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Abstract
We focus on the following natural question: is it possible to
influence the outcome of a voting process through the strate-
gic provision of information to voters who update their be-
liefs rationally? We investigate whether it is computation-
ally tractable to design a signaling scheme maximizing the
probability with which the sender’s preferred candidate is
elected. We resort to the model recently introduced by Arieli
and Babichenko (2019) (i.e., without inter-agent externali-
ties), and focus on, as illustrative examples, k-voting rules
and plurality voting. There is a sharp contrast between the
case in which private signals are allowed and the more re-
strictive setting in which only public signals are allowed. In
the former, we show that an optimal signaling scheme can
be computed efficiently both under a k-voting rule and plu-
rality voting. In establishing these results, we provide two
contributions applicable to general settings beyond voting.
Specifically, we extend a well-known result by Dughmi and
Xu (2017) to more general settings and prove that, when the
sender’s utility function is anonymous, computing an optimal
signaling scheme is fixed-parameter tractable in the number
of receivers’ actions. In the public signaling case, we show
that the sender’s optimal expected return cannot be approxi-
mated to within any factor under a k-voting rule. This neg-
ative result easily extends to plurality voting and problems
where utility functions are anonymous.

Introduction
Information is the foundation of any democratic election, as
it allows voters for better choices. In many settings, unin-
formed voters have to rely on inquiries of third party entities
to make their decision. For example, in most trials, jurors
are not given the possibility of choosing which tests to per-
form during the investigation or which questions are asked
to witnesses. They have to rely on the prosecutor’s inves-
tigation and questions. The same happens in elections, in
which voters gather information from third-party sources.
With the advent of modern media environments, malicious
actors have unprecedented opportunities to garble this infor-
mation and influence the outcome of the election via mis-
information and fake news (Allcott and Gentzkow, 2017).
Reaching voters with targeted messages has never been eas-
ier. Hence, we pose the question: can a malicious actor in-

fluence the outcome of a voting process only by the provision
of information to voters who update their beliefs rationally?

We describe the problem through the Bayesian persua-
sion framework by Kamenica and Gentzkow (2011). At
its core, the model involves an informed sender trying to
influence the behavior of self-interested receivers through
the provision of payoff-relevant information. Kamenica and
Gentzkow (2011) study how a single sender, having access
to some private information, can design a signaling scheme
to persuade a single receiver to select a favorable action. The
model assumes the sender’s commitment, which is realistic
in many settings (Kamenica and Gentzkow, 2011; Dughmi,
2017). One argument to that effect is that reputation and
credibility may be a key factor for the long-term utility of
the sender (Rayo and Segal, 2010).

A number of recent works study social influence as a
means of election control (Sina et al., 2015; Faliszewski et
al., 2018; Wilder and Vorobeychik, 2018, 2019). The crucial
difference in our model is that voters are strategic players,
who update their beliefs rationally. This property forces the
sender to carefully craft the signaling scheme to preserve
persuasiveness (i.e., incentive compatibility). Other mech-
anisms for election interference that have been studied are
bribery (Faliszewski et al., 2009; Erdélyi, Reger, and Yang,
2017), and adding/deleting voters/candidates (Loreggia et
al., 2015; Faliszewski, Hemaspaandra, and Hemaspaandra,
2011; Liu et al., 2009; Chen et al., 2017). Both these mecha-
nisms differ from ours in the provision of tangible incentives
(the former) or the modification of the election setting (the
latter). In our model, the malicious actor (i.e., the sender),
can influence the outcome of the election only by deciding
who gets to know what.

We extend the fundamental model of Arieli and
Babichenko (2019) to describe general voting problems.
Specifically, our model comprises of multiple receivers, an
arbitrary number of actions and states of nature, and no inter-
agent externalities. 1 We adopt the sender’s perspective, and
study how to compute optimal private (i.e., different voters
may receive different information) and public (i.e., all vot-

1 Without inter-agent externalities, the utility of a voter depends
only on her appreciation of the candidate she selected, and on the
state of nature. It does not depend on actions taken by other voters.
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ers observe the same signal) communication schemes. We
observe a sharp contrast between the two settings: all re-
sults for the private setting are positive (i.e., polynomial time
tractability), while coordinating voters via public signaling
is largely intractable.

Original contributions. We focus on two commonly
adopted voting rules: k-voting rules and plurality voting.
First, we provide an efficient implementation of the optimal
private signaling scheme under a k-voting rule. Then, by
generalizing a result by Dughmi and Xu (2017)—later revis-
ited by Xu (2019)—, we describe a necessary and sufficient
condition for the efficient computation of private signaling
schemes for a general class of sender’s objective functions.
This condition is employed to show that private Bayesian
persuasion is fixed-parameter tractable in the number of re-
ceivers’ actions when sender’s utility is anonymous, and to
show that an optimal private signaling scheme under plural-
ity voting can be found in polynomial time. As for public
signaling, we provide a new inapproximability result on the
problem of computing an optimal public signaling scheme
under a k-voting rule, showing that it cannot be approxi-
mated to within any factor of the input size. This result sig-
nificantly improves previous hardness results for this setting
due to Dughmi and Xu (2017) and easily extends to anony-
mous sender’s utility functions and plurality voting.

Related Works
The classic model of Bayesian persuasion is due to Ka-
menica and Gentzkow (2011). Later, Bergemann and Mor-
ris (2016a,b, 2019) highlighted the connection between op-
timal information disclosure and the best Bayes correlated
equilibrium from the sender’s perspective. A number of
works deal with the multiple receivers generalization of the
model, e.g., Schnakenberg (2015); Taneva (2015); Wang
(2013). Among these works, those by Bardhi and Guo
(2018), Alonso and Câmara (2016) and Chan et al. (2019)
are closely related to ours, representing the first attempts
of applying the Bayesian persuasion framework to voting
problems. In particular, Bardhi and Guo (2018) and Chan
et al. (2019) focus on problems with binary actions and
state spaces. The former studies private Bayesian persua-
sion for unanimity voting, while the latter analyzes private
and public persuasion with k-majority voting rules. Alonso
and Câmara (2016) employ a novel geometric tool to char-
acterize an optimal public signaling scheme in a voting
framework and characterize voters’ preferences over elec-
toral rules. However, the aforementioned works only pro-
vide the economic groundings of Bayesian persuasion in
(simple) voting settings. Their characterization does not in-
clude any computational result.

Dughmi and Xu (2016) are the first to analyze Bayesian
persuasion from a computational perspective, in the single-
receiver case. Arieli and Babichenko (2019) introduce
the fundamental model of persuasion with no inter-agent
externalities. 2 In the case of binary actions and state

2 Problems with externalities are largely intractable even in very
simple settings; see, e.g., (Bhaskar et al., 2016; Rubinstein, 2015;
Dughmi, 2018). The no-externality assumption removes the equi-

spaces, Arieli and Babichenko (2019) provide an explicit
characterization of the optimal private signaling scheme
when the sender’s utility function is either supermodular,
anonymous submodular, or supermajority. Moreover, Arieli
and Babichenko (2019) also provide necessary and suf-
ficient conditions for the existence of a public signaling
scheme matching the performance of the best private sig-
naling scheme. Other related works focusing on the no
externality setting with receivers’ binary action spaces are
the following: Babichenko and Barman (2016) describe a
tight (1 − 1/e)-approximate private signaling scheme for
monotone submodular sender’s utility functions and show
that an optimal private scheme for anonymous utility func-
tions can be found in polynomial time. Dughmi and Xu
(2017) generalize the model to the case of many states of
nature, while assuming sender’s utility to be a monotone
set function. In this setting, the supermodular and anony-
mous cases can be efficiently solved. When the sender’s
utility is submodular, Dughmi and Xu (2017) show that
an (1 − 1/e)-approximation to the optimal revenue can be
obtained by sending conditionally independent private sig-
nals to receivers. Moreover, the authors show that it is NP-
hard to approximate the sender’s value provided by the op-
timal public scheme, within any constant factor. Finally, Xu
(2019) focuses on the complexity of public signaling when
there are no inter-agent externalities and the action spaces
are binary. Finding an optimal public signal is shown to be
fixed-parameter tractable under some non-degeneracy as-
sumptions. The author describes a PTAS with a bi-criteria
guarantee for (monotone) submodular sender’s objectives.

Model
Our model is a generalization of the fundamental special
case introduced by Arieli and Babichenko (2019). It com-
prises a sender and a finite set R of receivers (voters) that
must choose one alternative from a set C = {c0, . . . , c`} of
candidates (i.e., C is the set of voters’s available actions).
Each voter must choose a candidate from C. Each voter’s
utility depends only on her own action and the (random)
state of nature, but not on the actions of other voters. In
particular, we write ur : C × Θ → R, where Θ = {θi}ni=1
is the finite space of states of nature. The value of ur(c, θ)
is a measure of voter r’s appreciation of candidate c when
the state of nature is θ. A profile of votes (i.e., one candi-
date for each voter) is denoted by c ∈ ×r∈RC. In general
settings, beyond voting, we denote the sender’s utility when
the state of nature is θ with fθ : ×r∈RC → R (here C
may be an arbitrary space of actions). Furthermore, we say
that f is anonymous if its value depends only on θ and on
the number of players selecting each action. In the specific
context of voting, the sender’s objective is maximizing the
winning probability of c0 (according to some voting rules).
In this setting, instead of using f , we denote the sender’s
utility function by W : ×r∈RC → {0, 1}, where W (·) = 1
if c0 wins, and W (·) = 0 otherwise. The state of nature in-

librium selection and (partially) the computation concerns arising
in more general setting, and allows one to focus on the problem of
coordinating receivers’ actions.
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Figure 1: Interaction between the sender and a receiver.

fluences the receivers’ preferences but it does not affect the
sender’s payoff, which only depends on the final votes. 3

As it is customary in Bayesian persuasion (see, e.g., Ka-
menica (2018)), we assume θ is drawn from a common prior
µ ∈ int(∆(Θ)), which is explicitly known to both sender
and receivers. 4 Their interaction goes as follows (see Fig-
ure 1): the sender commits to a publicly known signaling
scheme φ that maps states of nature to signals for the voters.
The signal set of receiver r is denoted by Sr, while sr ∈ Sr
is a single signal for r. A profile of signals is denoted by
s = (s1, . . . , s|R|) ∈ S, where S = ×r∈RSr. The sender
observes the realized state of nature θ ∼ µ, and exploits the
knowledge of θ to compute s ∈ S, drawn according to φ
under θ. Each voter r observes sr and rationally updates her
posterior over Θ. Then, each voter r selects a candidate c∗r
maximizing r’s expected reward.

A general signaling scheme φ : Θ → ∆(S) has a private
communication channel for each receiver. We refer to these
as private signaling schemes. The probability with which
the sender recommends s ∈ S after observing θ is φ(θ, s).
Therefore, it holds

∑
s∈S φ(θ, s) = 1 for each θ. Let S−r =

×j 6=rSj . Then, φr(θ, sr) =
∑

s−r∈S−r
φ(θ, (sr, s−r)) is

the marginal probability with which sr ∈ Sr is recom-
mended to r when θ is observed. Furthermore, we call φr a
marginal signaling scheme. It is immediate to observe that
the same set {φr}r∈R may be obtained from more than one
distribution over S. A special setting is the one of public
signaling schemes, where the same signal is received by all
receivers through a public communication channel (equiva-
lently, all voters have to receive the same private message).
With an overload of notation, we denote a public signaling
scheme by φ : Θ → S, where S, denotes the set of public
signals (the meaning of φ will be clear from the context).

A revelation-principle style argument shows that, in the
case of no inter-agent externalities, there exists an optimal
(private or public) signaling scheme which is both direct and
persuasive (Kamenica and Gentzkow, 2011; Dughmi and
Xu, 2017). 5 A signaling scheme is direct when signals can
be mapped to actions of the receivers, and interpreted as ac-
tion recommendations, i.e., in the voting setting, Sr = C for
each r ∈ R. We say that a signaling scheme is persuasive
if following recommendations is an equilibrium of the un-

3The sender’s utility function is state-independent in many set-
tings, e.g., voting (Alonso and Câmara, 2016), and marketing (Can-
dogan, 2019; Babichenko and Barman, 2016).

4int(X) is the interior of set X , and ∆(X) is the set of all
probability distributions on X .

5 An optimal signaling scheme always exists when the sender’s
expected utility is upper semicontinuous, which is always the case
when receivers break ties in favor of the sender (Kamenica and
Gentzkow, 2011).

derlying Bayesian game (Bergemann and Morris, 2016a,b).
Analogously, a marginal signaling scheme φr is persuasive
if r has no incentives in deviating from its recommendations.
When not specified, we assume to work with direct signal-
ing schemes. Moreover, when the sender’s signaling scheme
φ is direct and persuasive we write W (φ) to denote the
sender’s expected utility. Finally, function δ : S × C → N
is s.t. δ(s, c) is the number of voters that are recommended
c by s.

To further clarify the notion of Bayesian persuasion in
voting problems, we provide the following simple example.

Example 1. There are three voters R = {1, 2, 3} that have
to choose one among two candidates C = {c0, c1}. The
sender (e.g., a politician or a lobbyist) is interested in hav-
ing c0 elected, and can observe the realized state of nature,
drawn uniformly from Θ = {A,B,C}. The state of nature
describes the position of c0 on a matter of particular inter-
est to the voters. Moreover, voters perceive c1 in a slightly
negative way, independently of the state of nature. Table 1
describes the utility of the three voters.

StateA StateB State C
c0 c1 c0 c1 c0 c1

Vo
te

rs 1 +1 −1/4 −1 −1/4 −1 −1/4
2 −1 −1/4 +1 −1/4 −1 −1/4
3 −1 −1/4 −1 −1/4 +1 −1/4

Table 1: Payoffs from voting dif-
ferent candidates.

Signals
not A not B not C

St
at

es A 0 1/2 1/2
B 1/2 0 1/2
C 1/2 1/2 0

Table 2: Optimal
signaling scheme.

We consider a simple-majority voting rule. Without
any form of signaling (or with a completely uninforma-
tive signal), all voters would choose c1 because it provides
an expected utility of −1/4, against −1/3. This would
clearly be the worst possible outcome for the sender, i.e.,
W ((c1, c1, c1)) = 0. The sender would still get 0 utility
with a fully informative (private) signal, since two out of
three receivers would pick c1. However, the sender can de-
sign a public signaling scheme granting herself utility 1 for
each state of nature. 6 An optimal signaling scheme should
convince two out of the three receivers to vote for c0. Ta-
ble 2 describes one such scheme with generic signals. Sup-
pose the observed state is A, and that the signal is not B
(sampled uniformly from {not B,not C}). Then, the pos-
terior distribution over the states of nature is (1/2, 0, 1/2).
Therefore, both player 1 and 3 would vote for c0, since their
expected utility would be 0 against−1/4. The sender’s pay-
off would be W ((c0, c1, c0)) = 1, and the same happens for
any θ ∈ Θ. An equivalent direct signaling scheme would
publicly reveal a tuple of candidates’ suggestions. For ex-
ample, not A would become (c1, c0, c0).

We consider two commonly adopted voting rules: k-
voting rule and plurality voting rule (see, e.g., Brandt et
al. (2016)). In an election with a k-voting rule each voter
chooses a candidate after observing the sender’s signal. Can-
didate ci is elected if it receives at least k votes, where

6Since a public signaling scheme is a special case of private
signaling, the same result could be achieved in the latter scenario.



k ∈ [|R|] is the established electoral rule. 7 The problem of
designing the optimal sender’s persuasive signaling scheme
under a k-voting rule is denoted by K-V. In an election with
plurality voting rule the winner is determined as the candi-
date with a plurality (greatest number) of votes. The prob-
lem of finding an optimal persuasive signaling scheme for
the sender with plurality voting is denoted by PL-V. In both
settings, we focus on maximizing the winning probability
of the sender. The problem can be written as the optimiza-
tion problem: maxφ

∑
θ∈Θ,s∈S µ(θ)φ(θ, s)W (s), subject to

φ being persuasive for each voter. An approximate solution
for this problem is a signaling scheme that is persuasive, but
guarantees to the sender a sub-optimal expected utility.

Private Signaling with k-Voting Rules
In this section, we show that a solution to K-V (i.e., find-
ing an optimal persuasive signaling scheme under a k-voting
rule) can be found in polynomial time when the sender can
employ a private signaling scheme.

First, we show that the sender can restrict the choice
of a signaling scheme to the set of the schemes φ whose
marginal signaling schemes are Pareto efficient on the set
{φr(θ, c0)}θ∈Θ,r∈R (Lemma 1), and recommend with pos-
itive probability either c0 or the candidate giving r the best
utility under θ (Lemma 2).

Lemma 1. Given a signal φ′ and a set of persuasive
marginal signaling schemes {φr}r∈R, if φr(θ, c0) ≥
φ′r(θ, c0) for each r ∈ R and θ ∈ Θ, there exists a per-
suasive signaling scheme φ such that W (φ) ≥W (φ′).

Proof. Be given a signaling scheme φ′ and a set of persua-
sive marginal signaling schemes {φr}r∈R s.t. φr(θ, c0) ≥
φ′r(θ, c0) for each r ∈ R, θ ∈ Θ. Intuitively, we show that it
is possible to move probability mass to c0 while guarantee-
ing persuasiveness with the following iterative procedure.

Let φ0 = φ′. Then, we iterate over r ∈ [|R|], and update
the signaling scheme with the following procedure. Let Ar
be an arbitrary mapping from [|S−r|] to S−r, which serves
as an arbitrary ordering of elements in S−r (i.e., Ar(i) re-
turns the i-th element of S−r in such ordering). Moreover,
for each θ ∈ Θ, we define ∆0

r(θ) = φr(θ, c0) − φ′r(θ, c0).
For each r, we iterate over i ∈ [|S−r|], and perform the fol-
lowing updates: s−r = Ar(i),

φr(θ, (c0, s−r)) = min

{
φr−1(θ, (c0, s−r)) + ∆i−1

r (θ),∑
c∈C

φr−1(θ, (c0, s−r))

}
, (1)

and
∆i
r(θ) = ∆i−1

r (θ)−φr(θ, (c0, s−r))+φr−1(θ, (c0, s−r)),
where φr(θ, (c, s−r)) is the probability of recommending c
to r and s−r to the other receivers, under θ (at iteration r).
Finally, for each s−r, and c 6= c0, set:

7We denote by [n] the set {1, . . . , n}.

φr(θ, (c, s−r)) =

=

φr(θ, c)

(∑
c′∈C φ

r−1(θ(c′, s−r))− φr(θ, (c0, s−r))
)

∑
c′∈C\{c0} φr(θ, c

′)
,

the numerator is well-defined because of the minimiza-
tion in Equation 1. After having enumerated all the
receivers, we obtain φ|R|. We show that φ = φ|R|

is precisely the desired signaling scheme. First, we
show that, at each iteration r, φr is well formed.
For each iteration r, and pair (θ, s−r), we show that∑
c∈C φ

r(θ, (c, s−r)) =
∑
c∈C φ

r−1(θ, (c, s−r)). We
have:

∑
c∈C φ

r(θ, (c, s−r)) = φr(θ, (c0, s−r)) +∑
c∈C\{c0} φ

r(θ, (c, s−r)). Then, by expanding
φr(θ, (c, s−r)) via the update rule, we obtain:∑

c∈C
φr(θ, (c, s−r)) =

= φr(θ, (c0, s−r))+
∑
c∈C

φr−1(θ, (c, s−r))−φr(θ, (c0, s−r)),

which is precisely
∑
c∈C φ

r−1(θ, (c, s−r)). This implies
that

∑
s∈S φ

r(θ, s) = 1, and that receiver r’s marginal prob-
abilities are modified only at iteration r. Now, we show that
receiver r’s marginals are updated correctly. We distinguish
the following two cases.

i) It is easy to see that, for candidate c0,∑
s−r∈S−r

φr(θ, (c0, s−r)) =

= ∆0
r(θ) +

∑
s−r∈S−r

φr−1(θ, (c0, s−r)) = φr(θ, c0).

ii) For each candidate c 6= c0, we have:∑
s−r∈S−r

φr(θ, (c, s−r)) =

=
∑

s−r∈S−r

φr(θ, c)

( ∑
c′∈C

φr−1(θ(c, s−r))− φr(θ, (c0, s−r))
)

∑
c′∈C\{c0}

φr(θ, c
′)

=

=

φr(θ, c)

(∑
s∈S

φr−1(θ, s)−
∑

s−r∈S−r

φr(θ, (c0, s−r))

)
∑

c′∈C\{c0}
φr(θ, c

′)
=

=
φr(θ, c)(1− φr(θ, c0))∑
c′∈C\{c0}

φr(θ, c
′)

= φr(θ, c).

Since {φr}r∈R are persuasive, also the new signaling
scheme φ is persuasive. Finally, we show that the new sig-
naling scheme does not decrease sender’s expected utility.
Let S∗ = {s ∈ S|δ(s, c0) ≥ k} be the set of joint sig-
nals recommending c0 to more than k voters (under a k-
voting rule). Then, W (φ) =

∑
θ∈Θ µ(θ)

∑
s∈S∗ φ(θ, s). It

is enough to show that, for each iteration r, for each θ ∈ Θ,



and, for each s−r ∈ S−r, it holds∑
c∈C

(
φr(θ, (c, s−r))− φr−1(θ, (c, s−r))

)
1(c,s−r)∈S∗ ≥ 0.

We distinguish three cases. i) When δ(s−r, c0) < k − 1,
a change in r’s marginal probabilities does not affect the
sender’s winning probability, term 1(c,s−r)∈S∗ being always
0. ii) When δ(s−r, c0) = k− 1, 1(c,s−r)∈S∗ = 1 only if c =

c0, and φr(θ, (c0, s−r)) ≥ φr−1(θ, (c0, s−r)). iii) When
δ(s−r, c0) > k− 1, 1(c,s−r)∈S∗ is always 1, and we already
know that

∑
c∈C

(
φr(θ, (c, s−r))− φr−1(θ, (c, s−r))

)
=

0. This concludes the proof.

We now state the next lemma.

Lemma 2. There always exists a solution to K-V in which,
for all r ∈ R and θ ∈ Θ, φr(θ, c) > 0 if and only if one of
the following two conditions is satisfied:
• c = c0,
• c ∈ arg maxc′∈C ur(θ, c

′).

Proof. Given a persuasive signaling scheme φ′, we show
that it is possible to build a collection {φr}r∈R with the
property above, s.t. φr(θ, c0) ≥ φ′r(θ, c0) for each r ∈ R,
θ ∈ Θ. This, together with Lemma 1, proves our result.
We build φ iteratively. For each pair (θ, r), select c∗ ∈
arg maxc∈C ur(θ, c), and set φr(θ, c∗) = 1 − φ′r(θ, c0),
φr(θ, c0) = φ′r(θ, c0), and φr(θ, c) = 0 for each other
c ∈ C \ {c0, c∗}. It is immediate to see that, for each θ and
r,
∑
c∈C φr(θ, c) = 1. Next, we show that each φr is per-

suasive, i.e.,
∑
θ∈Θ µ(θ)φr(θ, c) (ur(θ, c)− ur(θ, c′)) ≥ 0

for each r ∈ R, and c, c′ ∈ C. If c = c0, we have
φr(θ, c0) > φ′r(θ, c0) only if c0 ∈ arg maxc∈C ur(θ, c),
which means (ur(θ, c0)− ur(θ, c′)) ≥ 0, in the remain-
ing cases we have φr(θ, c0) = φ′r(θ, c0). If c 6= c0,
c ∈ arg maxc′∈C ur(θ, c

′) for each θ ∈ Θ with φ(θ, c) > 0,
which makes the incentive constraint satisfied.

By exploiting Lemma 2, we show that an optimal persua-
sive signaling scheme under a k-voting rule can be computed
in polynomial time via the following linear program (LP).
Let βθ ∈ R be the probability with which k voters vote for
c0 with state θ. Then, we can compute an optimal solution
to K-V as follows (the proof is provided below):

max
β∈[0,1]|Θ|,z∈R|Θ|×k×|R|

−
t,q∈R|Θ|×k

φr(·,c0)∈[0,1]|R×Θ|

∑
θ∈Θ

µ(θ)βθ (2a)

s.t.
∑
θ∈Θ

µ(θ)φr(θ, c0) (ur(θ, c0)− ur(θ, c)) ≥ 0 (2b)

∀r ∈ R,∀c ∈ C \ {c0}

βθ ≤
1

k −m
qθ,m ∀θ ∈ Θ,∀m ∈ {0, . . . , k − 1} (2c)

qθ,m ≤ (|R| −m)tθ,m +
∑
r∈R

zθ,r,m (2d)

∀θ ∈ Θ,∀m ∈ {0, . . . , k − 1}
φr(θ, c0) ≥ tθ,m + zθ,m,r (2e)

∀r ∈ R,∀θ ∈ Θ,∀m ∈ {0, . . . , k − 1}.

This formulation allows us to state the following:

Theorem 3. It is possible to compute an optimal persuasive
private signaling scheme for K-V in poly(n, `, |R|) time.

Proof. Formulation 2 has a polynomial number of variables
and constraints. Then, proving Theorem 3 amounts to show
that a solution to Formulation 2 is also a solution to K-V.

Let c∗θ,r = arg maxc∈C ur(θ, c), for each θ and r. First,
by Lemma 2, the space of available signals can be restricted
to those in which, for each r and θ, only φr(θ, c0) and
φr(θ, c

∗
θ,r) are > 0, and φr(θ, c∗θ,r) = 1 − φr(θ, c0). Con-

straints (2b) are the incentive constraints for action c0. For
any c 6= c0, the incentive constraints are satisfied by con-
struction. Objective (2a) is given by the sum over all θ ∈ Θ
of the prior of state θ, multiplied by the probability of having
at least k vote for c0 given θ. We need to show the correct-
ness of βθ. For each state of nature the maximum probability
with which at least k receivers play c0 is given by:

βθ = min

{
min

m∈{0,...,k−1}
1

k −m
qθ,m, 1

}
,

where qθ,m is the sum of the lowest |R| − m elements in
the set {φr(θ, c0)}r∈R; for further details, see (Arieli and
Babichenko, 2019, Lemma 3). This is enforced via Con-
straints (2c). Constraints (2d) and (2e) ensure qθ,m’s consis-
tency, and are derived from the dual of a simple LP of this
kind: miny∈Rn x>y s.t. 1>y = w and 0 ≤ y ≤ 1 (where
x ∈ Rn is the vector from which we want to extract the sum
of the smallest w entries). This concludes the proof.

A Condition for Efficient Private Signaling
In the following, we provide a necessary and sufficient con-
dition for the poly-time computation of persuasive private
signaling schemes under a general class of sender’s objective
functions. In the next section, this result will be exploited
when dealing with anonymous utility functions and plural-
ity voting. We allow for general sender’s utility functions
of type fθ : ×r∈RC → R, which generalizes previous re-
sults by Dughmi and Xu (2017) where the receivers’ action
space has to be binary. Given a collection of set functions
F , P (F) denotes the class of persuasion instances in which,
for each θ ∈ Θ, fθ ∈ F . We can state the following (the
proof can be found in the Supplementary Material).

Theorem 4. Let F be any collection of set functions includ-
ing f0(·) = 0. Given any instance in P (F), there exists
a polynomial-time algorithm for computing an optimal per-
suasive private signaling scheme if and only if there is a
polynomial-time algorithm that computes

max
c∈×r∈RC

f(c) +
∑
r∈R

wr(c
r), (3)

for any f ∈ F , and any weights wr(cr) ∈ R, where cr is the
action chosen by r in c.

The crucial difference with the result by Dughmi and Xu
(2017) is that they consider set functions depending only on
the set of players choosing the target action, among the two
available. Theorem 4 generalizes this setting as it allows for
functions taking as input any action profile c. This is crucial



in settings like plurality voting, where the sender is not only
interested in votes favorable to c0, but also in the distribution
of the other preferences. Dughmi and Xu (2017)’s result
cannot be applied to such settings.

Further Positive Results for Private Signaling
Despite Theorem 4, in the case of general utility functions
the problem of determining an optimal persuasive private
signaling scheme is still largely intractable. An intuition be-
hind that is that there may be an exponential (in |C|) number
of values of f (e.g., in the case of anonymous utility func-
tions, there are

(|R|+|C|−1
|R|

)
values of f ). In order to identify

tractable classes of the problem, we need to make some fur-
ther assumptions on F .

Anonymous Utility Functions. A reasonable (in the con-
text of voting) restriction is to anonymous utility functions
(see, e.g., Arieli and Babichenko (2019)). Previous results
on the computational complexity of private signaling with
anonymous utility functions focus on the case of binary ac-
tions, which is shown to be tractable (Babichenko and Bar-
man, 2016; Arieli and Babichenko, 2019; Dughmi and Xu,
2017). We generalize these results to a generic number of
states of nature and receiver’s actions with the following re-
sult (the proof is provided in the Supplementary Material).

Theorem 5. Private Bayesian persuasion with anonymous
sender’s utility functions is fixed-parameter tractable in the
number of receivers’ actions.

Theorem 5 implies that, for any anonymous voting rule,
private Bayesian persuasion is fixed-parameter tractable in
the number of candidates.

Plurality Voting. By further restricting our attention to
specific voting rules, we can see the consequences of The-
orem 4 to an even better extent. A simple and widespread
voting rule is plurality voting. 8 In this setting W (s) = 1 if
and only if δ(s, c0) > δ(s, c) for any c 6= c0, and W (s) = 0
otherwise. We can state the following:

Theorem 6. PL-V with private signaling can be solved in
poly(n, `, |R|) time.

Proof. We exploit Theorem 4, and show that the maxi-
mization Problem (3) can be solved efficiently. With an
overload of notation, generic actions profiles are repre-
sented via signals. Then, the maximization problem reads:
maxs∈SW (s) +

∑
r∈R wr(sr). We split the maximization

problem in two steps. First, we consider the maximiza-
tion over non-winning action profiles, i.e., signals in the set
S̄ = {s ∈ S|∃c 6= c0 s.t. δ(s, c) > δ(s, c0)}. An upper
bound to the optimal value of the maximization problem
restricted to S̄ is given by maxs∈S

∑
r wr(sr). The latter

problem can be solved independently for each receiver r,
by choosing c maximizing wr(c). Once the relaxed prob-
lem has been solved, the objective function of the separation
problem is adjusted by checking whether c is winning or not.

8See, e.g., its (discussed) adoption in direct presidential elec-
tions in a number of states (Blais, Massicotte, and Dobrzynska,
1997).

The resulting value is then compared with the value from the
following step.

We consider the maximization over winning action pro-
files, i.e., signals in S∗ = S \ S̄. For any s ∈ S∗,
W (s) = 1. Then, we have to maximize the same ob-
jective of the previous case with the following additional
constraints: δ(s, c0) > δ(s, c), for all c 6= c0. To de-
termine an optimal solution to this problem, we enumer-
ate over k ∈ {d |R|−1

` e + 1, . . . , |R|}, i.e., the number of
votes that make c0 a potential winner of the election. Then,
for each value of k, we consider action profiles such that
δ(s, c0) = k, and δ(s, c) < k, for all c 6= c0 (i.e., win-
ning signals where c0 receives exactly k votes). An optimal
solution for a fixed k can be determined with this LP:

max
χ∈R|R×C|

+

∑
(r,c)∈R×C

χr(c)wr(c)

s.t.
∑
r∈R

χr(c0) = k∑
r∈R

χr(c) ≤ k − 1 ∀c ∈ C \ {c0}∑
c∈C

χr(c) = 1 ∀r ∈ R.

We look for an integer solution of the problem, which always
exists and can be found in polynomial time (see, e.g., (Orlin,
1997)). This is because the formulation is an instance of the
maximum cost flow problem, which is, in its turn, a variation
of the minimum cost flow problem. Once an integer solu-
tion has been found, an optimal action profile of the original
maximization problem is the one obtained by recommend-
ing to each r the candidate c s.t. χr(c) = 1.

Public Signaling
In contrast with the results for private signaling problems,
we show that public persuasion in the context of voting is
largely intractable.

We reduce from MAXIMUM k-SUBSET INTERSEC-
TION (MSI) (Clifford and Popa, 2011).

Definition 1 (MSI). An instance of MAXIMUM k-SUBSET
INTERSECTION is a tuple (E , A1, . . . , Am, k, q), where
E = {e1, . . . , en} is a finite set of elements, each Ai,
i ∈ [m], is a subset of E , and k, q are positive integers. It
is a “yes”-instance if there exist exactly k sets Ai1 , . . . , Aik
such that | ∩j∈[k] Aij | ≥ q, and a “no”-instance otherwise.

MSI has been recently shown to be NP-hard (Xavier,
2012; Elkind et al., 2015). Now, we prove the following
negative result:

Theorem 7. K-V with public signaling, even with two
candidates, cannot be approximated in polynomial time to
within any factor, unless P=NP.

Proof. Given an instance of MSI, we build a public signal-
ing problem with the following features.

Mapping. It has a voter ri for each Ai, i ∈ [m], and m
voters re,j , j ∈ [m], for each e ∈ E . There is a state of
nature θe for each e ∈ E , and µ(θe) = 1/n for each θe.



Finally, C = {c0, c1}. Receivers have the following utility
functions: for each ri, i ∈ [m],

uri(θe, c) =


1 if e ∈ Ai, c = c0
−n2 if e /∈ Ai, c = c0
0 if c = c1

,

for each re,j , e ∈ E , and j ∈ [m],

ure,j (θe′ , c) =


1 if e = e′, c = c0
− 1
q−1 if e 6= e′, c = c0

0 if c = c1

.

The sender needs at least k + mq votes (for c0) in order to
win the election (i.e., we are considering a (k +mq)-voting
rule). We prove our theorem by showing that c0 has a strictly
positive probability of winning the election if and only if the
corresponding MSI instance is satisfiable.

If. Suppose there exists a set A∗ = {Ai1 , . . . , Aik} sat-
isfying the MSI instance, and let I = ∩j∈[k]Aij . Define
a signaling scheme φ with two signals (γ0 and γ1) such
that, for each e ∈ I , φ(θe, γ0) = 1, and, for each e /∈ I ,
φ(θe, γ1) = 1, and it is equal to 0 otherwise. We show that
such a signaling scheme guarantees a strictly positive win-
ning probability for the sender. First, we show that, when the
realized state of nature θe is such that e ∈ I (i.e., the sender
recommends γ0), at least k+mq receivers vote for c0. Each
receiver ri such that Ai ∈ A∗ will choose c0 when recom-
mended γ0. Specifically,

∑
θe

1
nφ(θe, γ0)uri(θe, c0) = q

n ,
while

∑
θe

1
nφ(θe, γ0)uri(θe, c1) = 0. Receivers re,j with

e ∈ I will vote for c0 after observing γ0. This is because,
for each e ∈ I and j ∈ [m], re,j has expected utility
1
nφ(θe, γ0) −

∑
θ′e:e′ 6=e

1
n

1
q−1φ(θe′ , c0) = 0 for voting c0,

and expected utility 0 for voting c1. Then, when the realized
state of nature is θe with e ∈ I , there are at least k +mq re-
ceivers voting for c0. Therefore, the sender’s winning prob-
ability is at least kn (i.e., the probability of observing θe with
e ∈ I under a uniform prior).

Only if. Suppose, by contradiction, that MSI is not sat-
isfiable, and that the sender’s winning probability under the
optimal signaling scheme is not null. This implies the exis-
tence of a signal γ0 such that, when recommended, a set of
receivers R∗ votes for c0, and |R∗| ≥ k + mq. Then, there
exist at least q states θe in which all voters re,j , j ∈ [m],
vote for c0. Each receiver re,j , having observed γ0, votes for
c0 only if φ(θe, γ0) − 1

q−1

∑
θe′ :e′ 6=e φ(θe′ , γ0) ≥ 0. This

implies that φ(θe, γ0) −
∑
θe′
φ(θe′ , γ0) + φ(θe, γ0) ≥ 0

and φ(θe, γ0) ≥
∑
θe′∈Θ φ(θe′ , γ0)/q. Then, there are ex-

actly q states θe in which γ0 is played with probability∑
θe′∈Θ φ(θe′ , γ0)/q, while γ0 is never played in the re-

maining states. As a consequence, R∗ includes exactly mq
voters re,j , and at least k voters ri.

Each voter ri ∈ R∗, after observing γ0, choose can-
didate c0. Therefore,

∑
θe∈Θ µ(θe)φ(θe, γ0)(uri(θe, c0) −

uri(θe, c1)) ≥ 0. We obtain
∑
e∈Ai

φ(θe, γ0) −
n2
∑
e/∈Ai

φ(θe, γ0) ≥ 0. Then,∑
e∈Ai

φ(θe, γ0)− n2
∑
e∈E

φ(θe, γ0) + n2
∑
e∈Ai

φ(θe, γ0) ≥ 0.

Let ξ(Ai) =
∑
e∈Ai

φ(θe, γ0). We have ξ(Ai) ≥

n2

n2+1

∑
e∈E φ(θe, γ0) for each i ∈ [m] such that ri ∈ S∗.

Let E∗ be the set of elements e such that re,j ∈ S∗, for
all j ∈ [m]. In this case, since MSI is not satisfiable, there
exists a pair (rî, e) ∈ R × E∗ such that rî ∈ R∗ and e /∈
Aî (otherwise {Ai}i:ri∈R∗ would be a feasible solution with
intersection E∗). We observed that, in each θe with e ∈
E∗, γ0 is recommended with probability

∑
e∈E φ(θe, γ0)/q.

Then, ξ(Aî) =
∑
e∈Aî

φ(θe, γ0) ≤ q−1
q

∑
e∈E φ(θe, γ0).

This leads to a contradiction since
q − 1

q

∑
e∈E

φ(θe, γ0) ≥ n2

n2 + 1

∑
e∈E

φ(θe, γ0)

has no solutions (since q and n are positive integers and q ≤
n). This concludes our proof.

Theorem 7 improves the negative results provided
by Dughmi and Xu (2017) (Theorem 6.2), where they
show that optimal sender’s utility cannot be approximated
to within any constant multiplicative factor, unless P = NP.
Our result strengthen the negative result by Dughmi and Xu
(2017) by extending the inapproximability to any factor that
is function of the input size, thus even excluding approxima-
tion factors decreasing as the input size increases.

Moreover, Theorem 7 implies that the public signaling
problem is intractable even with more general sender’s util-
ity functions. It is immediate to see that the same nega-
tive result holds for anonymous utility functions (a k-voting
rule induces a sender’s anonymous utility function), and we
prove that the same hardness result holds also for plurality
voting (see the Supplementary Material).
Corollary 1. PL-V with public signaling, even with two
candidates, cannot be approximated in polynomial time to
within any factor, unless P=NP.

Discussion and Future Research
This paper studies how a malicious actor may influence the
outcome of a voting process by the strategic provision of in-
formation to voters that update their beliefs rationally. We
focus on the case with no inter-agent externalities, and al-
low for an arbitrary number of candindates and states of na-
ture, thus generalizing the model of Arieli and Babichenko
(2019). We draw a sharp contrast between the tractability
of the problem of computing an optimal persuasive signal-
ing scheme in the private and public case, respectively. In
the former setting, we show that under various voting rules
(i.e., k-voting rules and plurality voting) the problem can be
solved efficiently. In doing so, we provide a generalization
of the fundamental necessary and sufficient condition first
described by Dughmi and Xu (2017). In the public signal-
ing case, we propose a new inapproximability result which
strongly improves previously known results, showing that in
this setting the problem is unlikely to be tractable.

In the future, we are interested in identifying special
classes of instances in which optimal persuasive public sig-
naling schemes can be found efficiently and in using our re-
sults for the analysis of other voting rules. Moreover, we are
interested in the extremely challenging case in which multi-
ple competing senders face the problem of manipulating the
same election.
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Opinion diffusion and campaigning on society graphs. In IJCAI,
219–225.

Faliszewski, P.; Hemaspaandra, E.; and Hemaspaandra, L. A. 2011.
Multimode control attacks on elections. J ARTIF INTELL RES
40:305–351.

Grötschel, M.; Lovász, L.; and Schrijver, A. 1981. The ellip-
soid method and its consequences in combinatorial optimiza-
tion. Combinatorica 1(2):169–197.

Kamenica, E., and Gentzkow, M. 2011. Bayesian persuasion. AM
ECON REV 101(6):2590–2615.

Kamenica, E. 2018. Bayesian persuasion and information design.
ANNU REV ECON 11.

Khachiyan, L. G. 1980. Polynomial algorithms in linear program-
ming. USSR COMP MATH 20(1):53–72.

Liu, H.; Feng, H.; Zhu, D.; and Luan, J. 2009. Parameterized com-
putational complexity of control problems in voting systems.
THEOR COMPUT SCI 410(27-29):2746–2753.

Loreggia, A.; Narodytska, N.; Rossi, F.; Venable, K. B.; and Walsh,
T. 2015. Controlling elections by replacing candidates or votes.
In AAMAS, 1737–1738.

Orlin, J. B. 1997. A polynomial time primal network simplex algo-
rithm for minimum cost flows. MATH PROGRAM 78(2):109–
129.

Rayo, L., and Segal, I. 2010. Optimal information disclosure. J
POLIT ECON 118(5):949–987.

Rubinstein, A. 2015. Honest signaling in zero-sum games is hard,
and lying is even harder. arXiv preprint arXiv:1510.04991.

Schnakenberg, K. E. 2015. Expert advice to a voting body. J
ECON THEORY 160:102–113.

Sina, S.; Hazon, N.; Hassidim, A.; and Kraus, S. 2015. Adapting
the social network to affect elections. In AAMAS, 705–713.

Stanley, R. P. 2011. Enumerative Combinatorics: Volume 1. Cam-
bridge University Press, 2nd edition.

Taneva, I. A. 2015. Information design.

Wang, Y. 2013. Bayesian persuasion with multiple receivers. Avail-
able at SSRN 2625399.

Wilder, B., and Vorobeychik, Y. 2018. Controlling elections
through social influence. In AAMAS, 265–273.

Wilder, B., and Vorobeychik, Y. 2019. Defending elections against
malicious spread of misinformation. In AAAI, volume 33, 2213–
2220.

Xavier, E. C. 2012. A note on a maximum k-subset intersection
problem. Information Processing Letters 112(12):471–472.

Xu, H. 2019. On the tractability of public persuasion with no
externalities. CoRR abs/1906.07359.



Supplementary Material

Omitted Proofs
Theorem 4. Let F be any collection of set functions includ-
ing f0(·) = 0. Given any instance in P (F), there exists
a polynomial-time algorithm for computing an optimal per-
suasive private signaling scheme if and only if there is a
polynomial-time algorithm that computes

max
c∈×r∈RC

f(c) +
∑
r∈R

wr(c
r), (3)

for any f ∈ F , and any weights wr(cr) ∈ R, where cr is the
action chosen by r in c.

Proof. Given a set {fθ}θ∈Θ, the persuasion problem can be
formulated with the following LP:

max
x∈[0,1]|Θ×S|

∑
θ∈Θ,s∈S

x(θ, s)fθ(s) (5a)

∑
θ∈Θ,
s:sr=c

x(θ, s) (ur(θ, c)− ur(θ, c′)) ≥ 0 (5b)

∀r ∈ R,∀c, c′ ∈ C∑
s∈S

x(θ, s) = µ(θ) ∀θ ∈ Θ (5c)

Note that constraints 5b force the signaling scheme to be
persuasive. Therefore, in objective 5a, we can write fθ(s) in
place of fθ(c).

(=⇒). Let y ∈ R|R×C×C|− be the dual variables of primal
constraints 5b and d ∈ R|Θ| be the dual variables of con-
straints 5c. The dual of LP 5 has a polynomial number of
variables and an exponential number of constraints, one for
each pair (θ, s) ∈ Θ× S, of type:

O(θ, s) =

−∑
r∈R,
c∈C

yr(sr, c) (ur(θ, sr)− ur(θ, c))

+

− d(θ) + fθ(s) ≤ 0.

We show that, given a vector of dual variables z̄ = (ȳ, d̄),
the problem of either finding a hyperplane separating z̄
from the set of feasible solutions to the dual or prov-
ing that no such hyperplane exists can be solved in poly-
nomial time. The separation problem of finding an in-
equality of the dual which is maximally violated at z̄
reads: max(θ,s)∈Θ×S O(θ, s). A pair (θ, s) yielding a vi-
olated inequality exists if and only if the separation prob-
lem admits an optimal solution of value > 0. One such
pair (if any) can by found in polynomial time by enu-
merating over states in Θ. For each θ, the problem re-
duces to maxs

∑
r∈R vr(θ, sr) + fθ(s), where vr(θ, sr) =

−
∑
c∈C ȳr(sr, c) (ur(θ, sr)− ur(θ, c)). It is enough to

take wr(c) = vr(θ, c) to complete the if part of the proof.
(⇐=). Given a poly-time algorithm to determine an op-

timal signaling scheme for any instance of P (F), we want
to show that maxs∈S f(s) −

∑
r∈R wr(sr) can be solved

efficiently for any {wr(c)}r,c, and f ∈ F .
To reduce this problem to a signaling problem we em-

ploy a duality-based analysis introduced in Dughmi and Xu

(2017), and later improved by Xu (2019). Our generaliza-
tion to non-binary action spaces requires a more involved
proof, as we will highlight in the following. Moreover, our
proof completely diverges from Dughmi and Xu (2017)’s
and Xu (2019)’s in the final construction of the mapping to
a private signaling problem.

Given a set of weights {w̄r(c)}r,c, and f ∈ F , we are in-
terested in the maximization of f̄(s) = f(s)+

∑
r∈R w̄r(sr)

over S. First, we slightly modify weights by setting, for each
r ∈ R, w̄r(c) ← w̄r(c) − maxc′ w̄r(c

′), for each c ∈ C.
This modification preserves the set of optimal solutions of
the maximization problem. After that, for each receiver r,
it holds w̄r ≤ 0, and there exists ĉr ∈ C s.t. w̄r(ĉr) = 0.
Let, for each r ∈ R, Cr = C \ {ĉr} (ĉr can be selected
arbitrarily from the actions s.t. w̄r(c) = 0). We show that
maxs∈S f̄(s) can be reduced to solving the following LP, for
all possible linear coefficients α, {βr(c)}r∈R,c∈Cr

:
min

z∈R|R×Cr|
v∈R

∑
r∈R,c∈Cr

βr(c)zr(c) + αv (6a)

s.t.
∑
r∈R
sr 6=ĉr

zr(sr) + v ≥ f(s) ∀s ∈ S (6b)

zr(c) ≥ 0 ∀r ∈ R, c ∈ Cr. (6c)
To show this, we first argue that the maximization prob-
lem can be reduced to the separation problem for the fea-
sible region of LP 6. Take zr(c) = −w̄r(c) for all r and
c ∈ Cr. Constraints of family 6c are satisfied by construc-
tion. Then, a pair ({w̄r(c)}r,c, v) is feasible if and only
if v ≥ maxs f(s) +

∑
r,sr 6=ĉr w̄r(sr). As a result, the

optimal value v∗ (which is the exact optimal objective of
f̄(s)) can be determined via binary search in O(B) steps,
where B is the bit complexity of the f(s)’s and w’s. Then,
by setting v̄ = v∗ − 2−B , we obtain an infeasible pair
(w̄, v̄). If the separation oracle is given in input (w̄, v̄),
it returns a separating hyperplane corresponding to the op-
timal solution of the maximization problem. The equiva-
lence between optimization and separation implies that the
maximization problem reduces to solving LP 6 for any lin-
ear coefficients {βr(c)}r∈R,c∈Cr and α (Khachiyan, 1980;
Grötschel, Lovász, and Schrijver, 1981).

A crucial difference between LP 6 and Xu (2019)’s anal-
ogous LP is that we modify the initial weights w̄ to make
them ≤ 0 (simplifying the LP’s structure), and, for each r,
there is at least one w̄r(c) equal to 0. This reduces the num-
ber of variables in LP 6, as variables zr(ĉr) are not included.
This is fundamental for the last step of the proof.

The next step is showing that LP 6 can be solved directly
for some parameters’ values. Specifically:
• If α < 0 the solution is unbounded (i.e., the objective

function tends to −∞ as v →∞).
• If α = 0 and there exists (r̄, c̄) s.t. βr̄(c̄) < 0, then a

feasible solution is obtained by setting: zr̄(c̄) = v, and
zr(c) = 0 for all (r, c) 6= (r̄, c̄). Again, for v → ∞ the
objective tends to −∞.

• If α = 0 and βr(c) ≥ 0 for all (r, c), then the objective is
≥ 0 for any feasible solution. By selecting a sufficiently
large v we obtain a feasible and optimal solution with ob-



jective value 0.
Therefore, when α ≤ 0 the problem can be solved in poly-
nomial time.

We focus on the case in which α > 0. Since α > 0, we
can re-scale all coefficients of LP 6 by a factor 1/α without
affecting its optimal solutions, and obtain an equivalent LP
with α = 1. The dual of LP 6 with α = 1 is:

max
p∈R|S|+

∑
s∈S

p(s)f(s) (7a)

s.t.
∑

s:sr=c

p(s) ≤ βr(c) ∀r ∈ R, c ∈ Cr (7b)∑
s∈S

p(s) = 1 (7c)

Finally, we show that finding an optimal solution to LP 7 re-
duces to finding an optimal signaling scheme in an instance
of private persuasion with |Θ| = |C| states of nature, and
µ(θ) = 1

|C| for each θ. First, for each r we define an ar-
bitrary one-to-one correspondence between elements of Cr,
and elements of Θ \ {θ0}. Let cθ (θc) be the action (state)
associated with θ (c). Receiver r’s utility function reads:

ur(θ, c) =


1 if θ = θ0 and c = ĉr

0 if θ = θ0 and c 6= ĉr

βr(c) if θ 6= θ0 and c = cθ
0 if θ 6= θ0 and c 6= cθ

.

Let sender’s utility be such that fθ = f0, for each θ 6= θ0,
and fθ0 = f . We have that fθ(s) = 0 for each θ ∈ Θ \ {θ0}
and s ∈ S. Then, there exists an optimal signaling scheme
such that, in each state θ 6= θ0, φ(θ, sθ) = 1, where sθ is
a signal recommending cθ to each receiver (from an argu-
ment analogous to Lemma 2). Now, an optimal signaling
scheme can be computed by focusing on θ0 (i.e., we employ
the aforementioned signaling scheme for any θ 6= θ0) via
the following LP:

max
φ(θ0,·)∈

[0,1]|C×R|

∑
s∈S

φ(θ0, s)fθ0(s) (8a)

s.t.
∑
θ∈Θ

∑
s:sr=c

µ(θ)φ(θ, s)(ur(θ, c)− ur(θ, c′)) ≥ 0

∀r ∈ R,∀c, c′ ∈ C (8b)∑
s∈S

φ(θ0, s) = 1. (8c)

The incentive constraints 8b are trivially satisfied when c =
ĉr. Moreover, for each c 6= ĉr, the incentive constraints 8b
can be rewritten as follows: first, notice that it is enough to
consider c′ = ĉr. Then, for each r ∈ R and c ∈ Cr, we
obtain:∑

s:sr=c

φ(θ0, s)(ur(θ0, c)− ur(θ0, ĉ
r)) ≥

ur(θc, ĉ
r)− ur(θc, c),

which can be rewritten as
∑

s:sr=c φ(θ0, s) ≤ βr(c). The
equivalence between LP 7 and LP 8 easily follows.

Theorem 5. Private Bayesian persuasion with anonymous
sender’s utility functions is fixed-parameter tractable in the
number of receivers’ actions.

Proof. It is enough to provide an algorithm for the max-
imization problem in Theorem 4. We need to solve
maxs∈S f(s) +

∑
r∈R wr(sr). Since f is anonymous, for

any persuasive signal s, f ’s value is determined by the vector
p = (δ(s, c0), . . . , δ(s, c`)). Let P = {p = (k0, . . . , k`) ∈
N|C|0 |

∑`
i=0 ki = |R|}, and notice that |P | =

(|R|+|C|−1
|R|

)
,

which is polynomial in the input size once the |C| has been
fixed (see Stanley (2011)). In order to solve the maxi-
mization problem, we enumerate over all p ∈ P . Once
p has been fixed, we are left with the following prob-
lem: maxs∈S

∑
r∈R wr(sr), where s has to be such that

δ(s, ci) = ki for each i ∈ {0, . . . , `}. Specifically, the opti-
mal assignment of receivers to actions can be found with the
following LP:

max
χ∈R|R×C|

+

∑
(r,c)∈R×C

χr(c)wr(c)

s.t.
∑
r∈R

χr(ci) = ki ∀i ∈ {0, . . . , `}∑
c∈C

χr(c) = 1 ∀r ∈ R.

We look for an integer solution of the problem, which always
exists and can be found in polynomial time (see, e.g., (Or-
lin, 1997)). This is because the formulation is an instance of
the maximum cost flow problem, which is, in its turn, a vari-
ation of the minimum cost flow problem. Once an integer
solution has been found, an optimal solution of the original
maximization problem is the signal obtained by assigning to
each r the action c s.t. χr(c) = 1.

Corollary 1. PL-V with public signaling, even with two
candidates, cannot be approximated in polynomial time to
within any factor, unless P=NP.

Proof. PL-V with two candidates is equivalent to K-V with
k∗ = b |R|2 c+ 1. We show that K-V with arbitrary k reduces
to K-V with k = k∗. Theorem 7 concludes the proof.

We distinguish two cases: i) Suppose k > k∗. We add
2k − |R| − 1 voters that prefer c1 in any state. There are
|R∗| = 2k − 1 voters and candidate c0 has k = b |R

∗|
2 c + 1

votes only if k of the initial receivers vote for c0. ii) Suppose
k < k∗. We add |R| + 1 − 2k voters that prefer c0 in any
state. There are |R∗| = 2|R|+ 1− 2k voters and candidate
c0 has b |R

∗|
2 c+ 1 = |R| − k+ 1 votes only if k of the initial

receivers vote for c0.
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