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Abstract

Frequency and phase of the power grid, which are critical for reliable control
and protection of grid-tied devices, are generally detected by the closed-loop
phase locked-loop (PLL). In highly inductive high-voltage transmission sys-
tems, decaying DC (DDC) components with large amplitude can be easily
introduced by load disturbances and/or grid abnormalities, leading to se-
vere performance degradation of the PLL during the transient. Focusing
on this issue, in this paper, modifications to the conventional synchronous
reference frame (SRF)-PLL have been made to address the short-term distur-
bances including the DDC component, and the system operation is divided
into the normal state and the DDC-transient state. The SRF-PLL is only
adopted for the normal state where the DDC component is negligible. In the
presence of a significant DDC component, as well as disturbances including
negative-/zero-sequence components and harmonics, the weak effectiveness
of the conventional SRF-PLL is proved, and an efficient DDC component
extraction method, with a detection time of 0.5 grid cycle, is introduced for
the three-phase system. The real-time amplitude and phase of the positive-
sequence component can be efficiently extracted via the proposed scheme,
by exploiting the transient signal properties in the dq-frame and assuming a
constant grid frequency during the short transient. Finally, a proper design
of switching logic has been proposed to allow for the fast and precise tran-
sition between the normal and the DDC-transient state, thereby ensuring
high steady-state accuracy as well as short-term DDC transient immunity.
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Hardware-in-the-loop based experiments have been used to verify the effec-
tiveness of the proposed PLL technique.

Keywords: decaying DC component, phase locked-loop, transient signal,
unbalanced grid, harmonics

1. Introduction

Fast and accurate detection of grid amplitude and phase is of paramount
importance for power system applications, including the control of electrical
machines [1], measuring power quality phenomena and indices [2], islanding
detection [3], and especially, high-performance control of grid-tied converters
[4]. This is usually done by means of phase locked-loops (PLLs), [5, 6], ei-
ther in the form of open-loop or closed-loop schemes. Over the past decades,
there has been a rapid development of PLL techniques. Among many pos-
sibilities, the synchronous reference frame (SRF) based PLL, i.e., SRF-PLL,
has been widely adopted in practice, owing to its simple implementation and
satisfactory detection accuracy in many scenarios.

However, the traditional PLLs are insufficient to deal with several extreme
cases in practice, e.g., when a significant decaying DC (DDC) component is
present during the transient. The DDC component is introduced to the grid
quantities by the fast switching of circuit topology (such as the grid fault and
load shedding) in a highly inductive environment, such as the high-voltage
overhead lines, high power generators, large transformers, and distribution
networks with large inductive loads, since the non-negligible grid inductance
hinders the sudden change of current [7]. In the event of a DDC transient,
the phase detected by the traditional PLL is inaccurate with the presence
of undesired oscillations, and an accurate detection requires a long dynamic
response time.

There are several works in the literature attempting to achieve a fast
phase synchronization in the event of a DDC transient. These methods,
according to their implementations, can be either modification to a conven-
tional PLL scheme, e.g., the modified enhanced PLL in [8], or specifically
designed to remove the DDC component during transient, e.g., [7, 9]. Theo-
retically, the former has a more general structure and easier implementation,
yet the detection speed or accuracy is not optimized. Conversely, owing to
the embedded algorithm specifically tailored for DDC component detection,
the latter has the potential to achieve faster and more precise detection re-
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sults at the expense of slightly increased computational complexity, which
can be anyway effectively addressed by the real-time controller.

Several methods are available in the literature as long as the accurate de-
tection of the DDC component is the target. However, many methods, e.g.,
[10, 11, 12, 13, 14, 15], are not suitable for real-time control applications,
which require not only a high detection performance in terms of precision
and speed, but also a light computational burden limited by the controller
performance. Indeed, these DDC detection methods, among many other al-
ternatives, were developed and applied with the aim to facilitate grid fault
analysis, relay design, and power system protection. Unlike these works,
several attempts in the last few years provide simple yet feasible DDC com-
ponent detection solutions optimized for the embedded controller. [16, 17]
use analysis of empirical formula to derive detection methods based on high-
order time-derivatives, which are highly susceptible to random noise. [18]
and [19] designed an active power filter to eliminate the DDC current from
the source based on detection results, realizing a response time of roughly
one grid cycle. Based on mathematical analysis and time integrals, [20] re-
alized DDC component detection within half grid cycle. These methods are
easy to be digitally implemented, and can be calculated in real time with the
common embedded controller, which is generally a digital signal processor
(DSP).

Based on the aforementioned works, [9] proposed an open-loop amplitude-
phase detection scheme for grid voltage considering the transient DDC com-
ponent and harmonics, and has a response time of one grid cycle. An im-
proved amplitude-phase detection scheme is proposed in [7] based on a vari-
able integral length of the DDC detection algorithm, thereby allowing for a
fast initial detection speed within half grid cycle and gradually increased de-
tection precision. In that work, the grid unbalance is also considered, by de-
composing the grid quantity into positive-, negative-, and zero-sequence com-
ponents, and assuming non-zero negative- and zero-sequence components.
Indeed, this consideration is more practical in the high-voltage transmission
and distribution networks, where the X/R ratio is large to produce a signifi-
cant DDC component, yet the harmonics are usually negligible. In a recent
work [19], an open-loop detection scheme is developed to address the DDC
transient with the possible presence of a DC offset. Since the addition of
the DC offset will invalidate the half-wave symmetry of the DDC-free sig-
nal component, the developed algorithm requires slightly increased detection
time. However, in the aforementioned works, the steady-state accuracy of
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grid frequency and phase in the absence of the DDC transient cannot be
guaranteed, due to the use of an open-loop detection scheme that presumes
a fixed grid frequency. Indeed, this is an issue to be addressed if a DDC
component detection algorithm is to be used in practice.

Focusing on the aforementioned limitation, this work presents a compre-
hensive solution for phase synchronization that deals with both the normal
state operation and DDC transient event; also, the transition between the two
states has been addressed. To this end, in this work, the conventional SRF-
PLL scheme is served as the starting point for accurate phase detection, but
is then integrated with the amplitude-phase detection algorithm that is able
to quickly separate the DDC component during the transient. Detailed im-
plementation of the two schemes and the proper switching logic that enables
seamless transition are discussed. The proposed strategy allows for efficient
phase detection in the possible presence of negative- and zero-sequence com-
ponents, harmonics, and most importantly, DDC transients with a notable
amplitude. Hardware-in-the-loop based experiments, considering the afore-
mentioned disturbances and the frequency sudden change, have been used to
show the effectiveness of the proposed method.

2. Normal-State Phase Detection based on SRF-PLL

2.1. Basic Principle

When the utility grid is operating in the ideal condition, the three-phase
grid quantities (voltages/currents) are balanced. In this case, considering
only the presence of positive-sequence components, the three-phase quantities
can be formulated as

X+ (t) =

x+
a (t)

x+
b (t)

x+
c (t)

 = X+

 sin (ϕ+)
sin (ϕ+ − 2π/3)
sin (ϕ+ + 2π/3)

 (1)

ϕ+ = ωt+ θ+ (2)

where X+ is the general grid quantity whose phase is to be detected, and
the superscript + represents the positive-sequence quantity hereinafter. X+,
ϕ+, and θ+ are the amplitude, real-time phase, and initial phase of the grid
quantity, respectively, and θ+ ∈ [0, 2π). ω = 2πf (with f being the frequency
in Hz) is the angular frequency of the grid in rad/s.
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To obtain the phase (ϕ+) and frequency (ω) information of the grid quan-
tity, the SRF-PLL scheme can be adopted. With reference to the control
diagram in Fig. 1, kp and ki are the proportional and integral gains of the
PI controller, respectively. mod is the modulo operation that calculates the
remainder after division; in this case, the phase is divided by 2π to obtain
the final value within [0, 2π). ωs is the synchronous angular frequency of the
grid. The abc/dq transformation matrix is given by

PI

+
+ f

abc

dq

s

mod

LPF
qx
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Figure 1: Structure of the traditional closed-loop SRF-PLL.

Tabc/dq =
2

3

sin ⌢

ϕ+ sin
( ⌢

ϕ+ − 2π/3
)

sin
( ⌢

ϕ+ + 2π/3
)

cos
⌢

ϕ+ cos
( ⌢

ϕ+ − 2π/3
)

cos
( ⌢

ϕ+ + 2π/3
)
 (3)

During the closed-loop phase synchronization process, the PLL dynami-

cally adjusts its output phase (
⌢

ϕ+) through the PI controller, and tracks the
time-variant phase of the grid quantity [see ϕ+ in (2)] in real time. When
⌢

ϕ+ = ϕ+, the phase is synchronized, and the phase and frequency of the PLL
output are those of the grid quantity.

By properly designing the low-pass filter in the PLL (see LPF block in
Fig. 1), the grid imbalance (negative-/zero-sequence components) and har-
monics can also be effectively addressed, at the expense of increased dynamic
response time. However, the DDC transient possibly present in the grid will
have a significant impact on the PLL performance, as will be discussed in
the following.

2.2. Limitation of SRF-PLL during DDC Transient

Due to the large X/R ratio of the middle-/high-voltage grid system, a
significant DDC component can be generated during the transient [7]. In
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this section, a general grid quantity decomposition considering the presence
of the DDC component is performed as the starting point.

Considering a general grid transient encompassing positive-, negative-,
and zero-sequence components, harmonics, as well as DDC components, in
compact form, the three-phase grid quantities X (t) = [xa (t) , xb (t) , xc (t)]

T

can be written as

X (t) = X+ (t) +X− (t) +X0 (t) +Xh (t) +Xddc (t) (4)

where the positive-sequence component X+ (t) is given by (1) and (2). The
superscripts − and 0 represent the negative- and zero-sequence components,
respectively. Xh (t) and Xddc (t) represent the harmonic and DDC compo-
nents, respectively. These components can be expressed as

X− (t) =

x−
a (t)

x−
b (t)

x−
c (t)

 = X−

 sin (ωt+ θ−)
sin (ωt+ θ− + 2π/3)
sin (ωt+ θ− − 2π/3)

 (5)

X0 (t) =

x0
a (t)

x0
b (t)

x0
c (t)

 = X0

sin (ωt+ θ0)
sin (ωt+ θ0)
sin (ωt+ θ0)

 (6)

Xh (t)=
∑

n=3,5,7,...

Xn (t) =
∑

n=3,5,7,...

X+
n

 sin (nωt+ θ+n )
sin
[
n
(
ωt− 2π

3

)
+ θ+n

]
sin
[
n
(
ωt+ 2π

3

)
+ θ+n

]


+
∑

n=3,5,7,...

X−
n

 sin (nωt+ θ−n )
sin
[
n
(
ωt+ 2π

3

)
+ θ−n

]
sin
[
n
(
ωt− 2π

3

)
+ θ−n

]
 (7)

Xddc (t) =

xddc
a (t)

xddc
b (t)

xddc
c (t)

 =

Xddc
a e−σat

Xddc
b e−σbt

Xddc
c e−σct

 (8)

where X− and X0 are negative- and zero-sequence amplitudes, respectively.
θ− and θ0 are negative- and zero-sequence initial phases, respectively. X±

n

and θ±n are the positive-/negative-sequence amplitude and phase of nth order
harmonic, respectively. In accordance with the general case in practice, only
odd harmonics are considered here for simplicity. Xddc

k and σk are the ampli-
tude and decay coefficient of the DDC component in phase k, respectively,
and k = a, b, c.
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In a more general situation, multiple DDC components with different
amplitudes/decay coefficients can be simultaneously present. As proved by
mathematical induction [7], these components can be anyway simplified into
a single equivalent DDC component, thereby reducing the analysis and com-
putational complexity.

If the same transformation (3) is applied to the compound transient signal
(4), it is obvious that the DDC component in the physical domain cannot be
converted into the form of constants or standard trigonometric functions in
the dq-frame. Indeed, its counterpart appears in the dq-frame as the decaying
AC component, which cannot be effectively mitigated by the LPF in Fig. 1.
In this case, the detected phase will exhibit significant oscillations for several
grid periods, until the effect of the DDC component is notably reduced, i.e.,
when the amplitude of the DDC component decays below a certain level.
This result should be improved by using a more efficient detection scheme.

3. Amplitude-Phase Detection during DDC Transient

3.1. DDC Component Separation

During the DDC transient, the primary target is to achieve a fast detec-
tion speed of transient components to support the converter control, fault
detection, grid protection, etc., thereby ensuring the safety and stability of
converters and power grids. Accordingly, the grid frequency is assumed to
be constant during this procedure, and the accurate frequency and phase
detection using the traditional PLL scheme will be delayed to the normal
condition, where the DDC component is negligible.

In the transient signal model (4), sequence components are in the form of
sinusoidal waves. Hence, the DDC quantities with unaltered polarities can
be extracted by utilizing the half-wave symmetry of sinusoidal waves, i.e.,

X+ (t) +X+ (t− T/2) = 0

X− (t) +X− (t− T/2) = 0

X0 (t) +X0 (t− T/2) = 0

Xh (t) +Xh (t− T/2) = 0

(9)

where T is the grid period, which is the inverse of grid frequency f .
An intermediate variable Xr is defined as the summation of the three-

phase signal and its half-grid-period delay, as

Xr (t) = X (t) +X (t− T/2) (10)
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Then, by combining (4), (8), (9), and (10), the sequence components in
X can be eliminated. Accordingly, the three-phase DDC component in the
compound signal X can be obtained as

Xddc (t) =
(
E+ e

T
2
σ
)−1

Xr (t) (11)

where σ is the intrinsic parameter matrix of the DDC component given by
σ = diag

([
σa σb σc

])
, and E is the 3-by-3 identity matrix.

Calculation of the DDC component by (11) requires the information on
decay coefficients matrix, σ. This can be obtained phase-by-phase using the
time integral method, [20, 7]. For phase k (k = a, b, c) element of Xr, definite
integrals over time L and 2L (L > 0) are performed, giving rise to

Ak1 =

∫ t

t−L

xr
k (t) dt =

Xddc
k

σk

(
1 + e

σkT

2

) (
eσkL − 1

)
e−σkt (12)

Ak2 =

∫ t

t−2L

xr
k (t) dt =

Xddc
k

σk

(
1 + e

σkT

2

) (
e2σkL − 1

)
e−σkt (13)

Combination of (12) and (13) gives the phase-k DDC decay coefficient as

σk =
1

L
ln (Ak2/Ak1 − 1) (14)

A suitable selection of the integral length L is of paramount importance
for DDC detection speed and accuracy. A short integral period is conducive
to achieving a fast response, yet a long period enhances suppression of the
random sampling noise. A variable integral solution [7] can be used to opti-
mize both the transient and steady-state performances. Specifically, at the
beginning of transient, this solution achieves a rough yet fast detection speed
based on the allowable minimum interval, with the aim to quickly determine
the subsequent critical actions (e.g., performing active compensation or con-
verter fault ride-through); the integral interval is then extended in real time
until its upper limit, reducing the random noise in long-term operation.

Besides, although the proposed solution presumes a fixed frequency before
and after the disturbance, the effect of frequency change on the detected
phase is generally negligible during the transient due to the twofold effect
that the grid frequency fluctuates within a narrow range limited by the grid
code, and that the slight frequency change will have an insignificant impact
on the signal constitutes excluding the DDC component. The effectiveness of
the proposed solution in the case of sudden frequency change will be proven
in Section 5.
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3.2. Positive Sequence Component Extraction
To separate the positive-sequence component, the Park’s transformation

is first applied to the three-phase transient signal, giving rise to

Xdq (t) = T+
3s/2rX (t) (15)

where Xdq (t) =
[
xd (t) xq (t)

]T
T+

3s/2r =
2

3

[
sinωt sin (ωt− 2π/3) sin (ωt+ 2π/3)
cosωt cos (ωt− 2π/3) cos (ωt+ 2π/3)

]
Here, the grid angular frequency ω in the steady state is used to generate

the reference phase of the dq-frame. The transformation is different from the
previous case in (3), where the detected grid phase is used directly as the
reference phase of transformation. After this abc-dq transformation, X (t) in
positive-sequence dq-frame is decomposed as

xd (t) = X+ cos θ+ − xeven
d (t) + xddc

d (t)

xq (t) = X+ sin θ+︸ ︷︷ ︸
DC

+ xeven
q (t)︸ ︷︷ ︸

even harmonics

+ xddc
q (t)︸ ︷︷ ︸

decaying AC

(16)

where (with m = 0, 1, 2, . . .)

xeven
d (t)=X− cos

(
2ωt+θ−

)
−
∑

n=6m+1

X+
n cos

[
(n−1)ωt+θ+n

]
+
∑

n=6m−1

X+
n cos

[
(n+1)ωt+θ+n

]
+
∑

n=6m+1

X−
n cos

[
(n+1)ωt+θ−n

]
−
∑

n=6m−1

X−
n cos

[
(n−1)ωt+θ−n

]
xeven
q (t)=X− sin

(
2ωt+θ−

)
+
∑

n=6m+1

X+
n sin

[
(n−1)ωt+θ+n

]
+
∑

n=6m−1

X+
n sin

[
(n+1)ωt+θ+n

]
+
∑

n=6m+1

X−
n sin

[
(n+1)ωt+θ−n

]
+
∑

n=6m−1

X−
n sin

[
(n−1)ωt+θ−n

]
(17)

xddc
d (t) =

2

3

[
Xddc

a e−σat sinωt+Xddc
b e−σbt sin (ωt− 2π/3)

+Xddc
c e−σct sin (ωt+ 2π/3)

]
xddc
q (t) =

2

3

[
Xddc

a e−σat cosωt+Xddc
b e−σbt cos (ωt− 2π/3)

+Xddc
c e−σct cos (ωt+ 2π/3)

]
(18)
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In (16), the DC components are counterparts of positive-sequence compo-
nents in the abc-frame, the even harmonics are counterparts of the negative-
sequence base-frequency component and positive-/negative-sequence odd har-
monics in abc-frame, and the decaying AC waves correspond to DDC com-
ponents in abc-frame. The correspondence of these quantities is illustrated
in Fig. 2.

abc

dq

Negative sequence Zero sequencePositive sequenceFrame DDCOdd harmonics

Figure 2: Correspondence of abc- and dq-frame quantities.

The even harmonics in dq-frame can be canceled via full-wave symmetry
of the sinusoidal signal, i.e., their time integral over half grid period is zero.
However, as previously discussed, the decaying AC component cannot be
simply removed by a moving average filter, thus causing detection errors
when the traditional PLL schemes are used. Conversely, if this component
can be precisely determined during the transient, specific countermeasures
can be taken to alleviate its effect. To this end, the decaying AC components
in (16) are analytically calculated first as [7]∫ t

t−T
2

xddc
d (t) dt = −H (σTsin + ωTcos)X

r

∫ t

t−T
2

xddc
q (t) dt = −H (σTcos − ωTsin)X

r

(19)

where H = 2
3

[
1

ω2+σ2
a

1
ω2+σ2

b

1
ω2+σ2

c

]
Tsin = diag

([
sin (ωt) sin (ωt− 2π/3) sin (ωt+ 2π/3)

])
Tcos = diag

([
cos (ωt) cos (ωt− 2π/3) cos (ωt+ 2π/3)

])
Hence, the DC component in (16) is calculated as
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X+ cos θ+ =
2

T

[∫ t

t−T
2

xd (t) dt−
∫ t

t−T
2

xddc
d (t) dt

]

=
2

T

[∫ t

t−T
2

xd (t) dt+H (σTsin + ωTcos)X
r

]

X+ sin θ+ =
2

T

[∫ t

t−T
2

xq (t) dt−
∫ t

t−T
2

xddc
q (t) dt

]

=
2

T

[∫ t

t−T
2

xq (t) dt+H (σTcos − ωTsin)X
r

]
(20)

This gives the positive-sequence component of X as

X+ = T+
2r/3s

[
X+ cos θ+

X+ sin θ+

]
=

2

T
T+

2r/3s

(∫ t

t−T
2

Xdqdt+

[
H (σTsin + ωTcos)X

r

H (σTcos − ωTsin)X
r

]) (21)

where

T+
2r/3s =

 sinωt cosωt
sin (ωt− 2π/3) cos (ωt− 2π/3)
sin (ωt+ 2π/3) cos (ωt+ 2π/3)


Here, the extraction of the positive-sequence component is shown as an

example for further phase detection. However, the negative-sequence com-
ponent can be similarly extracted if the pertinent transformation is applied
to the compound signal followed by proper processing. The zero-sequence
component can be simply extracted by subtracting the DDC component from
the compound signal, [7], owing to the symmetry of AC signals.

3.3. Amplitude-Phase Detection

Once the sequence components are detected, the amplitude and phase
can be calculated accordingly, [7]. For brevity, only the phasor calculation of
the positive-sequence component is illustrated here as an example. During
the calculation, the grid frequency is considered to be constant; however,
it will be shown in Section 5 that the effect of frequency change on the
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detected phase is negligible in practice. The amplitude and phase of X+ can
be obtained based on the DC component result in (20) as

X+ =

√
(X+ cos θ+)2 + (X+ sin θ+)2

θ+ = arctan

(
X+ sin θ+

X+ cos θ+

) (22)

The block diagram of the amplitude-phase detection scheme is summa-
rized in Fig. 3. With this parallel structure, the positive-sequence component
can be extracted in nearly half the grid period (T/2). Hence, for the results
in (20) to be fully valid, a response time of half grid period is required, i.e.,
10 ms for a 50 Hz grid.

X

X
ddc

X
+

Grid phasor

X
r

+

Eq. (14)

A1 A2

xd

xq

dx

qx

2r/3s


T

3s/2r


T

abc

dq

+

Eq. (11)
DDC

abc

dq

∑

∑

Decaying ACDC AC

   ddc r
cos sin

2

t

T q
t

x t dt 


   H σT T X

   ddc r
sin cos

2

t

T d
t

x t dt 


   H σT T X

2

t

T
t

∑

σ
σ

t

t L 2

t

t L

Eqs. (18)-(20)

σ

+

+

−

−

2

T

Decaying AC

+ + DC Decaying AC+

3s/2r


T
X

+ X +

θ +

Grid amplitude-phase calculation

/ 2Tz

Decay coefficients 
calculation

Time-domain DDC signal extraction

Positive-sequence component separation

AC components 
elimination

d

q

θ  

x

Figure 3: Schematic diagram of positive-sequence component detection in the presence of
a DDC transient.

4. Compound Phase Detection considering State Transition

As previously discussed, the DDC-transient state algorithm considers the
grid frequency to be constant in order to effectively simplify the calculation
and shorten the detection time. When the system resumes the steady-state
operation, the detection algorithm should be switched to the conventional
PLL algorithm according to the zero-error requirement on steady-state per-
formance. To this end, the reliable detection criterion for a DDC transient
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is established first in this section, followed by the development of a suit-
able switching logic that enables a seamless transition between two phase
detection schemes.

4.1. DDC Transient Detection Criterion

DDC components only exist during the transient. If the calculation re-
sults of (12) and (13) approach zero simultaneously, the system is in steady
state, and the pertinent detection algorithm does not need to consider the
influence of DDC components; otherwise, the DDC influence should be con-
sidered for accurate amplitude-phase detection.

The aforementioned condition can be equivalently converted to the com-
parison between the current sample and the sampled values obtained before
half and one grid cycle. Indeed, if the steady-state condition is nearly sat-
isfied, the half-wave symmetry and full-wave symmetry conditions of the
detected signal are valid. To identify a DDC transient event for phase k, the
pertinent state signal Sk can be defined as (with Xk,th being a predefined
detection threshold)

Sk =


0, if |xk (t)− xk (t− T )| < Xk,th

and |xk (t) + xk (t− T/2)| < Xk,th

1, otherwise

(23)

The DDC transient is detected if the state signal Sk is 1, and vice versa.
This value should be properly chosen to compromise between detection speed
and accuracy, namely, it should be large enough to avoid possible misoper-
ations caused by random noise, meanwhile the value should be within a
certain range to retain the detection sensitivity towards the desired level of
the DDC component to be detected (so that its effect can be considered). A
practical design of Xk,th considering the presence of fundamental frequency
positive-sequence component, noise signal, and DDC transient signal can be
performed as follows.

In industrial sites, appropriate measures must be taken to reduce noise
interference and assure a large signal-to-noise ratio (SNR). This gives

ηk =
X+

RMS

Xnoise
k,RMS

≥ ηk,min (24)

where X+
RMS = X+/

√
2 is the RMS value of the fundamental frequency si-

nusoidal component, which is identical for all three phases since only the
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positive-sequence component is considered; Xnoise
k,RMS is the RMS value of the

noise signal in phase k, ηk is the SNR of phase k, and ηk,min is the low-
est allowable value of SNR in phase k given by relevant regulations of the
industrial system.

The noise tolerance range can be converted into the form of energy. To
this end, we firstly assume that the energy of the random noise signal is ab-
sorbed by an equivalent resistance R. Without loss of generality, the ohmic
loss is calculated by assuming the signal to be a current quantity. Accord-
ingly, the associated noise energy in period ∆t is

Enoise
k =

(
Xnoise

k,RMS

)2
R∆t (25)

Substituting (24) into (25) gives

Enoise
k =

(
X+

RMS

ηk

)2

R∆t ≤
(
X+

RMS

ηk,min

)2

R∆t ≜ Ek,max (26)

Therefore, in order to satisfy the condition given by (24), the equivalent
energy of the random noise signal must not exceed the maximum energy limit
Ek,max allowed by the system. Indeed, cumulative energy is a fundamental
driving force for heating issues of several electrical devices and further issues
of system stability. Analogously, the principle of energy equivalence can be
adopted to determine the presence of a DDC transient, namely, the DDC
interference can be considered relatively large if its equivalent energy Eddc

k

satisfies

Eddc
k ≥ Ek,max (27)

where the equivalent energy of the DDC component in phase k, Eddc
k , can be

evaluated as

Eddc
k =

∫ ∆t

0

[
xddck (t)

]2
Rdt = R

∫ ∆t

0

(
Xddc

k e−σkt
)2

dt =
R
(
Xddc

k

)2
2σk

(
1− e−2σk∆t

)
(28)

(26) and (28) suggest that: Eddc
k and Ek,max both increase with time, but

the increase rates differ; with the elapse of time, the increase rate of Eddc
k

gradually slows down, yet the growth rate of Ek,max is constant. To high-
light the adverse influence of the DDC component, the evaluation period
∆t should be as short as possible. Since the response time of the presented
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DDC detection scheme consumes at least half the grid cycle, here the de-
tection threshold Xk,th is designed based on ∆t = T/2. To this end, by
combining (26), (27), and (28), the DDC component amplitude Xddc

k that
triggers the proposed detection algorithm can be obtained, yielding

Xddc
k ≥ X+

RMS

ηk,min

√
σkT

1− e−σkT
(29)

Since the DDC component cannot be directly measured, the DDC tran-
sient criterion is based on Xr

k(t) which is given by

Xr
k (t) = xk (t) + xk (t− T/2) = xddc

k (t)
(
1 + e

σkT

2

)
(30)

Let t be T/2, then the corresponding value can be obtained as

Xr
k (T/2) = xddc

k (T/2)
(
1 + e

σkT

2

)
= Xddc

k

(
1 + e−

σkT

2

)
(31)

Therefore, when evaluating the energy and influence of the DDC compo-
nent by half grid cycle, the pertinent threshold can be expressed as

Xk,th =
X+

RMS

ηk,min

√
σkT

1− e−σkT

(
1 + e−

σkT

2

)
(32)

In practice, the product σkT is usually very small. Therefore, (32) can
be simplified by approximating the exponential term with Taylor series ex-
pansion as

Xk,th ≈ X+
RMS

ηk,min

(
2− σkT

2

)
≈ 2

X+
RMS

ηk,min

=

√
2X+

ηk,min

(33)

Therefore, if the positive sequence signal amplitude X+ is large, the de-
tection threshold of the DDC component can be appropriately increased.
Besides, if the system requirement on SNR is not stringent (i.e., ηk,min is
small), the system allows a large level of signal other than the positive se-
quence component, and the detection threshold of the DDC component can
also be increased.

4.2. DDC Transient State Synthesis and Latching

After obtaining the state signal of each phase, the global state signal can
be simply synthesized by using either an and (∧) or or (∨) logic. Namely,
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S =

{
Sa ∧ Sb ∧ Sc, and logic

Sa ∨ Sb ∨ Sc, or logic
(34)

The effect of the two methods differs when used in various systems.
Specifically, the and logic is more conservative in the detection of the DDC
transient since it requires all the three signals to satisfy the pertinent re-
quirement. Conversely, when the or logic is used, the global DDC transient is
identified once a single-phase signal exhibits significant half-/full-wave asym-
metry. Since the DDC components in three phases have different amplitudes
in general, the signal in one phase can reach the threshold level easier, hence
the or logic is preferred in practical situations. Indeed, considering the same
noise level in all phases, this gives the most reliable detection result, and the
subsequent positive sequence component extraction can be more accurate.

To increase the system reliability, especially at the final stage of a DDC-
existing transient, the latching mechanism is used to process the DDC state
signal (see Fig. 4). This conditioning is needed to avoid the issue caused
by possible jitters. At the end of the DDC transient, the amplitude of the
DDC component becomes low, and the presence of random noise can lead to
jitters in the detected state signal before it steadily reaches low.

With reference to Fig. 4, the DDC state signal is latched once it reaches
low according to (23). This state is locked for a period, which is predefined
to guarantee the coverage of jitters in the state signal. Afterward, the DDC
transient detection is enabled again, to allow for the processing of successive
transient events.

4.3. Compound Phase Detection Scheme

By combining the conventional PLL scheme in normal state and the
amplitude-phase detection method in the case of a DDC transient, the com-
plete control diagram of grid frequency and phase detection can be obtained
in Fig. 5. The DDC state signal S is used for switching the output variables.
When the DDC transient is detected, i.e., S = 1, the phase-amplitude de-
tection algorithm that resists the DDC transient is effective, and vice versa.
At one specific moment, the control system works with one path only, while
bypassing the other path. Accordingly, the real-time complexity of the pro-
posed scheme is equal to that of the single path, either the traditional PLL
or the DDC-transient state algorithm, and is fully acceptable due to the high
efficiency of both methods.
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Figure 4: (a) Simulated single-phase signal considering DDC transient (starting at t = 0),
and (b) processed state signal with the latching mechanism.
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Figure 5: Complete control diagram for grid phase locking considering the DDC transient.

Specific efforts have been taken to enforce the smooth transition between
the two paths. When the system transitions from the normal state to a DDC-

17



existing transient, the previously detected grid frequency and phase are used
as the fixed initial condition, by using the latching modules implemented by
connecting the pertinent output and a delay block. Also, in order to generate
the real-time phase during the transient, a real-time reference phase ϕr is
added to the initial phase calculated by (22). Specifically, ϕr considers both
the aforementioned initial phase given by the normal steady-state control
and the time-varying part ωt, as shown by the Reference phase generation
block in Fig. 5.

Additionally, when the system transitions from the transient state to the
normal state, the initial status of the integrator needs to be properly set.
At the end of the DDC transient, the previous output phase, which was
detected by the DDC transient path, is used as the initial phase output
(i.e., the integrator value) of the normal state path. Meanwhile, the internal
integrator output of the PI controller is reset to zero. These settings are
achieved based on the DDC state signal S, and the falling edge of S is used
to trigger the value resetting. Otherwise, the output phase signal will exhibit
an undesired transient response when the DDC component approaches zero
(i.e., when S transitions from 1 to 0), as will be shown in the following
section.

5. Verification

In this work, the effectiveness of the proposed method is verified by
hardware-in-the-loop (HIL) experiments, where the algorithm is embedded
into the DSP controller TMS320F28335 commonly used for a grid-tied con-
verter, and the three-phase grid signals containing the DDC component are
generated by a real-time simulation target machine with the main step size
of 8 µs. The grid signals are suitably scaled to output via the embedded
multifunctional I/O card of the target machine, and are then sampled by the
peripheral circuit of the DSP control board for further processing. Finally, an
oscilloscope is used for real-time monitoring and logging of signals, which are
output by the digital-to-analog-converter circuit of the control board. The
sampling frequency is 10 kHz for the PLL control system. Two disturbance
scenarios are considered, namely, without and with sudden frequency change
at the instance of disturbance. In both cases, the non-ideal grid signal also
includes harmonics and negative-/zero-sequence components.
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5.1. Scenario A: Without Frequency Change

Before the disturbance, the system is three-phase symmetric with only the
positive-sequence component, whose amplitude and phase are 0.25 p.u. and
−π/2, respectively, and harmonics (see Table 1). The three-phase parameters
after the disturbance, pertinent to positive-, negative-, and zero-sequence
components, are shown in Table 2, and the DDC component during transient
is determined based on (6) in [7], i.e.,

Xddc = −


(X+ sin θ+ −X) e−

R+

L+ t +X− sin θ−e−
R−
L− t +X0 sin θ0e−

R0

L0 t[
X+ sin

(
θ+ − 2π

3

)
+ X

2

]
e−

R+

L+ t +X− sin
(
θ− + 2π

3

)
e−

R−
L− t +X0 sin θ0e−

R0

L0 t[
X+ sin

(
θ+ + 2π

3

)
+ X

2

]
e−

R+

L+ t +X− sin
(
θ− − 2π

3

)
e−

R−
L− t +X0 sin θ0e−

R0

L0 t


(35)

Table 1: Scenario A - Harmonics of Testing Signal

Order
Before disturbance After disturbance

Amplitude (p.u.) Phase (deg) Amplitude (p.u.) Phase (deg)

3rd 0.2 70 0.1 30

5th 0.3 20 0.2 -60

7th 0.1 -50 0.05 -5

Table 2: Scenario A - Main Parameters of Testing Signal

Parameter Value Parameter Value Parameter Value

X+ 0.5 p.u. θ+ π/3 L+/R+ 0.06 s

X− 0.3 p.u. θ− −π/2 L−/R− 0.08 s

X0 0.1 p.u. θ0 π/5 L0/R0 0.07 s

The result of test signal is shown in Fig. 6. After a short time, the
disturbance occurs, and the three-phase DDC component is characterized
by a large amplitude and a short duration during the transient. Indeed,
based on the overall DDC state signal obtained by using the OR logic, as
shown by the green curve in Fig. 6, the DDC components are only significant
within 0.3 s after the disturbance. This impulsive transient inevitably leads
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to inaccuracy of the detected phase, if the traditional SRF-PLL scheme is
used.
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Figure 6: Experiment results of three-phase signals in scenario A. (a) Overall view, and
(b) zoom-in at the transient beginning. Green curve: DDC transient state S.

This is specifically obvious at the beginning of transient [see Fig. 7, the
cyan curve]. This result, if applied to converter control and protection, will
lower the converter performance in terms of disturbance suppression and
fault ride-through. Conversely, with the proposed detection scheme, the grid
phase can be synchronized within a short period, i.e., 10 ms for the 50 Hz
system, as shown by the magenta curve in Fig. 7.
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Figure 7: (a) Detected phases, and (b) phase errors at the beginning of the DDC transient
in scenario A. Green curve: DDC transient state S. Blue curve: ideal phase output. Cyan
curve: Traditional PLL result. Magenta curve: Proposed PLL result.

At the end of the DDC transient, the DDC status signal returns to zero
according to the judgment criterion. If the zero phase is used as the initial
output of the PLL integrator, a dynamic process is needed [see Fig. 8(a)] in
order to achieve accurate phase detection. Conversely, the proposed method
has a significantly quicker transient process [see Fig. 8(b)], and the phase
difference is negligible in this case owing to the suitable transition logic that
is being used.
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Figure 8: Detected phases at the end of the DDC transient in scenario A. (a) When the
initial condition of the integrator is zero. (b) When the integrator is properly initialized.
Green curve: DDC transient state S. Blue curve: ideal phase output. Magenta curve:
PLL result.

5.2. Scenario B: With Frequency Change

In this scenario, the system is again three-phase symmetric with only
a positive-sequence component (with amplitude being 0.25 p.u and phase
being −π/2) and harmonics before the disturbance. The harmonics and
three-phase parameters are shown in Tables 3 and 4, respectively. Besides, a
sudden frequency increase of 1 Hz is imposed at the disturbance instant, in
order to exacerbate the test case and verify the proposed method.

Table 3: Scenario B - Harmonics of Testing Signal

Order
Before disturbance After disturbance

Amplitude (p.u.) Phase (deg) Amplitude (p.u.) Phase (deg)

3rd 0.125 30 0.075 -40

5th 0.075 100 0.025 20

7th 0.025 50 0.0125 100

Table 4: Scenario B - Main Parameters of Testing Signal

Parameter Value Parameter Value Parameter Value

X+ 0.75 p.u. θ+ π/4 L+/R+ 0.04 s

X− 0.50 p.u. θ− π/12 L−/R− 0.02 s

X0 0.25 p.u. θ0 −π/6 L0/R0 0.03 s
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The result of the test signal is shown in Fig. 9. Analogous to the previous
case, the transient is characterized by a three-phase DDC component with a
large amplitude and a short duration. The detected phase with the conven-
tional PLL is inaccurate specifically at the beginning of transient [see Fig.
10, the cyan curve]. Such an issue is overcome by the proposed detection
scheme, with which the grid phase can be approximately detected within 10
ms, as shown by the magenta curve in Fig. 10. In this case, though a certain
error will be present due to the frequency shift, the detection result provides
satisfactory accuracy for converter control and protection considering the on-
going critical situation. Also, it is noted that the proposed switching logic
enables the smooth transition at the end of the DDC transient compared to
the hard switching without proper initial value setting, as shown in Fig. 11.
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Figure 9: Experiment results of three-phase signals in scenario B. (a) Overall view, and
(b) zoom-in at the transient beginning. Green curve: DDC transient state S.
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Figure 10: (a) Detected phases, and (b) phase errors at the beginning of the DDC transient
in scenario B. Green curve: DDC transient state S. Blue curve: ideal phase output. Cyan
curve: Traditional PLL result. Magenta curve: Proposed PLL result.

Finally, the detected grid frequency signal using different methods under
both scenarios are compared in Fig. 12. Proper post-processing (includ-
ing a rate limiter and a low-pass filter) was adopted to smooth the output
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Figure 11: Detected phases at the end of the DDC transient in scenario B. (a) When the
initial condition of the integrator is zero. (b) When the integrator is properly initialized.
Green curve: DDC transient state S. Blue curve: ideal phase output. Magenta curve:
PLL result.

frequency for both PLL schemes. Besides, due to the constant frequency
assumption of the proposed PLL scheme during the DDC transient, the ac-
curate frequency detection is deferred to the transient end. In scenario A, the
detected frequency fluctuates around the nominal value (50 Hz) with both
methods due to the influence of the DDC component, and the oscillation
amplitude is smaller with the proposed method. In scenario B, the detected
frequency of both schemes will reach the actual value; the proposed method
takes a longer overall duration yet a shorter dynamic response time.
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Figure 12: Detected frequencies using different methods. (a) Scenario A. (b) Scenario B.
Green curve: DDC transient state S. Blue curve: ideal frequency output. Cyan curve:
Traditional PLL result. Magenta curve: Proposed PLL result.

6. Conclusion

Power grids with large X/R ratios are easy to have large-amplitude DDC
components in transient electrical quantities, when major disturbances such
as faults and heavy load switching occur. Their presence greatly affects the
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normal function of conventional PLL, which is critical for converter control.
Focusing on this issue, in this paper, improvements to the traditional SRF-
PLL are made, by embedding a specific algorithm that enables quick and
efficient DDC component detection. This method accurately extracts the
DDC component within approximately 0.5 grid cycle, and provides the per-
sequence amplitude and phase information. As the DDC component becomes
insignificant, the conventional PLL with proper initial condition setting is
adopted. The effectiveness of the proposed method is verified by experiment
results.

This work aims to present a general scheme for phase detection in the
presence of DDC-existing transients. Though the SRF-PLL scheme is used
in this paper as an example, more advanced closed-loop PLL schemes with
better performance can be used, as long as the switching logic and initial con-
ditions are properly designed. Besides, the DC offset can also be considered
during the transient process by using alternative DDC detection approaches,
e.g., the method in [19], at the expense of a slight increase in dynamic re-
sponse time.
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