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Abstract
We consider the linear evolution system

{
uttt + αutt + β�2ut + γ�2u = −η�θ

θt − κ�θ = η�utt + αη�ut

describing the dynamics of a thermoviscoelastic plate ofMGT typewith Fourier heat conduc-
tion. The focus is the analysis of the energy transfer between the two equations, particularly
when the first one stands in the supercritical regime, and exhibits an antidissipative character.
The principal actor becomes then the coupling constant η, ruling the competition between the
Fourier damping and the MGT antidamping. Indeed, we will show that a sufficiently large
η is always able to stabilize the system exponentially fast. One of the features of this model
is the presence of the bilaplacian in the first equation. With respect to the analogous model
with the Laplacian, this introduces some differences in the mathematical approach. From the
one side, the energy estimate method does not seem to apply in a direct way, from the other
side, there is a gain of regularity allowing to rely on analytic semigroup techniques.
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1 Introduction

1.1 TheModel System

Let 	 ⊂ R
2 be a bounded domain with smooth boundary ∂	. Given the parameters

α, β, γ, κ > 0 and η �= 0, we consider the linear evolution PDE system in the unknown
variables u, θ : 	 × R

+ → R{
uttt + αutt + β�2ut + γ�2u = −η�θ,

θt − κ�θ = η�utt + αη�ut ,
(1.1)

subject to the initial conditions

u(0) = u0, ut (0) = v0, utt (0) = w0, θ(0) = θ0,

where u0, v0, w0, θ0 : 	 → R are assigned initial data. Such a system has been introduced as
a model for the vibrations of a thermoviscoelastic plate of Moore-Gibson-Thompson type in
the recent paper [7], where we address the interested reader for a detailed derivation. Accord-
ingly, the variable u stands for the vertical displacement from equilibrium, while θ represents
the relative temperature, namely, the temperature variation from a fixed reference tempera-
ture. Concerning the structural parameters of the first equation of (1.1), by considering unit
mass density, we have the relations

α = 1/τ, β = k/τ, γ = k∗/τ,

where τ, k, k∗ represent the thermal relaxation, the thermal conductivity, and the conductivity
rate of thematerial, respectively. The second equation, ruling the evolution of θ , is the classical
heat equation, obtained by substituting the Fourier thermal law into the energy balance
identity, where κ is (proportional to) the thermal conductivity. Finally, the coupling parameter
η is responsible for the interplay between the two equations. The system is complemented
with the boundary conditions

u(t)|∂	 = �u(t)|∂	 = θ(t)|∂	 = 0,

expressing the fact that the ends of the plate are hinged and the boundary is kept at equilibrium
temperature for all times.

In absence of coupling, the first equation ruling the evolution of u typically appears in the
literature in the abstract form

uttt + αutt + βAut + γ Au = 0, (1.2)

where A is a strictly positive selfadjoint operator acting on some Hilbert space H (see, e.g.,
[19, 23]). Equation (1.2) is known as the Moore-Gibson-Thompson (MGT) equation, named
after the works [26, 29], although it has been originally introduced by Stokes in the mid-
nineteenth century [28] for the concrete choice A = −�. In particular, when A = −�,
the MGT equation (1.2) is used in the description of acoustic wave propagation in viscous
thermally relaxing fluids. In this context,α, β, γ represent the natural damping coefficient, the
sound diffusivity, and the square of the sound speed, respectively. Other physical applications
arise in viscoelasticity, thermal conduction, lithotripsy and high intensity focused ultrasounds
(see [8, 13, 15, 18]).

From themathematical viewpoint, system (1.1) falls into the class of hyperbolic-parabolic
systems, whose prototype examples are the wave-heat and the plate-heat systems (see, e.g.,
[10, 16, 17] and references therein). Nonetheless, models of this kind usually consist of a
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conservative equation coupled with a dissipative one. On the contrary, system (1.1) exhibits
a peculiar characteristic, due to the fact that the stability properties of the MGT equation are
strongly influenced by the sign of the so-called stability number

μ = γ − αβ.

Indeed, in the subcritical case μ < 0 the MGT equation (1.2) is exponentially stable, in
the critical case μ = 0 it has a conservative-type dynamics, while in the supercritical case
μ > 0 there exist trajectories blowing up exponentially fast [11, 19, 23]. In particular, the
MGT equation either decays exponentially to zero, or it does not decay at all, similarly to
what happens in the finite-dimensional case. It is important to point out that these stability
properties are independent of the particular choice of the operator A appearing in (1.2). More
results concerning the well-posedness and the stability of the solutions to the MGT equation,
both in the linear and the nonlinear setting, can be found for instance in [3–5, 20–22, 24].

In the light of the discussion above, a natural question to address is how the dissipation
produced by the heat equation influences the asymptotic dynamics of the system. In the
subcritical case, both equations in (1.1) are dissipative (actually, exponentially stable) and
good stabilization properties are expected. This insight has been confirmed in [7], where it is
shown that if μ < 0 then the solution semigroup associated to (1.1) is exponentially stable
and analytic as well. This means that the coupling enables not only a transfer of dissipation
between the equations, but somehow also a transfer of regularity. The focus of the present
paper is to understand what happens in the critical and supercritical regimes, that is, when
μ ≥ 0. In this situation, system (1.1) consists of a conservative (if μ = 0) or antidissipative
(if μ > 0) equation coupled with a dissipative one, making the picture intriguing and highly
nontrivial.

1.2 The Results

First, we prove that system (1.1) generates a strongly continuous analytic semigroup S(t) =
etA for every value of the stability number μ, and we provide a complete characterization of
the spectrum σ(A) of its infinitesimal generator A, including a detailed analysis of the point
spectrum. Then we show that, when μ ≥ 0, the exponential stability of S(t) occurs if and
only if the coupling parameter η satisfies the constraint

η2 > x, (1.3)

where x is a certain constant depending only on α, β, γ, κ and 	. In particular, x turns
out to be zero when μ = 0, meaning that in the critical regime S(t) is always exponentially
stable. Condition (1.3) also tells that a sufficiently large (in modulus) coupling parameter is
able to stabilize the dynamics to zero exponentially fast, no matter how large the stability
number might be. This phenomenon highlights that the antidissipation in the MGT equation
is weaker, or more precisely of lower quality, than the dissipation in the heat equation. To
some extent, being the MGT equation hyperbolic and the heat equation parabolic, this might
not be that surprising. Nevertheless, the result is not obvious, for there are several examples of
hyperbolic-parabolic systems where exponential stability does not occur due to an inefficient
(or a too efficient) coupling mechanism (see, e.g., [2, 9, 16] and references therein). Our
achievements reveal that there is a good communication between the two equations in (1.1),
and the dissipation is shared is an effectiveway. Evenmore so, the coupling always plays a key
role. Indeed, in the last part of the paper we will show that x → ∞ when κ → ∞, meaning
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that the thermal dissipation alone is not able to drive the solutions to zero exponentially fast
without a significant help from the coupling parameter.

1.3 Methodology

In the very recent article [6], some of the authors of the present paper have obtained similar
results for the MGT-Fourier system{

uttt + αutt − β�ut − γ�u = −η�θ,

θt − κ�θ = η�utt + αη�ut ,
(1.4)

where the bilaplacian �2 in the MGT equation is replaced by−�. The techniques employed
in [6] are based on the use of appropriate energy-like functionals able to enucleate the
antidissipation produced by the MGT equation. Due to the higher regularity of the variable
u, such techniques do not seem to apply to (1.1). In order to overcome this difficulty, we
rely on the analyticity of S(t) and the fact that an analytic semigroup is exponentially stable
if (and only if) the spectrum of its infinitesimal generator is contained in the open left half
plane

C
− = {z ∈ C : Re (z) < 0}.

Thanks to the aforementioned characterization ofσ(A), andmaking use of theRouth-Hurwitz
stability criterion, we translate this abstract condition into a condition on the structural param-
eters of the system, which eventually leads to (1.3).

1.4 Plan of the Paper

In the next Sect. 2, after introducing the proper functional setting, we rewrite system (1.1)
in an abstract form, and we view it as an ordinary differential equation on a suitable Hilbert
space. In Sect. 3 we state the results on the generation of the analytic solution semigroup
(Theorem 3.1), and its exponential decay (Theorem 3.3). The rest of the paper is devoted
to the proof of Theorem 3.3. This requires a detailed knowledge of the spectrum of the
infinitesimal generator of the semigroup, discussed in Sect. 4, and some stability criteria,
presented in Sect. 5. The proof of the theorem is carried out in Sect. 6. Some remarks and
comments are given in the final Sect. 7. In the Appendix we state and prove some operator
theoretical results used in Sect. 4.

2 The Abstract Problem

2.1 Functional Setting

Let (H , 〈·, ·〉, ‖ · ‖) be a real Hilbert space, and let
A : D(A) ⊂ H → H

be a strictly positive selfadjoint unbounded linear operator, with inverse A−1 not necessarily
compact. Recall that, in this case, the spectrum σ(A) of A belongs to R

+ and its minimum
is strictly positive. For r ∈ R, we define the hierarchy of continuously nested Hilbert spaces
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(r will be always omitted whenever zero)

Hr = D(Ar/2), 〈u, v〉r = 〈Ar/2u, Ar/2v〉, ‖u‖r = ‖Ar/2u‖.
For r > 0 it is understood that H−r denotes the completion of the domain, so that H−r is
the dual space of Hr . The phase space of our problem is the product Hilbert space

H = H2 × H2 × H × H ,

endowed with the standard product norm

‖(u, v, w, θ)‖2H = ‖u‖22 + ‖v‖22 + ‖w‖2 + ‖θ‖2.

2.2 The System

In greater generality, we will consider the abstract system{
uttt + αutt + βA2ut + γ A2u = ηAθ,

θt + κAθ = −ηAutt − αηAut ,
(2.1)

in the unknown variables u, θ : R+ → H .

Remark 2.1 System (1.1) turns out to be the concrete realization of (2.1), corresponding to
the choice H = L2(	) and

A = −� with domain D(A) = H2(	) ∩ H1
0 (	).

Introducing the state vector u = (u, v, w, θ) ∈ H, we view (2.1) as the ordinary differ-
ential equation in H

d

dt
u = Au,

where A : D(A) ⊂ H → H is the linear operator acting as

A

⎛
⎜⎜⎝
u
v

w

θ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

v

w

−αw − A2(βv + γ u) + ηAθ

−κAθ − ηAw − αηAv

⎞
⎟⎟⎠ , (2.2)

with (dense) domain

D(A) =
⎧⎨
⎩(u, v, w, θ) ∈ H

∣∣ w ∈ H2

βv + γ u ∈ H4

θ ∈ H2

⎫⎬
⎭ .

3 The Semigroup and its Exponential Stability

Our first result concerns with the generation of the solution semigroup for system (2.1).

Theorem 3.1 The operator A is the infinitesimal generator of a strongly continuous analytic
semigroup S(t) : H → H.

The proof is based on the following well-known perturbation lemma (see, e.g., [25]).
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Lemma 3.2 Let A be the infinitesimal generator of an analytic semigroup. If B is a bounded
linear operator, then A + B is the infinitesimal generator of an analytic semigroup.

Proof of Theorem 3.1 The goal is to see (2.1) as a suitable perturbed system. To this end, we
make use of a “pumping” technique firstly devised in [11]. Choosing m ≥ 0 large enough
that

μm = γ − (α + m)β < 0,

and calling αm = α + m, we rewrite (2.1) as{
uttt + αmutt + βA2ut + γ A2u = ηAθ + mutt ,

θt + κAθ = −ηAutt − αmηAut + mηAut ,

or, equivalently, as

d

dt
u = (Am + B)u.

Here Am : D(A) ⊂ H → H is the operator defined as in (2.2) with α replaced by αm , while
B : H → H is the operator acting as

B

⎛
⎜⎜⎝
u
v

w

θ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0

mw

mηAv

⎞
⎟⎟⎠ .

Since μm < 0, from the results of [7] we know that Am is the infinitesimal generator of an
analytic semigroup on H. As for B, it is straightforward to see that for every u ∈ H

‖Bu‖2H = m2‖w‖2 + m2η2‖v‖22 ≤ m2(1 + η2)‖u‖2H.

Thus B is a bounded operator, and the conclusion follows from Lemma 3.2. ��
We now turn to the asymptotic properties of the semigroup. Recall that S(t) is said to be

exponentially stable if

‖S(t)‖L(H) ≤ Me−νt ,

for some constants ν > 0 and M ≥ 1, where the norm is meant in the space of bounded linear
operators onH. In the subcritical case μ < 0, it is known from [7] that S(t) is exponentially
stable for every choice of the coupling parameter η �= 0. The next theorem deals with the
more delicate situation where the MGT equation lives in its critical or supercritical regime.
Here, the size of the coupling parameter becomes crucial.

Theorem 3.3 Letμ ≥ 0. Then there exists a number x ≥ 0 independent of η, called stability
threshold, such that the analytic semigroup S(t) is exponentially stable if and only if

η2 > x.

Moreover, x = 0 if and only if μ = 0.

The remaining of the paper is devoted to the proof of Theorem 3.3, which requires some
tools from the stability theory of abstract semigroups, based in turn on the knowledge of the
spectrum of the infinitesimal generator.
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4 Spectral Analysis

The object of this section is the description of the spectrum σ(A) of the (complexification of
the) closed operator A. Besides having an interest by itself, this will be the main tool for the
stability analysis of the semigroup S(t).

4.1 The Spectrum

Weprovide the complete characterization of σ(A), in dependence of the structural parameters
of the model. To this end, for any z ∈ C, we define the polynomial in the variable λ ∈ σ(A),
hence λ > 0, as

pz(λ) = κ(βz + γ )λ3 + z(βz + γ + η2(z + α))λ2 + κz2(z + α)λ + z3(z + α).

The following theorem holds.

Theorem 4.1 The spectrum of A is the set

σ(A) =
⋃

λ∈σ(A)

{
z ∈ C : pz(λ) = 0

} ∪ { − γ
β

}
.

Proof Let z ∈ C be fixed. For an arbitrarily given û = (û, v̂, ŵ, θ̂ ) ∈ H, we look for the
unique solution u = (u, v, w, θ) ∈ D(A) to the resolvent equation

zu − Au = û.

In components, ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
zu − v = û,

zv − w = v̂,

zw + αw + A2 (βv + γ u) − ηAθ = ŵ,

zθ + κAθ + ηAw + αηAv = θ̂ .

(4.1)

The first two equations yield

v = zu − û,

w = z2u − zû − v̂.

Then, recalling that A is invertible and η �= 0, from the third equation we deduce that

θ = 1

η

[
(z3 + αz2)A−1u + (βz + γ )Au + φ

]
,

where

φ = −[
(z2 + αz)A−1û + (z + α)A−1v̂ + A−1ŵ + βAû

] ∈ H .

Plugging everything into the last equation of (4.1), and applying ηA to both sides, we finally
obtain

pz(A)u = ψ, (4.2)

having set

ψ = η2(z + α)A2û + η2A2v̂ + ηAθ̂ − zAφ − κA2φ. (4.3)
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Note that, for every possible choice of the structural parameters,

ψ ∈ H−4,

and in general this is the best regularity that ψ can attain. We now claim that if (4.2) has
a unique solution u ∈ H2, then we have the unique solution u ∈ D(A) to the resolvent
equation, and we conclude that z belongs to the resolvent set ofA. Indeed, once we find such
a u ∈ H2, then v and w belong to H2, and from the fourth equation of (4.1) we learn that
θ ∈ H2 as well. From the third equation we conclude that βv + γ u ∈ H4.

At this point, we apply the abstract results stated in the final Appendix, allowing us to
conclude that (4.2) has a unique solution u ∈ H2 for every ψ given by (4.3) if and only if

pz(λ) �= 0, for all λ ∈ σ(A) and βz + γ �= 0.

Indeed:
• If pz(λ) �= 0 and βz + γ �= 0, then the existence of the unique solution is guaranteed by
Theorem A.3 with r = 2 and s = −4.
• If pz(λ) = 0 for some λ ∈ σ(A), then we apply Theorem A.1 with r = 2 and s = −2.
This is possible since the set of vectors ψ of the form (4.3) covers the whole space H−2, and
this can be easily seen by choosing û = (0, 0, 0, θ̂ ).
• If βz + γ = 0, the polynomial pz(λ) becomes of order two at most. We may also assume
that it has no roots in σ(A), otherwise we fall into the previous case. The conclusion follows
now from Theorem A.2 with r = 2, s = −4 and ε = 2. This is possible since we can always
choose û in such a way that ψ belongs to H−4 but not to H−2.

In summary, we proved that z ∈ σ(A) if and only if one of the following situations (or
both) occur:

– pz(λ) = 0 for some λ ∈ σ(A);
– βz + γ = 0.

This finishes the proof. ��

4.2 The Eigenvalues

We now deepen our analysis, establishing a necessary and sufficient condition to be an
eigenvalue.

Theorem 4.2 Let z ∈ C be given.

(i) If μ �= 0, then z is an eigenvalue of A if and only if the equation pz(λ) = 0 is satisfied
for some eigenvalue λ of A.

(ii) If μ = 0, then point (i) continues to hold except for the special value z = − γ
β
, which

is always an eigenvalue of A.

Remark 4.3 A couple of comments before going to the proof. Since A is selfadjoint, we
know that σ(A) is the disjoint union of the continuous spectrum and the point spectrum (the
eigenvalues). In particular, if A has compact inverse, then the spectrum is purely punctual. In
that case, Theorem 4.2 merely says that the whole spectrum of A, except possibly the point
− γ

β
, is made by eigenvalues. Observe also that, in principle, for a given z there may exist

multiple values λ such that pz(λ) = 0. Hence, in order for z to be an eigenvalue ofA, at least
one of those λ, but not necessarily all of them, must be an eigenvalue of A.
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Proof A complex number z is an eigenvalue of A if and only if there is a nontrivial solution
to the equation

Au = zu.

As we saw in the proof of Theorem 4.1, this happens if and only if

pz(A)u = 0,

for some u �= 0. In other words,

z is an eigenvalue ofA ⇔ 0 is an eigenvalue ofpz(A).

Assume first that λ is an eigenvalue of A such that pz(λ) = 0. Then 0 is clearly an eigenvalue
of pz(A). Conversely, let 0 be an eigenvalue of pz(A). In which case, we claim that the
equation pz(λ) = 0 has at least a solution in σ(A). Indeed, if not, pz(λ) �= 0 on the closed
set σ(A). Since |pz(λ)| → ∞ as λ → ∞, we meet the hypotheses of Theorem A.3 in the
Appendix (with r = s = 2), and we deduce that the equation pz(A)u = 0 has only the trivial
solution, against the fact that 0 is an eigenvalue of pz(A). Therefore, unless pz is identically
zero, we fall exactly within the hypotheses of the abstract Theorem A.4 with ζ = 0 stated
in the Appendix. This allows us to conclude that at least one of the roots of pz(λ) is an
eigenvalue of A. In order to complete the proof, we note that when z �= − γ

β
then pz cannot

be the null polynomial. On the other hand, when z = − γ
β
, we have

pz(λ) = γμ

β4

[
β2η2λ2 − βγ κλ + γ 2],

telling that pz ≡ 0 whenever μ = 0. In that case, the value z = − γ
β
turns out to be always

an eigenvalue of A, even if σ(A) is purely continuous. ��
Observe that, when μ �= 0, for the special value z = − γ

β
the equation pz(λ) = 0 has two

(possibly complex) solutions, namely,

λ± = γ

2βη2

[
κ ±

√
κ2 − 4η2

]
.

Accordingly, the conclusion of Theorem 4.2 for the particular case z = − γ
β
can be rephrased

as follows:

(i) If μ = 0 then − γ
β
is an eigenvalue of A.

(ii) If μ �= 0 then − γ
β
is an eigenvalue of A if and only if at least one between λ+ and λ−

is an eigenvalue of A. This can never occur when κ < 2|η|.
Remark 4.4 Although it goes beyond our scopes, we mention that with a more skillful
exploitation of the functional calculus of A it is actually possible to show that if z ∈ σ(A)

then either z is an eigenvalue of A, or z belongs to the continuous spectrum of A. In other
words, the residual spectrum of A is empty.

5 Stability Criteria

5.1 Exponential Stability of Analytic Semigroups

Along this section, let S(t) be a generic analytic semigroup acting on a Hilbert (or Banach)
space H, with infinitesimal generator A.
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Definition 5.1 The growth bound of S(t) is defined as

ω = inf
{
ω ∈ R : ‖S(t)‖L(H) ≤ Meωt for some M = M(ω) ≥ 1

}
.

Accordingly, S(t) is exponentially stable if and only if ω < 0. Although for general
semigroups computing ω might not be an easy task, in the analytic case the spectrum
determined growth condition holds (see [14]), telling that

ω = σ,

where σ is the spectral bound of A, defined as

σ = sup
{
Re (z) : z ∈ σ(A)

}
.

Accordingly, the knowledge of the spectrum ofA completely determines the decay properties
of S(t), whereas in general one only has the inequality ω ≥ σ. Even more, the following
theorem holds.

Theorem 5.2 The analytic semigroup S(t) is exponentially stable (namely, σ < 0) if and
only if σ(A) ⊂ C

−.

Actually, the conclusions of the theorem remain valid for the wider class of eventually
norm continuous semigroups, containing in particular differentiable semigroups, compact
semigroups and, closer to our interests, analytic semigroups. Although Theorem 5.2 is a
well-known result, that can be found for instance in [1], for the reader’s convenience we
report the short proof.

Proof If σ < 0 it follows immediately that σ(A) ⊂ C
−. Assuming instead σ(A) ⊂ C

−,
we need to show that σ < 0. Clearly, σ ≤ 0. If σ = 0, there exists zn ∈ σ(A) such that
Re(zn) → 0. For analytic (and more generally for eventually norm continuous) semigroups,
the (closed) set

K = {z ∈ σ(A) : Re(z) ≥ −1}
is bounded, hence compact (see, e.g., [14]). Then, up to a subsequence, zn → z for some
z ∈ K , implying that Re(z) = 0. This is impossible since σ(A) ∩ iR = ∅. ��

Theorem 5.2 will be the key abstract result for proving our main Theorem 3.3.

5.2 The Routh-Hurwitz Criterion

Actually, another toolwill be needed, namely, a stability criterion for fourth order polynomials
apt to detect the sign of the real parts of its roots. Consider a monic fourth order complex
polynomial

p(z) = z4 + a3z
3 + a2z

2 + a1z + a0,

with strictly positive coefficients a j > 0. The polynomial has four roots zk , appearing in
conjugate pairs. In particular, zk �= 0 being a0 > 0. The well-known Routh-Hurwitz criterion
establishes a necessary and sufficient condition on the coefficients of p in order for the real
part of each root to be strictly negative. This is the content of the following result, suitably
formulated for our scopes.
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Theorem 5.3 Defining the discriminant of p as

� = a1a2a3 − a0a
2
3 − a21 ,

the following hold:

• � > 0 if and only if Re (zk) < 0 for all k.
• � = 0 if and only if two of the roots are of the form ±ir with r > 0. In which case, the

two remaining roots have strictly negative real part.
• � < 0 if and only if Re (zk) > 0 for some k.

Proof The first point is exactly the Routh-Hurwitz criterion. We address the reader to [30,
Theorem 2.4] for an elementary proof. To prove the second point, consider

p(ir) = r4 − ia3r
3 − a2r

2 + ia1r + a0.

It is apparent that ir , with r �= 0, is a root if and only if

a1 − a3r
2 = 0 and r4 − a2r

2 + a0 = 0,

which is satisfied if and only if

r2 = a1
a3

and � = 0.

Besides, the two remaining roots have negative real part, since p decomposes as

p(z) = (z2 + r2)(z2 + a3z + a0r
−2),

and the coefficients of the second quadratic equation are both strictly positive. The last point
is an immediate consequence of the previous ones. ��

6 Proof of Theorem 3.3

Due to the abstract Theorem 5.2, we only need to prove the existence of x ≥ 0 independent
of η such that

σ(A) ⊂ C
− ⇔ η2 > x,

with x = 0 if and only if μ = 0. To this end, for every fixed λ ∈ σ(A), we consider the
fourth order polynomial

pλ(z) = z4 + (α + κλ)z3 + (βλ2 + ακλ + η2λ2)z2 + (γ λ2 + βκλ3 + η2λ2α)z + γ κλ3,

which is nothing but the polynomial pz(λ) already encountered in Sect. 4, but this time
viewed as a function of the variable z. Thanks to Theorem 4.1, the condition σ(A) ⊂ C

− is
equivalent to the fact that, for every λ ∈ σ(A), all the roots of pλ have negative real part.

For any λ ∈ σ(A), hence λ > 0, the coefficients of pλ are all positive. Besides, in the
notation of Theorem 5.3, the discriminant �λ of pλ reads

�λ = λ3(ακλ2η4 + φλη
2 − ψλ),

having set

φλ = βκ2λ3 + γ κλ2 + αλ(ακ2 − μ) + α3κ,

ψλ = μλ(κ3λ + βκλ + ακ2 + γ ).
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Observe that if μ = 0 then φλ > 0. Moreover,

ψλ ≥ 0 and ψλ = 0 ⇔ μ = 0.

After Theorem 5.3, the four roots of pλ have negative real part if and only if �λ > 0, and
this happens if and only if

ακλ2η4 + φλη
2 − ψλ > 0. (6.1)

This is equivalent to ask

η2 > xλ,

where

xλ = 1

2ακλ2

(√
φ2

λ + 4ακλ2ψλ − φλ

)
is independent of η. In particular, xλ = 0 if μ = 0, while xλ > 0 if μ > 0. In the latter case,
letting λ → ∞ one has

xλ ∼ μ(κ2 + β)

κβλ
→ 0.

Since xλ is a continuous function of λ and σ(A) is a closed set, we infer that

x = sup
λ∈σ(A)

xλ

is (nonnegative and) finite. Actually, the supremum is attained for some λ ∈ σ(A). Note
also that x = 0 if and only if μ = 0.

In order to finish the proof, we observe that if η2 > x then (6.1) holds true for every
λ ∈ σ(A), and thus all the roots of pλ have negative real part. Conversely, if η2 ≤ x then
�λ ≤ 0, and Theorem 5.3 ensures that pλ admits at least one root with nonnegative real
part. ��

7 Final Remarks

7.1 Dependence of the Stability Threshold on the Thermal Conductivity

In the supercritical case, a natural question to ask iswhether or not a large thermal conductivity
κ pushes towards the dissipation of the system,which translates into having a smaller stability
threshold x. Contrary to what one might expect, this is not the case. Indeed, in the recent
work [6] it was shown that for the MGT-Fourier model (1.4) in the supercritical regime one
cannot hope to obtain stability by fixing η and arbitrarily increasing κ . The situation is the
same for our system (2.1).

Proposition 7.1 Let α, β, γ > 0 be fixed, and let μ > 0. Then

lim
κ→∞ x = ∞.

Proof For any fixed λ ∈ σ(A), we write xλ as in the proof of Theorem 3.3. Taking the limit
κ → ∞, we see at once that

xλ ∼ cλκ,
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where the constant cλ > 0 is given by

cλ = α2 + βλ2

2αλ

⎛
⎝
√
1 + 4αμλ2

(α2 + βλ2)2
− 1

⎞
⎠ .

Since x ≥ xλ for every λ ∈ σ(A), the conclusion follows. ��

7.2 The Optimal Decay Rate

Once we are in the case ω < 0, meaning that S(t) decays exponentially, it is interesting to
find the optimal decay rate of the semigroup for α, β, γ, κ fixed, by properly modulating the
coupling parameter η. Here the issue is to study ω as a function of η, finding (if it exists)
the value of η minimizing ω. The proof of Theorem 3.3 implicitly says that

ω → 0 when |η| → √
x

+.

The next result shows that the same is true in the limit |η| → ∞.

Proposition 7.2 Let α, β, γ, κ be fixed. Then

lim|η|→∞ ω = 0.

Proof All we need to show is that σ(A) contains an element zη whose real part tends to zero
as |η| → ∞. In the notation of the proof of Theorem 3.3, this amounts to finding zη ∈ C

such that

pλ(zη) = 0,

for some λ ∈ σ(A). Indeed, for any fixed λ ∈ σ(A), we have

pλ(0) = γ κλ3 > 0.

Besides, choosing

εη = γ κλ3 + 1

αλ2

1

η2
→ 0,

it is readily seen that

lim|η|→∞ pλ(−εη) = −1.

Thus, for |η| large enough, pλ(−εη) becomes negative, implying that pλ has a negative real
root zη ∈ (−εη, 0). ��

Roughly speaking, we cannot arbitrarily increase the decay rate of the semigroup by acting
on the coupling parameter solely. Indeed, Proposition 7.2 actually establishes the existence
of the best coupling constant

ηb = ηb(α, β, γ, κ)

minimizing the valueω. In fact, sinceω depends on the square of η, we have twominimizing
values of opposite sign and equal modulus.
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A further question is if this can be done instead by increasing the thermal conductivity κ .
More precisely, for α, β, γ fixed, we consider for every κ the minimum of ω, obtained by
suitably choosing η. Calling this number ωb(κ), we wonder if

lim
κ→∞ ωb(κ) = −∞.

Again, this is false: arguing exactly as in [6, Proposition 8.3], one can prove that

lim inf
κ→∞ ωb(κ) > −∞.

The details are left to the interested reader.

7.3 Longterm Behavior Below the Threshold

We conclude our analysis with some comments about the longterm behavior in the super-
critical regime when the coupling parameter η is not sufficiently large to comply with the
condition η2 > x. With reference to the proof of Theorem 3.3, let us distinguish two cases:
(i) If η2 < x, then the discriminant �λ of the polynomial pλ is strictly negative. By
Theorem 5.3, there is a root with strictly positive real part, implying that ω > 0, that is, the
operator norm of S(t) blows up exponentially.
(ii) In the limit situation η2 = x we have the equality �λ = 0, and Theorem 5.3 tells
that the spectrum of A contains at least two elements ±ir with r > 0, implying in turn that
ω = 0. Clearly, if one between ±ir is an eigenvalue of A, then S(t) cannot be stable. On
the contrary, if both ±ir are not eigenvalues, one might be tempted to apply a famous result
from [1], saying that if the infinitesimal generator A of a bounded semigroup S(t) = etA

has no eigenvalues on the imaginary axis and σ(A) ∩ iR is countable, then S(t) is stable.
However, we do not know in advance that S(t) is bounded, and removing the boundedness
assumption the result just cited is utterly false, even for analytic semigroups. An instructive
example in this direction is given below.

Example 7.3 We provide an example of an analytic semigroup S(t) = etA with the following
properties:

• S(t) is not bounded;
• the spectrum of A is contained in the left complex half plane, with a single element on

the imaginary axis which is not an eigenvalue of A.

To this end, let us consider the Hilbert space �2, and define the linear (diagonal-block)
operator

A =
(−1 1

0 −1

)
⊕
(− 1

2 1
0 − 1

2

)
⊕
(− 1

3 1
0 − 1

3

)
⊕ · · · .

The spectrum of A is given by {− 1
n } ∪ {0}, where all the numbers − 1

n are eigenvalues of
A, whereas 0 belongs to the continuous spectrum. Being a bounded operator, A generates a
uniformly continuous (hence analytic) semigroup S(t) on �2, given by the formula

S(t) = e−t
(
1 t
0 1

)
⊕ e− t

2

(
1 t
0 1

)
⊕ e− t

3

(
1 t
0 1

)
⊕ · · · .

Taking the vector

u =
(
0
1

)
⊕ 2− 3

4

(
0
1

)
⊕ 3− 3

4

(
0
1

)
⊕ · · · ∈ �2,
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we have

S(t)u = e−t
(
t
1

)
⊕ 2− 3

4 e− t
2

(
t
1

)
⊕ 3− 3

4 e− t
3

(
t
1

)
⊕ · · · .

Thus, for every t ≥ 0 and every n,

‖S(t)u‖�2 ≥ n− 3
4 te− t

n .

In particular, for t = n we get

‖S(n)u‖�2 ≥ n
1
4 e−1 → ∞,

as n → ∞. This proves that S(t) is not bounded.
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Appendix

The purpose of this final Appendix is to discuss some abstract operator theoretical results
involving a strictly positive selfadjoint operator A acting on a complex Hilbert space H . We
will use the same notation of Sect. 2.1. Although some of the theorems might be known, we
were not able to locate a precise reference. This is also the occasion to provide all the details
about some facts that have been used in previous papers without entering into the proofs (see,
e.g., [11, 12]) For the reader’s convenience, we first recall some general facts, referring to
the book [27] for a complete presentation.

I. Theoretical Background

A spectral measure on a closed set � ⊂ R is a map

E : B(�) → P(H)

defined on theBorel σ -algebraB(�)with values in the space P(H) of selfadjoint projections
in H , and satisfying the following properties:

• E(∅) = 0 and E(�) = I (the identity operator on H ).
• E(σ ) �= 0 for every nonempty open set σ ⊂ �.
• E(σ1 ∩ σ2) = E(σ1)E(σ2), for all σ1, σ2 ∈ B(�).
• If σ1 ∩ σ2 = ∅ then E(σ1 ∪ σ2) = E(σ1) + E(σ2).
• For every u, v ∈ H the set function μu,v : B(�) → C defined as

μu,v(σ ) = 〈E(σ )u, v〉
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is a complex measure.

The second property above tells that the spectral measure is supported on �; namely, if σ is
any closed set strictly contained in �, then E(σ ) �= I .

Notation When u = v, we write for short μu,u = μu . In this case, μu becomes a positive
Borel measure of total mass

μu(�) = ‖u‖2.
If u is a unit vector then μu is a probability measure.

Being A strictly positive, its spectrum σ(A) is a closed and nonempty subset ofR+. Then,
the Spectral Theorem for selfadjoint operators ensures the existence of a unique spectral
measure EA on σ(A), called the spectral measure of A, such that

〈Au, v〉 =
∫

σ(A)

λdμu,v(λ)

for every u ∈ D(A) and v ∈ H . Sometimes, the formula above is written for short as

A =
∫

σ(A)

λdEA(λ).

Remark A.1 An element λ ∈ σ(A) is an eigenvalue of A if and only if the spectral measure
EA has an atom in λ, that is, if EA({λ}) is not the null projection. In particular, every isolated
point of the spectrum of A is an eigenvalue.

For every measurable function p : σ(A) → C, it is possible to define via the functional
calculus the operator p(A) as

p(A) =
∫

σ(A)

p(λ)dEA(λ)

with domain

D(p(A)) =
{
u ∈ H :

∫
σ(A)

|p(λ)|2dμu(λ) < ∞
}
.

Such an operator turns out to be densely defined and closed. Besides, p(A) is a normal
operator, and is selfadjoint whenever p is real-valued. Further properties of p(A) read as
follows:

• For every u ∈ D(p(A)), one has the equality

‖p(A)u‖2 =
∫

σ(A)

|p(λ)|2dμu(λ).

• p(A)u ∈ Hr , with r ∈ R, if and only if

‖p(A)u‖2r =
∫

σ(A)

λr |p(λ)|2dμu(λ) < ∞.

• If q : σ(A) → C is another measurable function, then the equality

p(A)q(A) = q(A)p(A) = (p · q)(A) =
∫

σ(A)

p(λ)q(λ)dEA(λ)

holds in the common domain of the three operators.
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• If p is a continuous function, then p(A) is a bounded operator if and only if p is bounded.
In which case, the operator norm of p(A) is given by

‖p(A)‖L(H) = sup
λ∈σ(A)

|p(λ)|.

• If λ is an eigenvalue of A then p(λ) is an eigenvalue of p(A).

Remark A.2 The functional calculus presented above continues to hold with no substantial
changes for a normal operator B in place of A. The only notable difference is that σ(B) is a
subset of the complex plane.

II. Solvability of a Certain Functional Equation

Let p : σ(A) → C be a continuous function. For r , s ∈ R, we study the functional equation

p(A)u = ψ (A.1)

in the unknown u ∈ Hr , where ψ ∈ Hs is a given vector. To this end, let us consider the
zero set of p

Z = {
λ ∈ σ(A) : p(λ) = 0

}
.

The following results hold.

Theorem A.1 If Z is nonempty, then there exists ψ ∈ Hs for which (A.1) does not admit a
unique solution u ∈ Hr .

Proof Let Z be nonempty. If EA(Z) �= 0, then any nonzero vector u ∈ EA(Z)H is an
eigenvector of p(A) corresponding to the eigenvalue 0, and the claim follows immediately
by choosing ψ = 0. Conversely, let EA(Z) = 0. Selecting λ0 ∈ Z, consider the set

S = (λ0 − ε, λ0 + ε) ∩ σ(A),

for some ε > 0 small enough that |p(λ)| < 1 for all λ ∈ S. This is possible since p is
continuous and p(λ0) = 0. Then define

V0 = EA
(
S)H .

Notice thatV0 is a (nontrivial) subspace of Hs for every s.Wewill reach the desired conclusion
by constructing an element ψ ∈ V0 for which equation (A.1) does not admit a solution u in
any space Hr . To this end, for n positive integer, we introduce the sets

Sn = {
λ ∈ S : |p(λ)| ∈ [ 1

n+1 ,
1
n

)}
.

Since
⋃

n Sn = S \ Z, it follows that
EA

(⋃
n Sn

) = EA(S) �= 0.

Moreover, EA(Sn) �= 0 for infinitely many n: if not, by the continuity of p together with the
fact that EA(Z) = 0, we could exhibit a neighborhood of λ0 with null spectral measure. Up
to passing to a subsequence, we can certainly assume EA(Sn) �= 0 for every n. Hence, we
can select a sequence of unit vectors

ψn ∈ EA(Sn)H ⊂ V0,
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which turn out to be mutually orthogonal, for the sets Sn are disjoint. Finally, call

ψ =
∑
n

ψn

n
∈ V0.

For every Borel set σ ⊂ Sn we have

μψ(σ) = 〈EA(σ )ψ,ψ〉 = 1

n2
〈EA(σ )ψn, ψn〉 = 1

n2
μψn (σ ),

where μψn is a probability measure on Sn . If u ∈ Hr solves (A.1) for this particular ψ , then

u = q(A)ψ where q(λ) = 1

p(λ)
.

On the other hand, noting that by construction

inf
λ∈Sn

|q(λ)| ≥ n,

we get

‖q(A)ψ‖2r =
∫

σ(A)

λr |q(λ)|2dμψ(λ)

=
∑
n

1

n2

∫
Sn

λr |q(λ)|2dμψn (λ)

≥ inf
λ∈S

λr
∑
n

1

n2

∫
Sn

|q(λ)|2dμψn (λ),

and

1

n2

∫
Sn

|q(λ)|2dμψn (λ) ≥
∫
Sn
dμψn (λ) = 1, ∀n.

This tells that q(A)ψ cannot belong to Hr . ��
Theorem A.2 Let Z be empty, and let there exist ε > 0 such that

c = sup
λ∈σ(A)

λs+ε−r |p(λ)|2 < ∞.

If ψ does not belong to Hs+ε then (A.1) does not admit any solution u ∈ Hr .

Proof If u ∈ Hr is a solution to (A.1), then u = q(A)ψ where, as before, q(λ) = 1/p(λ).
Since Z = ∅, it follows that q is continuous on σ(A). Then,

‖ψ‖2s+ε =
∫

σ(A)

λs+εdμψ(λ) ≤ c

∫
σ(A)

λr |q(λ)|2dμψ(λ) = c‖q(A)ψ‖2r < ∞,

meaning that ψ ∈ Hs+ε. ��
Theorem A.3 Let Z be empty. If

m = inf
λ∈σ(A)

λs−r |p(λ)|2 > 0,

then (A.1) admits a unique solution u ∈ Hr , for any given ψ ∈ Hs.
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Proof Arguing as in the previous proof, all we need to show is that u = q(A)ψ ∈ Hr . But

‖q(A)ψ‖2r =
∫

σ(A)

λr |q(λ)|2dμψ(λ) ≤ 1

m

∫
σ(A)

λsdμψ(λ) = 1

m
‖ψ‖2s < ∞,

as desired. ��

III. An Eigenvalue Problem

We already mentioned that if λ is an eigenvalue of A then p(λ) is an eigenvalue of p(A).
Now we want to explore the converse.

Theorem A.4 Let p : σ(A) → C be a continuous function, and let ζ ∈ C be an eigenvalue
of p(A). If the equation

p(λ) = ζ

hasafinite number of solutionsλ1, . . . , λn, thenat least oneof the numbersλ j is an eigenvalue
of A.

The proof of the theorem is based on the following lemma.

Lemma A.5 Let f : σ(A) → R be a continuous function, and let 1 be an eigenvalue of f (A).
Assume in addition that

f (λ) ≤ 1, ∀λ ∈ σ(A),

and the equation

f (λ) = 1

has a finite number of solutions λ1, . . . , λn. Then at least one of the numbers λ j is an
eigenvalue of A.

Proof For some unit vector u ∈ H , we have the equality

f (A)u =
∫

σ(A)

f (λ)dEA(λ) u = u.

Accordingly,

〈 f (A)u, u〉 =
∫

σ(A)

f (λ)dμu(λ) = 1.

Since f (λ) ≤ 1, this yields the equality

f (λ) = 1,

almost everywhere with respect to μu , which is possible if and only if

μu = α1δλ1 + . . . + αnδλn ,

where δλ j is the Dirac delta centered at λ j and α1 + . . . + αn = 1. Therefore, at least one α j

must be nonzero, implying that λ j is an atom of EA, that is, an eigenvalue of A. ��
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Proof of Theorem A.4 Define the function h : C → R as

h(z) = 1 − |z − ζ |.
Then h is continuous and satisfies:

– h(ζ ) = 1; and
– h(z) < 1 for all z �= ζ .

Denoting then the normal operator p(A) by B, we deduce that 1 = h(ζ ) is an eigenvalue
of h(B). Again, h(B) is defined via the functional calculus, this time for normal operators.
Calling

f (λ) = h(p(λ)),

we conclude that 1 is an eigenvalue of f (A). Moreover, by construction,

f (λ) = h(p(λ)) ≤ 1, ∀λ ∈ σ(A),

and

f (λ) = 1 ⇔ λ ∈ {λ1, . . . , λn}.
A direct application of Lemma A.5 entails the desired result. ��
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