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Abstract Vector semantics has slightly become a key tool for Natural Language
Processing, especially concerning text analysis. This kind of vector representation is
usually encoded through embeddings that can be used to encode semantic information
at different levels of granularity. In fact, through the years, not only models for
word embeddings have been developed, but also for sentence and documents. With
this work we address sentence embeddings, in particular the non-parametric ones,
which offer a good trade off between performance and inference speed. We present
Static Fuzzy Bag-of-Word (SFBoW) model, a refinement of the Fuzzy Bag-of-Words
approach yielding fixed-dimension sentence embeddings. We targeted fixed size
embeddings to promote caching a re-usability, speeding the inference of a system that
relies on our model. In this paper we explore various approaches for the construction
of a static universe matrix, fundamental to make the sentence embeddings of fixed
size. To show the validity of our approach, we benchmarked our model on a semantic
similarity task, obtaining competitive performances.
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1 Introduction

The advent of Machine and Deep Learning based models has influenced many areas
of the Artificial Intelligence field [17, 10], including Natural Language Processing
(NLP). To enable the Deep Neural Network models, which strongly rely on matrix
multiplication operations, process data from NLP, vector semantics has played a
crucial role. In fact, vector semantics rely on the concept that everything can be
represented as real-valued vectors (or points) in an hyperspace. Moreover, according
to vector semantics, the position of the object in the hyperspace represents its meaning.

In the case of NLP, words with similar meaning should be represented close in the
hyperspace, and, analogously, words with different meaning should be far one from
the other. This approach to word vector representation is called word embedding.
These embeddings are computed through self-supervised representation learning [9].
There are many different models to extract these embeddings, at different levels of
granularity, which have consistently took the role of input representation for many
NLP tasks [19].

In the last decade the approach shifted from shallow and staticword representations
[22, 25, 11] towards deep and contextual ones [15, 26, 28], pushing forward incredibly
the state-of -the-art on NLP. However, for certain problems like web search and
question answering, word level representations are not sufficient. Thus the birth of
high-level models, like those for sentence embeddings [40]. These high-level models
can be powered through either satic or contextual representations.

Shallow word embedding models immediately provided noticeable results [14].
Such representations were quickly adopted to provide an input for syntactic analysis:
they helped improve results in Part-Of-Speech (POS) tagging, Named Entity Recog-
nition (NER) and Semantic Role Labelling (SRL). Shortly after they were employed
in more complex problems like, language modelling, Machine Translation [36], and
Dialogue Systems [35]. Although impressive, the results of these models were limited
by the inability to model properly the context surrounding each word in the input
sequence.

Neural Language Models (LMs) implemented through Transformer Networks
[37, 18], on the other side, played a significant role for deep contextual representations.
The hidden representations extracted through these huge models, trained on massive
collections of unlabelled textual data, boosted the performances in many NLP tasks
[39, 38, 30, 29] The trade off with respect to shallow model is indeed in the amount of
computational resources; both in terms of time and memory. This resources demand
is especially high at train time.

In this vector semantics settings, with focus on the sentence embeddings, we present
our Static Fuzzy Bag-of-Words (SFBoW) model. It’s a model for non-parametric
sentence embeddings based on the DynaMax Fuzzy Bag-of-Words model [42]. In
particular, with this paper, we explore approaches to build the universe matrix, core
component of the Fuzzy Bag-of-Words solutions, to be static. This model is designed
to promote chaching (in the sense of re-usability of the embeddings), short analysis
time and valid performances; thus it is advised for applications with limited resources
or with power consumption issues, like embedded systems. To evaluate the goodness
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of the proposed universe matrices, we relied on the Semantic Textual Similarity (STS)
benchmark.

We organise the reminder of this paper into the following sections: in Section 2,
we summarise the main concepts related to learnt word and sentence representations;
in Section 3, we introduce SFBoW, our model; in Sections 4 and 5, we present,
respectively, the evaluation approach we followed to evaluate SFBoW and the results
of such evalutaion; and, finally, in Section 6, we summarise the presented work and
we present the expected future works.

2 Related work

Our work revolves around the concept of vector semantics: the idea that the meaning
of a word or a sentence can be modelled as a vector [23].

The first steps on this subject were made in Information Retrieval (IR) context
with the vector space model [33], where documents and queries were represented as
high dimensional (vocabulary size) sparse embedding vectors. In this model, each
dimension is used to represent a word, so that given a vocabulary V:

• A word 𝑤𝑖 ∈ V, with 𝑖 ∈ [1, |V|] ⊆ N, is expressed as a so called “one hot”
binary vector v𝑤𝑖

∈ 1 |V | , where, calling 𝑣𝑤𝑖 , 𝑗 the 𝑗-th element of the word vector,
it holds that 𝑣𝑤𝑖 , 𝑗 = 1 ⇐⇒ 𝑗 = 𝑖.

• A sentence 𝑆 is expressed as vector 𝝁𝑆 ∈ N |V | , where `𝑆,𝑖 , the 𝑖-th element
of vector 𝝁𝑆 , namely 𝑐𝑆,𝑖 , represents the number of times word 𝑤𝑖 appears in
sentence 𝑆.

The resulting sentence representation, used also for text documents, is called Bag-of-
Words (BoW), and can be summarised as

𝝁𝑆 =

|V |∑︁
𝑖=1

𝑐𝑆,𝑖 · v𝑤𝑖
. (1)

These representation models needed to be replaced because of the sparsity, which
made them resource consuming, and the induced orthogonality among vectors with
similar meanings.

2.1 Word and sentence embeddings

Word embeddings refer to the dense semantic vector representation of words; such
representation can be divided into: prediction-based and count-based [8].

The former group identifies the embeddings obtained through the training of
models for next/missing word prediction given a context. It encompasses models
likeWord2Vec [21, 22] and fastText [11]. The latter group refers to the embeddings
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obtained leveraging words co-occurrence counts in a corpus. One of the most recent
solutions of this group is GloVe [25].

All the models mentioned above belong to the class of shallow models, where
the embedding of a word 𝑤𝑖 can be extracted through lookup over the rows of the
embedding matrix W ∈ R |V |×𝑑 , with 𝑑 being the desired dimensionality of the
embedding space. Given the word (column) vector v𝑤𝑖

, the corresponding word
embedding u𝑤𝑖

∈ R𝑑 can be computed as (see Section 2.2)

u𝑤𝑖
= W⊤ · v𝑤𝑖

. (2)

More recently, the introduction of Transformer-based LMs [18], like BERT [15],
GPT [26, 27, 12] or T5 [28], has spread the concept of contextual embeddings; such
embeddings proved to be particularly helpful for a wide variety of NLP problems, as
shown by the leader-boards of NLP benchmarks [39, 38, 30, 29].

The inherent hierarchical structure of the human language makes it hard to under-
stand a text from single words; thus, the birth of higher-level semantic representations
for sentences, which are the sentence embeddings, was just a natural consequence. As
for the Word embeddings, also sentence embeddings are organised into two groups:
parametrised and non-parametrised, depending on whether the model requires
parameter training or not.

Clear examples of parametric model are the Skip-Thoughts vectors [16] and
Sent2Vec [24], which generalises Word2Vec. Non-parametric models, instead, show
that simply aggregating the information from pre-trained word embeddings, for
example through averaging, as in SIF weighting [6], is sufficient to represent higher-
level entities like sentences and paragraphs.

Transformer LMs are also usable at sentence level. An example is the parametric
model Sentence-BERT [32], obtained by fine-tuning on Natural Language Inference
corpora.

All these models rely on the assumption that cosine similarity is the correct metric
to compute “meaning distance” between sentences. This is why parametric models
are explicitly trained to minimise this measure for similar sentences and maximise it
for dissimilar sentences.

However, cosine similarity may not be the only and best measure. The DynaMax
model [42] proposed to follow a fuzzy set representation of sentences and to rely on
fuzzy Jaccard similarity instead of the cosine one. As a result, the DynaMax model
outperformed many non-parametric models and performed comparably to parametric
ones under cosine similarity measurements, even if competitors were trained directly
to optimise that metric, while the DynaMax approach was utterly unrelated to that
objective.

The use of fuzzy sets to represent documents is not new, it was already proposed
by [41]. With respect to DynaMax, previous results were inferior because of their
approach to compute fuzzy membership.
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2.2 Fuzzy Bag-of-Words and DynaMax for sentence embeddings

The Fuzzy Bag-of-Words (FBoW) model for text representation [41] – and its
generalised and improved variant DynaMax [42], which introduced a better similarity
metric – represent the starting point of our work, which is described in Section 3.

The BoW approach, described at the beginning of Section 2, can be seen as a
multi-set representation of text. It enables to measure similarity between two sentences
with set similarity measures, like Jaccard, Otsuka and Dice indexes. These indexes
share a common pattern to measure the similarity 𝜎 between two sets 𝐴 and 𝐵 [42]:

𝜎 (𝐴, 𝐵) = 𝑛shared (𝐴, 𝐵) /𝑛total (𝐴, 𝐵) (3)

where 𝑛shared (𝐴, 𝐵) denotes the count of shared elements and 𝑛total (𝐴, 𝐵) is the
count of total elements. In particular, the Jaccard index is defined as

𝜎Jaccard (𝐴, 𝐵) = |𝐴 ∩ 𝐵 | /|𝐴 ∪ 𝐵 | . (4)

However, the simple set similarity is a rigid approach as it allows for some degree
of similarity when the very same words appear in both sentences, but fails in the
presence of synonyms. This is where Fuzzy Sets theory comes handy: in fact, fuzzy
sets enable to interpret each word in V as a singleton and measure the degree of
membership of any word to this singleton as the similarity between the two considered
words [41].

The FBoW model prescribes to work in this way [41]:

• Each word 𝑤𝑖 is interpreted as a singleton {𝑤𝑖}; thus, the membership degree of
any word 𝑤 𝑗 in the vocabulary (with 𝑗 ∈ [1, |V|] ⊆ N) with respect to this set is
computed as the similarity 𝜎 between 𝑤𝑖 and 𝑤 𝑗 . These similarities can be used
to fill a |V|-sized vector v̂𝑤𝑖

used to provide the fuzzy representation of 𝑤𝑖 (the
𝑗-th element v̂𝑤𝑖 , 𝑗 being 𝜎

(
𝑤𝑖 , 𝑤 𝑗

)
).

• A sentence 𝑆 is simply defined through the fuzzy union operator, which is
determined by the max operator over the membership degrees. In this case the 𝑆

is represented by a vector of |V| elements.

The generalised FBoW approach [42], prescribes to computes the fuzzy embedding
of a word singleton as

v̂𝑤𝑖
= U · u𝑤𝑖

= U · W⊤ · v𝑤𝑖
(5)

to reduce the dimension of the output vector for 𝑆. Where, W ∈ R |V |×𝑑 is a word
embedding matrix (defined as in Section 2.1), u𝑤𝑖

is defined in Equation (2) and
U ∈ R𝑢×𝑑 (with 𝑢 being the desired dimension of the fuzzy embeddings) is the
universe matrix, derived from the universe set 𝑈, which is defined as “the set of all
possible terms that occur in a certain domain”. The generalised FBoW produces
vectors of 𝑢 elements, where 𝑢 = |𝑈 |.

Given the fuzzy embeddings of the words in a sentence 𝑆, the generalised FBoW
representation of 𝑆 is a vector �̂�𝑆 whose 𝑗-th element ˆ̀𝑆, 𝑗 (with 𝑗 ∈ [1, 𝑢] ⊆ N) can
be computed as
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ˆ̀𝑆, 𝑗 = max
𝑤𝑖 ∈𝑆

𝑐𝑆,𝑖 · �̂�𝑤𝑖 , 𝑗 (6)

where 𝑐𝑆,𝑖 and �̂�𝑤𝑖 , 𝑗 are, respectively, the number of occurrences of word 𝑤𝑖 in
sentence 𝑆 and the 𝑗-th element of the v̂𝑤𝑖

vector.
The universe set can be defined in different ways, same applies for the universe

matrix [42]. Among the possible solutions, the DynaMax algorithm for fuzzy sentence
embeddings builds the universe matrix from the word embedding matrix, stacking
solely the embedding vectors of the words appearing in the sentences to be compared.

Notice that in this way the resulting universe matrix is not unique, as a consequence
neither are the embeddings. This condition can be noticed from the description of
the algorithm and from the definition of the universe matrix: when comparing two
sentences 𝑆𝑎 and 𝑆𝑏, the universe set 𝑈 used in their comparison is 𝑈 ≡ 𝑆𝑎 ∪ 𝑆𝑏,
so the resulting sentence embeddings have size 𝑢 = |𝑈 | = |𝑆𝑎 ∪ 𝑆𝑏 |. In fact, the
universe matrix is given by

U =
[
u𝑤𝑖

∀𝑤𝑖 ∈ 𝑈
]⊤

. (7)

This characteristic is unfortunate as, for example, in IR it requires a complete
re-encoding of the entire document achieve for each query.

The real improvement of DynaMax is in the introduction of the fuzzy Jaccard
index to compute the semantic similarity between two sentences 𝑆𝑎 and 𝑆𝑏, rather
than the generalisation of the FBoW, which replaced the original use of the cosine
similarity [41]:

�̂�Jaccard
(
�̂�𝑆𝑎 , �̂�𝑆𝑏

)
=

∑𝑢
𝑖=1 min

(
ˆ̀𝑆𝑎 ,𝑖 , ˆ̀𝑆𝑏 ,𝑖

)∑𝑢
𝑖=1 max

(
ˆ̀𝑆𝑎 ,𝑖 , ˆ̀𝑆𝑏 ,𝑖

) . (8)
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Fig. 1: Visualisation of the Sentence Embedding computation process using SFBoW.
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3 Static Fuzzy Bag-of-Words model

Starting from the DynaMax, which evolved from the FBoW model, we developed our
follow up aimed at providing a unique matrix U and thus embeddings with a fixed
dimension. In Figure 1 is represented the visualisation of our approach.

3.1 Word embeddings

Word embeddings play a central role in our algorithm as they also provide the
start point of the construction of the universe matrix. For this work, we leveraged
pre-trained shallow models (more details in Section 4.1) for two main reasons:
• The model is encoded in a matrix where each row corresponds to a word.
• We want to provide a sentence embedding approach that does not require training,

easing its accessibility.
The vocabulary of these models, composed starting from all the tokens in the

training corpora, is usually more extensive than the English vocabulary, as it contains
named entities, incorrectly spelt words, non-existing words, URLs, email addresses,
and similar. To reduce the computational effort needed to construct and use the
universe matrix, we have considered some subsets of the employed word embedding
model’s vocabulary.

Depending on the experiment, we work with either the 100 000 most frequently
used terms, the 50 000 most frequently used terms (terms frequencies are given by
the corpora used to train the word embedding model) or the subset composed of all
the spell-checked terms present in a reference English dictionary (obtained through
the Aspell English spell-checker1).

In the following sections, the W̌ symbol refers to these as reduced word embedding
matrices/models.

3.2 Universe matrix

During the experiments, we tried four main approaches to build the universe matrix
U: the first two – proposed, but not explored, by the original authors of DynaMax
[42] – consist, respectively, in the usage of a clustered embedding matrix and an
identity matrix with the rank equal to the size of the word embeddings. Instead, the
third approach consists of applying a multivariate analysis techniques to the word
embedding matrix to build the universe one. The last appraoch considers the norm of
the word vectors to filter out less significant words for the representation.

In the following formulae, we refer to 𝑑 as the dimensionality of the word
embedding vectors, while the SFBoW embedding of the singleton of word 𝑤𝑖 is

1 http://aspell.net

http://aspell.net
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represented as v̌𝑤𝑖
. Clustering and multivariate analysis can be applied to the whole

embedding vocabulary or the subsets of the vocabulary introduced in Section 3.1.
Apart from reducing the computational time, we did so to see if these subsets are
sufficient to provide a helpful representation.

3.2.1 Clustering

The idea is to group the embedding vectors into clusters and use their centroids; in this
way, the fuzzy membership will be computed over the clusters – which are expected
to host semantically similar words – instead of all the word singletons. The universe
set is thus built out of abstract entities only, which are the centroids. Considering
𝑘 centroids, the universe matrix U = K⊤ ∈ R𝑘×𝑑 , and thus SFBoW 𝑘-dimensional
embedding v̌𝑤𝑖

of the singleton of word 𝑤𝑖 is

v̌𝑤𝑖
= K⊤ · u𝑤𝑖

=
[
k1, . . . , k𝑘

]⊤ · u𝑤𝑖
= K⊤ · W⊤ · v𝑤𝑖

(9)

where k 𝑗 , the 𝑗-th (with 𝑗 ∈ [1, 𝑘] ⊆ N) column of K, corresponds to the centroid
of the 𝑗-th cluster. This approach generates 𝑘-dimensional word and sentence
embeddings.

3.2.2 Identity

Alternatively, instead of looking for a group of semantically similar words that may
form a significant group, useful for semantic similarity, we consider the possibility of
re-using the word embedding dimensions (features) to represent the semantic content
of a sentence. So, we just use the identity matrix as the universe: U = I ∈ R𝑑×𝑑 , so
that v̌𝑤𝑖

∈ R𝑑 is
v̌𝑤𝑖

= I · u𝑤𝑖
= I · W⊤ · v𝑤𝑖

(10)

where this approach generates 𝑑-dimensional word embeddings and sentence embed-
dings.

3.2.3 Multivariate analysis

The same idea moves our multivariate analysis proposal. Judging by previous results,
word embeddings aggregated correctly might be sufficient to provide a semantically
valid representation of a sentence.

What can bring better results might be as simple as roto-translate the reference
system of the embedding representation. In this sense, we propose to use to compute
the fuzzy membership, and hence the fuzzy Jaccard similarity index, over these
dimensions resulting from roto-translation, expecting that this “new perspective” will
expose better the semantic content. So, defining U = M, where M ∈ R𝑑×𝑑 is the
transformation matrix, we have that v̌𝑤𝑖

∈ R𝑑 is
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v̌𝑤𝑖
= M · u𝑤𝑖

= M · W⊤ · v𝑤𝑖
(11)

thus yielding 𝑑-dimensional word and sentence embeddings.

3.2.4 Vector Significance

Early analysis of shallow word embedding models, showed that word vectors providing
stronger semantic representation have an higher norm [34]. Moreover, when comparing
the norm of the vectors with their term frequency within the training corpus, it is
possible to notice that highly frequent terms, as well as rare one have considerably
smaller norm.

This concept is not anew. In fact, in the Term Frequency-Inverse Document
Frequency (TF-IDF) approach for document representation, rare words, as well
as highly frequent words, should give little if any contribution to the meaning
representation [20, 7]. For similar reasons, in data mining and retrieval settings,
stop-words, which are the highly frequent words in a corpus, are discarded from the
document analysis.

We propose to leverage the word embeddings with a significance level above
a certain (custom) threshold to build the universe matrix, to retain only the most
relevant vectors. Defining U = L⊤, where L ∈ R𝑑×𝑑 is the matrix whose columns
are the first 𝑛 word vectors in decreasing euclidean norm ∥u𝑤𝑖

∥2 order, we have that
v̌𝑤𝑖

∈ R𝑑 is

v̌𝑤𝑖
= L⊤ · u𝑤𝑖

=
[
. . . , u𝑤 𝑗

, . . .
]⊤ · u𝑤𝑖

= L⊤ · W⊤ · v𝑤𝑖
(12)

where the resulting sentence embeddings have as many dimensions as the number 𝑛
of retained word vectors.

4 Experiments

In order to find the best solution in terms of word embedding matrix and universe
matrix, we explored various possibilities. Then, to measure the goodness of our
sentence embeddings, we leveraged a series of STS tasks and compared the results
with the preceding models.

4.1 Word embeddings

For what concerns the word embeddings, we have decided to work with a selection
of four models:

• Word2Vec, with 300-dimensional embeddings;
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• GloVe, with 300-dimensional embeddings;
• fastText, with 300-dimensional embeddings;
• Sent2Vec, with 700-dimensional embeddings.

As shown by the word embedding models list, we are also employing a Sent2Vec
sentence embedding model. The embedding matrix of this model can be used for
word embeddings too. During the experiments, we focused on the universe matrix
construction. For this reason, we relied on pre-trained models for word embeddings,
available on the web.

4.2 Universe matrices

The universe matrices we considered are divided into four buckets, as described in
Section 3.2.

4.2.1 Clustering

Universe matrices built using clustering leverage four different algorithms: k-Means,
Spherical k-Means, DBSCAN and HDBSCAN.

We selected k-Means and Spherical k-Means because they usually lead to good
results; the latter was specifically designed for textual purposes, with low demand in
time and computation resources. For all algorithms, we considered the same values
for 𝑘 (the number of centroids), which were 100, 1000, 10 000 and 25 000.

For all the values of 𝑘 , we performed clustering on different subsets of the
vocabulary: k-Means was applied on the whole English vocabulary as well as to the
top 100 000 frequently used words subset, while Spherical k-Means was applied to
the subset of the first 50 000 frequently used words (to reduce computational time).

We also explored density-based algorithms (DBSCAN and HDBSCAN), which
do not require defining in advance the number of clusters, using euclidean and cosine
distance between the word embedding.

For DBSCAN with euclidean distance, we varied the radius of the neighbourhood
Y between 3 and 8 and worked over the same two subsets considered for k-Means,
while for cosine distance Y was between 0.1 and 0.55 and it was applied over the
subset of the first 50 000 frequently used words (for computational reasons, as we did
for Spherical k-Means). Concerning HDBSCAN, we varied the smallest size grouping
of clusters in the set {2, 4, 30, 50, 100} and the minimum neighbourhood size of core
samples in the set {1, 2, 5, 10, 50}. We considered this latter density-based algorithm
since basic DBSCAN happens to fail with high-dimensional data.
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4.2.2 Identity

This approach consists of using the identity matrix as the universe, in this way, the
singletons we use to compute the fuzzy membership are the dimensions of the word
embeddings, which corresponds to the learnt features. This is the most lightweight
method as it just requires to compute the word embeddings of a sentence and then
the fuzzy membership over the exact 𝑑 dimensions.

4.2.3 Multivariate analysis

We adopted the Principal Component Analysis (PCA) to get a rotation matrix to serve
as a universe matrix to the SFBoW. In fact, through PCA, the 𝑑-dimensional word
embedding vectors are decomposed along with the 𝑑 orthogonal directions of their
variance. These components are then reordered to decrease explained variance and
represent our fuzzy semantic sets.

The principal component of the reduced word embedding matrix W̌ are described
by the matrix T = P⊤ · W̌, where P is a 𝑑 × 𝑑 matrix whose columns are the
eigenvectors of the matrix W̌⊤ · W̌. With our approach, the matrix P⊤, sometimes
called the whitening or sphering transformation matrix, serves as universe matrix U.
In this way, the SFBoW embedding of a word singleton becomes

v̌𝑤𝑖
= P⊤ · u𝑤𝑖

= P⊤ · W̌⊤ · v𝑤𝑖
(13)

where, as for the clustering approach, we experimented with both the whole vocabulary
and the most 100 000 used words.

4.2.4 Vector Significance

As premised, we considered word embeddings norm to identify the significance of
a term. We composed the universe matrix sorting the word vectors in decreasing
euclidean norm order and taking the first 𝑛. During the experiments, we varied 𝑛 in
the set {100, 1000, 10 000, 25 000}.

4.3 Data

We evaluated our SFBoW through a series of reference benchmarks; we selected the
STS benchmark series, one of the tasks of the International Workshop on Semantic
Evaluation (SemEval)2.

2 https://aclweb.org/aclwiki/SemEval_Portal

https://aclweb.org/aclwiki/SemEval_Portal
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SemEval is a series of evaluations on computational semantics; among these, the
Semantic Textual Similarity STS benchmark3 [13] has become a reference for scoring
of sentence embedding algorithms. All the previous models we are considering for
comparison have been benched against STS; this is because the benchmark highlights
a model capability to provide a meaningful semantic representation by scoring the
correlation between model’s and human’s judgements. For this reason, and also to
allow comparisons, we decided to evaluate SFBoW on STS.

We worked only on the English language, using the editions of STS from 2012
to 2016 [4, 5, 2, 1, 3]. Each year, a collection of corpora coming from different
sources has been created and manually labelled; Table 1 shows a reference, in terms
of support, for each edition. Thanks to the high number of samples, we are confident
about the robustness of our results.

Table 1: Support of the corpora of the STS benchmark series.

STS edition 2012 2013 2014 2015 2016

No. sentence pairs 5250 2250 3750 3000 1186

To preprocess the input text strings, we lowecased each character and tokenised
in correspondence of spaces and punctuation symbols. Then, from the resulting
sequence, we retained only the tokens for which a corresponding embedding was
found in the vocabulary known by the model. Finally, we calculated the SFBoW
sentence embedding from the word embeddings of such tokens.

The samples constituting the corpora are pair of sentences with a human-given
similarity score (the gold labels). The provided score is a real-valued index obtained
averaging those of multiple crowd-sourced workers and is scaled in a [0, 1] ∈ R
interval. The final goal of our work is to provide a model able to provide a score as
close as possible to that of humans.

4.4 Evaluation approach

To assess the quality of our model, we used it to compute the similarity score between
the sentence pairs provided by the five tasks, and we compared the output with the
target labels. The results are computed as the correlation between the similarity score
produced by SFBoW and the human one, using Spearman’s 𝜌 measure [31]. SFBoW
employs fuzzy Jaccard similarity index [42] to compute word similarity.

To have terms of comparison, we establish a baseline through the most straightfor-
ward models possible, the average word embedding in a sentence, leveraging three

3 https://ixa2.si.ehu.eus/stswiki/index.php/Main_Page

https://ixa2.si.ehu.eus/stswiki/index.php/Main_Page
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different word embedding models: Word2Vec, GloVe and fastText. We also provide
results from more complex models: SIF weighting (applied to GloVe), Sent2Vec,
DynaMax (built using Word2Vec, GloVe and fastText) and Sentence-BERT.

All the embedding models except DynaMax and the baselines are scored using
cosine similarity; DynaMax scores are obtained using fuzzy Jaccard similarity index.

5 Results

Table 2: SFBoW aggregated results over the STS benchmark. Results are aggregated
on the employed word embedding model. Total scores are weighted averages across
the STS editions and are expressed as: avg.±std. Bold and underlined values represent,
respectively, the first and second best results of a column.

Reference
Embedding
Model

Results (Spearman’s 𝜌)
STS Total2012 2013 2014 2015 2016

Word2Vec 51.25 ± 4.79 42.98 ± 5.27 57.62 ± 5.92 62.74 ± 6.90 62.81 ± 5.91 54.71 ± 5.63
GloVe 52.71 ± 5.14 43.40 ± 5.36 54.47 ± 7.20 61.55 ± 7.47 62.61 ± 6.32 54.26 ± 6.21
fastText 54.00 ± 4.90 44.16 ± 4.86 54.89 ± 7.60 61.62 ± 7.57 62.13 ± 7.31 54.88 ± 6.26
Sent2Vec 53.13 ± 1.46 41.48 ± 2.42 59.17 ± 2.70 64.81 ± 2.97 62.81 ± 2.18 55.91 ± 2.25

Table 3: SFBoW aggregated results over the STS benchmark. Results are aggregated
on the universe matrix building approach. Total scores are weighted averages across
the STS editions and are expressed as: avg.±std. Bold and underlined values represent,
respectively, the first and second best results of a column.

Universe
Matrix
Approach

Results (Spearman’s 𝜌)
STS Total2012 2013 2014 2015 2016

Clustering 53.04 ± 3.60 42.69 ± 4.17 56.42 ± 5.45 62.81 ± 5.57 62.62 ± 4.42 54.99 ± 4.58
Identity 56.90 ± 3.87 49.45 ± 3.61 64.56 ± 2.20 70.59 ± 1.82 69.33 ± 4.20 61.29 ± 3.05
Multivariate Analysis 57.53 ± 3.27 48.64 ± 3.44 64.26 ± 1.77 70.20 ± 1.89 69.80 ± 4.02 61.27 ± 2.72
Vector Significance 48.49 ± 3.53 39.61 ± 2.48 51.05 ± 5.29 56.51 ± 5.36 57.18 ± 4.53 50.04 ± 4.24

To analyse the results of the considered reference embeddings and the approaches
to build the universe matrix, we reported, respectively, the aggregated Spearman’s
𝜌 correlation in the STS benchmark in Tables 2 and 3. Through these two tables
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Table 4: Comparison of results over the STS benchmark. SFBoW models are in
the last block. Total scores are weighted averages across the STS editions and are
expressed as: avg.±std. Bold and underlined values represent, respectively, the first
and second best results of a column. Inference time refers to to the time, in seconds,
to carry out an evaluation on the entire STS corpus.

Model
Results (Spearman’s 𝜌)

Analysis time [s]STS Total2012 2013 2014 2015 2016

Word2Vec a 55.46 58.23 64.05 67.97 66.28 61.21 ± 5.04 –
GloVe a 53.28 50.76 55.63 59.22 57.88 54.99 ± 2.80 –
fastText a 58.82 58.83 63.42 69.05 68.24 62.65 ± 4.20 –

SIF weighting b 56.04 62.74 64.29 69.89 70.71 62.84 ± 5.54 –
Sent2Vec 56.26 57.02 65.82 74.46 69.01 63.21 ± 7.13 –
DynaMax c 55.95 60.17 65.32 73.93 71.46 63.53 ± 6.92 –
DynaMax b 57.62 55.18 63.56 70.40 71.36 62.25 ± 5.85 –
DynaMax d 61.32 61.71 66.87 76.51 74.71 66.71 ± 6.10 –
Sentence-BERT 72.27 78.46 74.90 80.99 76.25 75.81 ± 3.27 218.3

SFBoW d,e,f 61.31 51.21 67.47 72.90 73.88 64.55 ± 7.20 56.5
SFBoW d,g,h 61.42 51.36 66.44 72.74 73.72 64.32 ± 7.00 56.8
SFBoW d,g,i 60.03 51.96 66.36 72.39 73.25 63.81 ± 6.93 56.6
a Used as baseline. b Built upon a GloVe model for word embeddings.
c Built upon a Word2Vec model for word embeddings. d Built upon a fastText model for
word embeddings. e Best average score. f Universe matrix is the identity matrix.
g Universe matrix is the PCA projection matrix. h Universe matrix is built from the English
vocabulary. i Universe matrix is built from the top 100 000 most frequent words.

we highlight how the choice of an embedding model rather than a universe matrix
approach, affected the overall SFBoW performances in the STS benchmark. Addi-
tionally, we report a comparison in terms of Spearman’s 𝜌 correlation in the STS
benchmark of our SFBoW against other sentence embedding models in Table 4. The
comparison values, reported in the last three rows of Table 4 belong to the SFBoW
configurations that achieved the best score, among the variants we considered for the
experiments, in at least one task.

5.1 Individual SFBoW results

As reported in Table 4, fastText yields the best absolute results among the four-word
embeddings models, confirming the results of DynaMax. The best scores in terms of
universe matrix are achieved either with Identity matrix or with PCA rotation matrix,
highlighting how the features yield by word embeddings provide a better semantic
content representation of sentences.
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To have a better understanding of the results and the performances of different
universe matrices, we broke down the results along two axes. On one side we
aggregated the results distinguishing among the different embedding models (see
Table 2), on the other we distinguished among the different approaches to build the
universe matrix (see Table 3).

From Table 2 we noticed that, despite being fastText the word embedding model
yielding the best performances, Sent2Vec achieved the best results on average. While
the remaining models achieved on average very similar scores –all differences in the
Spearman’s 𝜌 are < 1–, Sent2Vec detached from fastText (the second best model on
average) with a difference > 1 in the Spearman’s 𝜌 score. We hypothesise that this is
due to the fact that Sent2Vec, differently from the other embeddings, is actually a
parametric sentence embedding model, which yields embeddings for single words.
However, despite being different, the average results of all models are quite close,
especially if compared with the differences found among average the universe matrix
results.

From Table 3, instead, we noticed that there is a clear difference in performances
among the considered approaches. Identity matrix and PCA consistently outperform
all the other considered approaches; achieving also very close scores between them
–the difference between their average Spearman’s 𝜌 is only 0.02–. Moreover, Identity
and PCA, achieve scores very similar to the SFBoW predecessor (see Table 4). We
hypothesise that this is due to the fact that these two techniques preserve the features
extracted by the embedding models, which are very robust, as observed by other non
parametric sentence embedding models like SIF-weighting.

Clustering, instead, presents way worse performances: the drop in Spearman’s 𝜌
is > 5 with respect to Identity and PCA. Nevertheless, clustering scores are in line
with the single word embedding models averages.

Vector significance turned out to provide the worst overall results. We hypothesise
it is due to the fact that the significance is not strongly related to the semantic
representative capabilities.

5.2 Comparison with other models

As premised, we compare our results with three baseline models and other sentence
embedding approaches, all reported in Table 4. The first group of scores is from the
baselines, the second one is from other sentence embedding models and, finally, the
last group is from our SFBoW model. Additionally, the best values in each column
are highlighted in bold, while the second ones are underlined.

The key features about our model, which can be derived from the results, are the
following:

• low number of parameters;
• faster inference time
• no training phase;
• results (in terms of 𝜌) comparable to similar models;
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• fixed-size and easily re-usable embeddings.

About the number of parameters, we can notice that even if Sentence-BERT
outperforms all the other models in every task, it relies on a much deeper feature
extraction model and was trained on a much bigger corpus. Moreover, this model
requires a considerably higher computational effort without an equally consistent
difference in performances. BERT alone requires more than 100 million parameters
just for its base version (and above 300 million for the large one), hence taking a
lot of (memory) space, not to mention the amount of time necessary for the self-
supervised training and the fine-tuning. On the other hand, non-parametric models
(like SIF, DynaMax or SFBoW) or shallow parametric ones (Sent2Vec) require fewer
parameters: just those for the embedding matrix |V| × 𝑑.

A similar discourse applies to inference speed. Even though Sentence-BERT
achieves the best results on all tasks, SFBoW turns out to be four times faster at
inferring the similarity, as can be noticed by the reported analysis times.

Being a non-parametric model, SFBoW does not require a training phase. It may
require clustering the embeddings to build the universe matrix, but our experiments
showed that clustering does not yield good results. Because of its simplicity, SFBoW
can generally be easily deployed, requiring only the word embedding model to
compute the sentence representation. Notice also that the SFBoW algorithm is
agnostic to the word embedding model.

Regarding the results we obtained, compared to other models, SFBoW provided
interesting figures: either considering the majority of tasks with higher Spearman’s 𝜌
rank or higher average score, it outperforms all the baselines, as well as SIF weighting
and Sent2Vec. Finally, we see as our model performs closely to its predecessor,
especially considering the weighted average of the results of the single tasks. SFBoW
bests out DynaMax in STS 2014 and gets almost the same results in STS 2012 (the
difference is 0.01), which are the first two corpora in terms of samples; however, the
difference in STS 2013 goes in favour of DynaMax.

About the comparison against DynaMax, it is worth underlining a few additional
points. First of all, in both cases, fuzzy Jaccard similarity correlates better with
human judgement as a measure of sentence similarity. Secondly, both models manage
to achieve better results when using fastText word embedding, possibly underling
that they lend better than other models at sentence level combination; the baseline
performances also show this.

Finally, we remind that SFBoW generates embeddings with a fixed size, resulting
in much easier applicability with respect to DynaMax.

6 Conclusion

In this paper we presented and evaluated the SFBoW model for sentence embedding.
This model leverages the approaches proposed by the FBoW and DynaMax models,
to compute static embeddings (in the sense of fixed size embeddings). To extract such
static embeddings we rely on a static universe matrix. This matrix can be constructed
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in many different ways, thus we explored them in order to find the most suitable. We
considered approaches based on clustering, identity, multivariate analysis and vector
significance. To evaluate the possible approaches we benchmarked the model on the
STS benchmark.

We divided the evaluation into an individual one, to observe the different results
of the considered embeddings and approaches for the SFBoW universe matrix, and
a compared one, to observe the results of SFBoW with respect to those of other
sentence embedding models.

From the individual analysis we derived that fastText and Sent2Vec are the two
most suitable emebdding for our model, and that Identity and PCA are the most
suitable universe matrix building approaches. From the compared evaluation we
derived that even if SFBoW does not outperform state-of-the-art models on STS, but
it performs comparably to DynaMax, its predecessor, and, differently from DynaMax,
yields re-usable embeddings, because of their fixed dimensionality. Due to its low
computation demand (especially if compared with state-of-the-art Sentence-BERT,
and re-usability of embeddings, SFBoW can be seen as a reasonable solution,
especially for scenarios where low computational capabilities are essential.

In the future, we plan to carry out a deeper analysis of the results to identify
the reasons behind the different scores achieved by the universe matrix approaches.
Another idea for future evolution we considered is to combine the approaches we
analysed to build the universe matrix, in order to extract a more robust one. For
example, it would be possible to cluster the vectors with a significance above a certain
threshold to obtain, possibly, better results.
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