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A B S T R A C T

In this work, we consider space–time point processes and study their continuous space–time
evolution. We propose an innovative nonparametric methodology to estimate the unknown
space–time density of the point pattern, or, equivalently, to estimate the intensity of an
inhomogeneous space–time Poisson point process. The presented approach combines maximum
likelihood estimation with roughness penalties, based on differential operators, defined over
the spatial and temporal domains of interest. We first establish some important theoretical
properties of the considered estimator, including its consistency. We then develop an efficient
and flexible estimation procedure that leverages advanced numerical and computation tech-
niques. Thanks to a discretization based on finite elements in space and B-splines in time,
the proposed method can effectively capture complex multi-modal and strongly anisotropic
spatio-temporal point patterns; moreover, these point patterns may be observed over planar
or curved domains with non-trivial geometries, due to geographic constraints, such as coastal
regions with complicated shorelines, or curved regions with complex orography. In addition to
providing estimates, the method’s functionalities also include the introduction of appropriate
uncertainty quantification tools. We thoroughly validate the proposed method, by means of
simulation studies and applications to real-world data. The obtained results highlight significant
advantages over state-of-the-art competing approaches.

1. Introduction

Geo-referenced event data, recorded continuously over time, are attracting increasing interest in many scientific fields, including
epidemiology, seismology, social sciences, and many others. Examples of typical real applications include disease surveillance,
occurrence analysis of extreme natural events, crime hot-spot detection, and roadway traffic crash mapping. Spatio-temporal event
data are also frequently encountered in environmental sciences, for various purposes, including studying the presence of rare plant
species, tracking the migration phenomena of endangered animals, and monitoring the occurrence of respiratory diseases due to
pollution or global warming. In engineering and additive manufacturing, spatio-temporal event data are, for instance, observed in
multi-target tracking problems and in the real-time monitoring of defects in selective laser melting processes for 3D printing.
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Fig. 1. Locations of gastrointestinal infections in Hampshire county, UK, in some months of 2001 and 2002. Although we here plot events on a monthly
basis, the data are observed continuously over time (and space). The phenomenon is expressed differently across the irregular spatial domain, resulting for
instance in different behaviors along the western and eastern shores of Southampton Water estuary. The background map was obtained using the RgoogleMaps
package (Loecher, 2023).

Fig. 1 displays a benchmark application in epidemiology, concerning the evolution of non-specific gastrointestinal infections
over time. Points correspond to the locations of cases reported to the National Health Service (NHS) Direct in Hampshire county,
UK, in the period 2001–2003. Data are publicly available and collected during a collaborative surveillance project in the South of
England; see Diggle et al. (2009) and Kaimi and Diggle (2011). The irregular shape of the spatial domain influences the disease
spread, resulting for instance in different behaviors along the western and eastern shores of Southampton Water estuary. Fig. 2
illustrates instead an application in seismology. We here consider the locations of earthquakes, with magnitude greater than 4.75,
that took place worldwide during 2020–2022. The dataset is sourced from the earthquake catalog of the United States Geological
Survey (USGS). Since earthquakes result from the sudden release of energy, caused by the rupture of geological faults in the Earth’s
crust, points are mainly distributed along these elongated lines. In these varied frameworks, one crucial research interest lies in
determining the underlying spatio-temporal evolution of the phenomenon. This can be rephrased in terms of estimating the unknown
spatio-temporal probability density, or equivalently estimating the intensity of an inhomogeneous space–time point process, that
generates the data.

Spatial point pattern analysis has been the object of an extensive and detailed literature, with a wealth of different models
proposed for the study of point distribution over space. The reader may refer, for example, to Fishman and Snyder (1976), Daley and
Vere-Jones (2003, 2008), Streit and Streit (2010), Baddeley et al. (2015), Møller and Waagepetersen (2007, 2017), and references
therein. Much interest has been devoted to the investigation of methods for spatio-temporal point patterns (see, e.g., Diggle,
2013; González et al., 2016). Spatio-Temporal Kernel Density Estimation (STKDE) has been proposed by Zhang et al. (2011) and
implemented in the R packages stam (Zhang, 2010) and sparr (Davies and Marshall, 2023). STKDE is utilized in various contexts,
such as crime hot-spot prediction (Hu et al., 2018), epidemiology (Elson et al., 2020, 2021), and wildlife roadkill hot-spot detection
for mitigation measures (Medinas et al., 2021). Intensity estimation in spatio-temporal Log Gaussian-Cox Processes (LGCP) has been
described in Diggle et al. (2013), Shirota and Gelfand (2017), and implemented in the lgcp R package (Taylor et al., 2023). A very
rich literature concerns spatio-temporal Bayesian hierarchical models based on Integrated Nested Laplace Approximations (INLA,
Rue et al., 2009) and stochastic Partial Differential Equations (sPDE, Lindgren et al., 2011), reviewed in Blangiardo and Cameletti
(2015), Krainski et al. (2018), Gómez-Rubio (2020), and implemented in the packages R-INLA (https://www.r-inla.org/) and
inlabru (Lindgren and Bachl, 2023; Bachl et al., 2019). To mention just some of them, the reader may refer to Yuan et al.
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Fig. 2. Locations of earthquakes with a magnitude greater than 4.75 that occurred worldwide in two different months of 2021. Although we here plot events
on a monthly basis, the data are observed continuously over time (and space). The pattern is highly localized and skewed along the faults in the Earth’s crust,
where earthquakes originate by the action of plate tectonic forces.

(2017), Python et al. (2019), Serra et al. (2014), Rodríguez de Rivera et al. (2018), Ugarte et al. (2014) and Valente and Laurini
(2020).

Many methods have been proposed to address other research questions, concerning space–time point processes. Studies on spatio-
temporal LGCPs have focused on advanced inference and the estimation of second-order parameters, using various approaches,
including the joint minimum contrast fitting method and likelihood-oriented techniques (see, e.g., D’Angelo et al., 2023; Rodrigues
and Diggle, 2012; Bayisa et al., 2020; Waagepetersen et al., 2016). Alternative research endeavors introduce novel classes of
models for spatio-temporal point processes. Li and Guan (2014) proposed generalized linear mixed models for latent spatio-
temporal point processes, incorporating functional principal component analysis and an empirical Bayes approach. Chen et al. (2021)
combines continuous-time neural ordinary differential equations, to jointly capture spatial and temporal dependencies along with
their propagation effects. Other works develop estimators of the spatio-temporal inhomogeneous 𝐾–function, and pair correlation
function, to describe second-order characteristics of point processes (see, e.g., Gabriel, 2014; Hering et al., 2009).

Due to the inherent complexity of space–time settings, some of these state-of-the-art methodologies may come with some
limitations, either for theoretical or computational reasons. Some methods, for instance, are defined to handle event data
continuously over space and time, but their implementation requires discrete time instances. Most techniques, though theoretically
defined for generic multivariate spatial domains, have implementations that work on regular planar spatial domains or spherical
domains. Notable exceptions in this regards are for instance offered by methods implemented in R-INLA, and by the STKDE
implementation in sparr (Davies and Marshall, 2023), that can handle space–time data recorded across irregularly shaped planar
regions (Bertin et al., 2023). Other techniques make assumptions that allow for the simplification of the complexity characterizing the
spatio-temporal phenomenon under study. One of these is the first-order separability hypothesis for spatio-temporal point processes,
which requires that the density or intensity estimate can be factorized in spatial and temporal components. This is quite a strong
assumption in the considered framework, that should be adequately investigated on a case-by-case basis, depending on the specific
data at hand, by means of statistical tests, such as those proposed by Ghorbani et al. (2021).

In this work, we present an innovative methodology for Spatio-Temporal Density (and intensity) Estimation, with Partial
Differential Equation Regularization, referred to as STDE-PDE. We provide an effective tool for estimating the unknown probability
density on the spatio-temporal domain of interest, starting from an independent and identically distributed sample. This estimation
problem is equivalent to intensity estimation of an inhomogeneous space–time Poisson point process. STDE-PDE combines a
nonparametric maximum likelihood approach, with a regularization based on differential operators, in space and time, with the
aim of balancing adherence to data and smoothness of the estimate. The method handles event data continuously over space and
time, and does not make any assumption about the shape of the underlying density or intensity, nor about the separability in
space and time. The estimation procedure relies on advanced optimization procedures and numerical analysis techniques, based
on finite elements in space and B-splines in time. These choices ensure efficiency and flexibility, making the proposed STDE-PDE
capable of capturing complex multi-modal and strongly anisotropic spatio-temporal point patterns, such as those characterizing
the seismology application in Fig. 2. Moreover, these point patterns may be observed over planar or curved domains endowed by
3
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non-trivial geometries, due to geographic constraints; this includes coastal regions with complicated shorelines, as in the case of the
epidemiology data in Fig. 1, or curved spatial regions with complex orography.

For the underlying mathematical structure, STDE-PDE falls within the research field of nonparametric density estimation methods
ith roughness penalties. This field has so far been explored in space-only settings, by Silverman (1982), Gu and Qiu (1993), Gu

1993), Gu and Wang (2003) and Gu et al. (2013) for regular spatial domains, by Ferraccioli et al. (2021) for irregular planar
omains, and by Arnone et al. (2022) for Riemannian manifold domains. In particular, we here extend the works of Ferraccioli et al.
2021) and Arnone et al. (2022), by incorporating the time dimension. This extension involves the utilization of roughness penalties
n both space and time, similar to those commonly employed in semiparametric regression settings (Augustin et al., 2013; Marra
t al., 2012; Bernardi et al., 2017; Arnone et al., 2023c). In contrast to Ferraccioli et al. (2021) and Arnone et al. (2022), who did not
evise uncertainty quantification tools, we explicitly focus on addressing this aspect. In particular, following a Bayesian analogy, we
evelop approximate confidence bands for the spatio-temporal density or intensity estimate, based on the proposed estimator. With
ecessary simplifications, the proposed inference approach can also be applied in the space-only settings considered by Ferraccioli
t al. (2021) and Arnone et al. (2022). Finally, STDE-PDE is a new addition to the class of statistical methods with PDE regularization
riginally inspired by Ramsay (2000, 2002), Sangalli et al. (2013), and reviewed in Sangalli (2021). The implementation of the
roposed model further extends the functionalities of the R/C++ fdaPDE library (Arnone et al., 2023a), providing ready-to-use

tools to deal with space–time point processes.
The remainder of the paper is organized as follows. Section 2 introduces the proposed statistical model. Section 3 delves into

the theoretical properties, including the well-posedness of the estimation problem, and the consistency of the associated estimator.
Section 4 addresses some necessary numerical aspects, focusing on the discretization procedure and briefly commenting on some
optimization aspects. Section 5 introduces pointwise confidence intervals for the space–time density estimate, based on a Bayesian
approach. Section 6 presents two simulation studies, comparing STDE-PDE with other state-of-the-art methodologies. Section 7
showcases the use of STDE-PDE in the two applications to real-world data, from epidemiology and seismology, illustrated in Figs. 1
and 2. Finally, Section 8 draws concluding remarks and outlines potential directions for future research.

2. Space–time density and intensity estimation

Let  ⊂ R𝑑 , where 𝑑 = 2, 3, and [0, 𝑇 ] ⊂ R+, be the spatial and temporal domains of interest. Depending on the specific
pplication,  can be a compact (but possibly non-convex) subset of R2, or a two-dimensional Riemannian manifold, embedded
n R3; see, e.g., Jost (2008). Other possible forms of  will be discussed in the concluding section. Define the spatio-temporal
omain 𝑇 ∶=  × [0, 𝑇 ]. Let the pairs

{

(𝐩𝑖, 𝑡𝑖)
}𝑛
𝑖=1 ∈ 𝑇 be 𝑛 independent and identically distributed observations, drawn from

n unknown distribution with density function 𝑓 ∶ 𝑇 → R+, to be estimated. In order to estimate 𝑓 , we adopt a nonparametric
ikelihood approach, which does not assume the form of 𝑓 to be known a priori, and makes use of roughness penalties to ensure
egularity of the estimate. This approach extends to space–time settings the framework considered for density estimation over spatial
omains in Silverman (1982), Goodd and Gaskins (1971), Tapia and Thompson (1978), Gu and Qiu (1993), Ferraccioli et al. (2021)
nd Arnone et al. (2022). We parameterize the estimation problem in terms of the log-density 𝑔 = log 𝑓 , to naturally satisfy the
on-negativity constraint on 𝑓 . Specifically, we propose to estimate 𝑓 by finding the log-density function 𝑔 = log 𝑓 that minimizes

the following penalized negative log-likelihood:

𝐿(𝑔) ∶= −1
𝑛

𝑛
∑

𝑖=1
𝑔(𝐩𝑖, 𝑡𝑖) + ∫𝑇

𝑒𝑔(𝐩,𝑡) 𝑑𝐩 𝑑𝑡 + 𝑅(𝑔;𝝀), (1)

where 𝑅(𝑔;𝝀) is an appropriate roughness penalty, which depends on the smoothing parameters 𝝀, as detailed below. Note that
the first term in (1) is the negative log-likelihood. The second term instead guarantees that 𝑓 has unitary integral over 𝑇 , thus
ensuring that 𝑓 is a density with respect to the Lebesgue measure over 𝑇 ; see the detailed explanation in Appendix A. Finally,
the regularization term 𝑅(𝑔;𝝀) in (1) prevents degenerate solutions, such as the sums of Dirac delta functions centered at the
observations, which would lead to unbounded likelihoods. We here consider a flexible regularization 𝑅(𝑔;𝝀), comprising two terms
that enable the control of the regularity of the estimate in both space and time,

𝑅(𝑔;𝝀) ∶= 𝜆 ∫𝑇

(

𝛥𝑔(𝐩, 𝑡)
)2 𝑑𝐩 𝑑𝑡 + 𝜆𝑇 ∫𝑇

(

𝜕2𝑔(𝐩, 𝑡)
𝜕𝑡2

)2
𝑑𝐩 𝑑𝑡, (2)

where 𝛥 is the Laplace or Laplace–Beltrami operator, and 𝝀 =
[

𝜆, 𝜆𝑇
]⊤ are smoothing parameters, with 𝜆, 𝜆𝑇 > 0. The Laplace

and Laplace–Beltrami operators, respectively for planar and curved spatial domains , measure the local curvature of 𝑔 over ;
similarly, the second derivative in time measures the local curvature of 𝑔 over the temporal domain [0, 𝑇 ]. The presence of the
two smoothing parameters, 𝜆 and 𝜆𝑇 , provides a means to control the regularity in space and time. These smoothing parameters
balance the trade-off between the log-likelihood, responsible for the model’s adaptation to the data, and the regularization term,
which seeks reduced variation in 𝑔. The penalty in (2) is also common in regression contexts (see, e.g., Marra et al., 2012; Augustin
et al., 2013), and permits the derivation of the large sample properties of the estimators, through suitable generalization of the
arguments used in more classical spline settings by Silverman (1982).

Remark 1. The above model for density estimation can equivalently be reformulated in terms of intensity estimation of an
4
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3. Theoretical properties

In this section, we address the main theoretical properties related the proposed method. In Section 3.1, we define the appropriate
unctional embedding for the considered estimation problem, and we address its well-posedness. In Section 3.2, we focus on the
onsistency of the estimator.

.1. Functional embedding and well-posedness of the estimation problem

Let 𝐿2() denote the space of square integrable functions over the spatial domain , and consider the Sobolev space 𝐻𝑘() ∶=
{𝑢 ∈ 𝐿2() ∶ 𝐷𝛼𝑢 ∈ 𝐿2() ∀|𝛼| ≤ 𝑘}, equipped with the standard norm ‖𝑢‖2

𝐻𝑘()
∶=

∑

|𝛼|≤𝑘 ‖𝐷
𝛼𝑢‖2

𝐿2()
, with 𝐷𝛼 denoting the weak

erivative of order 𝛼 (see, e.g., Brezis, 2011). Then, consider the time-dependent Sobolev space defined as follows:

𝐿2(0, 𝑇 ;𝐻𝑘()) ∶=

{

𝑢(𝑡,𝒑) ∶ 𝑢(𝑡, ⋅) ∈ 𝐻𝑘() for almost every 𝑡 ∈ [0, 𝑇 ]

and ∫
|𝑢(𝑡,𝒑)|2 𝑑𝒑 < ∞, ∫

𝑇

0
‖𝑢(𝑡,𝒑)‖2

𝐻𝑘() 𝑑𝑡 <∞

}

.

hen endowed with the norm ‖𝑢‖2
𝐿2(0,𝑇 ;𝐻𝑘())

∶= ∫ 𝑇0 ‖𝑢(𝑡,𝒑)‖2
𝐻𝑘()

𝑑𝑡, the space 𝐿2(0, 𝑇 ;𝐻𝑘()) is a Banach space (see, e.g., Adams
nd Fournier, 2003, p. 89). Now, take the space

𝑉 2,𝑘(0, 𝑇 ;) ∶=
{

𝑢 ∈ 𝐿2(0, 𝑇 ;𝐻𝑘()) ∶ 𝑢𝑡, 𝑢𝑡𝑡 ∈ 𝐿2(0, 𝑇 ;𝐿2())
}

, (3)

where 𝑢𝑡 and 𝑢𝑡𝑡 denote the first- and second-order derivatives of 𝑢 with respect to time. Finally, define 𝑉 as the space of functions
in 𝑉 2,𝑘(0, 𝑇 ;) with 𝑘 = 2, subject to homogeneous Neumann conditions at the boundary of the spatial domain and a null velocity
condition at 𝑡 = 0 and at 𝑡 = 𝑇 , that is:

𝑉 ∶=
{

𝑢 ∈ 𝑉 2,2(0, 𝑇 ;) ∶
(

∇ 𝑢
)

(𝑡) ⋅ 𝒏 = 0 for 𝑡 ∈ [0, 𝑇 ] and 𝑢𝑡(0,𝒑) = 𝑢𝑡(𝑇 ,𝒑) = 0 for 𝐩 ∈ 
}

, (4)

where 𝒏 denotes the outward orthonormal vector to the boundary 𝜕 of the spatial domain . In this space, we consider the
associated norm:

‖𝑢‖2𝑉 ∶= ‖𝑢‖2
𝐿2(0,𝑇 ;𝐻2())

+ ‖𝑢𝑡‖
2
𝐿2(0,𝑇 ;𝐿2())

+ ‖𝑢𝑡𝑡‖
2
𝐿2(0,𝑇 ;𝐿2())

. (5)

The presented framework holds also for bounded and closed two-dimensional Riemannian manifolds . In particular, closed
Riemannian manifolds are compact manifolds without boundaries, such as for instance the surface of a sphere. More specifically,
when  is a closed manifold, then the functional space in (4) reduces to 𝑉 =

{

𝑢 ∈ 𝑉 2,2(0, 𝑇 ;) ∶ 𝑢𝑡(0,𝒑) = 0 for 𝐩 ∈ 
}

, where
spatial boundary conditions are not needed.

The following theorem states that the density estimator introduced in Section 2 is well-posed in 𝑉 .

Theorem 1. The penalized log-likelihood 𝐿(𝑔) defined in (1) has a unique minimizer �̂� in 𝑉 .

Proof. The proof is deferred to Appendix C. □

3.2. Asymptotic properties of the estimator

We now investigate the infill asymptotic properties of the proposed estimator, as the number of observations 𝑛 tends to infinity.
Let 𝑔0 = log𝑓0 be the true log-density. Denote by 𝐷𝐾𝐿(𝑔1, 𝑔2) the Kullback–Leibler divergence between two log-densities 𝑔1 = log𝑓1
and 𝑔2 = log𝑓2 (see, e.g., Csiszár, 1975). Moreover, define the symmetrized Kullback–Leibler distance as

𝐷𝑠𝐾𝐿(𝑔1, 𝑔2) ∶= 𝐷𝐾𝐿(𝑔1, 𝑔2) +𝐷𝐾𝐿(𝑔2, 𝑔1) = ∫𝑇
𝑒𝑔1 log

(

𝑒𝑔1
𝑒𝑔2

)

𝑑𝐩 𝑑𝑡 + ∫𝑇
𝑒𝑔2 log

(

𝑒𝑔2
𝑒𝑔1

)

𝑑𝐩 𝑑𝑡

= ∫𝑇
(𝑔1 − 𝑔2)𝑒𝑔1 𝑑𝐩 𝑑𝑡 + ∫𝑇

(𝑔2 − 𝑔1)𝑒𝑔2 𝑑𝐩 𝑑𝑡 = E𝑔1 [𝑔1 − 𝑔2] + E𝑔2 [𝑔2 − 𝑔1],
(6)

here we omit the integration variables 𝐩 and 𝑡, to lighten the notation, and E𝑔[ℎ] ∶= ∫𝑇 ℎ𝑒
𝑔 𝑑𝐩 𝑑𝑡 represents the mean of ℎ(𝑋)

hen the random variable 𝑋 has log-density 𝑔.
To help the derivation of the result, we introduce the linear approximation �̂�∗ of �̂�, that is calculated by minimizing the expression

𝐿∗(𝑔) ∶= −1
𝑛

𝑛
∑

𝑖=1
𝑔(𝐩𝑖, 𝑡𝑖) + 1 + E𝑔0 [𝑔] + Var𝑔0 (𝑔 − 𝑔0) + 𝜆 ∫𝑇

(𝛥𝑔(𝐩, 𝑡))2 𝑑𝐩 𝑑𝑡 + 𝜆𝑇 ∫𝑇

(

𝜕2𝑔(𝐩, 𝑡)
𝜕𝑡2

)2

𝑑𝐩 𝑑𝑡.

n essence, 𝐿∗(𝑔) is the quadratic approximation of 𝐿(𝑔) at 𝑔0, meaning that the Taylor expansion of 𝐿 and 𝐿∗ coincide up to the
second order when evaluated at 𝑔0. The introduction of 𝐿∗ and �̂�∗ is prompted by the observation that 𝐷𝑠𝐾𝐿(�̂�, 𝑔0) can be divided
into two components, 𝐷𝑠𝐾𝐿(�̂�, �̂�∗) and 𝐷𝑠𝐾𝐿(�̂�∗, 𝑔0), whose asymptotic behaviors are simpler to investigate.

We now make some standard assumptions on the smoothness of 𝑔 , to simplify the derivation of the asymptotic results.
5
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Assumption 1. The true log-density 𝑔0 is at least twice differentiable over the spatio-temporal domain 𝑇 . Moreover, 𝑔0 is bounded
bove and below, and it is such that 𝑅(𝑔0;𝝀) <∞.

ssumption 2. For 𝑔 in a convex set 𝐵0 ⊂ 𝑇 around 𝑔0 containing �̂� and �̂�∗, there exists a positive constant 𝑐 such that
Var𝑔0 ≤ Var𝑔 uniformly with respect to 𝑔.

Assumption 1 is a standard requirement for the consistency of density estimators (Silverman, 1982). It guarantees the equivalence
etween the weighted 𝐿2(0, 𝑇 ;𝐿2())–norm with the density function 𝑓0 = 𝑒𝑔0 , that is ∫𝑇 ℎ

2𝑓0(𝐩, 𝑡) 𝑑𝐩 𝑑𝑡, and the conventional
2(0, 𝑇 ;𝐿2())–norm. Assumption 2 is a generalization to the spatio-temporal setting of Assumption A.3 in Gu (1993). This condition

s satisfied whenever the members of 𝐵0 are bounded from above and below. Essentially, Assumption 2 requires Assumption 1 to
e satisfied by functions that are near 𝑔0, and in particular by �̂� and �̂�∗.

For the sake of simplicity, in the following consistency result, we consider the case where 𝜆 = 𝜆𝑇 = 𝜆. However, in general,
the result holds for 𝜆𝑇 = 𝑂(𝜆).

Theorem 2. Under Assumptions 1 and 2, as 𝜆→ 0 and 𝑛𝜆1∕2 → ∞, the estimator �̂� ∈ 𝑉 minimizing 𝐿(𝑔) in (1) is consistent with respect
to the symmetrized Kullback–Leibler distance. Moreover,

𝐷𝑠𝐾𝐿(�̂�, 𝑔0) = 𝑂(𝑛−1𝜆−1∕2 + 𝜆).

roof. The proof is deferred to Appendix D. □

emark 2. Theorem 2 states the consistency of the proposed STDE-PDE estimator in the symmetrized Kullback–Leibler distance,
efined in (6). It should be pointed out that this distance controls other commonly used distances for density functions, such as the
otal variation and the Hellinger distances (see, e.g., Pollard, 2002; Silverman, 1982). This entails that the proposed estimator is
lso consistent with respect to the norms just mentioned.

. Estimation procedure

In this section, we focus on the numerical strategies employed to effectively address the problem outlined in Section 2. Section 4.1
aces the aspects related to the discretization procedure, aiming to approximate the quantities involved in the estimation functional
1). Section 4.2 deals with the minimization of the estimation functional, in its discretized form, encompassing topics such as
ptimization algorithms and initialization procedures. Section 4.3 discusses the choice of the smoothing parameters.

.1. Discretization of the objective functional

Our goal is to determine the minimizer of the functional 𝐿(𝑔) in (1) within the space of spatio-temporal density functions 𝑉 in (4).
owever, this infinite-dimensional problem lacks a closed-form analytical solution. Hence, we must seek a numerical approximation.
o achieve this, we proceed with a suitable discretization procedure, based on a finite element method in space and B-splines in
ime.

We discretize the spatial domain  through Delaunay triangulations (see, e.g., Hjelle and Dæhlen, 2006). Fig. 3 illustrates the
riangulations for the spatial domains in the two applications under consideration. Such triangulation can for instance be created
tarting from the boundary 𝜕, and can be refined or coarsened according to criteria concerning maximum allowed triangle area,
inimum allowed triangle angle, distribution of the data points and/or geometry of the domain. The library fdaPDE (Arnone et al.,
023a) includes various functionalities to create, refine or coarsen the mesh. To effectively represent point patterns with highly
ocalized features, while employing a limited number of mesh nodes (and thus a reduced computational cost), it is advantageous to
uild adaptive data-driven spatial meshes. In this regard, for instance, for the application to earthquakes on the globe, we rely on
he coarsening strategy presented by Dassi et al. (2015). Specifically, we start from a fine and regular mesh, and iteratively simplify
t, taking into account both the surface’s geometry and the data distribution, to obtain a mesh that is finer where more events are
bserved, while respecting the shape of the domain. As described in Dassi et al. (2015), such strategy also improves the inferential
roperties of the resulting estimators.

Let  denote the triangulation and 𝑉 𝑟


the space of piecewise polynomial functions of degree 𝑟 over . Formally:

𝑉 𝑟


∶=
{

ℎ ∈ () ∶ ℎ
|

|

|𝜏
∈ P𝑟 ∀𝜏 ∈ 

}

,

here P𝑟 is the space of polynomials of degree 𝑟. Let {𝜉𝜉𝜉𝑙}𝐾𝑙=1 be the nodes of the mesh, which coincide with the vertices of the triangles
n  in the linear case. Additionally, let {𝜓𝑘}𝐾𝑘=1 denote the finite element basis functions of 𝑉 𝑟


: these functions 𝜓𝑘(𝐩) ∈ 𝑉 𝑟


are

iecewise polynomials of degree 𝑟, and satisfy 𝜓𝑘(𝜉𝜉𝜉𝑙) = 𝛿𝑘𝑙 for 𝑘, 𝑙 = 1,… , 𝐾 (see, e.g., Quarteroni, 2009, for an introduction to finite
elements). The library fdaPDE (Arnone et al., 2023a) currently supports linear and quadratic finite elements (𝑟 = 1, 2), over planar,
6
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Fig. 3. Left: regular spatial mesh with 778 nodes of the Southampton region, Hampshire county, UK. Right: data-driven adaptive spatial mesh with 2000 nodes
over the Earth’s surface. Red points are 1000 locations randomly sampled among the data available in the original datasets. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

For the temporal dimension, we adopt cubic B-spline functions {𝜑𝑚}𝑀𝑚=1, defined over [0, 𝑇 ]; see De Boor (1978) for a theoretical
treatment. With the considered spatial and functional bases, we can now represent the spatio-temporal log-density function 𝑔(𝐩, 𝑡)
by the basis expansion

𝑔(𝐩, 𝑡) =
𝐾
∑

𝑘=1

𝑀
∑

𝑚=1
𝑐𝑘𝑚𝜓𝑘(𝐩)𝜑𝑚(𝑡), (7)

where {𝑐𝑘𝑚 ∶ 𝑘 = 1,… , 𝐾 and 𝑚 = 1,… ,𝑀} are the expansion coefficients to be stored in 𝐜 ∶= [𝑐]𝑘𝑚. As a result, the original
infinite-dimensional problem of estimating the function 𝑔 ∈ 𝑉 𝑟


is now transformed into a finite-dimensional estimation problem

of estimating the vector of coefficients 𝐜. To this end, we need a discretization of the objective functional 𝐿(𝑔) in (1). We introduce
the vector of 𝐾 spatial basis functions 𝜓𝜓𝜓 ∶=

[

𝜓1 … 𝜓𝐾
]⊤, the vector of 𝑀 temporal basis functions 𝜑𝜑𝜑 ∶=

[

𝜑1 … 𝜑𝑀
]⊤, and

the matrices 𝛹 ∶= [𝛹 ]𝑖𝑘 = 𝜓𝑘(𝒑𝑖) ∈ R𝑛×𝐾 and 𝛷 ∶= [𝛷]𝑖𝑚 = 𝜑𝑚(𝑡𝑖) ∈ R𝑛×𝑀 that store the evaluations of the 𝐾 spatial basis functions
at the 𝑛 spatial points {𝐩𝑖}𝑛𝑖=1, and the evaluations of the 𝑀 temporal basis functions at the 𝑛 temporal instances {𝑡𝑖}𝑛𝑖=1. Moreover,
we introduce the mass, stiffness, and penalty matrices, in space and time, as follows:

𝑅0 ∶= ∫
𝜓𝜓𝜓𝜓𝜓𝜓⊤ ∈ R𝐾×𝐾 , 𝐾0 ∶= ∫

𝑇

0
𝜑𝜑𝜑𝜑𝜑𝜑⊤ ∈ R𝑀×𝑀 , 𝑅1 ∶= ∫

(∇𝜓𝜓𝜓)(∇𝜓𝜓𝜓)
⊤ ∈ R𝐾×𝐾

𝑃 ∶= 𝑅⊤1𝑅
−1
0 𝑅1 ∈ R𝐾×𝐾 , 𝑃𝑇 ∶= ∫

𝑇

0
𝜑𝜑𝜑𝑡𝑡𝜑𝜑𝜑

⊤
𝑡𝑡 ∈ R𝑀×𝑀 , 𝑃 ∶= 2𝜆 (𝐾0 ⊗ 𝑃) + 2𝜆𝑇 (𝑃𝑇 ⊗𝑅0) ∈ R𝐾𝑀×𝐾𝑀

where [(∇𝜓𝜓𝜓)(∇𝜓𝜓𝜓)
⊤]𝑖𝑗 = ∇𝜓𝑗 ⋅ ∇𝜓𝑖 and 𝜑𝜑𝜑𝑡𝑡 ∶=

[

𝜕2𝜑1∕𝜕𝑡2 … 𝜕2𝜑𝑀∕𝜕𝑡2
]⊤ is the vector of second-order derivatives of the

temporal bases with respect to time.
We are now ready to discretize the functional 𝐿(𝑔).

Approximation of the log-likelihood. Let 𝛶 ∈ R𝑛×𝐾𝑀 be the matrix whose 𝑖th row in R1×𝐾𝑀 is defined as the Kronecker product
between the 𝑖th rows of 𝛷 and 𝛹 . Denoting by 𝟏 the unitary vector of length 𝑛, we can discretize the first term of 𝐿(𝑔) as:

−1
𝑛

𝑛
∑

𝑖=1
𝑔(𝐩𝑖, 𝑡𝑖) ≈ −1

𝑛
𝟏⊤𝛶 𝐜.

Approximation of the integral of the density function. We employ a standard Gaussian quadrature rule, with 𝑞 = 6 quadrature nodes
and associated weights 𝐰 ∈ R𝑞 in space, and 𝑟 = 5 quadrature nodes and associated weights 𝐰𝑇 ∈ R𝑟 in time (Quarteroni,
2009). Therefore, given a right-open interval 𝜄 ⊂ [0, 𝑇 ], with endpoints coinciding with two consecutive knots of the chosen
temporal discretization, we have:

∫ 𝑒𝑔(𝐩,𝑡) 𝑑𝐩 𝑑𝑡 ≈
∑ ∑

𝜅(𝐰𝑇 ⊗ 𝐰)⊤ exp{(𝛷𝜄 ⊗𝛹𝜏 )𝐜},
7
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where: 𝛹𝜏 ∈ R𝑞×𝐾 is the matrix containing the evaluations of the 𝐾 spatial basis functions at the 𝑞 spatial quadrature nodes
in the triangle 𝜏 ∈ ; 𝛷𝜄 ∈ R𝑟×𝑀 is the matrix having as entries the evaluations of the 𝑀 temporal basis functions at the 𝑟
temporal quadrature nodes; 𝜅 is the determinant of the transformation matrix mapping the reference triangle {(0, 0), (0, 1), (1, 0)}
onto the triangle 𝜏 ∈  and the reference interval [−1, 1] onto the interval 𝜄 ⊂ [0, 𝑇 ].
Approximation of the penalization terms. In analogy with the works by Bernardi et al. (2017) and Arnone et al. (2023c), in
spatio-temporal regression contexts, the discretization of the penalization term in space and time can be written as

𝜆 ∫𝑇

(

𝛥𝑔(𝐩, 𝑡)
)2 𝑑𝐩 𝑑𝑡 + 𝜆𝑇 ∫𝑇

(

𝜕2𝑔(𝐩, 𝑡)
𝜕𝑡2

)2

𝑑𝐩 𝑑𝑡 ≈ 𝜆𝐜⊤(𝐾0 ⊗ 𝑃)𝐜 + 𝜆𝑇 𝐜⊤(𝑃𝑇 ⊗𝑅0)𝐜.

To summarize, the minimization of the objective functional 𝐿(𝑔) over the density functions 𝑔 ∈ 𝑉 is numerically addressed as
the minimization over the coefficients 𝐜 ∈ R𝐾𝑀 of the discretized objective functional �̃�(𝐜), defined as:

�̃�(𝐜) ∶= − 𝟏⊤𝛶 𝐜 + 𝑛
∑

𝜄⊂[0,𝑇 ]

∑

𝜏∈

𝜅(𝐰𝑇 ⊗ 𝐰)⊤ exp{(𝛷𝜄 ⊗𝛹𝜏 ) 𝐜} + 𝜆𝐜⊤(𝐾0 ⊗ 𝑃)𝐜 + 𝜆𝑇 𝐜⊤(𝑃𝑇 ⊗𝑅0) 𝐜. (8)

4.2. Minimization of the discretized estimation functional

We now cover the main aspects connected to the minimization of the functional �̃�(𝐜) in (8). In Lemma 1 in Appendix C, we
rove that the non-linear functional 𝐿(𝑔) in (1) is strictly convex. This entails that the associated minimization problem

�̂� ∶= arg min
𝐜∈R𝐾𝑀

�̃�(𝐜) (9)

can be solved using standard iterative optimization algorithms (see, e.g. Nocedal and Wright, 1999; Lange, 2013). The fdaPDE
library implements several optimization algorithms, with the default option being the limited-memory Broyden–Fletcher–Goldfarb–
Shanno (L-BFGS) method, described in Liu and Nocedal (1989) and Nocedal (1980), with 5 correction vectors and two-loop
recursion. Convergence is guaranteed regardless of the initialization. However, having a good initial guess 𝐜0 can significantly reduce
the overall computational cost. To this aim, the library implements a data-driven initialization procedure, that extends to spatio-
temporal settings the approach proposed by Ferraccioli et al. (2021), based on the spatial discretization of a heat diffusion process.
This alternative shows significant advantages when the empirical distribution significantly deviates from the uniform distribution
over 𝑇 , achieving computational savings of up to 70% for highly non-uniform densities.

4.3. Selection of the smoothing parameters

In order to select appropriate values for the smoothing parameters 𝜆 and 𝜆𝑇 , we perform 𝐾–fold cross-validation based on the
𝐿2–norm of the distance between the estimated density 𝑓 and the true density 𝑓 , that is ∫𝑇 (𝑓 (𝐩, 𝑡) − 𝑓 (𝐩, 𝑡))

2 𝑑𝐩 𝑑𝑡. This leads to
the following cross-validation error on the 𝑘th validation set, for 𝑘 = 1,… , 𝐾,

CVerr𝑘(𝜆, 𝜆𝑇 ) ∶= ∫𝑇

(

𝑓−[𝑘]
𝜆 ,𝜆𝑇

(𝐩, 𝑡)
)2 𝑑𝐩 𝑑𝑡 − 2

𝑛𝑘

𝑛𝑘
∑

𝑖=1
𝑓−[𝑘]
𝜆 ,𝜆𝑇

(𝐩[𝑘]𝑖 , 𝑡[𝑘]𝑖 ), (10)

here: 𝑓−[𝑘]
𝜆 ,𝜆𝑇

is the density estimate calculated using the training data (contained in all the 𝐾 folds except the 𝑘th one), (𝐩[𝑘]𝑖 , 𝑡[𝑘]𝑖 ) is
he 𝑖th observation in the validation set (𝑘th fold), and 𝑛𝑘 is the cardinality of this last set. The quantity in (10) is obtained neglecting
he term that does not depend on the pair (𝜆, 𝜆𝑇 ) (see Ferraccioli et al., 2021 for more details), and can be efficiently calculated
y exploiting the finite element formulation introduced in Section 4.1. At the beginning of the cross-validation procedure, data are
andomly distributed in the folds, which are designed in such a way that they do not exclusively contain observations recorded at
pecific time instances.

The 𝐾 resulting errors in (10) are then averaged to produce the final cross-validation error CVerr(𝜆, 𝜆𝑇 ). The procedure is
epeated for each pair (𝜆, 𝜆𝑇 ), exploring all the possible values provided in the input. Among those, the optimal proposals in space
nd time are selected by minimizing CVerr.

. Confidence bands

In this section, we leverage a Bayesian analogy to derive pointwise confidence intervals for spatio-temporal densities, based on the
roposed estimator. It should be noted that previous works on density estimation in space-only domains, such as those by Ferraccioli
t al. (2021) and Arnone et al. (2022), did not develop tools for quantifying uncertainty. With the necessary simplifications, the
nference approach introduced here can also be used to compute confidence intervals for densities over spatial domains, based
n the estimators in Ferraccioli et al. (2021) and Arnone et al. (2022). The confidence bands we propose rely on the approach
iscussed in Leonard (1982) to address univariate problems related to a penalized likelihood functional, and subsequently considered
y O’Sullivan (1988), who presented numerical results for univariate log-densities. These confidence bands significantly enhance
he proposed method by providing valuable insights into the uncertainty associated with the estimated density.

Setting

�̃�0(𝐜) ∶= −1
2
𝐜⊤𝑅𝐜 �̃�1(𝐜) ∶=

1
𝑛
𝟏⊤𝛶 𝐜 −

∑ ∑

𝜅(𝐰𝑇 ⊗ 𝐰)⊤ exp{(𝛷𝜄 ⊗𝛹𝜏 ) 𝐜},
8
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we can rewrite the discretized functional in (8) as follows:

−
�̃�(𝐜)
𝑛

= �̃�1(𝐜) + �̃�0(𝐜).

We can then reinterpret the problem of estimating 𝐜 that minimizes functional (8) as the Bayesian problem of finding the posterior
distribution of 𝐜 under the log-likelihood �̃�1(𝐜), with the prior distribution 𝐜 ∼  (𝟎, 𝑅−1). Continuing with this Bayesian analogy,
he posterior distribution for 𝐜 is proportional to the following term:

exp
(

�̃�1(𝐜) −
1
2
𝐜⊤𝑅𝐜

)

.

oreover, the estimated coefficients �̂� is the posterior mode and provides an approximation of the distribution’s mean. The posterior
covariance can be approximated by the dispersion matrix 𝐷, that is,

𝐷−1 = −
𝜕2𝑙𝑜𝑔 𝜋(�̂�|

{

(𝐩𝑖, 𝑡𝑖)
}𝑛
𝑖=1)

𝜕(�̂� �̂�⊤)
= −

𝜕2�̃�1(�̂�)
𝜕(�̂� �̂�⊤)

+ 𝑅 = �̂� + 𝑅,

where �̂� is the Hessian of the log-likelihood, defined as

�̂� =
∑

𝜄⊂𝑇

∑

𝜏∈

𝜅 (𝛷𝜄 ⊗𝛹𝜏 )⊤
[

(𝐰𝑇 ⊗ 𝐰)⊤ exp{(𝛷𝜄 ⊗𝛹𝜏 )�̂�}
]

(𝛷𝜄 ⊗𝛹𝜏 ).

his leads to a Gaussian approximation of the posterior distribution: 𝐜 |
{

(𝐩𝑖, 𝑡𝑖)
}𝑛
𝑖=1 ∼  (�̂�, 𝐷). Following this analogy, the

pproximated posterior distribution of the log-density function 𝑔 is  ((𝛹⊗𝛷)⊤ �̂�, (𝛹⊗𝛷)⊤ (2𝐷∕𝑛) (𝛹⊗𝛷)). Specifically, the pointwise
approximated Bayesian posterior variance for the estimated log-density is given by:

�̂�2(𝐩, 𝑡) = 2
𝑛
(𝜓𝜓𝜓(𝐩)⊗𝜑𝜑𝜑(𝑡))⊤𝐷 (𝜓𝜓𝜓(𝐩)⊗𝜑𝜑𝜑(𝑡)), (11)

from which we can build pointwise (1 − 𝛼)% credible bands, that we might in turn reinterpret as confidence intervals.
It is worth noting that, as often discussed in nonparametric regression settings (see, e.g., Genovese and Wasserman, 2008; Hall

and Horowitz, 2013, and related references), such approaches may lead to overly conservative confidence bands. Various strategies
have been explored in the literature to address this issue. In our setting, we solve this problem by scaling the smoothing parameters
𝜆 and 𝜆𝑇 , which are used to compute �̂�2(𝐩, 𝑡) in (11), by an appropriate scaling factor, determined through a standard bootstrapping
procedure.

6. Simulation studies

In this section, we present some simulation studies that illustrate the performances of the proposed method. In Section 6.1,
we introduce state-of-the-art competing methods. In Section 6.2, we define three common measures of error for spatio-temporal
density functions, to quantify the methods’ performance. In Section 6.3, we show a simulation over a simple planar domain. In
Sections 6.4 and 6.5, we present simulation studies over a spherical domain. This very specific form of curved domain is considered
here to enable comparisons with at least one competing method. Indeed, to the best of our knowledge, there currently is a lack
of software implementing possible competing methods over general two-dimensional Riemannian manifolds. In Section 6.6 we
outline some addition simulation studies reported in the appendix; in particular, Appendix H shows a simulation on a non-spherical
two-dimensional manifold. It should be pointed out that some competing methods are designed for intensity estimation; for these
methods, the estimates are appropriately normalized over 𝑇 . As detailed in Appendix B, STDE-PDE can also be used to estimate
the intensity of inhomogeneous space–time Poisson processes. A simulation study in an intensity estimation setting is reported in
Appendix F.

6.1. Competing methods

We consider the following state-of-the-art competitors:

INLA: the model for intensity estimation of spatio-temporal point processes developed in Chapter 8.3 of Krainski et al. (2018),
and implemented in the R package R-INLA (www.r-inla.org). The model is based on the sPDE approach described in Lindgren
et al. (2011), with the penalized complexity priors derived in Fuglstad et al. (2019) for the range and the marginal standard
deviation.
LGCP: the model for intensity estimation of spatio-temporal log-Gaussian Cox processes, as presented by Brix and Diggle (2001)
and Diggle et al. (2005), and implemented in the R package LGCP (Taylor et al., 2023). We here employ a bivariate Gaussian
kernel in space and lowess smoother in time.
STKDE: the model for fixed-bandwidth kernel density estimation from spatio-temporal point patterns, as presented in Fernando
and Hazelton (2014) and Davies et al. (2018), and implemented in the R package sparr (Davies and Marshall, 2023). For
the simulations over curved surfaces, we rely on the STKDE version for data aggregated over time, described by Zhang et al.
(2011) and implemented in the R package stam (Zhang, 2010).
9
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Fig. 4. Simulation 1. Boxplots of 𝐿2–norm of the error (left), Kullback–Leibler divergence (center), and Hellinger distance (right) of the estimates provided by
proposed STDE-PDE and the competing methods introduced in Section 6.1, namely INLA, LGCP, and STKDE, over 30 simulation repetitions.

6.2. Measures of error

To compare the various competing methods, we consider the following measures of error:

𝐿2–norm of the error (err𝐿2 ):

err𝐿2 (𝑓, 𝑓 ) ∶= ‖𝑓 − 𝑓‖2
𝐿2(0,𝑇 ;𝐿2())

= ∫𝑇

(

𝑓 (𝐩, 𝑡) − 𝑓 (𝐩, 𝑡)
)2 𝑑𝐩 𝑑𝑡,

where the integral over 𝑇 is numerically approximated by summing over a fine evaluation grid in [0, 𝑇 ] and using a regular
lattice that covers .
Kullback–Leibler divergence (KL):

KL(𝑓, 𝑓 ) ∶= ∫𝑇
𝑓 (𝐩, 𝑡) log

(

𝑓 (𝐩, 𝑡)
𝑓 (𝐩, 𝑡)

)

𝑑𝐩 𝑑𝑡,

computed resorting to the functionalities provided by the R package philentropy (Drost and Nowosad, 2024).
Hellinger distance (H):

H(𝑓, 𝑓 ) ∶=

(

1
2 ∫𝑇

(

√

𝑓 (𝐩, 𝑡) −
√

𝑓 (𝐩, 𝑡)
)2

𝑑𝐩 𝑑𝑡
)1∕2

.

.3. Simulation 1: a mixture of time-dependent Gaussian distributions on a squared region

In Simulation 1, we consider point data scattered over a squared spatial domain and recorded over the time interval from 0
o 1. The true density is defined as a mixture of 4 time-dependent Gaussian distributions, whose means and variances evolve over
ime as reported in Appendix E. The second row in Fig. 5 displays the true density at some time instances, showing its multimodal
attern, with modes having different directions and intensities of anisotropy. We generate 𝑛 = 5000 independent observations from

this density, adopting the acceptance-rejection technique (Casella et al., 2004; Neal, 2003). The sampling process is repeated 30
times. The first row of Fig. 5 shows the data obtained in the first simulation repetition.

In this simulation, we consider all the competing methods introduced in Section 6.1. For discretization over space for the proposed
STDE-PDE and for INLA, we employ regular spatial meshes of the squared domain, having respectively 793 nodes for STDE-PDE
and 789 nodes for INLA, generated using the respective software. For LGCP and STKDE we use a regular 32 × 32 spatial grid. For
discretization in time, we use 7 evenly spaced knots for STDE-PDE and INLA, and 9 evenly spaced time instances for LGCP and
STKDE, from 0 to 1, extremes excluded. Smoothing parameters for STDE-PDE are selected via 10–fold cross-validation, as presented
in Section 4.3.

Fig. 5 qualitatively compares the mean estimates obtained by the various methods over the 30 simulation repetitions. The figure
highlights that STDE-PDE accurately captures the spatial structure of the true density and its variation in time. Fig. 4 gives the
boxplots of the measures of error introduced in Section 6.2, over the 30 simulation repetitions, computed on a fine grid of 1024
locations in space and 9 instances in time. The proposed method outperforms all others according to all measures of error.

Fig. 6 presents inference results, comparing STDE-PDE with INLA, the only competitor equipped with built-in inference
10

capabilities. We compute the coverage probabilities of the 95% confidence intervals for the estimates over the 30 simulation
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Fig. 5. Simulation 1. View of the sample (first row), true density (second row), and mean estimates of STDE-PDE (third row), INLA (fourth row), LGCP (fifth
row), and STKDE (sixth row), over 30 simulation repetitions, at different time instances. All the plots have the same color scale, with bluish colors corresponding
to low-density values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
11
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Fig. 6. Simulation 1. Boxplots of empirical coverage probabilities of 95% confidence intervals over 30 simulation repetitions: STDE-PDE (left) and INLA (right).

repetitions. For STDE-PDE we follow the procedure outlined in Section 5. We evaluate the results at 5 different time instances
and on a regular 32 × 32 spatial grid, focusing on areas characterized by non-negligible density values, specifically where the true
density exceeds 10−3. We obtain an overall median empirical coverage of 0.962 (with an IQR of 0.048) for STDE-PDE, and of 0.881
(with an IQR of 0.094) for INLA. Fig. 6 illustrates the empirical coverage for the different time instances. For the proposed method,
the median empirical coverage is close the nominal value, 0.95, for any time considered instant. Furthermore, the interquartile
range of the empirical coverage remains narrow and more stable across time, with respect to the competing method, avoiding both
under- and over-conservative behaviors.

6.4. Simulation 2: a mixture of time-dependent Kent distributions on a spherical domain

In Simulation 2 we examine a space–time point pattern over the surface of the unit sphere recorded from 0 to 1 in time. We
generate 10 000 independent observations from a mixture of 5 time-dependent Kent distributions (Kent, 1982; Mardia and Jupp,
2000), with parameters defined in Appendix E. Correct sampling on a sphere, and more generally on a two dimensional manifold,
is not trivial; we refer the reader to Arnone et al. (2022) for details on how this can be appropriately performed.

We compare the proposed method to STKDE for data aggregated over time (Zhang et al., 2011), considering 9 evenly spaced time
nstances from 0 to 1, extremes excluded. We could not find available implementations of other techniques acting on non-planar
patial domains. For the proposed STDE-PDE we use a regular spatial mesh with 606 nodes over the surface of the unit sphere, and

9 evenly spaced knots in time from 0 to 1, extremes excluded; the smoothing parameters are selected by 10–fold cross-validation.
Fig. 7 qualitatively compares the mean estimates obtained by the various methods over the 30 simulation repetitions. The figure

highlights the remarkably good fit returned by STDE-PDE, which can effectively capture each component of the mixture distribution,
as it shifts around the sphere. The good performances of the proposed method are confirmed by Fig. 8, that gives the boxplots, over
the 30 simulation repetitions, of the measures of error introduced in Section 6.2, computed on a grid of 5016 locations in space and
9 instances in time.

6.5. Simulation 3: a highly localized and skewed density on a spherical domain

In Simulation 3, we consider another space–time point pattern over the unit sphere, that is highly localized along elongated
regions, mimicking the behavior of earthquake data, that cluster around Earth’s fault lines. We sample 10 000 observations from
a mixture of 25 time-dependent Kent distributions, whose parameters are provided in Appendix E; the resulting density is highly
anisotropic, localized, and skewed along elongated ridges. Mean estimates and measures of error, over 30 simulation repetitions,
are provided in Figs. 9 and 10. STKDE appears to oversmooth the signal, while the proposed STDE-PDE proves to be particularly
well suited to this complex data setting, capturing the strongly localized and skewed modes of the signal.

6.6. Additional simulation studies

In addition to Simulations 1, 2, and 3, presented in Sections 6.3 6.4 and 6.5, we have conducted several other tests, reported in
the appendix. Appendix F presents intensity estimation of an inhomogeneous Poisson process, considering the same point pattern in
Simulation 1. We here compare the proposed method to INLA and LGCP, obtaining the same ordering among the techniques obtained
for Simulation 1. Appendix G shows an additional simulation on a planar domain, considering a true density that combines high-
frequency and low-frequency components, that significantly overlap over time. Appendix H considers a space–time point pattern on
a non-spherical two-dimensional manifold. We here compare the proposed STDE-PDE with a separable method for density estimation
based on 𝑘–nearest neighbors, which we implemented solely for comparison purposes, since none of the main available competing
methods is currently implemented to handle such data. STDE-PDE outperforms such competing method, that relies on the first-order
separability assumption, even though the data are generated from a density that satisfies such assumption.
12
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Fig. 7. Simulation 2. Front view of the sample (first row), true density (second row), and mean estimates of STDE-PDE (third row), STKDE (fourth row),
over 30 simulation repetitions, at different time instances. All the plots have the same color scale, with bluish colors corresponding to low density values. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Simulation 2. Boxplots of 𝐿2–norm of the error (left), Kullback–Leibler divergence (center) and Hellinger distance (right) of the estimates provided by
the STDE-PDE and the STKDE methods, over 30 simulation repetitions.
13
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Fig. 9. Simulation 3. Front view of the sample (first row), true density (second row), and mean estimates of STDE-PDE (third row), STKDE (fourth row),
over 30 simulation repetitions, at different time instances. All the plots have the same color scale, with bluish colors corresponding to low density values. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

7. Applications to epidemiological and seismological studies

In this section, we show two illustrative real data examples, concerning gastrointestinal infections (Section 7.1) and earthquakes
with large magnitude (Section 7.2).

7.1. Gastrointestinal infections

We analyze cases of gastrointestinal symptoms reported to the National Health Service (NHS) Direct in Hampshire county, United
Kingdom, during the period 2001 to 2003. The dataset, provided by Taylor et al. (2013), comprises 10 069 observations. Some
temporal snapshots of the observed data are illustrated in Fig. 1

In this application, we examine all the competing methods introduced in Section 6.1 and already considered in the simulation
study presented in Section 6.3. We maintain the settings and options adopted for competing methods in Simulation 1. For estimation
over the Southampton region of interest, we employ the regular spatial mesh with 778 nodes displayed in the left panel of Fig. 3
for STDE-PDE, a mesh with 776 nodes produced with R-INLA for INLA, and a regular 32 × 32 grid for LGCP and STKDE. For
estimation in time, we use 7 knots. Smoothing parameters for STDE-PDE are selected via 10–fold cross-validation.

Fig. 11 shows qualitative results. The proposed STDE-PDE returns an estimate that captures the strongly localized peaks of new
cases; the estimate highlights different behaviors of the phenomenon along the western and eastern shores of Southampton Water
14



Spatial Statistics 61 (2024) 100824B. Begu et al.

t

e
i

7

c
t
d

Fig. 10. Simulation 3. Boxplots of 𝐿2–norm of the error (left), Kullback–Leibler divergence (center), and Hellinger distance (right) of the estimates provided by
he STDE-PDE and STKDE methods, over 30 simulation repetitions.

stuary. In Fig. 12 (left panel) we also provide quantitative comparisons among the estimates provided by the different methods,
n terms of the 10–fold cross-validation error in (10), highlighting the comparative advantage of the proposed method.

.2. Earthquakes of large magnitude

We now analyze the locations of earthquakes with magnitude greater than 4.75 worldwide from 2020 to 2022. The dataset
ontains 8080 observations and is taken from the USGS earthquakes catalog (https://earthquake.usgs.gov/earthquakes/search/). In
his setting, we compute the estimates with STDE-PDE over a regular discretization in time, with 7 knots, and the adaptive data-
riven spatial mesh shown in the right panel of Fig. 3, with 2000 nodes. As indicated in Section 4.1, this mesh naturally permits a

more accurate estimation along the faults, at a lower computational cost with respect to a uniformly fine mesh. For the considered
competing methods, we follow the same choices detailed for the simulation study presented in Section 6.4. For STKDE, we aggregate
locations on a three-monthly basis.

Fig. 2 shows some temporal snapshots of the observed data and Fig. 13 the estimate at the corresponding times. The density
estimate produced by STDE-PDE correctly displays elongated ridges of high values in correspondence of the faults in the Earth’s
crust. Fig. 12 (right panel) displays the boxplots of 10–fold cross-validation errors, offering quantitative confirmation of the accuracy
of the estimates obtained through the proposed method.

8. Discussion and future research directions

The proposed STDE-PDE offers an interesting addition to the literature on space–time density and intensity estimation. Simulation
studies and real-world applications highlight the robust performance of STDE-PDE in comparison to state-of-the-art methodologies,
showing a strong ability to capture complex multi-modal spatio-temporal densities. The proposed method is shown to accurately
work on two-dimensional spatial domains with non-trivial shapes, including general two-dimensional Riemannian manifolds. In
future studies, we will show the ability of the method to model time-varying point patterns in complicated three-dimensional spatial
domains, leveraging the techniques recently developed by Arnone et al. (2023b) for data observed in non-convex volumes.

STDE-PDE can be extended in various directions. One interesting research line concerns replicated spatio-temporal point process,
addressed by Gervini (2022) by means of log-linear models for latent intensity functions. Another fascinating direction is related to
the modeling of space-varying temporal densities, as those considered by Menafoglio et al. (2014, 2016) and Scimone et al. (2022).
These densities differ from the spatio-temporal densities considered in this work, as they maintain unitary integration at each spatial
location. Complementary research could instead focus on time-varying spatial density estimation problems.

Of particular significance is the expansion of the proposed method into semiparametric approaches, particularly in scenarios
where supplementary information is available, either through covariates or specific insights into the nature of the phenomenon
being studied. For instance, the considered point process could be endowed with pairwise interactions, as in Gibbs processes. This
situation could be accommodated by penalized composite-likelihood approaches, such as those considered by Illian and Hendrichsen
(2010), Guan et al. (2015) and Daniel et al. (2018). Additionally, in the proposed modeling framework, knowledge about the physics
governing the phenomenon under investigation could also be included through physics-informed penalties, such as those discussed
in Arnone et al. (2019) in space–time regression settings.

An interesting theoretical investigation goes towards the exploration of a potential conceptual analogy between the nonpara-
15

metric penalized likelihood approach, followed in this work, and stochastic methods such as classical or sPDE-based log Gaussian

https://earthquake.usgs.gov/earthquakes/search/
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Fig. 11. Application to gastrointestinal infections. View of the density estimates for STDE-PDE (first row), INLA (second row), LGCP (third row), and STKDE
(fourth row), at different time instances. All the plots have the same color scale, with bluish colors corresponding to low density values of gastrointestinal
infections in Hampshire county, UK. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Cox processes. In the geostatistical setting, the connection between penalized spline smoothing and kriging has for instance been
investigated by Kimeldorf and Wahba (1970), Furrer and Nychka (2007) and Laslett (1994). To the best of our knowledge, instead,
in the point process framework, such potential analogy has not yet been investigated in the literature, not even in the simpler
one-dimensional and two-dimensional settings considered by Silverman (1982) and Gu and Qiu (1993).

Finally, a challenging development goes towards generalizations of STDE-PDE to model marked point processes. In the application
to earthquake data presented in Section 7.2, this extension would enable the inclusion of the magnitude in the analysis. In addition,
modeling marked point processes could for instance allow the monitoring of spatio-temporal extreme value trends, in relation to
meteorological and socio-economic factors, as done in the study on air pollution in Spain conducted by Wang et al. (2023).
16



Spatial Statistics 61 (2024) 100824B. Begu et al.
Fig. 12. Left: Application to gastrointestinal infections; boxplots of 10–fold cross-validation errors for STDE-PDE and the competing methods introduced in
Section 6.1, namely INLA, LGCP, and STKDE. Right: Application to earthquakes of large magnitude; boxplots of 10–fold cross-validation errors for STDE-PDE
and STKDE.

Fig. 13. Application to earthquakes of large magnitude. View of the density estimates over the Australian, Eurasian and Pacific plates, for STDE-PDE (first row),
STKDE (second row), at different time instances. All the plots have the same color scale, with red colors corresponding to high density of earthquakes. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Appendix A. Derivation of the unconstrained minimization problem

In this section, we demonstrate that the second term in the functional 𝐿(𝑔) in (1) ensures that ∫𝑇 𝑒
�̂�(𝐩,𝑡) 𝑑𝐩 𝑑𝑡 = 1, and thus that

̂ = 𝑒�̂� is a proper density over 𝑇 . Indeed, in order to estimate the log-density 𝑔, by using a penalized likelihood approach, one
ould minimize the objective functional

𝐿𝑐 (𝑔) ∶= −1
𝑛

𝑛
∑

𝑖=1
𝑔(𝐩𝑖, 𝑡𝑖) + 𝑅(𝑔;𝝀), (A.1)

under the constraint that ∫𝑇 𝑒
�̂�(𝐩,𝑡) 𝑑𝐩 𝑑𝑡 = 1. Equivalently, one would minimize the functional 𝐿𝑐 (𝑔) in (A.1) over the space

𝑉𝑐 ∶=
{

𝑔 ∈ 𝑉 ∶ ∫𝑇 𝑒
𝑔(𝐩,𝑡) 𝑑𝐩 𝑑𝑡 = 1

}

. Note that 𝑉𝑐 is the restriction of the space 𝑉 , defined in Eq. (4) in Section 3.1, to functions
such that ∫𝑇 𝑒

�̂�(𝐩,𝑡) 𝑑𝐩 𝑑𝑡 = 1. In other words, 𝑉𝑐 is the restriction of the space 𝑉 to log-densities. The following theorem states
the equivalence of the constrained minimization problem, introduced above, with the unconstrained minimization introduced in
Section 2.

Theorem 3. The minimization of 𝐿𝑐 (𝑔) in (A.1) in the constrained space 𝑉𝑐 is equivalent to the minimization of 𝐿(𝑔) in (1) in the
unconstrained space 𝑉 .

Proof. We start by observing that when 𝑔 ∈ 𝑉𝑐 , 𝐿(𝑔) = 𝐿𝑐 (𝑔) + 1; thus the functional 𝐿 and 𝐿𝑐 differ by a constant on 𝑉𝑐 . This
entails that in the space 𝑉𝑐 the minimization of 𝐿(𝑔) is equivalent to the minimization of 𝐿𝑐 (𝑔). We now show that for each 𝑔 ∈ 𝑉
there exist a 𝑔∗ ∈ 𝑉𝑐 such that 𝐿(𝑔∗) ≤ 𝐿(𝑔). Given 𝑔 ∈ 𝑉 , define 𝑔∗ = 𝑔−log ∫

𝑒𝑔(𝐩,𝑡) 𝑑𝐩 𝑑𝑡. By construction, 𝑔∗ ∈ 𝑉 and 𝑒𝑔∗ satisfies
the unitary integration constraint, therefore 𝑔∗ ∈ 𝑉𝑐 . Moreover, since 𝑔 and 𝑔∗ differ only by a constant, the differential operators
in space and time applied to 𝑔 and 𝑔∗ coincide, implying that 𝑅(𝑔;𝝀) = 𝑅(𝑔∗;𝝀). Let ℎ ∶= ∫𝑇 𝑒

𝑔(𝐩,𝑡) 𝑑𝐩 𝑑𝑡, we derive the following:

𝐿(𝑔∗) = −1
𝑛

𝑛
∑

𝑖=1
𝑔∗(𝐩𝑖, 𝑡𝑖) + 1 +𝑅(𝑔∗;𝝀)

= −1
𝑛

𝑛
∑

𝑖=1
𝑔(𝐩𝑖, 𝑡𝑖) + log∫𝑇

𝑒𝑔(𝐩,𝑡) 𝑑𝐩 𝑑𝑡 + 1 + 𝑅(𝑔;𝝀)

= 𝐿(𝑔) − ∫𝑇
𝑒𝑔 + log∫𝑇

𝑒𝑔(𝐩,𝑡) 𝑑𝐩 𝑑𝑡 + 1

= 𝐿(𝑔) − ℎ + logℎ + 1.

ince the inequality ℎ − logℎ ≥ 1 holds for all ℎ > 0, then 𝐿(𝑔∗) ≤ 𝐿(𝑔) with equality only if ℎ = 1. This implies that �̂� minimizes
(𝑔) if and only if ∫𝑇 𝑒

�̂�(𝐩,𝑡) 𝑑𝐩 𝑑𝑡 = 1, hence if and only if �̂� minimizes 𝐿𝑐 (𝑔) in 𝑉𝑐 . □

emark 3. The proof of the theorem extends the arguments proposed by Silverman (1982) to the case of interest. The result critically
epends on the choice of the penalizing term 𝑅(𝑔;𝝀), which must be expressible as a bilinear form with differential operators
epending solely on partial derivatives. In our case, after defining the bilinear form as

𝑏(𝑔1, 𝑔2) ∶= ∫𝑇
𝛥(𝑔1)𝛥(𝑔2) 𝑑𝐩 𝑑𝑡 + 𝑐 ∫𝑇

𝜕2𝑔1
𝜕𝑡2

𝜕2𝑔2
𝜕𝑡2

𝑑𝐩 𝑑𝑡, where 𝑐 ∶=
𝜆𝑇
𝜆

, (A.2)

then, the regularization term can be written as 𝑅(𝑔;𝝀) = 𝜆 𝑏(𝑔, 𝑔).

ppendix B. Intensity estimation of an inhomogeneous Poisson process

In this section, we briefly discuss the connection between the spatio-temporal density estimation problem, introduced in
ection 2, and the problem of intensity estimation of an inhomogeneous space–time Poisson point process. Firstly, we derive the
og-likelihood of such a point process with inhomogeneous intensity function 𝛾 ∶ 𝑇 → R+. According to González et al. (2016),

the underlying distribution can be factorized into two terms. The first term refers to the Poisson univariate random variable 𝑁 ,
with mean 𝛤 (𝑇 ) ∶= ∫𝑇 𝛾(𝐩, 𝑡) 𝑑𝐩 𝑑𝑡, that characterizes the number of events observed over 𝑇 . The second term regards the
set of mutually independent and identically distributed spatio-temporal observations drawn from the random variable 𝑋, whose
occurrence density is 𝑝𝑋 (𝐩𝑖, 𝑡𝑖) ∶= 𝛾(𝐩𝑖, 𝑡𝑖)∕𝛤 (𝑇 ). Following Daley and Vere-Jones (2008) and Diggle (2013), the likelihood can be
defined as the probability of getting 𝑛 points {(𝐩𝑖, 𝑡𝑖)}𝑛𝑖=1 in 𝑇 , multiplied by the joint conditional density for these observations,
that is,

𝑝𝑁 (𝑛)𝑝𝑋|𝑁
(

(𝐩1, 𝑡1),… , (𝐩𝑛, 𝑡𝑛)|𝑛
)

=
𝛤 (𝑇 )𝑛

𝑛!
𝑒−𝛤 (𝑇 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑝𝑁 (𝑛)

𝑛!
𝑛
∏

𝑖=1

𝛾(𝐩𝑖, 𝑡𝑖)
𝛤 (𝑇 )
⏟⏞⏟⏞⏟
𝑝𝑋 (𝐩𝑖 ,𝑡𝑖)

= 𝑒−𝛤 (𝑇 )
𝑛
∏

𝑖=1
𝛾(𝐩𝑖, 𝑡𝑖), (B.1)

where 𝑝𝑋|𝑁
(

(𝐩1, 𝑡1),… , (𝐩𝑛, 𝑡𝑛)|𝑛
)

is obtained similarly to Streit and Streit (2010) and Daley and Vere-Jones (2003) in the simpler
spatial framework. Hence, starting from the likelihood in (B.1) and setting 𝜙 = log 𝛾, we end up with the penalized negative
18
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log-likelihood:

𝑃 (𝜙) ∶= −
𝑛
∑

𝑖=1
𝜙(𝐩𝑖, 𝑡𝑖) + ∫𝑇

𝑒𝜙(𝐩,𝑡) + 𝑅(𝜙; �̃�), (B.2)

The following proposition states the equivalence between the density and the intensity estimation problem.

Proposition 1. The estimate of the intensity �̂� = 𝑒�̂� can be obtained by minimizing 𝑃 (𝜙) in 𝑉 or equivalently as �̂� = 𝑛𝑓 , where 𝑓 = 𝑒�̂� is
the density estimated by minimizing the objective functional 𝐿(𝑔) in 𝑉 , with 𝝀 = �̃�∕𝑛 and 𝐿(𝑔) defined as in (1) in Section 2.

Proof. Let us assume that the intensity function takes the form 𝛾 = 𝐶𝑓 , where 𝐶 is a positive real-valued constant, and 𝑓 ∶ 𝑇 → R+

is a density function over 𝑇 , for which ∫𝑇 𝑓 (𝐩, 𝑡) 𝑑𝐩 𝑑𝑡 = 1. Hence, log(𝛾) = log(𝐶) + log(𝑓 ) = log(𝐶) + 𝑔, and the functional in (B.2)
can be expressed in terms of 𝐶 and 𝑔 as follows:

𝑃 (𝐶, 𝑔) = −𝑛 log𝐶 −
𝑛
∑

𝑖=1
𝑔(𝐩𝑖, 𝑡𝑖) + 𝐶 + 𝑅(𝑔, �̃�).

We recall that the regularizing term 𝑅(⋅ ; �̃�) solely depends on derivatives of the argument, implying that it annihilates constant
terms. Since 𝐶 is a constant, the minimization of (B.2) can be carried out in two steps. Firstly, by differentiating 𝑃 (𝐶, 𝑔) with respect
to 𝐶 and solving the resulting equation for which the derivative equals zero, we get �̂� = 𝑛. Following this initial step, neglecting
constant terms and diving all by 𝑛, the functional simplifies to

𝑃 (𝑛, 𝑔) = −1
𝑛

𝑛
∑

𝑖=1
𝑔(𝐩𝑖, 𝑡𝑖) + 𝑅

(

𝑔; 𝝀
𝑛

)

. (B.3)

We are only left to differentiate 𝑃 (𝑛, 𝑔) with respect to 𝑔, but this is exactly the density estimation problem we tackled in Appendix A.
In accordance with the reasoning presented for the density estimation procedure, we can address the unitary integration constraint
of 𝑓 over 𝑇 by incorporating the integral term directly into the functional in (B.3). Then, setting 𝝀 = 𝝀∕𝑛 leads to the same
functional in (1). In light of these considerations, a spatio-temporal intensity estimate can be obtained either by directly minimizing
the functional 𝑃 (𝜙) in (B.2), or equivalently, by multiplying the density estimate, attained by minimizing 𝐿(𝑔), by the number of
observations 𝑛. □

Appendix C. Proof of Theorem 1

In this section, we address the uniqueness and the existence of a minimizer for the functional 𝐿(𝑔) defined in (1) in the functional
space 𝑉 in (4). The proof of Theorem 1 is assured by Theorem 4.1 from Gu and Qiu (1993), which was formulated within a general
framework, provided that all the necessary hypothesis for its validity are met. The following two lemmas ensure these hypothesis.

Lemma 1. The functional

𝐽 (𝑔) ∶= −1
𝑛

𝑛
∑

𝑖=1
𝑔(𝐩𝑖, 𝑡𝑖) + ∫𝑇

𝑒𝑔(𝐩,𝑡) 𝑑𝐩 𝑑𝑡

s continuous and strictly convex in 𝑉 . Consequently, if a minimizer for 𝐿(𝑔) exists, it is unique.

roof. 𝐽 is continuous, being the sum of a linear term and a combination of continuous operators. Let now 𝑔1, 𝑔2 ∈ 𝑉 , 𝛼 ∈ [0, 1],
and 𝑔 = 𝛼𝑔1 + (1 − 𝛼)𝑔2. 𝐽 is convex. Indeed:

𝐽 (𝑔) = 𝛼

{

−1
𝑛

𝑛
∑

𝑖=1
𝑔1(𝐩𝑖, 𝑡𝑖)

}

+ (1 − 𝛼)

{

−1
𝑛

𝑛
∑

𝑖=1
𝑔2(𝐩𝑖, 𝑡𝑖)

}

+ ∫𝑇
𝑒𝛼𝑔1(𝐩,𝑡)𝑒(1−𝛼)𝑔2(𝐩,𝑡) 𝑑𝐩 𝑑𝑡

≤ 𝛼

{

−1
𝑛

𝑛
∑

𝑖=1
𝑔1(𝐩𝑖, 𝑡𝑖)

}

+ (1 − 𝛼)

{

−1
𝑛

𝑛
∑

𝑖=1
𝑔2(𝐩𝑖, 𝑡𝑖)

}

+ ∫

𝑇

0

{

∫
𝑒𝑔1(𝐩,𝑡) 𝑑𝐩

}𝛼{

∫
𝑒𝑔2(𝐩,𝑡) 𝑑𝐩

}1−𝛼

𝑑𝑡

≤ 𝛼𝐽 (𝑔1) + (1 − 𝛼)𝐽 (𝑔2) ∀𝛼 ∈ [0, 1] ∀𝑔1, 𝑔2 ∈ 𝑉 ,

here we first applied Hölder’s and then Young’s inequalities to the integral term. Strict convexity is a consequence of the following
bservations: Hölder’s inequality becomes an equality if and only if 𝑒𝑔1 and 𝑒𝑔2 are linearly dependent, that is ∃ 𝑐1, 𝑐2 ∈ R s.t. 𝑔1 =
2 + log(𝑐2∕𝑐1); Young’s inequality becomes an equality if and only if ∫ 𝑒

𝑔1(𝐩,𝑡) 𝑑𝐩 = ∫ 𝑒
𝑔2(𝐩,𝑡) 𝑑𝐩, meaning that strict convexity is

nly achieved when 𝑔1 = 𝑔2. □

Let 𝑉0 denote the null space of the differential operator with respect to the regularization term 𝑅(𝑔;𝝀) in (2). Formally,
0 ∶= {𝑔 ∈ 𝑉 ∶ ‖𝑔‖𝑏 = 0}, where ‖ ⋅ ‖𝑏 is the norm induced by the inner product 𝑏(𝑔, 𝑔) in (A.2). Let 𝑉 ⟂

0 be the orthogonal
pace of 𝑉0 such that 𝑉 = 𝑉0 ⊕ 𝑉 ⟂

0 .

⟂

19

emma 2. 𝑉0 is a finite-dimensional space. Moreover, ‖ ⋅ ‖𝑏 is a norm in the space 𝑉0 and is equivalent to the 𝑉 –norm defined in (5).
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Proof. Let 𝑔0 ∈ 𝑉0, meaning that 𝑔0 is the solution of

⎧

⎪

⎨

⎪

⎩

𝑏(𝑔, 𝑔) = 0 in 𝑇

∇ 𝑔(𝐩, 𝑡) ⋅ 𝒏 = 0 on 𝜕 for 𝑡 ∈ [0, 𝑇 )
𝑔𝑡(𝐩, 0) = 0 for 𝐩 ∈ .

his is possible if and only if:
{

𝛥𝑔(𝐩, 𝑡) = 0 in  for 𝑡 ∈ [0, 𝑇 ]
∇ 𝑔(𝐩, 𝑡) ⋅ 𝒏 = 0 on 𝜕 for 𝑡 ∈ [0, 𝑇 ]

∧

{

𝑔𝑡𝑡(𝐩, 𝑡) = 0 in (0, 𝑇 ) for 𝐩 ∈ 
𝑔𝑡(𝐩, 0) = 𝑔𝑡(𝐩, 𝑇 ) = 0 for 𝐩 ∈ .

he only admissible solution is the constant function 𝑔0 = 𝑐0, where 𝑐0 ∈ R, defined over 𝑇 . This proves that 𝑉0 is of finite
dimension.

Before moving to the second requirement, we observe that

‖𝑔‖2𝑏 = ∫

𝑇

0
‖𝛥𝑔‖

2
𝐿2()

𝑑𝑡 + 𝑐 ∫

𝑇

0
‖𝑔𝑡𝑡‖

2
𝐿2()

𝑑𝑡 = ‖𝛥𝑔‖
2
𝐿2(0,𝑇 ;𝐿2())

+ 𝑐‖𝑔𝑡𝑡‖2𝐿2(0,𝑇 ;𝐿2())
,

where 𝑐 is the constant defined in (A.2). Moreover, the 𝑉 –norm can also be defined as follows, using an equivalent norm of the
standard 𝐻2()–norm (Maz’ya, 2013):

‖𝑔‖2𝑉 = ‖𝑔‖2
𝐿2(0,𝑇 ;𝐿2())

+ ‖∇𝑔‖
2
𝐿2(0,𝑇 ;𝐿2())

+ ‖𝛥𝑔‖
2
𝐿2(0,𝑇 ;𝐿2())

+ ‖𝑔𝑡‖
2
𝐿2(0,𝑇 ;𝐿2())

+ ‖𝑔𝑡𝑡‖
2
𝐿2(0,𝑇 ;𝐿2())

.

For the equivalence in 𝑉 ⟂
0 we need to show that there exist two real positive constants 𝑚 and 𝑀 such that:

𝑚‖�̃�‖2𝑏 ≤ ‖�̃�‖2𝑉 ≤𝑀‖�̃�‖2𝑏 , ∀�̃� ∈ 𝑉 ⟂
0 . (C.1)

We focus first on the right-hand side inequality, ‖�̃�‖2𝑉 ≤ 𝑀‖�̃�‖2𝑏 . Applying the provided analogies and noting that �̃� ∈ 𝑉 ⟂
0 satisfies

∫ 𝑇0
(

𝑔0, �̃�(𝐩, 𝑡)
)

𝐿2() 𝑑𝑡 = 0 ∀𝑔0 ∈ 𝑉0, we obtain:

‖�̃�‖2
𝐿2(0,𝑇 ;𝐿2())

≤ 𝐶2
𝑝‖∇𝑇 �̃�‖

2
𝐿2(0,𝑇 ;𝐿2())

= 𝐶2
𝑝‖∇�̃� + �̃�𝑡‖2𝐿2(0,𝑇 ;𝐿2())

≤ 2𝐶2
𝑝

(

‖∇�̃�‖
2
𝐿2(0,𝑇 ;𝐿2())

+ ‖�̃�𝑡‖
2
𝐿2(0,𝑇 ;𝐿2())

)

,

where, in the first inequality we used classical Poincaré–Sobolev inequality, see Maz’ya (2008, p. 40), and 𝐶𝑝 is the Poincaré constant.
Then,

‖�̃�‖2𝑉 ≤ (2𝐶2
𝑝 + 1)

(

‖∇�̃�‖
2
𝐿2(0,𝑇 ;𝐿2())

+ ‖�̃�𝑡‖
2
𝐿2(0,𝑇 ;𝐿2())

)

+ ‖𝛥�̃�‖
2
𝐿2(0,𝑇 ;𝐿2())

+ ‖�̃�𝑡𝑡‖
2
𝐿2(0,𝑇 ;𝐿2())

≤ �̃�
(

‖𝛥�̃�‖
2
𝐿2(0,𝑇 ;𝐿2())

+ ‖�̃�𝑡𝑡‖
2
𝐿2(0,𝑇 ;𝐿2())

)

≤𝑀‖�̃�‖2𝑏 ,

where 𝑀 = �̃� max{1, 1∕𝑐}, and the second inequality holds thanks to the homogeneous Neumann boundary conditions. The left-hand
side inequality in (C.1) is straightforward and is satisfied for 𝑚 = min{1, 1∕𝑐}. □

Appendix D. Proof of Theorem 2

In this section, our focus turns to the consistency of the minimizer for 𝐿(𝑔) as outlined in (1), operating within the functional
space 𝑉 as characterized in (4). The proof of Theorem 2 follows from Theorem 5.3 in Gu and Qiu (1993), subject to the fulfillment
of the essential hypotheses for its validity. To ensure the requirements we rely on the following two Lemmas.

Lemma 3. Let 𝑔0 be the true log-density and �̂� be the minimizer of 𝐿(𝑔) defined as in (1). Then

𝐷𝑠𝐾𝐿(𝑔0, �̂�) =2𝜆

[

∫𝑇
𝛥�̂�𝛥(𝑔0 − �̂�) 𝑑𝐩 𝑑𝑡 + 𝑐 ∫𝑇

𝜕2�̂�
𝜕𝑡2

𝜕2(𝑔0 − �̂�)
𝜕𝑡2

𝑑𝐩 𝑑𝑡
]

+ 1
𝑛

𝑛
∑

𝑖=1
(�̂� − 𝑔0)(𝑋𝑖) − E𝑔0 [�̂� − 𝑔0].

roof. Set

𝐴𝑔,ℎ(𝛼) ∶= −1
𝑛

𝑛
∑

𝑖=1
(𝑔 + 𝛼ℎ)(𝑋𝑖) + ∫𝑇

𝑒𝑔+𝛼ℎ 𝑑𝐩 𝑑𝑡 + 𝜆
[

∫𝑇

(

𝛥(𝑔 + 𝛼ℎ)
)2 𝑑𝐩 𝑑𝑡 + 𝑐 ∫𝑇

(

𝜕2(𝑔 + 𝛼ℎ)
𝜕𝑡2

)2
𝑑𝐩 𝑑𝑡

]

.

By differentiating 𝐴𝑔,ℎ with respect to 𝛼 and setting 𝛼 = 0, it results that

𝜕𝐴𝑔,ℎ
𝜕𝛼

(0) = −1
𝑛

𝑛
∑

𝑖=1
ℎ(𝑋𝑖) + E𝑔[ℎ] + 2𝜆

[

∫𝑇
𝛥𝑔𝛥ℎ 𝑑𝐩 𝑑𝑡 + 𝑐 ∫𝑇

𝜕2𝑔
𝜕𝑡2

𝜕2ℎ
𝜕𝑡2

𝑑𝐩 𝑑𝑡
]

.

Observe that the term above is null, since �̂� is the minimizer of (1). Finally, setting 𝑔 = �̂� and ℎ = �̂� − 𝑔0 we obtain the desired
20

esult. □
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Lemma 4. Under Assumption 1, there exists an infinite set of functions {𝜙𝑗 (𝐩)} and {𝜓𝑖(𝑡)} of space and time eigenfunctions such that,
y setting {𝜔𝑘(𝐩, 𝑡)} = {𝜙𝑗 (𝐩)𝜓𝑖(𝑡)}, then in 𝐿2(0, 𝑇 ;𝐿2()) it follows that:

Cov(𝜔𝑘, 𝜔𝑙) = 𝛿𝑘𝑙 and ∫𝑇

(

𝛥𝜔𝑘𝛥𝜔𝑙 + 𝑐
𝜕2𝜔𝑘
𝜕𝑡2

𝜕2𝜔𝑙
𝜕𝑡2

𝑑𝐩 𝑑𝑡
)

=
(

𝜂2𝑘 + 𝑐 𝜉
2
𝑘
)

𝛿𝑘𝑙 ,

here 𝛿𝑘𝑙 denotes the Kronecker delta function, 0 ≤ 𝜂𝑘 → 0, and 0 ≤ 𝜉𝑘 → 0. Moreover, as 𝑘 → ∞ the following asymptotic property holds:

𝜂2𝑘 + 𝑐 𝜉
2
𝑘 ∼ 𝑘2.

roof. The proof exploits the peculiar formulation chosen for the regularization term 𝑅(𝑔;𝝀), which accounts separately for the
egularity of the density function in spatial and temporal domains. This implies that we can consider the following two problems:
he one of finding the eigenvalues and eigenfunctions of the operator 𝛥 when time is fixed; and the one of finding the eigenvalues

and eigenfunctions of the operator 𝜕2∕𝜕𝑡2 when space is fixed, with homogeneous Neumann boundary conditions in space and time
respectively. That is:

{

𝛥𝜙(𝐩) = 𝜂𝜙(𝐩) in 
∇ 𝜙(𝐩) ⋅ 𝒏 = 0 on 𝜕

and
{

𝜓𝑡𝑡(𝑡) = 𝜉𝜓(𝑡) in (0, 𝑇 )
𝜓𝑡(0) = 𝜓𝑡(𝑇 ) = 0.

According to the related literature (Brezis, 2011; Chavel, 1984; Agmon, 2010), the eigenvalues 𝜂𝑘 and 𝜉𝑘 are infinitely many and
𝜂𝑘, 𝜉𝑘 → ∞ as 𝑘 increases. In addition, if 𝑇 is bounded and regular enough, then 𝜂𝑘 ∼ ||

4𝜋 𝑘 and 𝜉𝑘 ∼ 𝑘1∕2 as 𝑘 → ∞, leading the
desired asymptotic behavior. The corresponding eigenfunctions can be orthonormalized in 𝐿2() and 𝐿2(𝑇 ) respectively. Therefore:

∫𝑇
𝜔𝑘(𝐩, 𝑡)𝜔𝑙(𝐩, 𝑡) 𝑑𝐩 𝑑𝑡 = ∫

𝑇

0
𝜓𝑘(𝑡)𝜓𝑙(𝑡) 𝑑𝑡∫

𝜙𝑘(𝐩)𝜙𝑙(𝐩) 𝑑𝐩 = 𝛿𝑘𝑙

and

∫𝑇

(

𝛥𝜔𝑘𝛥𝜔𝑙 + �̃�
𝜕2𝜔𝑘
𝜕𝑡2

𝜕2𝜔𝑙
𝜕𝑡2

)

𝑑𝐩 𝑑𝑡 = ∫𝑇

[

(

𝜓𝑘𝛥𝜙𝑘
)(

𝜓𝑙𝛥𝜙𝑙
)

+ 𝑐

(

𝜙𝑘
𝜕2𝜓𝑘
𝜕𝑡2

)(

𝜙𝑙
𝜕2𝜓𝑙
𝜕𝑡2

)]

𝑑𝐩 𝑑𝑡 =
(

𝜂2𝑘 + 𝑐 𝜉
2
𝑘
)

𝛿𝑘𝑙 .

Finally, under Assumption 1, the standard 𝐿2(0, 𝑇 ;𝐿2()) scalar product can be substituted by the scalar product induced by the
true log-density 𝑔0, that is ∫𝑇 𝜔𝑘𝜔𝑙𝑒

𝑔0 𝑑𝐩 𝑑𝑡, obtaining that Cov(𝜔𝑘, 𝜔𝑙) = 𝛿𝑘𝑙. □

Appendix E. Data generation for simulations 1, 2 and 3

The true spatio-temporal density function used in Simulation 1 of Section 6.3 is a mixture of 4 time-dependent Gaussian
istributions over the square [−6, 6] × [−6, 6], obtained by introducing variability over time to the density adopted in Ferraccioli
t al. (2021). Mean and variances are given by

𝜇1 =
[

−2
−1.5 − 0.5𝑡

]

𝛴1 =
[

0.8 −0.2 − 0.4𝑡
−0.2 − 0.4𝑡 0.8

]

𝜇2 =
[

2 + 𝑡
−2 − 𝑡

]

𝛴2 =
[

1.5 − 0.5𝑡 0
0 1.5 − 0.5𝑡

]

𝜇3 =
[

−2
1.5 + 1.5𝑡

]

𝛴3 =
[

0.8 + 𝑡 0
0 0.8

]

𝜇4 =
[

2
2 − 𝑡

]

𝛴4 =
[

1 0.9 − 0.3𝑡
0.9 − 0.3𝑡 1

]

for 𝑡 ∈ [0, 1]. We set mixing weights as 𝜋(𝑡) ∝
[

𝜂𝑎𝑣𝑔(𝛴1|𝑡), 𝜂𝑎𝑣𝑔(𝛴2|𝑡), 𝜂𝑎𝑣𝑔(𝛴3|𝑡), 𝜂𝑎𝑣𝑔(𝛴4|𝑡)
]⊤, where 𝜂𝑎𝑣𝑔(𝐴) denotes the average

f the eigenvalues of the matrix 𝐴. Thanks to these mixing weights, a larger number of points is sampled from the distributions
resenting stronger anisotropy.

The true spatio-temporal density function used in Simulation 2 of Section 6.4 is a mixture of 5 time-dependent Kent distributions
ver the surface of the unit sphere, with scale parameters (concentration 𝜅𝑖 and ovalness 𝛽𝑖) given by

𝜅1 = 18 𝜅2 = 15 𝜅3 = 20 𝜅4 = 20 𝜅5 = 20

𝛽1 = 0 𝛽2 = 7 𝛽3 = 10 𝛽4 = 7 𝛽5 = 4

nd position parameters (mean directions 𝛾1,𝑖, major axis 𝛾2,𝑖 and minor axis 𝛾3,𝑖) given by

𝛾1,1 =
⎡

⎢

⎢

⎣

−0.5 + 𝑡
−0.5 + 𝑡
0.8 + 𝑡

⎤

⎥

⎥

⎦

𝛾2,1 =
⎡

⎢

⎢

⎣

−0.7789
0.6157
0.1188

⎤

⎥

⎥

⎦

𝛾3,1 =
⎡

⎢

⎢

⎣

−0.5696
−0.6154
−0.5449

⎤

⎥

⎥

⎦

𝛾1,2 =
⎡

⎢

⎢

−0.3
−0.3

⎤

⎥

⎥

𝛾2,2 =
⎡

⎢

⎢

−0.8651
0.3803

⎤

⎥

⎥

𝛾3,2 =
⎡

⎢

⎢

0.1483
−0.4289

⎤

⎥

⎥

21
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Fig. F.14. Simulation 4: intensity estimation of inhomogeneous Poisson Process. Boxplots of 𝐿2–norm of the error of the estimates of the intensity provided by
the proposed STDE-PDE and the considered competing method for intensity estimation, namely INLA and LGCP, over 30 simulation repetitions.

𝛾1,3 =
⎡

⎢

⎢

⎣

0.5
−0.5
0.8

⎤

⎥

⎥

⎦

𝛾2,3 =
⎡

⎢

⎢

⎣

−0.6665
−0.7432
−0.0584

⎤

⎥

⎥

⎦

𝛾3,3 =
⎡

⎢

⎢

⎣

0.5754
−0.4629
−0.6743

⎤

⎥

⎥

⎦

𝛾1,4 =
⎡

⎢

⎢

⎣

0.2
−1
0

⎤

⎥

⎥

⎦

𝛾2,4 =
⎡

⎢

⎢

⎣

0.6365
−0.0304
−0.7707

⎤

⎥

⎥

⎦

𝛾3,4 =
⎡

⎢

⎢

⎣

−0.7546
−0.2314
−0.6140

⎤

⎥

⎥

⎦

𝛾1,5 =
⎡

⎢

⎢

⎣

0.6 + 𝑡
−0.5 + 𝑡
0.3 + 𝑡

⎤

⎥

⎥

⎦

𝛾2,5 =
⎡

⎢

⎢

⎣

0.6365
−0.0304
−0.7707

⎤

⎥

⎥

⎦

𝛾3,5 =
⎡

⎢

⎢

⎣

0.7546
−0.2314
−0.6140

⎤

⎥

⎥

⎦

or 𝑡 ∈ [0, 1]. The mean directions 𝛾1,1,… , 𝛾1,5 are then normalized to lay on the unit sphere (while major and minor axes are already
ormalized in the definitions above). Finally, we use equal mixing weights, thus sampling approximately the same number of points
rom each distribution in the mixture.

The true spatio-temporal density function used in Simulation 3 of Section 6.5 is a mixture of 25 Kent distributions over the
urface of the unit sphere. All the components have the same time-dependent scale parameters: 𝜅 = 400 and 𝛽 = 125 + 100 |𝑡 − 0.5|.
osition parameters, instead, are constant over time, and their values are here omitted due to space constraints.

ppendix F. Simulation 4: intensity estimation of inhomogeneous Poisson process

In this section, we report the results obtained in a simulated intensity estimation problem, analogous to the density estimation
roblem described in Section 6.3. We here consider the proposed STDE-PDE for intensity estimation, as described in Section 2 and
etailed in Appendix B, and compare it to LGCP and INLA. All methods are run under the same specifications described in Section 6.3
or Simulation 1. Fig. F.14 displays the boxplots over 30 simulation repetitions of the err𝐿2 , computed as detailed in Section 6.2.
he other measures of error defined in Section 6.2 are metrics in the space of probability distributions and therefore are not suitable
or intensity functions. The ordering of methods remains unchanged, and we can draw the same considerations already discussed
or Simulation 1 in the density estimation setting.

ppendix G. Simulation 5: additional simulation on planar domain

In this section, we show an additional simulation on a planar domain. The true spatio-temporal density function is a mixture of
time-dependent Gaussian distributions over the square [−6, 6] × [−6, 6], with the following set of parameters:

𝜇1 =
[

−3.5 + 1.5𝑡
−3.5 + 1.5𝑡

]

𝛴1 = 3.0
[

0.8 0.4
0.4 0.8

]

𝜇2 =
[

1.7 + 𝑡
−2 − 1.4𝑡

]

𝛴2 = 3.0
[

1.5 − 0.5𝑡 −0.5𝑡
−0.5𝑡 1.5 − 0.5𝑡

]

𝜇3 =
[

−2 − 𝑡
]

𝛴3 = 1.0
[

1.6 −1.2𝑡
]

22
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Fig. G.15. Simulation 5, additional simulation on planar domain. View of the sample (first row), true density (second row), and mean estimates of STDE-PDE
(third row), INLA (fourth row), LGCP (fifth row), and STKDE (sixth row), over 30 simulation repetitions, at different time instances. All the plots have the same
color scale, with bluish colors corresponding to low-density values. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
23
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Fig. G.16. Simulation 5, additional simulation on planar domain. Boxplots of 𝐿2–norm of the error (left), Kullback–Leibler divergence (center), and Hellinger
istance (right) of the estimates provided by proposed STDE-PDE and the competing methods introduced in Section 6.1, namely INLA, LGCP, and STKDE, over
0 simulation repetitions.

𝜇4 =
[

2
2 − 1.5𝑡

]

𝛴4 = 1.5
[

1 0.9 − 0.3𝑡
0.9 − 0.3𝑡 1

]

or 𝑡 ∈ [0, 1]. We set mixing weights as 𝜋(𝑡) =
[

0.7 𝜂 (𝑎), 0.8 𝜂 (𝑎), 0.4 𝜂 (𝑎), 0.25 𝜂 (𝑏)
]⊤, where 𝑎 = 10𝑡 + 1, 𝑏 = 10 (0.5 + sign(0.5 −

)(𝑡− 0.5)) + 2, and 𝜂(⋅) denotes the Gamma density with shape parameter 7.5 and unit scale parameter. The top panels of Fig. G.15
how the true density: such density encompasses both high-frequency and low-frequency components, that may significantly overlap;
oreover, the density has significant mass close to the boundary of the domain.

Fig. G.15 shows the estimated fields and Fig. G.16 reports the errors, showing that the ordering of the methods remains the
ame as for Simulation 1. For the two methods that consider the shape of the domain, STDE-PDE and INLA, we observe some minor
dge-effects in the estimates. This is to be expected in this simulation setting, where the shape of the domain only influences the
bservability of the process, but not the process itself. This fact has a higher impact on the coverage of the confidence intervals.
NLA turns out to be over-conservative, with a coverage equal to one (median coverage = 1.000, IQR = 0.000), while STDE-PDE
ppears under-conservative (median coverage = 0.933, IQR = 0.133).

ppendix H. Simulation 6: point pattern on a non-spherical two-dimensional manifold

In this section, we include an additional simulation on a general two-dimensional Riemannian manifold. Since we could not
ind available implementations of competing methods capable to handle space–time point patterns over this type of domains,
e here consider as a benchmark method 𝑘-Nearest Neighbors Spatio-Temporal Density Estimation, referred to as KNNSTDE.
his model separably combines the estimates obtained in space and time (Mack and Rosenblatt, 1979). We implement KNNSTDE
sing the R package TDA (Fasy et al., 2024), which relies on Euclidean distances in R𝑑 (with 𝑑 = 2, 3) rather than on geodetic
istances. To facilitate this competing technique, we sample data according to a first-order separable density function, meaning
hat 𝑓 (𝐩, 𝑡) = 𝑓(𝐩)𝑓𝑇 (𝑡), and we define the spatial component based on Euclidean distances. More specifically, we consider
(𝐩) =

(

sin(𝐩𝑥) + cos(𝐩𝑦) + 𝐩𝑧 + 5.1590
)3, with 𝐩𝑥, 𝐩𝑦 and 𝐩𝑧 denoting the Cartesian coordinates of the location 𝐩, whereas 𝑓𝑇 (𝑡) is

Beta distribution over [0, 1] with shape parameters 𝛼 = 𝛽 = 2. Such components are then normalized to get a proper density on
he considered 𝑇 . Given the shape of 𝑓𝑇 (𝑡), the sample size evolves symmetrically in [0, 1], increasing until time 𝑡 = 0.50 and then
ecreasing again. We sample 10 000 data from the true density, and repeat the sampling 30 times. Fig. H.17 shows the data sampled
n the surface domain for the first simulation repetition.

We compute STDE-PDE estimates using a mesh of 964 nodes, and 6 time knots in [0, 1]. Smoothing parameters are selected by
10–fold cross-validation, as detailed in Section 4.3. Fig. H.18 compares the true density and the mean estimates, over 30 simulation
repetitions, at 𝑡 = 0.10. The presented method accurately estimates all the modes of the true density, also those falling close to
the boundary. This is also true at the beginning of the temporal interval, at 𝑡 = 0.10, even though STDE-PDE does not exploit the
first-order separability assumption, differently from KNNSTDE, and solely a fairly limited number of observations is available, as
appreciable from the left panel in Fig. H.17. Although this simulation has been engineered to facilitate the benchmark method
KNNSTDE, the proposed STDE-PDE outperforms the results achieved by KNNSTDE, as also illustrated by the error boxplots in
Fig. H.19.
24



Spatial Statistics 61 (2024) 100824B. Begu et al.
Fig. H.17. Simulation 6: point pattern on a non-spherical two-dimensional manifold. Front view of the sample at different time instances over the temporal
domain [0, 1].

Fig. H.18. Simulation 6: point pattern on a non-spherical two-dimensional manifold. True density (left), and mean estimates over 30 simulation repetitions
obtained by the proposed STDE-PDE (center) and KNNSTDE (right), at a time instant at the beginning of the temporal domain [0, 1]. All the plots have the same
color scale, with bluish colors corresponding to low density values. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. H.19. Simulation 6: point pattern on a non-spherical two-dimensional manifold. Boxplots of 𝐿2–norm of the error (left), Kullback–Leibler divergence (center)
and Hellinger distance (right), of the estimates provided by the proposed STDE-PDE, and the considered competing method KNNSTDE, over 30 simulation
repetitions.
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