models in the first years. As before, the BSTC model performs poorly in the prediction for the year 2012 and
surpasses its competitor in the following years.
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Model 2009 2010 2011 2012 2013 2014 2015 2016 2017 Average
Pooled 0.957 0.865 0.775 0.428 0.386 0.524 0.450 0.477 0.482 0.594
IFE 0.254 0.238 0.196 0.474 0.554 0.578 0.400 0.373 0.421 0.387
Pooled-SAR 0.403 0.369 0.327 0.672 0.712 0.756 0.523 0.557 0.513 0.537
IFE-SAR 0.371 0.280 0.254 0.498 0.524 0.502 0.320 0.328 0.345 0.380
PS-ANOVA 0.287 0.241 0.216 0.463 0.379 0.317 0.306 0.334 0.329 0.319
PS-ANOVA-SAR 0.287 0.241 0.216 0.463 0.379 0.317 0.306 0.334 0.329 0.319
ST.CARar 0.295 0.268 0.323 0.617 0.730 0.832 0.264 0.267 0.596 0.466
BSTC 0.237 0.232 0.216 0.499 0.350 0.356 0.239 0.241 0.284 0.295

Table 4: Out-of-sample MAE of the competing models and the Bayesian spatio-temporal clustering model.

Model 2009 2010 2011 2012 2013 2014 2015 2016 2017 Sum WAIC
ST.CARar -63 -54 -43 -89 -134 -181 -70 -86 -140 -861 2013
BSTC -56 -37 -42 -172 -66 -125 -63 -69 -107 -737 -737

Table 5: Logarithms of the one-step ahead predictive likelihoods, their sum and the WAIC of the Bayesian models.

6. Discussion and conclusions
We develop a novel Bayesian semiparametric model for spatio-temporal areal data and apply it to the evolution of

Italian unemployment rates. The proposed approach aims at tackling the difficult challenge of identifying well-pooled
spatial and temporal areal units to identify spatio-temporal patterns in the data. We do so by interweaving elements
from spatial statistics and Bayesian nonparametrics.

The proposed model uses a Bayesian nonparametric prior, the DP, to cluster location-specific (i) autoregressive
parameters driving the spatio-temporal random effects and (ii) regression parameters of the time varying predictors.
This implies a Bayesian nonparametric model for clustering the areal-specific time series of the unemployment rates.
Posterior inference is achieved via a tailored Markov chain Monte Carlo algorithm. The fitted model is consequently
used to study the evolution of unemployment rates of Italian provinces from 2005 to 2017. We compute estimates
of their clustering structure by minimizing posterior expectations of Binder’s loss and VI. In doing so, we obtain
interpretable results and shed light on the unemployment structure in Italy. The proposed approach fares well in an
extensive out-of-sample comparison against popular alternatives, further validating its applicability to the problem at
hand.

The model could be further generalized in different directions. First, it might be of interest to investigate prior
distributions that do not imply stationarity. For example, the non-stationarity in time could be modeled by means of
a time-varying parameter (TVP) model. To avoid potential overfitting, recently developed shrinkage priors could be
used (e.g. Bitto and Frühwirth-Schnatter, 2019; Cadonna et al., 2020). Second, one could employ covariate-informed
partition models such as PPMx (Müller et al., 2011), where prior distributions additionally encourage the grouping
of areas with similar covariate values. Third, the structure of the neighboring matrix W could be treated as random
and thus learned from the data. To this end, it might be interesting to consider a prior for the precision matrix of the
random effects based on a directed acyclic graph representation of the spatial dependence (Datta et al., 2019; Codazzi
et al., 2022).
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Appendix A Spatio-temporal random effects
A.1 Joint distribution

Using the Markov property, the joint distribution of w̃ =
(

w1,… ,wT
)′ can be expressed as p(w̃) = p(w1)p(w2|w1)⋯ p(wT |wT−1).

Since each p(wt|wt−1) is Gaussian, and so is p(w1), the joint distribution is a multivariate Gaussian distribution. For
any multivariate Gaussian distribution with mean �̃ and precision matrix Ω, it holds that

−2 log p(w̃) = w̃′Ωw̃ − 2�̃′Ωw̃ + k, (12)

where k is a term which does not contain w̃. From (3) and the distribution on w1, we have that

−2 log p(w̃) = �−2w′1Q(�,W )w1 + �−2
N
∑

t=2
(wt − diag(�)wt−1)′Q(�,W )(wt − diag(�)wt−1), (13)

Matching the terms in (12) and (13), we obtain that �̃ = 0 and that Ω is tri-block diagonal, with blocks of dimension
I × I . Specifically,

Ωt,t = �−2Q(�,W ) + �−2diag(�)Q(�,W )diag(�),
ΩT ,T = �−2Q(�,W ),

Ωt,t−1 = −�−2diag(�)Q(�,W ), t = 2,… , T .

A.2 Full conditional distribution
Due to the high dimension of the time-varying parameters, tailored algorithms are required. A way of dealing

with datasets of such high dimensionality is to exploit the characteristics of sparse matrices, and in particular block
diagonal and banded matrices. Important work in this direction has been done in Rue (2001) and McCausland et al.
(2011). The joint full conditional of w̃ given the data and the other parameters in the model, is a multivariate normal
of dimension I × T . The precision matrix is tri-block diagonal with blocks of dimension I × I . From Lemma 2.2. in
Rue and Held (2005), we get that the full conditional is NI×T

(

Ψ−1c,Ψ−1
)

, where the precision matrix Ψ is tri-block
diagonal, with blocks of dimension I × I . Specifically:

Ψt,t =
1
�2

II×I + �−2(Q(�,W ) + diag(�⋆s )Q(�,W )diag(�⋆s )), t = 1,… , T − 1

ΨT ,T =
1
�2

II×I + �−2Q(�,W )

Ψt,t+1 = −�−2Q(�,W )diag(�⋆s ), t = 1,… , T − 1

and c = (c1,… , cT )′, with each element ct being

ct =
1
�2

(

Yt − diag
(

XtB⋆s
))

, t = 1,… , T

Note that since all building blocks of Ψ depend on Q(�,W ), all of them inherit the structure of the adjacency matrix
W . In our case this means that all blocks Ψt,t and Ψt,t+1, t = 1,… , T − 1, are banded.

A.3 Sampling
We use the algorithm described in Result 2.1 in McCausland et al. (2011). Unlike algorithms based on the Kalman

filter, this method is based on the precision matrix and computationally more efficient.
First, we pre-compute the quantities Σ1,… ,ΣT and m1,… , mT , by iterating the following steps. For t = 1,… , T ;

1. Compute the Cholesky decomposition of Σ−1t = ΛtΛTt , where:

• for t = 1:
Σ−1t = Ψ1,1 =

1
�2 II×I + �

−2(Q(�,W ) + (diag(�⋆s )Q(�,W )diag(�⋆s ))
• for t = 2,… , T − 1:
Σ−1t = Ψt,t − Ψ′t,t−1Σt−1Ψt,t−1 =
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1
�2 II×I + �

−2(Q(�,W ) + diag(�⋆s )Q(�,W )diag(�⋆s )) − �
−4diag(�⋆s )Q(�,W )′Σt−1Q(�,W )diag(�⋆s )

Note that each matrix is banded, so we can use the appropriate Cholesky decomposition
2. Compute Λ−1t =

(

−�−2diag(�⋆s )Q(�,W )
)

via back-substitution. Again, we can use the algorithm for banded
matrices

3. Compute �−4diag(�⋆s )Q(�,W )′Σt−1Q(�,W )diag(�⋆s ) =
�−4diag(�⋆s )(Λ

−1
t−1Q(�,W ))′Λ−1t−1Q(�,W )diag(�⋆s )

4. Computemt using triangular back-substitution twice,m1 = (Λ′1)
−1(Λ−11 c1) andmt = (Λ′t)

−1(Λ−1t (ct+�
−2diag(�⋆s )Q(�,W )′mt−1)),

for t = 2,… , T

To draw w ∼ (Ψ−1c,Ψ−1), we proceed backwards. For t = T ,… , 1:

1. Sample zt ∼ N(0, II×I ), which is equivalent to sampling I independent standard normals
2. Compute wt using matrix multiplication and back-substitution, where wT = mT + (ΛT )−1zT , and wt = mt +
(Λt)−1(zt + Λ−1t �

−2diag(�⋆s )wt+1)

Appendix B Full conditional distributions for the BNP part and the remaining parameters
Full conditionals for s

We start by removing the i-th allocation variable si from the vector s and by denoting the remaining vector
as s−i =

(

s1,… , si−1, si+1,… , sI
)

. Similarly, we can re-write the j-th cluster, after removing si, as C−ij and the
associated cluster size as n−ij = |C−ij |. The number of clusters is then denoted as K−i

I . Following from the expression
of the Pólya Urn prior and the assumption of exchangeability among the element of s, the probability of allocating the
removed observation to an existing or to a new cluster are, respectively:

p
(

si = j|s−i, y,x, �⋆, �⋆,w, �2
)

∝ (14)

⎧

⎪

⎨

⎪

⎩

n−ij p
(

yi|xi, �⋆j ,wi, �2
)

p
(

wi|w−i, �⋆j , �
⋆
s−i , �

2, �,W
)

, j = 1,… , K−i
I

� ∫ p
(

yi|xi, �⋆,wi, �2
)

p
(

wi|w−i, �⋆, �⋆s−i , �
2, �,W

)

dP0
(

�⋆, �⋆
)

, j = K−i
I + 1

where we indicate with w−i the matrix of variables w after removing the i-th row. Before giving the expression of
the above allocation probabilities, we point out that the integral involved in this calculation is available in closed form
only in case of conjugacy. To avoid computing the integral above, we resort to the algorithm of Favaro and Teh (2013),
implementing an extension of the popular Algorithm 8 of Neal (2000) which includes a re-use step. The second line
of (14) becomes:

�
Naux p

(

yi|xi, �auxl ,wi
)

p
(

wi|w−i, �auxl , �⋆s−i , �
2, �,W

)

, l = 1,… , Naux

where (�, �)aux =
(

�auxl , �auxl
)Naux

l=1 is a vector of Naux auxiliary variables i.i.d. from P0. The number of auxiliary
variables Naux to be used in the algorithm is set to Naux = 20.

The allocation probabilities in (14) contain the product of the likelihood of the data yi and the spatio-temporal ran-
dom effectswi for areal unit i. The former is the sampling model proposed in (4), for which conditional independence
applies, yielding:

p
(

yi|xi, �⋆j , �
2,wi

)

= NT

(

yi|xi�⋆j +wi, �
2IT

)

To compute the latter we use the VAR(1) structure of w:

p
(

w|�⋆j , �
2, �,W

)

= N
(

w1|0, �2Q−1 (�,W )
)

T
∏

t=2
N

(

wt|diag
(

�⋆s
)

wt−1, �
2Q−1 (�,W )

)

For each time point t = 1,… , T , we consider the conditional distribution of the i-th component of the vector wt.
Denote by wit such component, and by w−it the rest of the vector wt, and let ⧵i = {1,… , i − 1, i + 1,… , I}. Further
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conditioning on wt−1 yields:

p
(

wit|w−it ,wt−1, �
2, �, s−i, �⋆j , �

⋆
s−i

)

= N
(

wit|�
c
it, �

2
i
c)

where

�cit = �
⋆
j wit−1 − �

2
i
cQi⧵i∕�2

(

w−it − diag
(

�⋆s−i
)

w−it−1
)

�2i
c = �2∕Qii

Hence

p(wi|w−i, �⋆j , �
⋆
s−i , �

2, �,W ) ∝ N
(

wi1|�
c
i1, �

2
i
c)

T
∏
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N

(
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c
it, �

2
i
c)

Full conditionals for �⋆, �⋆, and �
Notice that, when a new cluster is created, one of the auxiliary variables (�, �)aux is selected as new component of

the vector of unique values. However, the whole set of unique values (�⋆, �⋆) can be updated via Gibbs or Metropolis-
Hastings steps.

We can exploit the conjugacy of the full conditionals of �⋆j , for j = 1,… , Ki, obtaining:

p(�⋆j |⋅) = Np+1(�⋆j |mj , Sj)

Sj =
⎛

⎜

⎜

⎝

Σ−1� +
∑

i∈Cj

x⊤i xi∕�
2
⎞

⎟

⎟

⎠

−1

mj = Sj
⎛

⎜

⎜

⎝

Σ−1� �� +
∑

i∈Cj

x⊤i
(

yi −wi
)

∕�2
⎞

⎟

⎟

⎠

The update of �⋆j is performed using a Metropolis-Hastings step targeting the following full-conditional, up to a
normalizing constant:

p
(

�⋆j |⋅
)

∝ Beta(−1,1)
(

�⋆j |a� , b�
)

T
∏

t=2
N

(

wCj t|�
c
jt,Σ

c
jt

)

�cjt = �
⋆
j wCj t−1 − Σ

c
jtQCj⧵Cj∕�

2
(

wCj t − diag
(

�⋆s≠j
)

w⧵Cj t−1

)

Σcjt = �
2Q−1CjCj

where wCj t denotes the spatio-temporal random effects of the provinces belonging to the j-th cluster at time point t.
Using a gamma prior for � and introducing an auxiliary variable x such that x|�,K ∼ Beta(� + 1, n), the full

conditional of � reduces to a mixture of two gamma densities (West, 1992):

�|x,K ∼ �xGamma(� +K, b − log(x)) + (1 − �x)Gamma(� +K − 1, b − log(x))

with the weights �x defined through

�x
1 − �x

= � + 1
n(b − log(x))
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Full conditionals for �2, �2, and �
Staying in a conjugate framework the full conditional distributions for �2 and �2 are both inverse-gamma distri-

butions. The parameters for �2 are

a�2 = a�2 + IT ∕2

b�2 = b�2 +
1
2

I
∑

i=1

T
∑

t=1
(yit − (x′it�

⋆
si
+wit))2

and for �2

a�2 = a�2 + IT ∕2

b�2 = b�2 +
1
2

(

w′1Q(�,W )w1 +
T
∑

t=2
(wt − diag(�⋆s )wt−1)′Q(�,W )(wt − diag(�⋆s )wt−1)

)

The full conditional distribution of the spatial autoregressive parameter � takes the form

Beta
(

�|��, ��
)

× ∣ Q(�,W ) ∣T ∕2 exp
{

− 1
2�2

(w′1Q(�,W )w1
}

×

T
∏

t=2
exp

{

− 1
2�2

(wt − diag(�⋆s )wt−1)′Q(�,W )(wt − diag(�⋆s )wt−1)
}

and is sampled using a Metropolis-Hastings step with a random walk on the logit transformation of �.

Appendix C Sensitivity analysis of different methods of loss calculation
In this section, we perform a sensitivity analysis to assess the effect of the choice of loss function in estimating the

partition of the areal units in the proposed model. Specifically, we consider the well-known Binder and Variation of
Information loss functions.

The Binder loss function takes the form

LBinder(s, ŝ) =
∑

i<j

(

a ⋅ 1{si=sj}1{ŝi≠ŝj} + b ⋅ 1{si≠sj}1{ŝi=ŝj}
)

where s = (s1, ..., sn) is a vector of true cluster labels and ŝ its estimate. The true and estimated partitions are denoted
by  and ̂, respectively. Note that the cost incurred by incorrectly separating two items is denoted by a and the cost
of incorrectly clustering two items together by b. It is important to note that the actual choice of a and b can have a
substantial impact on the number of clusters and has to be chosen with care (see also Dahl et al., forthcoming). Lau
and Green (2007) showed that the partition that minimizes the posterior expectation of the Binder loss equals the one
that maximizes

f (ŝ) =
∑

i<j
1{ŝi=ŝj}

(

Si,j −
b

a + b

)

where the so-called posterior similarity matrix Si,j denotes the posterior probability of areal unit i and areal unit j
belonging to the same cluster.

Dahl et al. (forthcoming) propose to minimize the posterior expectation of the Binder loss using a stochastic search
algorithm, implemented in the R package salso (Dahl et al., 2021). We refer to the two methods as LBinder_LG and
LBinder_salso, respectively.
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Method of loss calculation Cost a K̂I WAIC RMSE MAE Rand Index

LBinder_LG

0.5 8 6101 0.273 0.199 0.90
1 7 6726 0.246 0.185 1.00

1.5 7 6879 0.254 0.192 0.91
2 6 10478 0.383 0.258 0.83
3 6 9966 0.379 0.258 0.82

LBinder_salso

0.5 11 8808 0.259 0.186 0.90
1 11 7658 0.246 0.180 0.95

1.5 11 4245 0.230 0.181 0.88
2 9 6215 0.282 0.218 0.82
3 6 7927 0.308 0.228 0.81

LGV I

0.5 11 5244 0.251 0.202 0.83
1 8 6971 0.312 0.256 0.70

1.5 5 9545 0.354 0.284 0.64
2 3 11832 0.405 0.317 0.60
3 3 11832 0.405 0.317 0.60

Table 6: Estimated number of clusters K̂I , goodness-of-fit metrics (WAIC, RMSE, and MAE) and Rand Index for
different combinations of loss function and misclassification cost a. The latter compares the different estimated
partitions with the one presented in the manuscript (LBinder_LG, a = 1, marked in bold).

The generalized variation of information (GVI, Dahl et al., forthcoming) takes the form

LGV I (, ̂) = a
∑

C∈

|C|
n

log2

(

|C|
n

)

+ b
∑

Ĉ∈̂

|Ĉ|
n

log2

(

|Ĉ|
n

)

− (a + b)
∑

C∈

∑

Ĉ∈̂

|C ∩ Ĉ|
n

log2

(

|C ∩ Ĉ|
n

)

(15)

where |C| and |Ĉ| are the cluster sizes of elements belonging to the true and estimated partitions, respectively. The first
term in Eq. (15) represents the negative individual entropy of the true partitition, scaled by the misclassification cost a.
The second term represents the negative individual entropy of the estimated partitition, scaled by the misclassification
cost b. The last term represents their joint entropy scaled by the mean of a and b, (a+b)∕2. The range of the individual
entropy goes from 0 to log2(n) ≈ 6.78, while the joint entropy ranges from 0 to 2log2(n) ≈ 13.56. We use the entropy
of the sampled partitions to quantify the variability in the posterior distribution of the partition. We observe low
values of the individual entropy, with a posterior mean of 2.1 and a 95% credible interval of (1.6, 2.6), indicating low
variability in the partitions explored by the MCMC chain. We quantify the average deviation of the chosen partition
and the sampled partitions using their joint entropy, resulting in a posterior mean of 5.1 and a 95% credible interval
of (3.4, 7.0), suggesting that the partitions explored by the MCMC algorithm are similar to the one presented in the
application.

To assess how well the model retains predictive accuracy under the different partitions, we compute the WAIC,
in-sample RMSE and in-sample MAE. The RMSE and MAE are calculated by running the model on the whole dataset
and comparing the predicted response variable ŷi,t = xi,t�̂⋆si + ŵi,t, t = 1,… , T , i = 1,… , I , with the corresponding

true value. These goodness-of-fit metrics are calculated using posterior averages of �̂⋆si and �̂⋆si , conditionally on the
partitions estimated using different loss function specifications (Binder and GVI loss, with varying a and b = 1).
All estimated partitions are computed using posterior draws of the BSTC method described in Section 5.3. The
results are summarized in Table 6, where lower values of WAIC, RMSE, and MAE imply higher predictive accuracy.
The partitions obtained with LBinder_LG are the most consistent with regard to the estimated number of clusters K̂I ,
yielding 7 or 6 clusters in the majority of cases. The other two methods show more sensitivity to the choice of a,
with LGV I rapidly decreasing the number of clusters for higher values of a. Note that in most cases, the comparison
metrics favor partitions with a higher number of clusters. However, too many different clusters exacerbate meaningful
economic interpretation. For this reason, the choice of a representative partition requires a trade-off between a number
of clusters that is high enough to capture individual heterogeneity and sparse enough to be economically interpretable.
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Model Method of
loss calculation

K̂I Size of North-
Central Cluster

Size of
Sicilian Cluster

Medio-Campidano
as singleton

BSTC

LBinder_LG

7 55 9 TRUE
BSTC-MFM 8 50 9 FALSE
BSTC-2DPs 9 59 8 TRUE
BSTC-XI 8 56 7 TRUE
BSTC

LBinder_salso

11 54 8 FALSE
BSTC-MFM 12 49 8 FALSE
BSTC-2DPs 11 56 8 FALSE
BSTC-XI 11 53 8 FALSE
BSTC

LGV I

8 83 8 TRUE
BSTC-MFM 9 79 8 TRUE
BSTC-2DPs 8 82 9 TRUE
BSTC-XI 7 84 9 TRUE

Table 7: Summary results of the estimated partitions under different model and loss function specifications.

Following this reasoning, we choose the partition obtained using the LBinder_LG and a = 1. The final column Table 6
reports the Rand Index, a similarity measure for partitions, where values closer to 1 indicate partitions that are more
similar. The values indicate high consistency of the different partitions, especially ones obtained using the Binder loss
function.

Appendix D Alternative model specifications
This section shows the results of a performance comparison of the model proposed in Section 3 with alternative

specifications. In particular, (a) considers a finite-dimensional version of the nonparametric prior, while (b) focuses on
different options to include the DP as a prior for the parameters � and �. All other prior specifications not concerning
these two modifications are kept as in Section 5.1.

In (a), we use a finite mixture model, instead of an infinite one. Miller and Harrison (2018) point out that both
Dirichlet process mixtures (DPMs) and mixtures of finite mixtures (MFMs) share several properties essential in the
implementation of state-of-the art sampling algorithms and use this to introduce an alternative version of Neal’s
popular Algorithm 8, suited for MFMs. By applying their method, we estimate a finite analogue of the proposed
model (BSTC-MFM). We follow Miller and Harrison (2018) and choose a geometric prior with success probability
equal to 0.1 for the number of components.

Turning to (b), we examine a model where we employ one DP prior to cluster the � coefficients and a separate
one for the temporal autoregressive parameter �. In other words, we examine a model where � and � are clustered
using independent DP priors. This approach is termed BSTC-2DPs. In addition, we examine a model where � is
removed from the clustering process altogether, and instead modelled via a parametric prior. This approach is termed
BSTC-XI. In both cases, the Beta(−1,1)(a, b) prior is used, in the first case as the base measure of the now separate DP
prior and in the second one as the parametric prior.

While we acknowledge that a rigorous comparison of different prior specifications is beyond the scope of the
current work, these experiments can nevertheless shed light on the model’s sensitivity to prior modifications. To this
end, we compare the different model specifications by analyzing different partitions obtained from samples of each
respective model. The MCMC sampler is run for the same number of iterations and burn-in as specified in Section 5.2.

Table 7 shows some essential characteristics of the partitions obtained by applying the loss-based methods intro-
duced in Section C with a = 1 to MCMC samples from the alternative models. We compare the estimated number of
clusters K̂I , the size of the biggest cluster, located in the North and Center, the size of the cluster predominantly cov-
ering Sicily, and whether the province Medio-Campidano was classified as a singleton cluster. Since a decisive part of
the parameter estimation depends on the visited partitions, these characteristics together with the comparison metrics
reported in Table 8 serve as a proxy for measuring the similarities between the alternative models. Additionally, we
compute the WAIC, in-sample RMSE and in-sample MAE on the complete dataset, again using the sampled posterior
values and no summarisation method.
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Model WAIC RMSE MAE

BSTC -736.528 0.143 0.114
BSTC-MFM -772.119 0.139 0.111
BSTC-2DPs -738.459 0.145 0.117
BSTC-XI -745.440 0.144 0.117

Table 8: WAIC, in-sample RMSE, and in-sample MAE for alternative model specifications.
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Figure 8: Underlying cluster structure for simulated data.

The estimated number of cluster K̂I , the size of the Sicilian cluster as well as the inspected singleton cluster
hardly differ among the different models. Regarding the size of the biggest cluster, we see some variation between
model specifications, but varying strongly between the chosen method of loss calculation. The results show strong
consistency in estimating the partition of the provinces among the alternative model specifications. Table 8 underlines
this consideration, showing almost no distinction in goodness-of-fit metrics between the models. Each of the examined
alternative model specifications provides a different and valuable view on the underlying process. Nevertheless,
the analysis shows that their impact on the main aspect of this work, i.e. the model based clustering of the Italian
provinces, is small.

Appendix E Simulation study
We present a simulation study to assess the ability of the proposed model to correctly estimate the parameters and

the clustering of the areal units. Using the model introduced in Section 3, we simulate data for a grid of 10 × 10
areal units. We define seven clusters of well separated groups of adjacent units, as depicted in Figure 8. Each cluster
is assigned three covariates and four regression coefficients, all of which are independently sampled from a standard
normal distribution, and each cluster’s � is sampled from a standard uniform distribution. The spatial autocorrelation
parameter � is set to 0.95, while �2 = �2 = 1. The prior settings are the same as described in Section 5.1, except for a
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Figure 9: Traceplot (left-hand side) and posterior distribution (right-hand side) of K .

Figure 10: Density and traceplots of the cluster-specific regression coefficients � and the autoregressive coefficients
�.

uniform prior for �.
We run the MCMC sampler for 10,000 iterations and discard the first 5,000 as burn-in. Figures 9 and 10 show

posterior inference for one of these datasets. We observe in Figure 9 that the sampler visits up to 12 clusters but
coincides with the true value almost 80% of the times. The density plots show that the true � coefficients are accurately
recovered, while the trace plots imply good mixing and convergence.

To guarantee robustness of the results, and in addition to compare the DP process prior with the MFM alternative,
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Figure 11: Barplots for K̂I obtained from the 50 simulated datasets for the BSTC-MFM (left) and BSTC (right)
models. The true value for the simulated data is K = 7.

we simulate 50 replicated datasets using different random seeds and estimate both the BSTC as well as the BSTC-
MFM specification on these data. Figure 11 displays the estimated number of clusters over the 50 replicate datasets,
obtained using the Binder loss function with misclassification cost a = 1, for both models. We can observe that the
MFM model recovers the true number of clusters slightly more often than the DPM model, but also deviates further
from it, sometimes estimating nine or ten clusters. Although both models find 11 clusters in one case, they do so for
the same dataset which seems to prove a particularly difficult instance of the data generating process. It is important
to emphasize that out of 50 different datasets, the two models agree on the number of clusters in 38 of them and
only deviate by one cluster in the majority of the remaining cases. Overall, both models show very similar cluster
estimates, even though the prior distributions for the number of clusters are not identical (cf. Frühwirth-Schnatter and
Malsiner-Walli, 2019).
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