
A Saturated Higher Order Sliding Mode Control
Approach for DC/DC Converters

Antonio Russo, Gian Paolo Incremona and Alberto Cavallo

Abstract— This paper presents a novel approach
of designing saturated Higher-Order Sliding Mode
(HOSM) controllers for a class of DC/DC converters.
Specifically, the proposed controller aims at guar-
anteeing boundedness and smoothness of the duty
cycle feeding the Pulse-Width-Modulator. The novel
control architecture consists of the so-called Bounded
Integral Control (BIC) combined with a discontinuous
HOSM control algorithm. The main strength of the
proposed approach is its general applicability to a
large class of DC/DC converters. Numerical results
testify the effectiveness of the proposed approach.

I. Introduction
DC/DC converters are electronic devices able to con-

vert a source of direct current from a voltage level to
another. Due to their wide range of possible power levels,
they have been widely adopted in several applications
such as microgrids [1], transportation systems [2] or
photovoltaic systems [3]. These devices are controlled by
properly acting on the power electronic switches through
a periodic, high-frequency switching signal generated by
a Pulse-Width Modulator (PWM) to obtain the desired
output voltage. Therefore, switching dynamics generated
by such elements can be modeled as the action of a
discontinuous input taking values either 0 (switch open)
or 1 (switch closed).

The control design of power converters has been an
interesting challenge during the past two decades. Several
different theoretical frameworks have been adopted to
solve this task. For instance, in [4] a hybrid systems
approach was applied to the analysis and control of
switched converters with PWM inputs. Discontinuous
sliding mode control for DC/DC converters control was
deeply discussed in [5], where the discontinuous signal
generated by first-order Sliding Mode Control (SMC) is
directly applied to the converter switches, avoiding the
PWM modulation. Furthermore, assuming high switch-
ing frequency, it is possible to design the control strategy
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through analysis of the so-called average model [6]. While
the hybrid approach offers rigorous and elegant tools
to solve the control problem, the analysis through its
framework is not straightforward. On the other hand, the
discontinuous SMC approach cannot guarantee a fixed
switching frequency, which is crucial for many power elec-
tronics applications. Hence, the most frequently adopted
approach, which is also considered in this work, consists
in approximating the high-frequency switching signal,
generated by a PWM, with its average value in a period,
that is the duty cycle, and design a smooth control input
to drive the PWM.

Due to converter parameters uncertainties and mea-
surement noise, robustness is one of the key points
when designing control algorithms for DC/DC convert-
ers. Continuous Higher-Order Sliding Mode (HOSM)
algorithms obtained as a time integration of a discon-
tinuous signal (e.g., as in [7]) have been successfully
proved to be a valid approach for this kind of applications
(see [8] for instance). Nevertheless, if on the one hand a
continuous signal is fed into the plant allowing chattering
alleviation, on the other hand its amplitude could be time
varying and overcoming the intrinsic saturation of the
duty cycle for which meaningful values are only those
belonging to the set [0, 1]. Several HOSM controllers with
embedded saturation strategies have been investigated.
Specifically, a modified Suboptimal Second-Order Sliding
Mode (SSOSM) approach with desaturation strategy has
been proposed in [9]. In [10], instead, a saturated Super-
Twisting Sliding Mode (STSM) control has been intro-
duced, proving finite time convergence and saturation
fulfilment relying on Lyapunov theory provided that
perturbations do not exceed half of the control input
bounds. This requirement has been then removed in
[11]. In [12] both state and input constraints are instead
taken into account for designing HOSM control laws with
optimal reaching.

Differently from [9], [10], [11], in this paper a novel ap-
proach for HOSM saturation is proposed. The proposed
control architecture is based on the combination of a dis-
continuous HOSM strategy with the so-called Bounded
Integral Control, initially introduced in [13] and then
enhanced in [14]. It is worth highlighting that, while in
[13], [14], BIC is used to replace classical integral control,
in this paper it is instrumental for developing a generic
sliding mode control with desaturation properties. Fur-
thermore, while in [9], [10], [11] a specific saturation
strategy had to be designed for the specific considered
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Fig. 1: Cúk, Zeta and Quadratic Buck converter.

HOSM laws, the approach proposed in this work aims
at being applicable to generic r-order HOSM control
algorithms. Further details regarding the combination of
discontinuous HOSM and BIC can be found in [15].

The combination of BIC and HOSM control is here
applied to the control of a class of DC/DC converters
characterized by some common properties such as num-
ber of control inputs, order of the system and relative
degree with respect to the selected sliding function.

II. DC/DC Power Converter Models
In the following, a class of power converters, that can

be obtained as a combination of the basic converter
topologies representing the Buck, the Boost and the
Buck-Boost converters, are introduced and their common
properties are discussed.

A. Cúk converter
The Cúk converter (see Figure 1a) is obtained as the

cascade connection of the Boost and the Buck converter.
In fact, the input circuit in the Cúk converter is a Boost
converter and the output circuit is seen to be a Buck
converter. This converter amplifies and reduces the input
voltage with polarity inversion.

Its dynamics is described by the following set of dif-
ferential equations

ι̇1 = 1
L1

[−RSι1 − (1 − u)v1 + E]

v̇1 = 1
C1

[
− v1

RC
+ (1 − u)ι1 + uι2

]
ι̇2 = 1

L2
[−RSι2 − uv1 − v2]

v̇2 = 1
C2

[
ι2 − v2

R

]
, (1)

where u ∈ [0, 1] is the converter duty cycle, ι1 is the
current flowing through the inductor L1, v1 is the voltage
on the capacitor C1, ι2 is the current flowing through the
inductor L2, and v2 is the converter output voltage over
the capacitor C2. The resistors RS and RC represent the
switches resistance and the capacitor inner resistance,
respectively. Finally, the input voltage source and the
connected resistive loads are indicated with E and R,
respectively.

B. Zeta converter
Similarly to the Cúk converter, the Zeta converter (see

Figure 1b) can be modeled as a fourth order bilinear

system. This converter can both amplify and reduce,
without polarity inversions, the value of the input source
voltage E.

The equations describing the dynamics of the convert-
ers are

ι̇1 = 1
L1

[−RSι1 − (1 − u)v1 + uE]

v̇1 = 1
C1

[
− v1

RC
+ (1 − u)ι1 − uι2

]
ι̇2 = 1

L2
[−RSι2 − uv1 − v2 + uE]

v̇2 = 1
C2

[
ι2 − v2

R

]
, (2)

where the notation is the same as the one adopted for
the Cúk converter in (1).

C. Quadratic Buck converter
The Quadratic Buck converter (see Figure 1c) repre-

sents a valid alternative to the more commonly known
Buck converter and it owes its name to the quadratic
nature of its static function.

The equations of this converter are

ι̇1 = 1
L1

[−RSι1 − v1 + uE]

v̇1 = 1
C1

[
− v1

RC
+ ι1 − uι2

]
ι̇2 = 1

L2
[−RSι2 + uv1 − v2]

v̇2 = 1
C2

[
ι2 − v2

R

]
, (3)

where, again, the notation is the same as the one adopted
for the Cúk converter in (1).

The above converters share some common interesting
properties. First, their topologies can all be modeled as
fourth order bilinear dynamical systems. Moreover, they
share a common control objective, that is the regulation
of the output voltage v2 to a given reference v̄2. Then,
for all the above systems, the control input, i.e., the duty
cycle, does not directly affect the differential equation
describing the behavior of v2. Finally, denoting x :=
[x1, x2, x3, x4]⊤ = [ι1, v1, ι2, v2]⊤, equations (1), (2) and
(3) can be synthetically rewritten as affine systems of the
form {

ẋ(t) = a(x(t)) + b(x(t))u(t) (4a)
y(t) = x4(t) − v̄2, (4b)



where a(x(t)) : R4 → R4 and b(x(t)) : R4 → R4. These
commonalities allow for a unified design of the output
voltage control for the above converters.

III. Problem Formulation and
Stability Properties

A. Problem Formulation
An important aspect of power converters control is the

boundedness of the control input. In fact, meaningful
values of the duty cycle are only those belonging to
the interval [0, 1]. Furthermore, in some cases the set of
acceptable values of the duty cycle can be further shrunk
to limit the converter currents. Thus, more generally, the
control input constraint can be stated as

u(t) ∈ [0, ū], ∀t ≥ t0, (5)

with ū ∈ (0, 1].
Most control algorithms dealing with input constraint

usually consider symmetric input bounds. Therefore, it
is useful to perform an input linear transformation to
define a new input variable characterized by symmetric
bounds as

ũ(t) = u(t) − ū

ū
2U + U, (6)

with U being a positive constant selected by the de-
signer. Such transformation guarantees that if the newly
defined input ũ belongs to the symmetric set [−U, U ],
then constraint (5) is fulfilled. Thus, system (4) can be
equivalently reformulated as{

ẋ(t) = ã(x(t)) + b̃(x(t))ũ(t) (7a)
y(t) = x4(t) − v̄2. (7b)

subject to ũ(t) ∈ [−U, U ] with ã(x(t)) := a(x(t)) +
1
2 b(x(t))ū and b̃(x(t)) := ū

2U b(x(t)).
For the sake of control design, let us now define the

sliding variable

σ1(t) = y(t) = x4(t) − v̄2, (8)

which is required to be steered to zero. Considering such
choice of the sliding function, a common property of
the above converters is their relative degree, that is the
smallest constant value r such that

∂

∂u
σ

(i)
1 = 0, i = 1, . . . , r − 1; ∂

∂u
σ

(r)
1 ̸= 0.

In fact, considering the sliding function (8) and its time
derivatives, systems (1), (2) and (3) have a time-invariant
relative degree equal to 2. Such condition inhibits the
possibility to adopt first order sliding mode control, since
the control input has no direct effect on the sliding
variable. Therefore, a second order sliding mode natu-
rally applies. However, this might generate the so-called
chattering phenomenon due to the discontinuous nature
of the input. A possible solution aimed at chattering
alleviation is given by the adoption of a third order
sliding mode control algorithm for an auxiliary system
of augmented order. Specifically, the latter approach is

based on the addition of an integrator dynamics which
increases the relative degree and allows the adoption of a
discontinuous third order sliding mode control strategy
on the auxiliary system while actually providing a con-
tinuous signal to the plant. This work will mainly focus
on this solution.

Computing the first, second and third time-derivatives
of (8) along the trajectories of system (7), the auxiliary
system with relative degree 3 can be written as

σ̇1(t) = σ2(t) (9a)
σ̇2(t) = σ3(t) (9b)
σ̇3(t) = f1(x(t), ũ) + f2(x(t))v(t) (9c)
˙̃u(t) = v(t), (9d)

where v is the auxiliary input, and f1 and f2 are contin-
uous uncertain vector fields, with f1 being different for
each converter, while f2 = − ū

2UC2L2
v1 for the Cúk and

Zeta converter, and f2 = ū
2UC2L2

v1 for the Quadratic
Buck converter.

Relying on the above discussion, the control problem
to solve can be stated as follows.

Problem 1. (Finite time regulation with saturated input)
Design a discontinuous-time robust feedback control law
v(t) able to regulate (σ1(t), σ2(t), σ3(t)) to zero in finite
time while ensuring boundedness of the overall converter
dynamics and fulfilling constraint ũ(t) ∈ [−U, U ].

B. Stability Properties
Prior to investigating the control design for the above

converters, their stability properties are analyzed.
Indeed, it can be formally proved that systems (1),

(2) and (3) cannot undergo any unstable behavior for
any trajectory of the control input u ∈ [0, 1] (as it
happens, for instance, in the case of the ideal Boost
converter). Specifically, this result can be achieved by
resorting to the Input-to-State Stability (ISS) property
and its Lyapunov characterization [16].

Lemma 1. Systems (1), (2) and (3) are ISS with respect
to the external input E for any input trajectory u(t).

Proof. Similarly to the proof of [17, Lemma 1], the
Lemma can be proved by choosing the Lyapunov function
candidate

V = 1
2L1ι2

1 + 1
2C1v2

1 + 1
2L2ι2

2 + 1
2C2v2

2 ,

and computing its time derivative along the trajectories
of systems (1), (2) and (3), respectively.

Lemma 1 proves that the upper-bound of the state
norm can be obtained as the sum of two terms: a function
of the converters initial condition, and a function of the
magnitude of E. This in turn implies that there exist
constants I+

1 , I−
1 , V +

1 V −
1 , I+

2 , I−
2 , V +

2 and V −
2 such

that I−
1 ≤ ι1 ≤ I+

1 , V −
1 ≤ v1 ≤ V +

1 , I−
2 ≤ ι2 ≤ I+

2
and V −

2 ≤ v2 ≤ V +
2 . Noting that v1 represents the

voltage over capacitor C1, it is expected that its sign



never changes. Therefore, it can be safely assumed that
constants V −

1 and V +
1 have the same sign. The same

reasoning can be applied to the voltage v2 and its upper
and lower bound V −

2 and V +
2 .

Boundedness of the converters states has a dual im-
portance. Firstly, having proved that the system tra-
jectories are always bounded for any input trajectory
u(t) guarantees that the residual dynamics (that is the
dynamics of the system when v2(t) ≡ v̄2) is bounded.
Furthermore, boundedness guarantees the existence of
positive constants Km, KM and C such that

Km ≤ f1(x(t), u) ≤ KM , |f2(x(t))| ≤ C. (10)

The above condition is a fundamental hypothesis for
many higher-order sliding mode control algorithms (see
for instance [7], [12]).

IV. Saturated HOSM control design

A. The proposed control scheme

In this paper, to solve the problem formulated in
Section III, we propose a general approach based on
the combination of a discontinuous HOSM strategy and
the so-called BIC, exploited in place of the traditional
integrator to account for the input saturation limits and
to smooth the discontinuous control provided by the
HOSM control.

converterũ → u PWM

σ1, σ2, σ3BIC 3-SMC

x

v̄2s(σ)v(t)

ũ∈ [−U, U ]

u∈ [0, ū] u∈{0, 1}

Fig. 2: Representation of the proposed control scheme
with 3-SMC control and BIC mechanism.

The considered control scheme in Figure 2 includes six
key blocks: the PWM modulator, the converter, the block
computing an augmented vector of the sliding variable
and its derivatives, the block implementing the discon-
tinuous 3-SMC, the one with the BIC mechanism and
the one implementing the linear input transformation.
The sliding variable σ1 is selected as in (8), while its
derivatives can be measured or retrieved for instance
by the so-called Levant’s differentiator of the suitable
order [18]. The vector of the sliding variable and its
derivatives suitably augmented is then used by the 3-
SMC law, which generates a discontinuous signal. The
latter is directly transmitted to the BIC block, which
generates a smooth input in the interval [−U, U ]. Then,
such input is transformed in the duty cycle taking values
in the set [0, ū] and it is finally sent to the PWM to
regulate the converter switches. In the following, the 3-
SMC and the BIC mechanism are detailed.

w1

w2

ũ U−U O

E

Ω

Fig. 3: BIC working principle.

B. Third order sliding mode control component
According to the HOSM control literature, since the

relative degree of the auxiliary system (9) is 3, a 3-SMC
can be therefore applied. Specifically, in the following any
sliding mode control method of the type

v(t) = −α · sgn(s(σ(t))), (11)

is assumed eligible, with σ(t) := [σ1(t), σ2(t), σ3(t)]⊤.
The discontinuous control law is such that the amplitude
α satisfies α > C/Km. Specifically, α has to be properly
selected depending on C and Km to enforce a sliding
mode in a finite time on the sliding manifold s(σ(t)) =
0. The expression of s(σ(t)) depends on the particular
choice of the 3-SMC algorithm. For instance, a possible
choice of s(σ(t)) is the one presented in [19], i.e.,

sL(σ)=σ3+β2(|σ2|3+σ2
1) 1

6×sgn
(
σ2+β1|σ| 2

3 sgn(σ1)
)
. (12)

Alternatively, in [20] a 3-SMC control law with optimal
reaching was proposed, with s(σ(t)) as

sOR(σ) = σ1+ σ3
3

3α2
r

+ ρ
√

αr

(
ρσ2 + σ2

3
2αr

) 3
2

+ ρσ2σ3

αr
(13)

ρ = sgn
(

σ2 + σ3|σ3|
2αr

)
.

Remark 1 (Choice of the sliding manifold). It is worth
highlighting that the proposed approach can be applied
for any r-th order sliding mode control, independently of
the choice of the sliding variable σ1(t), and of the sliding
manifold s(σ(t)). □

C. BIC component
In this section the enhanced BIC mechanism intro-

duced in [14] is recalled and recast according to the
HOSM formulation. Let −U and U be the lower and
upper bounds of the input signal, and w1 and w2 the
additional controller state variables. Consider now the
closed curve in Figure 3 represented by the following set

E :=
{

(w1, w2) ∈ R2 : ϵ(w1, w2) = 0
}

(14a)

ϵ(w1, w2) := w2
1

U2 +w2m
2 − 1, (14b)

with m being a positive integer greater or equal than one.
The integration and desaturation strategy combined with



the previous 3-SMC control laws then becomes

ũ =w1 (15a)[
ẇ1
ẇ2

]
=

[
−kϵ(w1, w2) kIv(t)w2m−1

2
−kIv(t) w2

U2 −kϵ(w1, w2)

] [
w1
w2

]
, (15b)

where k and kI are suitable positive constant gains.
Specifically, the idea underlying the BIC approach is

to make the controller state variables (w1(t), w2(t)) move
towards the closed curve E and remain on it over times
to ensure that the control input ũ is constrained in
the set [−U, U ]. Once (w1(t), w2(t)) ∈ E , then the BIC
algorithm approximates the behavior of an integrator
while embedding an intrinsic saturation strategy. In fact,
it is possible to observe that for (w1(t), w2(t)) ∈ E (i.e.
ϵ(w1, w2) = 0) the BIC algorithm reduces to

ẇ1 = kIv(t)w2m
2 (16)

ẇ2 = −kIv(t)w1w2

U2 . (17)

For high values of m, the closed curve in Figure 3
approximates a rectangle, thus yielding w2 ≈ 1 when
w1 is far from the saturation limits. In this case, (16)
approximates the behavior of an integrator with gain kI .
If the controller state w1 (equivalently ũ) approaches the
saturation limit, then the state w2 tends to zero thus
slowing down the integration in (16) and guaranteeing
that w1 does not overcome the saturation bounds.

Three constants must be designed to implement this
algorithm: the integer m sets the sharpness of the closed
curve E , thus regulating the saturation behavior, k reg-
ulates the convergence rate of (w1(t), w2(t)) towards the
curve E , and kI is the integral gain.
Remark 2 (Anti-windup property). Note that, as indi-
cated also in [14], [15], the BIC strategy intrinsically has
an anti-windup property, which can be suitably enhanced
by a proper choice of the parameter m. □

V. Case Study
In order to verify the effectiveness of the proposed

saturated HOSM control approach, the Cúk converter,
shown in Figure 1a, has been implemented in a simu-
lation environment. The converter parameters are pre-
sented in Table I, where fP W M is the switching frequency
of the PWM regulating the converter switches.

TABLE I: Cúk converter parameters

E 270 [V]
L1 10 [mH]
L2 10 [mH]
C1 800 [µF]
C2 400 [µF]
RS 100 [mΩ]
RC 1 [MΩ]
R 10 [Ω]
fP W M 100 [kHz]

The control task is to regulate the output voltage v2 to
a given piecewise constant reference v̄2. For stability rea-
sons, i.e., to avoid relatively high values of the inductor

Fig. 4: From the top: time evolution of the voltage v1;
time evolution of the voltage v2 (blue solid line) and
reference voltage v̄2 (black dashed line)

Fig. 5: From the top: time evolution of the BIC output ũ
(blue solid line) with upper/ lower bound (black dashed
line); time evolution of the duty cycle u (blue solid line)
with upper/lower bound (black dashed line)

Fig. 6: From the top: time evolution of the current ι1;
time evolution of the current ι2



current, in practice, it is often required that duty cycle
u is saturated to an upper bound lower than 1. In the
present example the maximum allowed duty cycle ū is
equal to 0.6. The duty cycle is obtained by inversion of
the linear transformation in (6), where the symmetric set
is designed with U = 1. Choosing the sliding function as
in (8), with reference to equations (1) and (9), one has

f1 = 1
C2

[
−

(
Rs

L2
+ 1

RC2

)
ι̇2 −

(
1

L2
− 1

R2C2

)
v̇2

−
(

(ũ − U) ū

2U
+ ū

)
v̇2

L2

]
f2 = − 1

L2C2

ū

2U
v1.

It must be noted that the exact knowledge of f1 and f2
is not required for the design of the control algorithm. In
fact, only estimation of the bounds Km, KM and C in
(10) is required. The 3-SMC algorithm in (12) has been
chosen to generate the discontinuous control law v with
α = −1, β1 = 100 and β2 = 4000, with the value of
α being negative to compensate the negative sign of f2.
Furthermore, the BIC algorithm has been implemented
as in (15) with parameters k = 100, kI = 1 and m = 2.

Starting from v2(0) = 10V , the reference output
voltage is initially set to −50V . As it is shown in Figure 4
(bottom), the output voltage is regulated at the desired
value through the action of the 3-SMC combined with
the BIC algorithm. The evolution of the BIC output ũ
and the actual duty cycle u are shown in Figure 5, while
the converter currents response are presented in Figure 6.
At t = 4s the output voltage reference is instantaneously
decreased to −200V , and it is further decreased at t =
8s to −350V . In both cases, the proposed algorithm
manages to regulate the output voltage to the desired
value without reaching the duty cycle saturation limit.
As indicated in Figure 6, the decrease of the voltage ref-
erence causes the increase of the current flowing through
the converter. From t = 12s to t = 14s, the reference is
selected as v̄2 = −480V , which causes the saturation of
the duty cycle. In fact, as it is shown in Figure 5, the BIC
saturates its output to its upper bound, which causes the
duty cycle to reach its maximum allowed value ū. While
such saturation prevents the achievement of the control
objective, it allows to keep the converter current limited.
Finally, after t = 14s, the reference is chosen again to
be −200V , the BIC algorithm correctly desaturates, and
the output voltage is regulated at the new desired value.

VI. Conclusions
This paper proposed a possible solution to the problem

of controlling of a class of DC/DC converters through
saturated higher order sliding mode control strategies.
Such alternative approach is based on the so-called BIC
algorithm, classically used to replace integral control,
and here recast into the SMC framework. Specifically,
the BIC is used in place of the classical integrator
when designing a continuous 3-SMC, with the aim of

stabilizing the output voltage of DC/DC converters while
ensuring smoothness and boundedness of the duty cycle.
The effectiveness of the proposed approach has been
assessed in simulation with a Cúk converter model.
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