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A B S T R A C T

The planetary landing problem is gaining relevance in the space sector, spanning a wide range of applications
from unmanned probes landing on other planetary bodies to reusable first and second stages of launcher
vehicles. In the existing methodology there is a lack of flexibility in handling complex non-linear dynamics,
in particular in the case of non-convexifiable constraints. It is therefore crucial to assess the performance of
novel techniques and their advantages and disadvantages. The purpose of this work is the development of an
integrated 6-DOF guidance and control approach based on reinforcement learning of deep neural network poli-
cies for fuel-optimal planetary landing control, specifically with application to a launcher first-stage terminal
landing, and the assessment of its performance and robustness. 3-DOF and 6-DOF simulators are developed and
encapsulated in MDP-like (Markov Decision Process) industry-standard compatible environments. Particular
care is given in thoroughly shaping reward functions capable of achieving the landing both successfully and in
a fuel-optimal manner. A cloud pipeline for effective training of an agent using a PPO reinforcement learning
algorithm to successfully achieve the landing goal is developed.
1. Introduction

The planetary landing problem has been rising in relevance in
recent years in an effort to make space more economically accessible
through reusable launchers, and to enable improved exploration of
planetary bodies of the solar system, focusing on landing sites with
high scientific importance. The problem consists of achieving a suc-
cessful touchdown on a planetary body within prescribed location and
velocity bounds, subject to terminal attitude constraints. This goal can
be optimized in terms of time, propellant consumption and/or terminal
error minimization. Throughout the years several techniques have been
developed, starting from simple fixed-guidance solutions to advanced
optimization techniques. The first applications were investigated for the
lunar landing program during the first space race: the Apollo mission
used a polynomial trajectory guidance that used different polynomials
for each of the landing phases, limiting the overall computational
resources required [1]. Afterwards, to improve the fuel efficiency of
the trajectory, optimal guidance laws have emerged for point-mass dy-
namics, and, in the case of linear cases, non-atmospheric dynamics [2]:
these approaches need a mapping of the guidance objective to actuator
actions through a tracking controller. Nowadays, a critical improve-
ment is the ability to optimize more complex dynamics and to enforce
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constraints, indeed, recent approaches to the problem characterized by
these two aspects have used Second Order Cone Programming methods
by convexifying the non-convex constraints through a relaxation [3–5].
This is accepted since it has been proven in [3] that the fuel-optimal
solution to the relaxed problem coincides with the fuel-optimal solution
of the original non-convex problem. The approach here developed
is limited by two main factors: only linear dynamics can be opti-
mized and not all the constraints can be convexified. Furthermore, this
methodology usually exploits conical glideslope constraints, which are
not appropriate for trajectories which need to avoid steep obstacles
close to the landing pad. Despite these aforementioned drawbacks,
this approach has been applied to point-mass dynamics such as in is
G-FOLD [6], and successively extended to 6-DOF with successive con-
vexification (SCVX) methods that iteratively optimize the convexified
problems for guidance computation to generate 6-DOF optimal open-
loop trajectories [7,8]. At present time the state-of-the-art approach
splits the process into sequential steps, first computing a reference
trajectory starting from an estimate of the state given by the naviga-
tion subsystem and then tracking it with a controller. This raises the
question of whether it is possible to implement a unified approach to
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Nomenclature

𝑎𝑡𝑎𝑟𝑔 Target acceleration [m∕s2]
𝐶𝐴 Aerodynamic coefficients’ matrix [−]
𝐶 𝑜𝑀 Center of Mass
𝐶 𝑜𝑃 Center of Pressure
𝐵 Body-fixed Reference Frame
𝐼 Inertial Reference Frame
𝑔0 Standard gravitational constant at sea level

[m∕s2]
𝐼 𝑠𝑝 Specific impulse of the engine [s]
𝐼 𝑆 𝐴 International Standard atmosphere
𝐽 Inertia matrix of the rocket [k g m2]
𝑙 Length of the rocket [m]
𝑚 Mass of the vehicle [k g]
𝑟 Position vector of the center of mass [m]
𝑅𝑎 → 𝑏 Rotation matrix from reference frame 𝑎 to

𝑏
𝑅(𝑠′, ⃗𝑠, ⃗𝑎) Reward function [−]
𝑟 Base radius of the rocket [m]
𝑆𝐴 Aerodynamic reference surface [m2]
𝑣 Velocity vector of the center of mass [m∕s]
𝑣𝑡𝑎𝑟𝑔 Target velocity [m∕s]
[𝜓 , 𝜃 , 𝜙] Yaw, Pitch and Roll angles [r ad]
[𝜓 , 𝜃 , 𝜙]lim Limit Yaw, Pitch and Roll angles [r ad]
𝜌 Density
�⃗� Angular velocity vector [r ad∕s]
Subscripts

𝐼 Inertial reference frame
𝐵 Body reference frame
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Guidance and Control, as well as the potential level of performance
and robustness it can attain. One technique that allows to achieve this
type of integrated guidance and control policies is Deep Reinforcement
Learning, a framework that can be used to generate a policy directly
mapping an observation (oftentimes a partial one) of the state of the
system to a control action.

Deep Reinforcement Learning (DRL) offers a significant advantage
over traditional model-based approaches for the guidance and control
of reusable launchers by effectively managing complex and nonlinear
dynamics without the need for predefined mathematical models. DRL’s
inherent adaptability and robustness enable controllers to adjust seam-
lessly to varying conditions and unforeseen disturbances, thereby en-
ancing system reliability and performance. Leveraging extensive data

and simulation experiences, DRL can optimize multiple performance
metrics simultaneously, such as fuel efficiency and trajectory accuracy,
while efficiently handling high-dimensional state spaces. Additionally,
DRL frameworks provide scalability and transferability across differ-
ent launchers and mission profiles, reducing development time and
costs. The successful application of DRL in various aerospace contexts,
coupled with its potential for continuous improvement and seamless
integration with existing systems, underscores its suitability for modern
guidance and control challenges. By addressing key challenges re-
lated to safety, explainability, and computational resources, DRL-based
controllers can meet the stringent requirements of reusable launcher
systems, thereby strengthening the development and deployment of
advanced reinforcement learning solutions in aerospace engineering.

In recent years, DRL is increasingly applied to several G&C problems
oth within and outside the aerospace sector [9]: in [10] the authors

use a Model Predictive Control to follow trajectories generated through
n RL policy, to effectively maneuver around obstacles in an environ-

ment. In particular, the field of UAVs has been greatly influenced by
L [11] to obtain the path planner subsystem of the GNC stack for
igh-level goals and lower-level local planning. In [12], a hierarchical
41 
structure is investigated for missile evasion and guidance: multiple
ow-level policies are developed and a policy selector agent selects
n real-time the optimal one. In [13] a closed-loop controller learned
hrough an RL approach is able to both directly guide a low-thrust
pacecraft or augment a traditional guidance approach, despite large

initial deviations from the target and in the presence of perturbations
and significant non-linearities in the dynamics, while preserving real-
time capabilities on limited computational resources. In [14] the task
of in-orbit rendezvous and docking is tackled: a learned guidance
trategy feeds velocity commands to a conventional controller to track,

to lower the learning burden and facilitate sim-to-real transfer. The RL
framework can be used to optimize trajectories for complex metrics,
such as in [15,16] where an RL policy is used for path planning to

aximize the imaged surface of an in-orbit uncooperative target.
For planetary landing RL enables streamlined guidance and control

irectly from sensor data; in [17,18], lunar rendezvous and land-
ng using image-based guidance is performed using a reinforcement
eta-learning algorithm that derives a sensor-to-action policy. Moreover,

ecent studies have used this technique on extraterrestrial planetary
odies and with different thruster configurations than the ones typically

employed in launchers first stages [19–21]. Furthermore, there was
limited dispersion in the initial mass of the lander and no analysis of
he robustness of the developed policy to unmodeled dynamics and
arametric uncertainties.

Contributions of the work. Starting from this background, in this paper,
e focus on examining the atmospheric planetary landing of rocket first

tages using Reinforcement Learning (RL), an area that has received
imited attention in current state-of-the-art research. To address this,
ur primary contributions are focused on:

• Applying model-free reinforcement learning to consistently
achieve successful atmospheric landing by directly controlling the
launcher’s gimbaled thruster.
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• Developing an open-source, validated 6-DOF simulation environ-
ment, expandable with more actuators and including the relevant
dynamics for atmospheric planetary landing.

• Investigating different reward functions for the task, including
a novel approach with a two-phase training run using ablated
reward functions.

In particular, the landing problem has been approached through
subsequently more general cases, to gain a deeper understanding of
the interaction between the change in the reward function, the choice
of hyperparameters and the convergence of the algorithm. We first
addressed a 3-DOF case with simplified initial conditions (lower initial
elocity and height), then secondly moved to the 6-DOF environment.
he 6-DOF simulator was validated using a Simulink model already val-

dated with a Flight Environment Simulator. After satisfactory results
ere obtained, we investigated more realistic initial conditions taken

rom the flight profile of a Falcon 9, first addressing the problem in
-DOF and then the more complex one in 6-DOF. The whole training
hase was greatly facilitated by the software pipeline developed, which
asily allowed training on Cloud Virtual Machines and monitoring the
raining metrics through an interactive web interface. In summary,
fter outlining the problem dynamics in Section 2, the environment
mplementation is detailed in Section 3. The results for the 3-DOF and
-DOF cases are presented in 4 and 5 respectively. Finally, a robustness

analysis to unmodeled dynamics and disturbances is briefly presented
in 6.

2. Problem dynamics

The rocket is modeled as a rigid body, with aerodynamic effects
and a uniform gravitational field, a reasonable approximation due to
proximity to Earth’s surface. The position of the CoM and CoP are
considered constant and the inertia matrix is taken to be diagonal. The
change in thrust due to atmospheric pressure variation is neglected,
exploiting the ISA atmospheric density profile as defined in [22]. Only
the aerodynamic force due to drag is computed, with no lift considered.

2.1. 3 degrees of freedom

The system is first studied on a planar 3-DOF model of the rocket.
he dynamics equations are defined in an inertial reference frame with
he 𝑥 axis directed upwards, as reported in equations Eq (1), with the

following simplifying assumptions:

• Only the axial aerodynamic force 𝐴 is considered (no normal
force);

• The inertia 𝐽 is computed using an average value for the mass;
• Gravity 𝑔 is uniform;
• The density 𝜌 is constant and taken to be at sea level value.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑚 ̈𝑥 = 𝑇 sin(𝜃 + 𝛿) − 𝐴 sin 𝜃 − 𝑚𝑔
𝑚 ̈𝑦 = 𝑇 cos(𝜃 + 𝛿) − 𝐴 cos 𝜃
𝐽 �̇� = −𝑇 sin 𝛿(𝑥𝑇 − 𝑥CoM)
�̇� = − 𝑇

𝑔0𝐼𝑠

(1)

The control authority is provided by the thrust 𝑇 , gimbaled of an
ngle 𝛿 from the longitudinal direction of the rocket. The attitude is
arametrized by the angle 𝜃 with angular velocity 𝜔. The positions of
he CoM and CoP along the longitudinal body axis are respectively 𝑥CoM
nd 𝑥CoP.

2.2. 6 degrees of freedom

As introduced before, the training analysis will also involve the
study of a more complex 6-DOF scenario. The formulation adopted for
 𝑇

42 
this more realistic condition is presented in the following subsections.
Two reference frames are employed to describe the overall dynamics
of the system:

• Inertial reference frame 𝐼 : the origin is in the landing site and
the 𝑥-axis pointing upward.

• Body-fixed reference frame 𝐵 : the reference frame is fixed
with the vehicle’s body, centered at its center of mass (CoM) and
aligned with its 𝑥-axis along the longitudinal axis of the vehicle,
pointing towards the opposite end with respect to the thruster.
The other two axes are perpendicular to the 𝑥-axis.

2.2.1. Translational dynamics
The translational dynamics are defined in the inertial reference

rame 𝐼 by the following system of differential equations:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

⃗̇𝑟𝐼 = 𝑣𝐼
⃗̇𝑣𝐼 = 1

𝑚(𝑡)
𝐹𝐼 + 𝑔𝐼

�̇� = − ‖𝑇𝐼‖
𝐼𝑠𝑝𝑔0

(2)

where:

• 𝑔𝐼 = [−𝑔0, 0, 0]𝑇 is the gravitational acceleration vector;
• 𝐹𝐼 is the summation of the forces acting on the vehicle, as detailed

in Section 2.3.

2.2.2. Rotational dynamics
The rotational dynamics is governed by Euler’s rigid body equations

and the kinematics are parametrized using the quaternion representa-
tion in the scalar-first convention (See q (34) in the Appendix).

The dynamics are expressed in the body-fixed reference frame and
the quaternion parametrization thus represents the attitude of 𝐵 with
respect to 𝐼 . The kinematics and dynamics equations are reported in
Eq. (3).
⎧

⎪

⎨

⎪

⎩

̇⃗𝑞 = 1
2
𝛺 ⃗𝑞

̇⃗𝜔𝐵 = 𝐽−1(�⃗�𝐵 − �⃗�𝐵 × 𝐽 ⃗𝜔𝐵)
(3)

In these equations, the �⃗�𝐵 , 𝐽 and 𝛺 terms are defined as:

• �⃗�𝐵 is the summation of the moments acting on the rocket ex-
pressed in the body frame;

• 𝐽 is the inertia matrix of the rocket (computed at the beginning
of each episode depending on the initial mass 𝑚 and maintained
constant):

𝐽 =

⎡

⎢

⎢

⎢

⎣

1
2𝑚𝑟

2 0 0
0 1

12𝑚(𝑙
2 + 3𝑟2) 0

0 0 1
12𝑚(𝑙

2 + 3𝑟2)

⎤

⎥

⎥

⎥

⎦

(4)

• 𝛺 is the skew-symmetric matrix :

𝛺 =

⎡

⎢

⎢

⎢

⎢

⎣

0 −𝜔𝑥 −𝜔𝑦 −𝜔𝑧
𝜔𝑥 0 𝜔𝑧 −𝜔𝑦
𝜔𝑦 −𝜔𝑧 0 𝜔𝑥
𝜔𝑧 𝜔𝑦 −𝜔𝑥 0

⎤

⎥

⎥

⎥

⎥

⎦

(5)

2.3. Forces and moments

The forces considered to be acting on the rocket are the control force
⃗ and the aerodynamic force 𝐴.
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Table 1
Mean and range of simplified initial conditions for each state.

𝑟 𝜃 𝑣 𝜔 𝑚

𝜇�⃗�0 [50, 500] m 𝜋 rad [0,−50] m∕s 0 rad/s 41𝑒3 kg
𝛥�⃗�0 [5, 50] m 0 rad [0, 0] m∕s 0 rad/s 1000 kg

Table 2
Mean and range of simplified initial conditions.

𝑟 [m] 𝑣 [m∕s] 𝑞 [–] �⃗� [r ad∕s] 𝑚 [k g]
𝜇�⃗�0 [500, 100, 100] [−50, 0, 0] [1, 0, 0, 0] [0, 0, 0] 41𝑒3
𝛥�⃗�0 [50, 10, 10] [10, 10, 10] [0.1, 0.1, 0.1, 0.1] [0.1, 0.1, 0.1] 1𝑒3

2.3.1. Control force
The rocket engine provides the necessary control force, gimbaling

bout the 𝑧𝐵 body axis of an angle 𝛿𝑌 and about the 𝑦𝐵 body axis
f an angle 𝛿𝑍 . The rotation matrix 𝑅𝑇→𝐵 rotates the thrust vector
⃗𝑇 = [𝑇 , 0, 0]𝑇 from the thrust frame (fixed with the nozzle axis) to
he body frame:

𝑅𝑇→𝐵 =
⎡

⎢

⎢

⎣

𝑐 𝑜𝑠(𝛿𝑦)𝑐 𝑜𝑠(𝛿𝑧) −𝑠𝑖𝑛(𝛿𝑦) −𝑐 𝑜𝑠(𝛿𝑦)𝑠𝑖𝑛(𝛿𝑧)
𝑠𝑖𝑛(𝛿𝑦)𝑐 𝑜𝑠(𝛿𝑧) 𝑐 𝑜𝑠(𝛿𝑦) −𝑠𝑖𝑛(𝛿𝑦)𝑠𝑖𝑛(𝛿𝑧)

𝑠𝑖𝑛(𝛿𝑧) 0 𝑐 𝑜𝑠(𝛿𝑧)

⎤

⎥

⎥

⎦

(6)

Thus, the thrust vector in the body frame 𝐵 can be computed as:

𝑇𝐵 = 𝑅𝑇→𝐵𝑇𝑇 (7)

The engine is modeled after the Merlin 1D of the Falcon 9 [23],
having saturations both in the gimbaling range and in the thrust
magnitude.

2.3.2. Aerodynamic force
The aerodynamic force is computed as:

𝐴𝐵 = −1
2
𝜌(𝑥)‖𝑣𝐼‖𝑆𝐴𝐶𝐴𝑅𝐼→𝐵𝑣𝐼 (8)

The aerodynamic coefficients matrix 𝐶𝐴 is a diagonal matrix with
oefficients for each body axis:

𝐶𝐴 =
⎡

⎢

⎢

⎣

𝑐𝑥 0 0
0 𝑐𝑦 0
0 0 𝑐𝑧

⎤

⎥

⎥

⎦

(9)

where the aerodynamic coefficients are chosen to be equal, reflecting
he so-called spherical aerodynamic model, in which the only aerody-
amic force is the drag force [7]. The atmosphere is modeled with
ecaying density, which is computed according to the International
tandard Atmosphere (ISA) [22].

2.4. Initial conditions

Two training sets of initial conditions have been used during train-
ing: first, a set of simplified initial conditions (lower height and velocity
han typical landing trajectories, velocity directed only downwards) is
mployed as a stepping stone to shape the reward function and then a
econd set of initial conditions sourced from historic flight data of the
alcon 9 [24] is used to simulate a realistic landing on a downrange
ocation, such as a barge in the middle of the ocean or a downrange
anding pad. Both sets are centred around a mean vector 𝜇�⃗�0 and are
ampled from a uniform distribution within a specified range 𝛥�⃗�0 .

Simplified initial conditions
For the simplified initial conditions case the mean and range are

reported in Table 1 in the case of the 3-DOF environment and Table 2
for the 6-DOF case.
43 
Table 3
Mean and range of initial conditions.

𝑟 𝜃 𝑣 𝜔 𝑚

𝜇�⃗�0 [−1600, 2000] m 3
4
𝜋 [180,−90] m∕s 0 41𝑒3 kg

𝛥�⃗�0 [200, 10] m 0.1 [30, 30] m∕s 0.05 1000 kg

Table 4
Mean and range of realistic initial conditions.

𝑟 [m] 𝑣 [m∕s] 𝑞 [–] �⃗� [r ad∕s] 𝑚 [k g]
𝜇�⃗�0 [2000,−1600, 0] [−90, 180, 0] [0.866, 0, 0,−0.5] [0, 0, 0] 41𝑒3
𝛥�⃗�0 [10, 200, 0] [30, 30, 0] [0.1, 0.1, 0.1, 0.1] [0.05, 0.05, 0.05] 1𝑒3

Realistic initial conditions
The realistic initial conditions are shown in Table 3 in the 3-DOF

case and Table 4 for the 6-DOF.

3. Environment implementation

The reinforcement learning algorithm used to solve the optimization
problem is the Proximal Policy Optimization (PPO) algorithm [25].
PPO is a policy gradient reinforcement learning method that seeks to
directly optimize the policy by following the gradient of the expected
return. It improves upon previous policy gradient methods like TRPO
by using a clipped surrogate objective function to restrict the change
in policy at each update step. Specifically, PPO optimizes the following
loss function:

𝐿CLIP(𝜃) = Ê𝑡
[

min
(

𝑟𝑡(𝜃)�̂�𝑡, clip(𝑟𝑡(𝜃), 1 − 𝜖 , 1 + 𝜖)�̂�𝑡
)]

(10)

where 𝑟𝑡(𝜃) is the probability ratio between the new and old policies,
̂𝑡 is an estimate of the advantage function, and 𝜖 is a hyperparameter
hat restricts how much the new policy can change per update. The loss
unction incentivizes the improvement of the policy while keeping the
ew policy close to the old one. PPO alternates between sampling data
sing the old policy and optimizing the loss function using stochastic
radient ascent. Moreover, other advantages are faster training, better
ample complexity, and ease of implementation compared to prior
olicy gradient methods. The dynamics are integrated using a variable-
tep RK45 ODE integrator, with the relative and absolute tolerances

respectively (𝜖rel = 0.001 and 𝜖abs = 1𝑒–06).

3.1. Observation space

The environment’s observation space encompasses all possible val-
ues of the observations of the system state. It is a subset of the
state space, consisting of the set of all possible system states. In our
setting, both spaces are continuous as the variables are real-valued; the
bservation state is equal to the state vector, defined as follows, without

the mass:

�⃗� =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑟
𝑣
𝑞
�⃗�
𝑚

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(11)

To enhance the performance of RL algorithms, it is common practice
to normalize the observation space since some variables have natural
bounds while others are theoretically unbounded. A normalization
vector is derived based on reasonable maximum values for various
state variables based on free-fall time, maximum free-fall velocity and
maximum angular velocity achievable by the actuator. In both environ-
ments, 3 and 6-DOF, the state returned by the simulator is normalized
element-wise by dividing each element by the corresponding value
from the normalization vector ensuring that the normalized state vector
lies within the desired range. The bounds of the Observation Space are
enforced by terminating an episode if any of the state variable values
exceed the normalized bounds.
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Table 5
Normalization values for the action.

Action vector element ||𝑇𝑚𝑎𝑥|| 𝛿𝑦 𝛿𝑧
Selected bound 981 kN 20 deg 20 deg

3.2. Action space

The action space comprises the space of all valid actions for the
environment. In particular, the control vector for the 6-DOF rocket is:

𝑢 =

⎡

⎢

⎢

⎢

⎣

𝛿𝑦
𝛿𝑧
𝑇

⎤

⎥

⎥

⎥

⎦

(12)

where the values are defined as:

• thrust ‖𝑇 ‖, limited to the range ‖𝑇 ‖ ∈ [0, 981] kN
• gimbal angles 𝛿𝑦 and 𝛿𝑧, limited in the range [−20 deg,+20 deg]
In general, it is preferred to have each term of the action bound in

he interval [−1,+1], normalizing the control vector with the values in
Table 5, obtaining the action vector 𝑎.

In this way, the action space then simply becomes:

 =
{

𝑎 ∈ R3 ∶ 𝑎𝑖 ∈ [−1,+1] , 𝑖 = 1, 2, 3} (13)

3.3. Reward functions

One of the most important elements in the RL paradigm is the
reward function 𝑅(𝑠, ⃗𝑎). This function maps a tuple of current state 𝑠
and action taken 𝑎 to a scalar value 𝑟. This scalar value is used to map
each state’s value and make the policy 𝜋 converge to the optimal one
𝜋∗. One of the biggest issues in reinforcement learning is choosing a
reward function that is reasonably descriptive for the problem at hand,

eaning that it is not too sparse, otherwise it could be hard for the
algorithm to map correctly the value of each state (this is called credit
assignment problem).

Indeed, if, in the landing problem, the reward is only given upon
landing in a state within the correct bounds the algorithm fails to
onverge to a policy different from a random one. Several iterations
f the reward function have been tested to reach a satisfactory result,
ased on giving the agent a hint of the correct behavior to reach
he final goal state and getting a bonus when this goal is achieved
hile trying to minimize fuel consumption. The reward functions were

irst developed and tested on the 3-DOF environment and then tuned
n the 6-DOF environment to reach satisfactory behavior in terms of
onvergence and performance of the obtained policy. In the following

sections, both versions are detailed.

Reward function development progression. For both simplified and real-
stic initial conditions, various reward functions were developed and
valuated, building upon those proposed in [20,21]. For the first case,

two reward functions are developed, with the second one as an ablated
version of the first. Both reward functions incentivize the agent to
follow a target velocity aiming for the landing site and give a final
bonus in case of a successful landing. When the landing is consistently
chieved the second reward function is used to optimize fuel consump-
ion; this ablated reward function does not provide the agent with a
arget velocity, exploiting the fact that the value function has already

mapped the landing states to the high reward. In this way, the first
training run allows the agent to learn how to land successfully and, the
second, to minimize fuel consumption.

In the case of realistic initial conditions, a reward function based on
ollowing the acceleration command resulting from the energy-optimal

solution of a simplified optimal control problem is used. A recap of the
steps is shown in Fig. 1
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3.3.1. Target velocity reward
The first reward function that has been tested is defined in Eq (14),

tarting from [21]; it follows a Line-of-Sight heuristic to have at each
time step a target velocity vector to hint the rocket where to go.
Therefore the reward strongly incentivizes a successful landing by
giving a final bonus when the landing conditions are satisfied and a
penalty on thruster usage to minimize fuel consumption.
𝑟 =𝛼‖𝑣 − 𝑣𝑡𝑎𝑟𝑔‖ + 𝛽‖𝑇𝐵‖ + 𝛾 ⋅ 𝑎𝑛𝑦([|𝜓|, |𝜃|, |𝜙|] > [𝜓 , 𝜃 , 𝜙]𝑙 𝑖𝑚) + 𝜂

+ 𝜅(𝑥 ≤ 0 and ‖𝑟𝑓‖ < 𝑟𝑙 𝑖𝑚 and ‖𝑣𝑓‖ < 𝑣𝑙 𝑖𝑚 and 𝑎𝑙 𝑙(�⃗� < 𝜔𝑙 𝑖𝑚)
and 𝑎𝑙 𝑙([𝜓 , 𝜃 , 𝜙]𝑓 < [𝜓 , 𝜃 , 𝜙]𝑙 𝑖𝑚𝑓 ))

(14)

Each term of the reward function is weighted and has a specific
meaning:

• 𝛼: rewards having a velocity vector 𝑣 close to the target velocity
𝑣𝑡𝑎𝑟𝑔 ;

• 𝛽: penalizes usage of the thrust, to reduce propellant consump-
tion;

• 𝛾: penalizes exceeding the attitude limits, represented by the
[𝜓 , 𝜃 , 𝜙]lim limit euler angles. These are not strict constraints and
their purpose is to avoid the agent exploring excessively states
which are unlikely to be visited in the optimal solution. In the 3-
DOF case there is an additional penalty term for exceeding a 𝜃mgn
angle, that guides the agent towards reasonable attitudes during
training.

• 𝜂: this is a small positive constant to avoid early termination by
the agent (as all other rewards except for the terminal one are
negative);

• 𝛿: this term, present only in the 3-DOF case, gives the agent a hint
that it is approaching a limit in the attitude, defined by the 𝜃𝑚𝑔 𝑛
angle;

• 𝜅: multiplies the phterminal reward term, given to the agent only
if the final landing conditions are satisfied.

The 3-DOF reward function has an additional attitude bounds term
−𝛿 ⋅𝑚𝑎𝑥(0, |𝜃|−𝜃𝑚𝑔 𝑛). The target velocity magnitude follows a decaying
exponential shape as shown in Eq. (15) starting from the initial velocity
𝑣0 = ‖𝑣(𝑡0)‖, based on the time-to-go computed in (16). This target
velocity targets a waypoint at 𝑧waypoint = 50 m and is made to be only
ertical when below this height thanks to the shape of ̂⃗𝑟 as in Eq. (17)

and of ̂⃗𝑣 as in Eq. (18). The decay speed is controlled by the scaling
ime 𝜏 which also changes in value at the waypoint, as in (19).

The weights have been carefully tuned through subsequent runs of
he algorithm starting from the values in [21], aiming to have each

term with the same order of magnitude, except for the terminal bonus
oefficient 𝑘, and are detailed in Table 6. Instead, the values of the
ttitude and final landing state parameters are shown in Table 7.

𝑣𝑡𝑎𝑟𝑔 = −𝑣0
(

𝑟
‖

⃗̂𝑟‖

)

(

1 − 𝑒𝑥𝑝
(

−
𝑡𝑔 𝑜
𝜏

))

(15)

𝑡𝑔 𝑜 =
⃗̂𝑟
⃗̂𝑣

(16)

⃗̂𝑟 =

{

𝑟 −
[

0 0 𝑧waypoint] , if 𝑟𝑧 > 𝑧waypoint
[

0 0 𝑟𝑧
]

, otherwise
(17)

⃗̂𝑣 =

{

𝑣 − [0 0 2] , if 𝑟𝑧 > 𝑧waypoint

𝑣 − [0 0 1] , otherwise
(18)

𝜏 =

{

𝜏1, if 𝑟𝑧 > 𝑧waypoint

𝜏2 otherwise
(19)

3.3.2. Ablated reward function
To improve fuel efficiency, a second phase of the training run

discards the target velocity-tracking term 𝛼‖𝑣 − 𝑣 ‖ (see Table 8).
𝑡𝑎𝑟𝑔
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Fig. 1. Steps in the development of reward functions: starting from targeting a heuristic velocity aiming for the landing site, we move to a two phases training to optimize more
the fuel consumption. Finally, we move to a different reward function as the environment becomes more challenging.
Fig. 2. Absolute errors between validated and developed simulator with different atmospheric models.
Table 6
Target velocity reward function coefficients.

Coefficient 𝛼 𝛽 𝛾 𝛿 𝜅 𝜂 𝜏1 𝜏2
Value −0.01 −1𝑒−7 −10 −5 10 0.05 20 s 100 s

Table 7
Target velocity reward function parameters.

Coefficient |𝜃𝑙 𝑖𝑚| 𝜃𝑚𝑔 𝑛 𝜔𝑙 𝑖𝑚 𝑟𝑙 𝑖𝑚 𝑣𝑙 𝑖𝑚 [𝜓 , 𝜃 , 𝜙]lim [𝜓 , 𝜃 , 𝜙]lim𝑓

Value 360◦ 180◦ 0.2 r ad∕s 30 m 10 m∕s [85, 85, 360]◦ [10, 10, 360]◦

Table 8
Ablated reward function coefficients.

Coefficient 𝜉 𝛾 𝜅 𝛿 𝜂

Value 0.004 −10 10 −5 0.05

3.3.3. Target acceleration reward
The target velocity reward function works well in the simplified

initial conditions case but does not reach a successful landing in the
case of realistic initial conditions, with an excessive vertical component
of the velocity vector and a tilt angle at landing too high. A different
reward based on a target acceleration has been developed to reach a
correct landing with these initial conditions. The reward function gives
a hint to the agent to follow a target acceleration ⃗𝑎𝑡𝑎𝑟𝑔 , which is detailed
in the following paragraphs.

Eq. (20) defined the reward function defined for the 3-DOF case
instead, Eq. (21) the one for the 6-DOF case:

𝑟 = 𝛼‖𝑎 − 𝑎𝑡𝑎𝑟𝑔‖𝛥ℎ + 𝛽‖𝑇 ‖ + 𝜂

+ 𝛾(|𝜃| > 𝜃𝑙 𝑖𝑚) − 𝛿 ⋅ 𝑚𝑎𝑥(0, |𝜃| − 𝜃𝑚𝑔 𝑛) + 𝜂

+ 𝑤𝑓 ⋅ 𝑚𝑎𝑥

(

1 − 𝑟𝑓
𝑟max
𝑓

, 0

)

⋅ 𝑚𝑎𝑥

(

1 − 𝑣𝑓
𝑣max
𝑓

, 0

)

+ 𝜅(𝑥 ≤ 0 𝑎𝑛𝑑 ‖𝑟‖ < 𝑟𝑙 𝑖𝑚 𝑎𝑛𝑑 ‖𝑣‖ < 𝑣𝑙 𝑖𝑚 𝑎𝑛𝑑 𝑎𝑛𝑑 |𝜔| < 𝜔𝑙 𝑖𝑚 𝑎𝑛𝑑 |𝜃| < 𝜃𝑙 𝑖𝑚𝑓 )

(20)
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Table 9
Target acceleration reward function coefficients.

Coefficient 𝛼 𝛽 𝛾 𝛿 𝜂 𝑤𝑓 𝑣max
𝑓 𝑣max

𝑓 𝜅

Value −0.01 −1𝑒−8 −1 −5 0.1 50 50 m∕s 100 m∕s 10

𝑟 = 𝛼‖𝑎 − 𝑎𝑡𝑎𝑟𝑔‖𝛥ℎ + 𝛽‖𝑇 ‖ + 𝜂

+ 𝛾 𝑎𝑛𝑦([|𝜓|, |𝜃|, |𝜙|] > [𝜓 , 𝜃 , 𝜙]𝑙 𝑖𝑚)

+ 𝑤𝑓 ⋅ 𝑚𝑎𝑥

(

1 − 𝑟𝑓
𝑟max
𝑓

, 0

)

⋅ 𝑚𝑎𝑥

(

1 − 𝑣𝑓
𝑣max
𝑓

, 0

)

+ 𝜅(𝑥 ≤ 0 𝑎𝑛𝑑 ‖𝑟‖ < 𝑟𝑙 𝑖𝑚 𝑎𝑛𝑑 ‖𝑣‖ < 𝑣𝑙 𝑖𝑚 𝑎𝑙 𝑙(�⃗� < 𝜔𝑙 𝑖𝑚)and 𝑎𝑙 𝑙(𝑞 < 𝑞lim))

(21)

This approach tries again to achieve a balance between giving
the agent a hint to achieve a successful landing and minimizing fuel
consumption. In this case, 𝜃mgn is a management angle, that guides the
agent towards reasonable attitude bounds in the 3-DOF case The reward
coefficients are detailed in Table 9.

In this case, two further terms can be considered to improve con-
vergence giving a linearly decaying reward as the final velocity and
position errors increase within a certain interval. They are multiplied
together and scaled by the weight 𝑤𝑓 . Other kinds of functions have
been tested to shape the terminal reward, such as quadratic and expo-
nential functions but the linear ones resulted in the smallest landing
errors. The target acceleration reward term is given down to a certain
waypoint height (set to 𝑥 = 50 m) and then set to 0 to let the agent
explore more, in fact, this can be modeled as being multiplied by a
step function of the height 𝛥ℎ:

𝛥ℎ =

{

1 if 𝑥≥𝑤𝑎𝑦𝑝𝑜𝑖𝑛𝑡
0 if 𝑥 < 𝑤𝑎𝑦𝑝𝑜𝑖𝑛𝑡 (22)

The target acceleration 𝑎𝑡𝑎𝑟𝑔 is the solution of the simplified problem
which minimizes the energy performance index in Eq (23).

1 𝑡𝑓
𝑇
𝐽 =

2 ∫𝑡0
𝑎 𝑎 𝑑 𝑡 (23)
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Fig. 3. Trend of RL training metrics through training (simplified initial conditions), showing convergence to a policy maximizing mean reward and minimizing episodic length.
𝑢

subject to the following dynamics:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

̇⃗𝑟 = 𝑣
̇⃗𝑣 = 𝑔 + 𝑎

𝑎 =
𝑇𝐼
𝑚

(24)

In this paper, both terminal position and velocity are null, 𝑟𝑓 = 0⃗
and 𝑣𝑓 = 0⃗ thus resulting in the following analytical solution:

𝐚𝑡𝑎𝑟𝑔 = − 6𝐫
𝑡2𝑔 𝑜

− 4𝐯
𝑡𝑔 𝑜

− 𝐠 (25)

with the time-to-go 𝑡𝑔 𝑜 computed as the real positive solution of the
quartic equation:

𝑔2𝑡4𝑔 𝑜 − 4‖𝐯‖2𝑡2𝑔 𝑜 − 24𝐫𝑇 𝐯𝑡𝑔 𝑜 − 36‖𝐫‖2 = 0 (26)

This problem does not account for the presence of the atmosphere
and is not fuel-optimal; however, it is used as a proxy to achieve a
successful landing by computing the optimal acceleration at each time
step and using it as a target to balance the other terms of the reward
function. To avoid an excessive acceleration command for the engine
the actual target acceleration is clipped as:

𝑎𝑡𝑎𝑟𝑔 = 𝑠𝑎𝑡𝑇𝑚𝑎𝑥∕𝑚(𝑎𝑡𝑎𝑟𝑔) =
⎧

⎪

⎨

⎪

⎩

𝑎𝑡𝑎𝑟𝑔 if ‖𝑞‖ ≤ 𝑈

𝑎𝑡𝑎𝑟𝑔
𝑇𝑚𝑎𝑥∕𝑚
‖𝑎𝑡𝑎𝑟𝑔‖

if ‖𝑎𝑡𝑎𝑟𝑔 > 𝑇𝑚𝑎𝑥∕𝑚‖
(27)
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A detailed solution to the problem can be found in [26]. This target
acceleration has been exploited also in [20], albeit with a different
action space and a different learning algorithm.

3.4. Environment validation

The environment has been validated using as baseline the one
developed in [8] which had in turn been validated using the FES (Flight
Environment Simulator) internal software from Deimos Space. The
validation was performed by simulating several trajectories with dif-
ferent control actions applied and checking the error between the two
simulators. The samples shown in 2 input a constant actuator command
⃗ = [5◦, 5◦, 98000𝑁]𝑇 and are shown to highlight discrepancies in a
limit scenario in terms of trajectory (high rotational velocities reached).
Other trajectories were tested to validate the behavior on more realistic
test cases (low angular velocities) and the errors are several orders of
magnitude lower than the (already small) ones reported here. Overall
the simulator manages to capture faithfully the relevant behavior of the
launcher.

To validate the simulator the same atmospheric model used in [8]
is first employed to correctly assess the magnitude of the errors. The
errors, shown in Fig. 2(b), are quite tiny. Through a deeper analysis,
it has been assessed that the difference stems mainly from differences
in the normalization of the quaternion. This is reflected in a slight
discrepancy in the rotational behavior which is however emphasized in
this validation run due to the extremely high angular velocity reached,
a behavior which would result in premature termination of the episode
during training.
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Fig. 4. Trajectory metrics during training (simplified initial conditions). The position and velocity error steeply go down and the used mass trends downwards when outliers are
not considered.
The simulator employed for the training phase uses a more appro-
priate atmospheric model (ISA atmosphere). As shown in Fig. 2(b) the
atmospheric model does not have a significant effect on the behavior
of the launcher and the error from the validated simulator is still low.

4. Results 3-DOF environment

In this chapter the results of the 3-DOF case are shown, quantifying
both the performance of the RL algorithm and the performance of
the obtained trajectory in the case of simplified and realistic initial
conditions. In this setting the policy can achieve quick convergence
with both sets of initial conditions, indicating that the dense reward
is sufficient to provide a strong learning signal to the algorithm. This
suggests that expanding the analysis of this scenario to a full reentry
trajectory would be feasible.

4.1. Simplified initial conditions

For the simplified initial conditions a lower initial height and initial
velocity are selected. Furthermore, the velocity is nominally in the verti-
cal direction only. This makes the credit-assignment problem easier due
to the reduced episodic length and does not require the policy to shed
any initial horizontal velocity. The mean and range of the distribution
are reported in Table 1.

In Fig. 3 the convergence behavior of the algorithm is highlighted.
Due to the multi-phase training process, there are discontinuities in
the mean reward and episodic lengths at the 1𝑘 Steps mark (on the
𝑥 axis the step refers to evaluation step. The exploratory behavior of the
algorithm results in spikes due to deviation from the locally optimal
policies, which are crucial to explore the state and action spaces and
converge towards a global optimum. Moreover, the convergence can
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also be analyzed by looking at the end-of-episode metrics (i.e. the
terminal errors and used propellant mass) in Fig. 4 showing quick
convergence towards low terminal errors in both position (Fig. 4(c)),
velocity (Fig. 4(d)) and attitude (Fig. 4(a)), with a gradual optimization
of the used propellant mass as outlined in Fig. 4(b).

It is possible to see that during the training phase, the agent first
learns to achieve a correct landing location (Fig. 4(c)), with the episode
length (Fig. 3(b)) not changing significantly (meaning that the rocket is
still mostly free falling). Successively the terminal velocity reward term
incentivizes the agent to learn to slow down, decreasing the velocity
error 4(d) and thus increasing the episodic length but also significantly
increasing the mean reward 3(a). Following these two steps, a longer-
used mass minimization trend can be observed in Fig. 4(b). Moreover,
it is interesting to analyze the profiles of velocity, in Fig. 5(b), and
thrust, in Fig. 5(a), of a sample episode after convergence. The two
figures show that the agent tries to maximize the reward by using the
thrusters at a minimum level, thus gaining speed, and then performing
a high-thrust final burn. This reflects the ideal thrust profile, as the
launcher avoids having high gravity losses during the landing burn by
employing the atmospheric drag to do part of the work required along
the trajectory.

4.2. Realistic initial conditions

Concerning the realistic initial conditions case, the analogous results
are depicted in Fig. 6, showing the training metrics measuring the
overall performance of the algorithm. In this simulation, the reward is
evaluated periodically from a batch of trajectory runs during training
which outlines a rapid convergence to a reward value close to the the-
oretical maximum. This theoretical maximum can be approximated by
envisioning an ideal scenario where the target acceleration is perfectly
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Fig. 5. Thrust and velocity profiles of the converged policy, showing the agent using a bang–bang profile to minimize gravity losses during the final burn.
Fig. 6. Trend of RL training metrics through training (realistic initial conditions). The mean reward trends upwards with episodic length going down to minimize propellant
consumption.
tracked and the thruster remains unused. Consequently, the policy
receives solely the terminal bonuses.

Moreover, by looking at the terminal errors and the used mass com-
bined with the reward trend, we can see that the algorithm manages
to converge to a robust policy, with low terminal velocity Fig. 7(d)
and position errors Fig. 7(c). The attitude error at touchdown is also
acceptable (Fig. 7(a)).

4.3. Comparison of activation functions

Before concluding the discussion on the simulation environment
based on the 3-DOF, it may be interesting to analyze the two types
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of activation functions which have been tested within this environ-
ment framework: the Rectified Linear Unit, 𝑅𝑒𝐿𝑈 , and the Hyperbolic
Tangent, 𝑡𝑎𝑛ℎ. As shown in Fig. 8(a), using ReLUs results in quicker
convergence than using the hyperbolic tangent, however, there is a
policy unlearning behavior with the reward peaking after a certain
number of training steps. This effect could be overcome by sampling the
mean reward obtained by saving the highest-reward policy network,
through periodic evaluation of the policy. If monotonic behavior in
training is desired for the ReLU activation function, it can be (roughly)
obtained by limiting the KL-divergence, as shown in Fig. 8(b). This aims
to limit the change in policy parameters at each update, by using early
stopping of the neural network optimizer. A good value for the limit



D. Iafrate et al. Acta Astronautica 227 (2025) 40–56 
Fig. 7. Trajectory metrics at each evaluation step (realistic initial conditions).
Fig. 8. Mean reward through a training trajectory.
is 𝐾 𝐿targ = 0.01, which does not slow down excessively the learning
process but still allows it to reach the maximum episodic reward.

For the 6-DOF environment, it was found that the instability in
convergence prevented successfully finding good policies.

5. Results 6-DOF environment

In this section, the analysis of the RL policy for a 6-DOF environ-
ment is presented. As happened in Section 4 two training runs are
shown: the first for a set of simplified initial conditions, the second for
a set of initial conditions sourced from historic flight data of the Falcon
9.
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5.1. Simplified initial conditions

In this instance, the policy entropy coefficient is set to a value of
𝑐entropy = 0.01. This setting serves the purpose of fostering exploration
and mitigating premature fixation of the policy onto a local optimum.
The implications of the two phases approach are evident when exam-
ining Fig. 9. Initially, the algorithm attains policy convergence during
the initial training phase, and then a turning point emerges around
time step 800, marked by a modification in the reward function. This
alteration initiates a subsequent exploratory phase, which, in turn,
leads to convergence toward a more efficient policy, characterized by
reduced propellant consumption and a decreased terminal velocity.
The lower consumption of propellant is also highlighted by the sharp
reduction in average episodic length, as shown in Fig. 10(b).
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Fig. 9. Trend of trajectory metrics during training, showing successful convergence.
Fig. 10. Reinforcement Learning training metrics (simplified initial conditions). The downward trend in episode duration around 103 steps shows the strong minimization of fuel
consumption due to the two-phase training.
The behavior of some metrics of the PPO algorithm can be assessed
to verify convergence from an algorithmic perspective. In particular the
mean reward 10(a) has an increasing trend, with a dip at training step
800 due to the switch in reward functions (this implies that there will
be a different maximum achievable reward) and the explained variance
converging to a value of 1 mean shows a good approximation of the
value function by the value network.

5.1.1. Montecarlo analysis of the policy
A Montecarlo analysis is carried out to test the robustness of the

policy. Here, since two different reward functions have been used for
the training phase, it is interesting to compare the differences between
the two training phases. The terminal velocity angle, computed as
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in Eq. (28), measures the deviation of the terminal velocity from
vertical at touchdown, which would nominally be directed downwards
to prevent the lander from tipping over.

𝜙 = 180 − ar csin
(

𝑣𝑥(𝑡𝑓 )

‖𝑣(𝑡𝑓 )‖

)

(28)

The statistics for the terminal errors of phase 1 and phase 2 are
reported in Tables 10 and 11.

It is quite interesting to analyze the differences between the two
controllers: indeed, comparing the position errors, the velocity errors
and the used mass, it is clear that the first controller aims to minimize
the terminal position error while having a relatively high-velocity error
and propellant consumption, while the second controller minimizes
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Fig. 11. Trajectory of an episode using the optimal network. The lander decelerates rapidly in the terminal part of the trajectory, to minimize fuel consumption.
Table 10
Terminal errors and used mass statistics, the first phase (mean 𝜇 and standard deviation
𝜎).

Position Velocity Attitude Angular velocity Used mass Velocity angle

𝜇 12.5 m 13.9 m∕s 4.3◦ 0.01◦∕s 3214 k g 4.6◦

𝜎 4.3 m 0.3 m∕s 2.7◦ 0.01◦∕s 96 k g 1.4◦

Table 11
Terminal errors and used mass statistics, second phase.

Position Velocity Attitude Angular velocity Used mass Velocity angle

𝜇 25.1 m 6.78 m∕s 3.6◦ 0.03◦∕s 2467 k g 48◦

𝜎 3.5 m 1.2 m∕s 2.0◦ 0.0◦∕s 88.4 k g 9.9◦

successfully the used propellant mass (using about 30% less propellant),
lowering at the same time the average velocity error to about 6.5 m∕s,
down from about 14 m∕s. This is however detrimental to the position
error which grows from an average of 14 m to about 26 m. Furthermore,
the terminal velocity angle increases significantly, although given the
low terminal velocity, this might not affect the stability of the lander.
Both attitude and angular velocity errors have comparable statistics
across the two training phases and are within acceptable bounds for
the landing.

A sample trajectory from the second model is shown in Fig. 11:
the lander first rotates to thrust in the landing direction, then when
a sufficiently low altitude is reached the thruster performs a burn
to reduce the velocity. Finally, once over the landing pad, a vertical
attitude is reached and successful landing is achieved.
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5.2. Realistic initial conditions

In this case, two important hyperparameters to tweak were the batch
size and the number of steps per rollout ; due to the increased length of
the average episode and the size of the action space, these had to be
increased significantly, in order to have a larger number of samples
available, capable of stabilizing the update of the policy and value
networks. Therefore, since the algorithm needs to explore larger action
and observation spaces, the time to convergence increases, requiring
significantly more episodes, clocking in at around 24 h of run-time. In
Fig. 12 a more detailed interpretation of the convergence behavior can
be observed: comparing the mean episodic reward in Fig. 13(a) with
the other metrics, it is evident that the algorithm first explores tracking
the target acceleration, then around step 1500, it discovers the terminal
bonus, successfully landing with low speed and position errors. Then,
there is an exploratory phase in which it attempts to further optimize
the reward, which finally converges to a solution with a higher terminal
reward due to the decrease in used mass.

The robustness of the PPO algorithm is evident in the trends of its
training metrics as shown in Fig. 13. The explained variance, measuring
the accuracy of the value function in predicting the cumulative rewards
reaches almost 100%, showing how the reward landscape is thoroughly
sampled and quantified.

It can be seen that the behavior is noisy and that there are spikes in
the terminal errors. This could be caused both by an excessive residual
degree of exploration or by the need for the policy to be more robust,
and could benefit from further increasing the batch and sample sizes.
From the trajectory of an episode with good landing behavior shown
in Fig. 14, it can be seen that the rocket manages to reach successfully
the landing zone (yellow circle in the figure) with low terminal velocity
and a vertical profile for the terminal descent.
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Fig. 12. Trajectory metrics at each evaluation step in the case of realistic initial conditions.
Table 12
Mean and range of initial conditions in the case of Monte Carlo analysis.

𝑟 [m] 𝑣 [m∕s] 𝑞 [–] �⃗� [r ad∕s] 𝑚 [k g]
𝜇�⃗�0 [2000,−1600, 0] [−90, 180, 0] [0.866, 0, 0,−0.5] [0, 0, 0] 41𝑒3
𝛥�⃗�0 [100, 200, 50] [30, 30, 10] [0.1, 0.1, 0.1, 0.1] [0.05, 0.05, 0.05] 1𝑒3

Table 13
Terminal errors and used mass statistics.

Position Velocity Attitude Angular
velocity

Used mass Final velocity angle

𝜇 10.0 m 9.42 m∕s 4.7◦ 0.06◦∕s 4219 k g 18.9◦

𝜎 4.3 m 2.3 m∕s 2.7◦ 0.04◦∕s 103 k g 9.5◦

5.2.1. Montecarlo analysis of the policy
Also in this 6-DOF case, a Montecarlo analysis is carried out on the

best-performing policy network to test the robustness of the trained
policy. The Montecarlo is performed on mean initial conditions and
range of initial conditions as shown in Table 12.

Instead, the statistic for the terminal errors are reported in Table 13.
The performance of the controller is compared to a baseline ob-

tained by solving the fuel-optimal problem disregarding the rotational
dynamics of the problem, meaning that the body is treated as a point
mass and the constrained (null terminal velocity and distance from
landing pad) optimization problem is solved. The RL solution is also
compared to a successive convexification MPC approach. The results
are reported in Table 14 and highlight that the optimal solution is
about 25% more efficient than the RL one. This is due to both the
acceleration-tracking shaping and the need to perform attitude control
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Table 14
Propellant consumption comparison of the obtained policy, the 3-DOF (point mass)
optimal solution and 6-DOF successive convexification (SCVX) approaches.

RL controller (6-DOF) 3-DOF optimal solution SCVX (6-DOF)

|𝑚0 − 𝑚𝑓 | 4250 k g 3545 k g 7525 k g

as well. The RL controller requires about 60% more of the propellant
used by the successive convexification solution, thus being significantly
more efficient.

6. Robustness to unmodeled dynamics and disturbances

This section analyzes the robustness of the control policy to var-
ious unmodeled dynamics and external disturbances. The key factors
considered include:

1. Error in the Position of the Center of Mass (CoM):

• Variation in CoM Position: The dry vehicle’s CoM po-
sition varies within ±3% of its nominal position (15m).

• Propellant Consumption Effect: The shift in CoM due
to propellant consumption is modeled, accounting for the
time-varying masses of fuel and oxidizer through the mix-
ture ratio (𝑂∕𝐹 ).

• CoM Calculation:

𝑥CG =
𝑚dry𝑥

dry
CG + 𝑚ox𝑥ox

CG + 𝑚fuel𝑥fuel
CG

𝑚dry + 𝑚ox + 𝑚fuel
(29)
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Fig. 13. Reinforcement learning training metrics. The upwards trend in episodic reward show successful learning of a good policy. The decrease in training loss also signals
convergence, as well as explained variance showing that the agent has explored the environment.

Fig. 14. Trajectory of an episode using the optimal network. We can notice the decrease in velocity and the successful pinpoint landing. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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2. Flexible Modes of the Structure:

• Modeling Flexibility: Introduces perturbing forces and
torques to account for structural flexibility.

• Modal Dynamics:
𝑞𝑖 = −𝜔2

𝑖 𝑞𝑖 − 2𝜉 𝜔𝑖�̇�𝑖 − 𝑇𝑖𝑡𝑝,𝑖 (30)

where 𝑞𝑖 are modal variables, 𝜔𝑖 are eigenfrequencies, 𝜉 is
the damping coefficient, and 𝑇𝑖 represents torques.

3. Uncertainty in the Inertia Moments:

• Time-Varying Inertia: Inertia moments are recalculated
at each time step due to changing propellant mass.

• Inertia Uncertainty: A ±1% uncertainty is introduced,
sampled from a uniform distribution.

4. Real Dynamics of the Actuators:

• TVC Gimbal Actuators:Modeled as second-order low-pass
filters with natural frequency 𝜔act and damping coefficient
𝜉act.
𝛿𝑖
𝛿cmd
𝑖

(𝑠) = 𝜔2
act

𝑠2 + 2𝜉act𝜔act𝑠 + 𝜔2
act

(31)

• Thruster Delay: Modeled as a first-order low-pass filter
with a characteristic time 𝜏thrust = 2 s.
‖𝐓‖

‖𝐓cmd‖
(𝑠) = 𝜔thrust

𝜔thrust + 𝑠
(32)

5. Misalignment of the Thrust:

• Thrust Vector Misalignment: Small offsets 𝜖𝑖 (sampled
uniformly from [−0.5◦, 0.5◦]) are applied using a rotation
matrix 𝑅𝜖 to simulate misalignment.

6. Wind Gusts and Wind Layers Model:

• Wind Gusts: Modeled as sinusoidal gusts with amplitude
𝐀gust = [15, 15, 15]m/s over specific height ranges.

𝐕gust = 𝐀gust

(

1 − cos
(

𝜋(𝑥 − ℎ1)
0.5𝛥ℎ

))

(33)

• Wind Layers: Implemented using the Horizontal Wind
Model 14 (HWM14) from the U.S. Naval Research Labo-
ratory [27].

6.1. Sensitivity results

Excluding outliers, the controller showed robustness to every source
of disturbances, maintaining low position and velocity errors compara-
ble to disturbance-free scenarios as shown in Fig. 16.

Some simulation runs resulted in divergence (outliers) as evident in
Fig. 15, characterized by the vehicle hovering or ascending near the
landing pad instead of landing (see Table 15).

The control policy exhibits robustness against various unmodeled
ynamics and disturbances. The low dispersion in landing positions

and minimal final errors demonstrate the effectiveness of the controller
under realistic operational conditions. Outlier cases suggest specific
scenarios where control refinement may be necessary, but overall
performance remains within acceptable limits.
 c

54 
Table 15
Number of outliers (runs where there is a divergence of the controller) out of 100 runs
or each disturbance.
Disturbance Outliers (out of 100 runs)

Center of mass error 0
Flexible modes 0
Inertia moments error 1
Offset CoM 1
Real actuator dynamics 2
Thrust misalignment 0
Wind gusts 0
Wind layers model 1

7. Conclusions

In this work, PPO is used to develop a control policy algorithm for
the task of landing a reusable launcher’s first stage. Starting from a
simplified 3-DOF planar environment, several aspects were analyzed,
from how hyperparameters selection affects convergence to how the
reward and activation functions influence performance. Successively
we moved to studying the 6-DOF problem and developing a policy to
land successfully in this more challenging case. Dense reward functions
were used in both cases, as they were found to provide a strong learning
signal to the RL algorithm. To achieve this, first, a target-velocity track-
ing reward function was used. Different initial conditions were tested
in both cases, starting on a simplified set and then moving to realistic
conditions taken from the Falcon 9 flight profile. This change required
modifying the reward function, moving from tracking a heuristic target
velocity to tracking a target acceleration. Both reward functions had
to be extensively tuned to achieve satisfactory performance. The batch
size sampled from the replay buffer to train the policy network was
found to be a critical hyperparameter in achieving good convergence
in terms of landing errors (terminal velocity and position errors).

Both in 3DOF and 6DOF cases, the learned policy manages to
achieve the landing objective with low fuel consumption, even if in
the latter case the learning algorithm necessitates a much longer time
to converge to a quasi-optimal policy.

The simplicity of the control policy algorithm is counter-weighted
by the need for an exhaustive grasp of domain-specific knowledge
when developing and tuning the reward function. Furthermore, the
policy’s explainability is low, due to the black-box nature of the neural
net used to approximate it, this being an aspect that gains particular
significance in the context of reentry and landing procedures, especially
when considering Earth landings and potentially manned vehicles.

Nonetheless, Reinforcement Learning proves to be a valid option for
learning a landing policy and opens up the door for integrating addi-
tional actuators and dynamics by simply modifying the environment,
without any changes to the learning algorithm.
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Fig. 15. Dispersion plot with disturbances and unmodeled dynamics. Most of the simulations result in a successful landing within a 20 m radius, however, there are a few significant
outliers.
Fig. 16. Sensitivity to unmodeled dynamics and disturbances. The policy proves to be robust by having low errors and dispersion in the presence of different disturbances and
uncertainties.
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Appendix

Quaternion parametrization. The quaternion parametrization uses the
scalar-first convention as in Eq. (34): the angle 𝜃 represents double the
magnitude of the rotation around the rotation axis expressed by the
vector part of the quaternion [𝑞𝑥, 𝑞𝑦, 𝑞𝑧].

𝑞 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑞𝑠
𝑞𝑥
𝑞𝑦
𝑞𝑧

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑐 𝑜𝑠 𝜃2
�⃗�𝑠𝑖𝑛 𝜃2
𝑗 𝑠𝑖𝑛 𝜃2
�⃗�𝑠𝑖𝑛 𝜃2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(34)
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The rotation matrix from the inertial to the body reference frame
can be computed knowing the elements of the quaternion as:

𝑅𝐼→𝐵 =
⎡

⎢

⎢

⎣

1 − 2(𝑞22 + 𝑞23 ) 2(𝑞1𝑞2 − 𝑞0𝑞3) 2(𝑞1𝑞3 + 𝑞0𝑞2)
2(𝑞1𝑞2 + 𝑞0𝑞3) 1 − 2(𝑞21 + 𝑞23 ) 2(𝑞2𝑞3 − 𝑞0𝑞1)
2(𝑞1𝑞3 − 𝑞0𝑞2) 2(𝑞2𝑞3 + 𝑞0𝑞1) 1 − 2(𝑞21 + 𝑞22 )

⎤

⎥

⎥

⎦

(35)
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