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ABSTRACT
Random hardware faults are a major concern for critical systems,
especially when they are employed in high-radiation environments
such as aerospace applications. While specialised hardware already
exists for implementing fault tolerance, software solutions, named
Software-Implemented Hardware Fault Tolerance (SIHFT), offer
higher flexibility at a lower cost. This work describes a compiler-
based approach for inserting instruction-level fault detection mech-
anisms in both the application code and the operating system. An ex-
perimental evaluation on a STM32 board running FreeRTOS shows
the effectiveness of the proposed approach in detecting faults.

CCS CONCEPTS
• Software and its engineering → Compilers; Software fault
tolerance; •Computer systems organization→ Dependable and
fault-tolerant systems and networks.

KEYWORDS
SIHFT, Compilers, Fault Detection, Embedded Systems, Safety
ACM Reference Format:
Davide Baroffio and Federico Reghenzani. 2023. Compiler-Injected SIHFT
for Embedded Operating Systems. In 20th ACM International Conference
on Computing Frontiers (CF ’23), May 9–11, 2023, Bologna, Italy. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3587135.3589944

1 INTRODUCTION
Safety- and Mission-critical systems often require a certain degree
of resilience to random hardware faults. Such techniques are usually
implemented via specialised hardware, for instance, via redundancy
of identical processors or entire devices. While hardware imple-
mentations are effective from a reliability standpoint, they are very
expensive, not only in terms of design and production costs but
also power, energy, thermal, and other non-functional metrics [6].
Software-Implemented Hardware Fault Tolerance (SIHFT) has been
proposed to reduce these costs by moving the hardware fault tol-
erance to the software-level. In addition, to reduce the cost of the
implementation, SIHFT is an enabler for the use of Commercial Off-
The-Shelf (COTS) hardware components in critical systems, which
are usually not designed to be resilient to faults. The most common
hardware fault is the Single Event Upset (SEU), which is a transient
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error occurring randomly during the system execution and usually
consists of a bit flip in a memory component of the system. SEUs
are a major concern in critical systems, especially, but not only, in
aerospace applications. SIHFT solutions mitigate this problem by
detecting faults via program state checking and the determination
of whether a fault occurred or not. SIHFT techniques able to per-
form fault recovery also exists. For instance, an application-level
redundancy employs a hypervisor that runs multiple replicas of an
application and compare the output. With two replicas, the SIHFT
method is able to only detect faults, while with three instances it
is possible to use a voting mechanism to even correct the output.
Other fault recovery techniques include recovery blocks, task re-
execution, error-correcting codes (ECC), and others [3, 10]. While
application-level techniques are good to detect faults or recover
from them when the fault happens in the memory region of the ap-
plication, they cannot solve the problem of faults occurring during
the OS routines execution. This is a barrier, especially for Real-Time
Operating Systems (RTOS), that must guarantee both functional
correctness and timing correctness [9].

1.1 State of the Art
Instruction duplication is a common SIHFT technique already used
in safety-critical systems [12]. In literature, the seminal paper by
Oh et al. [8] describes the Error Detection by Duplicated Instructions
(EDDI) approach. EDDI is the first automatic compiler transforma-
tion that introduces instruction duplication and consistency checks
in the assembly code to implement fault detection. A full description
of the EDDI approach is provided later in Section 2.1. Instruction
duplication is, however, insufficient to protect against faults occur-
ring in registers that affect the execution flow (for instance, a SEU
in the Program Counter). Several approaches to solve this problem
have been developed [7, 13, 14] and usually consist of a run-time
verification on the Control-Flow Graph (CFG). They detect unex-
pected execution paths which deviate from the normal execution
flow. One of these approaches, CFCSS [7], is described later in Sec-
tion 2.2. Reis et al. [11] proposed SWIFT, a fault detection technique
that employs both data and execution flow protection with the
underlying assumption that the memory features ECC. NZDC [2]
improved SWIFT by adding more instructions redundancy and con-
sistency checks, and, at the same time, exploiting advanced features
of modern architectures to lower the overhead. Finally, Bohman et
al. [1] proposed COAST, a platform-independent automatic com-
piler instrumentation implementing SIHFT. In contrast to previous
works that focus more on high-performance devices, super-scalar
processors, or architectures providing specific features, the authors
focus more on embedded systems, where such micro-architectural
solutions might not be available. Although COAST also provides
execution flow protection, their work focuses mainly on instruction
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Original program Duplicated program
LDR r0, [r2] LDR r0, [r2]

LDR r10, [r12]
ADD r0, r1, #1 ADD r0, r1, 1

ADD r10, r11, 1
CMP r0, r10
BNE error_handler

STR r0, [r2] STR r0, [r2]
STR r10, [r12]

Figure 1: An example of EDDI transformation, expressed
using ARM assembly syntax.

duplication and triplication mechanisms. Our approach differs, and
improves, the COAST framework for the following main reasons:

• We provide protection also in the case of multi-level pointers,
as subsequently explained in Section 3.2;

• The protection across different compilation units is sup-
ported;

• The passes compile and run with the modern versions of
LLVM (15.0.0 at the time of writing).

1.2 Contributions
In this paper, we focus on the problem of detecting transient hard-
ware faults, particularly SEUs, by exploiting compiler-injected SI-
HFT techniques in both application and oeprating system (OS) code.
In particular, we focus on instruction-level fault detection, which
exploits two mechanisms: data protection and execution flow protec-
tion. The proposed fault detection scheme is general and agnostic
with respect to the specific mechanism used for fault recovery.

The novel contribution of this article is twofold:
(1) A set of passes implemented in the LLVM software stack to

automatically introduce fault detection techniques in both
tasks and OS, in a transparent way to the programmer. Given
the fact that SIHFT techniques are implemented as LLVM
passes, our approach is independent from both the source
language and the processor architecture.

(2) An experimental evaluation of the proposed SIHFT fault
detection techniques applied to a FreeRTOS system running
on a real board, with the goal to quantify the improvement
of the reliability metrics. Specific microbenchmarks have
been developed to test the resilience of the OS itself.

2 BACKGROUND ON SIHFT
This section provides further details on EDDI [8], a data protection
technique, and CFCSS [7], an execution flow protection technique.

2.1 Memory protection
The EDDI instruction-level parallelism is the traditional SIHFT ap-
proach for memory protection. This technique duplicates the pro-
gram assembly instructions and employs different memory areas
to store the original and duplicated content. The same operation is
performed for data contained in registers. EDDI then adds compari-
son instructions to perform consistency checks before the so-called
synchronisation points. The synchronisation points are composed

of all the branch and store instructions. Figure 1 illustrates the
assembly transformation. The LDR instruction loading the memory
pointed by the address contained in r2 is duplicated by loading
from the address (contained in r12) of the duplicated memory area.
The arithmetic operation ADD is duplicated as well, with each copy
working on a different set of registers. After that, because STR is
a synchronization point, EDDI adds a comparison between the
original (r0) and the copy (r10). If they do not match, the BNE
instruction jumps to a user-defined error_handler that will im-
plement the fault recovery mechanism. Finally the STR instructions
are duplicated as well, saving the values in two different portions
of memory.

The original EDDI mechanism does not consider function calls
by design and limits the discussion to simple branches. In our work,
as later described, we also considered call and return instructions
because they are suitable synchronisation points as well.

2.2 Control Flow Graph protection
For CFG verification, we adopted an approach based on the Control
Flow Checking via Software Signatures (CFCSS) [7] technique. CFCSS
defines a transformation at compile-time divided into two phases:
first, it assigns a unique signature 𝑠𝑖 to each basic block 𝐵𝑖 of the
program CFG. Then, CFCSS adds instructions for computing the
run-time signature, which is stored in a special register G initialised
at 0. This register is then compared at the beginning of each basic
block with the static signature computed earlier. More specifically,
let 𝑠𝑖 and 𝑠 𝑗 be the static signatures of, respectively, the basic blocks
𝐵𝑖 and 𝐵 𝑗 , such that 𝐵 𝑗 is a successor of 𝐵𝑖 . Then, the computation
of the run-time signature in register G is inserted at the beginning
of 𝐵 𝑗 as follows:

G = G ⊕ 𝑑 𝑗

with ⊕ defined as the bit-wise XOR operation and 𝑑 𝑗 = 𝑠𝑖 ⊕ 𝑠 𝑗 is a
value statically computed at compile-time. After the update, G and
𝑠 𝑗 are compared and, in case of a mismatch, a user-defined error
handling function is executed.

There are cases that are not supported by this approach as-is. For
instance, if a basic block 𝐵 𝑗 has multiple predecessors, the run-time
signature would have different values depending on the basic block
the program came from. In order to tackle this, the mechanism
defines the so-called Run-Time Adjusting Signature, which is a value
stored in a dedicated register D. An instruction for computing D
is inserted in each predecessor 𝐵𝑖 of 𝐵 𝑗 right after the instruction
updating G. We say that a basic block 𝐵𝑘 is the neighbour basic
block of a basic block 𝐵𝑖 if they have a successor basic block 𝐵 𝑗

in common. Let 𝑠𝑖 , 𝑠 𝑗 and 𝑠𝑘 be the signatures of the basic blocks
𝐵𝑖 , 𝐵 𝑗 and 𝐵𝑘 such that 𝐵𝑖 and 𝐵𝑘 are neighbours sharing 𝐵 𝑗 as
successor.

Thus, in the basic block 𝐵𝑘 , D is set to 0. Whereas in 𝐵𝑖 , we
compute D as follows:

D = 𝑠𝑖 ⊕ 𝑠𝑘

In the successor 𝐵 𝑗 , on the other hand, the instruction computing
the run-time signature G becomes:

G = G ⊕ D ⊕ 𝑑 𝑗

with 𝑑 𝑗 = 𝑠𝑘 ⊕ 𝑠 𝑗 . This case can be easily extended to the scenario
in which 𝐵 𝑗 has 𝑛 > 2 predecessors by using the same node 𝐵𝑘
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cmp , 
bne error_code

//  body

Block: 

cmp , 
bne error_code

//  body

cmp , 
bne error_code
//  body

cmp , 
bne error_code

//  body

cmp , 
bne error_code

//  body

Sig: 

Block: Sig: Block: Sig: Block: Sig: 

Block: Sig: 

Figure 2: Two examples of the CFCSS transformation: in the
left case, the block 𝐵 𝑗 has only one predecessor, while in the
right case, 𝐵 𝑗 has two predecessors making the addition of
the Run-Time Adjusting Signature necessary.

for computing the run-time adjusting signature D in every prede-
cessor 𝐵𝑖 of 𝐵 𝑗 . Figure 2 provides an example of two small CFGs
transformed employing CFCSS in the cases in which 𝐵 𝑗 has 1 and
2 predecessors.

3 AUTOMATED COMPILER-INJECTED SIHFT
To implement the compiler-based approach presented in this article,
we followed an approach similar to the COAST framework by
Bohman et al. [1]. The implementation as a set of LLVM passes
makes the approach independent from the source code and from
the architecture. Indeed, LLVM passes are compiler routines that
perform transformations on the Intermediate Representation (IR), a
code internally used by LLVM to represent the computer program
being compiled.

Our framework implements the following LLVM passes:
(1) Transformation of function return values to arguments

(FuncRetToRef)
(2) Duplication of instructions (DuplicateInstructions)
(3) Injection of CFG protection (CFGVerification)
(4) Replication of global variables (DuplicateGlobals)

The compilation flow is depicted in Figure 3: the LLVM front-end
compiles the source code of each compilation unit into IR code,
and the multiple IR files are then merged into a single IR file via
llvm-link. Our pass FuncRetToRef transforms the functions to
void routines and DuplicateInstructions adds instruction du-
plication. At this stage, the IR may contain several empty basic
blocks generating complex CFG structures. Therefore, the IR is
optimised by using the simplifycfg pass provided by LLVM. CFG
protection is then injected by the CFGVerification pass. When it
is not possible to run the passes on some source files (for instance,
drivers written in C but containing assembly instructions), their IR
is then merged at this stage by invoking llvm-link again. Finally,
the global variables are protected by the DuplicateGlobals pass,
and the object file can be generated by the LLVM back-end. The
next paragraphs detail the function of each pass.

3.1 Transformation of function return values to
arguments

The first pass applied to the IR is FuncRetToRef. This pass prepares
the IR by transforming functions that have a return value into

LLVM
Frontend

FuncRetToRef

simplifycfg

CFGVerification

External
sources

llvm-link

DuplicateGlobals

LLVM
Backend

object
file

source
file

LLVM
Frontend

LLVM
Frontend

...

llvm-link

IR IR IR

Duplicate-
Instructions

LLVM
Frontend

IR

source
file

source
file

Figure 3: High-level scheme of the compilation flow.

void functions for which the return value is passed by reference
as a function argument. This transformation is necessary for the
subsequent pass in order to perform the duplication on the return
value, which becomes a function argument. For example, let sum
be a function performing the arithmetic sum between two integers
and having the following prototype in LLVM IR:

define dso_local i32 @sum(i32 noundef %0,
i32 noundef %1)

The pass transforms the function to a corresponding routine with
void as the new return type and an additional pointer argument in
the prototype:

define dso_local void @sum(i32 noundef %0,
i32 noundef %1,
ptr noundef nonnull %ret_ptr)

The attribute nonnull is an attribute to state that the pointer is
always valid (similar to the C++ pass-by-reference): this attribute
allows better optimisations. Let us call orig_f the original function
and void_f the transformed function. After the function prototype
transformation, for each return instruction ret <ty> %ret_val,
the pass:

• adds a store instruction, in order to save the returned value
into the new pointer argument:
store <ty> %ret_val, ptr %ret_ptr

• replaces the original return with ret void.
The IR of the callers of the function must be modified as well.

The return value can be used by the caller in two ways that need
to be handled differently by our pass.

In the first case, a store operation of the function return value
immediately follows the call instruction. This implies that an
alloca instruction is already present at the beginning of the caller
function, i.e. the necessary memory has already been allocated
for saving the function output. Thus, the pass removes this store
instruction since a store is already performed in the callee (see pre-
vious paragraph). Finally, the original call instruction is replaced
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with a call void to the corresponding void_f function, using the
value of the alloca as the pointer to the new argument.

The second case occurs when the function return value is used
directly in a virtual register without storing it in the memory. Con-
sequently, there is no alloca for the return pointer in the caller,
which is needed to call the new void_f function. Hence, the pass
creates an alloca instruction at the beginning of the caller function
and replaces the call instruction with the call void, similarly
to the previous case. In addition, it creates a load instruction that
replaces all the previous uses of the original return value. For clar-
ity, we report this snippet composed of two IR instructions as an
example:

%ret_val = call i32 some_func()
%1 = add i32 %ret_val, 1

Following the transformation, it becomes:

%ret_val = alloca i32
...
call void some_func_ret(ptr %ret_val)
%1 = load i32 %ret_val
%2 = add i32 %1, 1

3.2 Injection of duplicated instructions
DuplicateInstructions is the main pass providing memory pro-
tection. It is the IR implementation of a modified version of the
EDDI mechanism. Several modifications to the original approach
are necessary due to the level of abstraction provided by the LLVM
IR. Indeed, EDDI considers only simple branches while we need to
take into account also function calls by duplicating both function
arguments and return values. Global variables also require a special
handling. In particular, our pass cannot protect complex types (such
as C structs) and pointers when used in the global scope, because
they may be unexpectedly updated by functions external to the
current compilation unit. Section 3.4 explains in detail this issue
and the taken countermeasures.

The first operation performed by the pass consists in duplicating
each non-constant global variable of the compilation unit. Then,
the pass duplicates the function arguments. Let us call void_f the
function output of the FuncRetToRef pass and dup_f the trans-
formed function output of DuplicateInstructions pass. Each
dup_f has a different prototype than the original because it has all
the parameters duplicated. The dup_f also contains the duplication
of the return value parameters added by the FuncRetToRef pass,
effectively providing return value duplication. The final part iter-
ates over all the instructions of the compilation unit performing a
transformation depending on the LLVM IR instruction class:

(1) AllocaInst. The instruction is just duplicated and inserted
after the original one. We will refer to this transformation
simply as duplication from now on.

(2) BinaryOperator, UnaryOperator, GetElementPtrInst,
LoadInst, CmpInst, PHINode, SelectInst. The instruction
is duplicated, then the pass verifies that all of its operands
have been duplicated in the context of previous instructions.
For each non-duplicated operand, the pass recursively tries,
if possible, to duplicate it with the same criteria explained
in this list.

define dso_local i32 @main() #0 {
  %1 = alloca i32, align 4
  %1_1 = alloca i32, align 4
  %2 = alloca i32, align 4
  %2_1 = alloca i32, align 4
  %3 = alloca i32, align 4
  %3_1 = alloca i32, align 4
  store i32 0, ptr %1, align 4
  store i32 0, ptr %1_1, align 4
  store i32 10, ptr %2, align 4
  store i32 10, ptr %2_1, align 4
  %4 = load i32, ptr %3, align 4
  %4_1 = load i32, ptr %4, align 4
  %5 = icmp eq i32 %4, %4_1
  br i1 %5, label %callBB, label %ErrBB

callBB:
  call void @fun(i32 %4, i32 %4_1,

ptr %3, ptr %3_1)
...

define dso_local i32 @main() #0 {
  %1 = alloca i32, align 4

  %2 = alloca i32, align 4

  %3 = alloca i32, align 4

  store i32 0, ptr %1, align 4

  store i32 10, ptr %2, align 4

  %4 = load i32, ptr %2, align 4

  %5 = call i32 @fun(i32 noundef %4)

...

Figure 4: Example of LLVM IR code before (left) and after
(right) applying the DuplicateInstructions pass.

(3) StoreInst, AtomicRWInst, AtomicCmpXchgInst. Both the
instruction and its operands are duplicated as described in
point (2). In addition, since these instructions perform a store
operation in memory, we consider them as suitable synchro-
nisation points and the pass adds consistency checks for each
pair of operands: the pass inserts a cmp instruction to com-
pare their values and adds and instructions to compute the
logical conjunction of all the cmp instructions. Subsequently,
the pass adds a conditional branch on the result, jumping to
a user-provided error handler routine if any of the operands
mismatches. In case one of the operands is of ptr type, a
special handling is required since the original pointer and
its copy point to different areas of memory by design, thus
comparing the addresses would always lead to a mismatch
and the incorrect execution of the error handling routine.
Our pass solves this problem by finding the original memory
location by following the chain of store instructions and
pointers. If it is not possible to find the original memory loca-
tion, our pass does not compare the operands, reducing the
detection capability but preventing false positive detections.

(4) BranchInst, SwitchInst, ReturnInst, IndirectBrInst. The
approach is similar to the one used for the point (3) with the
exception that the instruction is not duplicated because it
alters the control flow. The protection will be provided by
the next pass CFGVerification.

(5) CallBase. The modifications are the same as the ones de-
scribed in the previous point (4), but this time considering
the function arguments as the instruction operands. In addi-
tion to that, we check whether a dup_f version of the called
function exists and, in the positive case, the pass substitutes
the function call with the dup_f using the interleaved dupli-
cated arguments as parameters. Otherwise, due to the fact
that the caller is duplicated and the callee is not, the pointers
passed as arguments might have been modified by the callee
without modifying the duplicate in the caller. To cope with
this inconsistency, the pass adds instructions to re-align the
duplicated value after the CallBase instruction.

3.3 Injection of CFG protection
The CFGVerification pass implements a modified version of the
CFCSS algorithm described in Section 2.2. The original algorithm
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requires 𝐺 and 𝐷 to be stored in unique registers, however, two
problems arose during the development of the LLVM pass:

• Since the IR is platform-independent, no information on the
actual registers available in the target architecture is avail-
able, and enforcing the allocation of 𝐺 and 𝐷 into dedicated
registers would be against the IR philosophy.

• The original algorithm considers only basic blocks and not
functions. Instead, each function requires dedicated𝐺 and 𝐷
memory locations, that could not, consequently, be stored in
registers. The reason is that computing𝐺 and 𝐷 requires the
knowledge of a basic block’s predecessors and successors:
this requirement is not met when the functions called are
not predictable at compilation time (e.g. callback functions
invoked via relative jumps). In particular, this causes both a
problem for the callee because it will likely find an invalid
run-time signature into G, and for the caller, because the
values of the registers G and D are overwritten by the callee.

In order to deal with these issues, two virtual registers containing
the local 𝐺 and 𝐷 values are created for each function, instead of
having single instances in the global scope. Each function manages
its own𝐺 and𝐷 values separately and in local scope of the function.
The virtual registers are then transformed in real hardware registers
or moved to memory by the register allocator of the LLVM backend.
Other than this difference, the our algorithm is equivalent to CFCSS.

3.4 Replication of global variables
In some cases, not all the functions can be compiled with our passes.
Typical examples are driver functions containing inline assembly.
In this case, clearly, no IR representation is available and the passes
cannot work and it can happen that some global variables are
updated inside those functions excluded from the transformation.

The DuplicateGlobals pass has the objective of solving this
issue. The pass consists of a duplication of the store instructions
that have as destination the global variables duplicated during
DuplicateInstructions. For instance, if some_global is a global
int variable and has some_global_dup as its duplicate, the single
instruction store i32 10, ptr @some_global belonging to one
of the excluded functions is transformed to:

store i32 10, ptr @some_global
store i32 10, ptr @some_global_dup

The DuplicateGlobals is necessary to enable the compatibility
between functions instrumented by the pass and functions that
cannot be instrumented by the pass.

3.5 Limitations
Our framework has some limitations regarding the coverage of all
the possible input code features. In particular: (1) global variables
of complex types are not duplicated (but correctly managed); (2)
two subsets of LLVM IR instructions – i.e. exception handling in-
structions and vector instructions – are not currently supported1;
(3) The local storage of G and D prevents the detection of illegal
branches that jumps at the very beginning of the first basic block

1In any case, this limitation is irrelevant in the experiments of Section 4 because they
are not supported by the architecture/OS used.

of a function. We plan to solve all of these limitations and improve
the detection capabilities in a future version of the framework.

4 EVALUATION OF A REAL SYSTEM BASED
ON FREERTOS

We tested our set of LLVM passes on a real board running the
FreeRTOS. The objective of this experimental campaign is to test
the ability of the pass to detect faults, especially in the OS routines
that are usually the most challenging to protect. A similar previous
work, which also analysed FreeRTOS, exists in literature [5]. How-
ever, the authors run experiments emulating the processor and by
considering faults occurring only in registers and cache, exclud-
ing the main memory. In our experimental evaluation, instead, we
injected faults on the real hardware and tested the memory loca-
tions, stressing the FreeRTOS functions via specifically developed
microbenchmarks. The code is open-source and publicly available2.

4.1 Hardware Setup and Methodology
We compiled FreeRTOS with the LLVM and its passes described
in Section 3 for a NUCLEO-L152RE board equipped with a micro-
controller STM32L152RET6. While applying SIHFT techniques to
application tasks is quite straightforward, we decided to investigate
the application of our framework to the OS. For this reason, the
workload used in this experimental evaluation is composed of a set
of microbenchmarks to test the functionalities of FreeRTOS. They
are described in the next Section 4.2. Then, in order to simulate
SEUs in our system, we exploited the debugging interface available
in the NUCLEO board via the ST-link GDB server. A set of scripts
orchestrates the whole testing process in a transparent way with
respect to the code running on the target. A host PC controls the ex-
periments by providing commands to the GDB server that halts the
execution of the target code, injects the fault at a random memory
location, and resumes the execution, by verifying the effect of the
injected fault. In particular, the possible results are: Fault Detected
(memory protection), Fault Detected (CFG protection), Fault Detected
(hardware)3, Silent Data Corruption4, Loop5, and No Effect6.

The experiments have been performed on the original version of
FreeRTOS, in order to establish a baseline, and then on the version
compiled with our framework. In both cases, faults were injected
in two different scenarios: faults occurring in registers and faults
occurring in memory locations. We injected approximately 12 000
faults in a 10-hours campaign for each scenario.

4.2 Microbenchmarks
We developed a set of microbenchmarks to test the main compo-
nents of FreeRTOS: tasks, queues, stream buffers, and timers. Be-
cause the microbenchmarks are implemented as tasks in the system,
the schedule generated by the scheduler has been also implicitly
tested. The 8 tasks are implemented as traditional real-time peri-
odic tasks and scheduled with the default round-robin policy. To

2https://doi.org/10.5281/zenodo.7788290
3Some faults are detected by the hardware due to, for instance, the access to illegal
memory addresses or the execution of incorrect instructions.
4The software produced an incorrect result, but no fault was detected.
5The target is stuck in an infinite loop.
6The fault produced no effect because, for instance, occurred in an unused memory
region.

https://doi.org/10.5281/zenodo.7788290
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Table 1: Results of the fault injection experiments without and with our framework. Percentages are expressed as the ratio
with respect to the total number of errors in the experiment.

Registers Memory
w/o SIHFT % w/ SIHFT % w/o SIHFT % w/ SIHFT %

Total injections: 11988 13026 11933 12915
No Effect: 10775 11090 11553 12629

Errors: 1213 100 1936 100 380 100 286 100
Loop: 290 23.9 141 7.2 39 10.3 21 7.3

Silent Data Corruption: 117 9.6 9 0.5 46 12.1 10 3.5
Fault Detected (hardware): 806 66.5 525 27.1 295 77.6 166 58.1

Fault Detected (data): - 595 30.7 - 51 17.8
Fault Detected (execution flow): - 666 34.5 - 38 13.3

increase the probability of observing faults, the system utilisation
ratio was near 1. The microbenchmark suite is composed of:

• vTaskTaskTest: it tests the task-related functions, such as
task creation, deletion, suspension, resume, priority assign-
ment.

• vTaskQueueTest𝑋 : they are four tasks (1 ≤ 𝑋 ≤ 4) testing
different scenarios of queue insertion, reading, resetting,
synchronisation, creation, and deletion.

• vTaskBufferTestSend and vTaskBufferTestReceive:
they test message buffers in a producer–consumer fashion.

• vTaskTimerTest: it tests the timer-related function: cre-
ation, reading, modification, and reloading.

Themajority of the FreeRTOS functions have been compiledwith
our framework, with some exceptions. Static queues creation, sleep
functions, the timer handling function xTimerGenericCommand,
and the context switch routine are currently not possible to be
protected by our passes due to the presence of highly architecture-
dependent features. For instance, the context switch routine is
directly implemented in assembly, bypassing the LLVM IR.

4.3 Results
Table 1 provides an overview of the experimental results. The
amount of total injections is the sum of the number of injected
faults that had no effect on the execution and the number of faults
that caused errors, both detected and undetected. Each column of
the table represents a separate test, detailing the injection outcome
for each combination of target (Memory/Registers) and SIHFT pro-
tection (enabled/disabled). The different amount of total injections
for each test is due to the complex injection setup needed to interact
with the debugging interface. As expected, the number of faults that
produce an error – i.e. a deviation from a correct result or execution
– are approximately 10% for registers and 3% for memory.

Thanks to our framework, the amount of Loop errors – i.e. when
the system is unresponsive because stuck in infinite loops – in
registers is reduced from 23.0% to 7.2% (ratio of the total errors).
Loop errors in the memory dropped from 10.3% to 7.3%. Even if not
applied in this experimental evaluation, the Loop errors can be also
detected by watchdog timers. Silent Data Corruption errors, which
are the most critical because undetectable, have been almost zeroed
in the registers case (from 9.6% to 0.5%) and reduced from 12.1% to
3.5% in the memory. The number of faults detected by the hardware

dropped from 66.5% to 27.1% in the register case, and from 77.6% to
58.1% in the memory case. This reduction improves the real-time
capabilities of the system since in most cases recovery from hard
faults requires a system reboot, while for SIHFT-detected faults it
usually suffices to run a predefined recovery routine.

In conclusion, our compiler-injected SIHFT is able to detect
65.2% of the errors in the registers (for a total detection of 92.1%
including hardware detection, and 99.5% if we include watchdogs)
and 31.1% of the errors in the memory (for a total detection of 89.2%
including hardware detection, and 96.5% including watchdogs).
Overall, compared to the total number of injected faults, we can
state that our system compiled with our pass is able to tolerate
99.3% of the SEUs – which increases to 99.92% if we consider the
expiration of the watchdog as valid detection.

4.4 Preliminary overhead characterisation
In order to evaluate the introduced overhead, we run DES and
Matrix Multiply benchmarks from the Mälardalen suite [4]. Our
SIHFT mechanism increases the average execution time by about
4.12x for DES and 4.38x for Matrix Multiply with respect to the
original code with no protections. These overheads are in line
with the aforementioned previous works. We also computed the
overhead in terms of binary size, resulting in 2.95x increase in the
program code section of the FreeRTOS binary.

5 CONCLUSIONS
In this article, we described a set of LLVM passes that automati-
cally introduces SIHFT techniques for fault detection in the code,
independently from the source code or the underlying architecture.
We then showed how the passes are effective by running them on
FreeRTOS and a real board through a set of specifically developed
micro-benchmarks, obtaining an overall fault tolerance to SEU over
99%. The number of Silent Data Corruption errors is < 1% for the
registers and < 4% for the memory.
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