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Abstract: The application of intelligent systems for structural health monitoring is investigated. A
change in the nominal configuration can be related to a structural defect that has to be monitored
before it reaches a critical condition. Evidently, the ability to automatically detect changes in a
structure is a very attractive feature. When there is no prior knowledge on the system, deep learning
models could effectively detect a change and enhance the capability of determining the damage
location. However, the acquisition of data related to damaged structures is not always practical. In
this paper, two deep learning approaches, a physics-informed autoencoder and a simple data-driven
autoencoder, are applied to a test rig consisting of a small four-storey building model. Modifications
to the system are simulated by changing the stiffness of the springs. Both the machine learning
algorithms outperform the traditional approach based on an experimental modal analysis. More-
over, the increased potential of the physics-informed neural networks to detect and locate damage
is confirmed.

Keywords: structural health monitoring; fault detection; neural networks; convolutional autoencoder;
physics-informed neural network

1. Introduction

In recent years, there has been a growing interest in the structural health monitor-
ing (SHM) of civil structures such as buildings and bridges [1,2]. Indeed, structures are
subjected to many environmental factors that may affect their integrity. As examples,
(i) structural cracks can affect the stiffness of the structure; (ii) balancing weight losses can
affect its mass; and (iii) wear or looseness in joints can affect the boundary condition of the
structure’s dynamics and the connections within its different sections [3]. For this reason,
appropriate damage detection techniques are required. In this context, SHM includes
different monitoring strategies to detect structural damage by analyzing dynamic response
measurements, using feature extraction algorithms, and conducting statistical analyses [4].
As a general concept, damage can be defined as changes in the structure which affect its
current or future performance. Hence, in order to detect damage, a comparison between
two different states of the system is needed, where one of these two states should represent
the nominal condition, often corresponding to the undamaged state of the structure. Muc
introduced the application of the fuzzy approach combined with finite element numerical
computations for composite multilayered structures that can be applied in static, dynamic,
and fatigue failure problems [5]. In this field, visual inspections are often used to locate
damage, but they can be inaccurate, unreliable, and time-consuming [6]. On the contrary,
vibration-based techniques have been shown to provide a more reliable way of assessing
the health of a structure [7–10]. Indeed, vibrations are the strongest indicator of a structure’s
state when compared to other indicators [11]. In this context, due to the large amount
of data, deep learning is a powerful tool, as it can identify meaningful features in large
datasets using multiple processing layers [12]. In general, deep learning models for damage
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detection are based on supervised learning strategies, where data from both healthy and
damaged conditions of the structure are used as training sets to compute a function able to
map new data fed as input. However, the acquisition of the input exciting the structure
is often prohibitive, leading to a lack of robustness and a failure to guarantee the conver-
gence of the machine learning technique [13]. In addition, data from a damaged structure
are challenging to obtain. For this reason, to overcome these limitations, convolutional
autoencoders (CAEs) can be used to detect damage based only on raw vibrational data
of the healthy structure [14–16]. Jian et al. [17] showed that a one-dimensional CNN was
useful for detecting anomalies in bridge vibration signals. Do et al. [18] demonstrated
the capability of autoencoders based on a long short-term memory structure for detecting
anomaly vibrations in a Vertical Carousel Storage and Retrieval System for industrial
applications. Finotti et al. [19] assessed the structural condition of a viaduct by means of
a sparse autoencoder that learned important data features (to characterize the vibration
signals) and a support vector machine that classified the corresponding damage based on
the extracted features. Jimenez-Martinez et al. improved fatigue life prediction through
a combination of synthetic data and an ANN without requiring additional tests or new
parameters by overcoming the limit of Miner’s damage rule when taking into account
different factors such as temperature, environment, sequence loads, and mean stress [20].

Moreover, through the adoption of physics-informed neural networks (PINNs), it
is possible to restrict the space of admissible solutions by considering the physical laws
that govern the time-dependent dynamics of the structure [13,21,22]. Yucesan et al. [23]
introduced a novel approach to modeling the bearing fatigue life of wind turbines by
incorporating both physics-based and data-driven components into the model. The authors
proposed a recurrent neural network (RNN) that included a physics-informed layer to
account for known factors affecting the bearing fatigue and a data-driven layer to describe
more complex components, leading to a hybrid model that offered improved accuracy and
predictive capabilities for assessing bearing fatigue in real-world applications.

The primary motivation behind PINNs in anomaly detection is to overcome the high
cost of acquiring abnormal data in physical systems and the substantial amount of data
required for training NNs. With PINNs, the approach combines first principles (physical
laws and equations) with neural networks, thereby reducing the search space for network
parameters and lowering the need for vast amounts of training data. This compression of
the parameter space gives PINNs a significant advantage over traditional NN approaches,
making them an attractive option for anomaly detection and location [24].

This paper presents a comparison of the results obtained from an unsupervised deep
learning algorithm and a PINN for structural monitoring using only vibrational data ac-
quired in the healthy state as the training set. Both the NNs are tested on a four-storey
building using acceleration data from accelerometers placed on each floor. The aim of the
paper is to demonstrate the improved capability of PINNs in detecting damage over con-
ventional unsupervised neural networks. The paper is organized as follows: a description
of the structure and the mathematical model are presented in Section 2, the experimental
campaign is discussed in Section 3, the algorithm is described in Section 4, the results
are presented in Section 5, and the conclusion and future research trends are discussed in
the Section 6.

2. System Description

The system under study is a multi-storey building shown in Figure 1. Five aluminum
plates connected by steel laminas model the storeys and the pillars of the building, respec-
tively, and the physical data of the system are reported in Table 1 [25].
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(a) (b)

Figure 1. Real system and lumped mass model. (a) A photo of the real system. (b) Lumped mass
model of the system.

Table 1. Data of the system.

Storeys

Area 200× 200 mm2

Thickness 20 mm
Mass 2.26 kg

Pillars

Area 0.5× 50 mm2

Length 180 mm
Thickness Negligible

Mass Negligible

Mathematical Model

The mass of each storey is much larger than the mass of the laminas. For this reason,
the system can be modeled through a lumped mass approach, considering four degrees
of freedom. According to this, the dynamic model consists of a series of four masses
connected by springs, as shown in Figure 1b. In the following sections, a physics-informed
neural network (PINN) will be introduced. PINNs are characterized by a custom function
loss which takes into account information about the physical laws governing the system.
For this reason, the equations of motion describing the dynamics of the tested building
are derived as reported in Equation (1) and will be a crucial point for the training of the
implemented machine learning algorithm.

[M] ẍ + [C] ẋ + [K] x = 0 (1)

In particular, the column vector x represents the absolute horizontal displacement of
the storeys:

x = [x1 x2 x3 x4]
T (2)
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The mass matrix of the model is diagonal:

[M] =


m 0 0 0
0 m 0 0
0 0 m 0
0 0 0 m

 (3)

where m takes into account the mass of the accelerometers and the cables. In particular, this
additional contribution is evaluated as 0.1 kg per floor.

Even if in further studies the following assumption may be relaxed considering a
displacement and degree of rotation as the boundary conditions, in this paper, a clamped-
clamped beam is considered to compute the stiffness matrix [26].

In particular, being one of the extremities subjected to a transversal displacement,
the stiffness value of the equivalent spring can be derived through the force method,
as shown in Figure 2:

keq = 4 · k = 4 · 12EJ
L3 (4)

Figure 2. Force method for computing the equivalent stiffness parameter [25].

Moreover, the weight of each storey has an important effect on the transversal stiffness
and, for this reason, it must be taken into account [27]. To do this, the term T = m · g/L is
considered and the final stiffness matrix is reported as:

[K] =


2keq − 7T −keq + 3T 0 0
−keq + 3T 2keq − 5T −keq + 2T 0

0 −keq + 2T 2keq − 3T −keq + T
0 0 −keq + T keq − T

 (5)

Regarding damping, Rayleigh’s damping model has been considered. This model
allows us to express the damping matrix as a linear combination of the mass matrix and
the stiffness matrix [28], as follows:

[C] = α · [M] + β · [K] (6)

The coefficients α and β are computed through a least square minimization process.
Indeed, if modal coordinates are adopted, the mass, stiffness, and damping matrices are
diagonal matrices, and for each vibration mode i of a given set, it is possible to write:

ci = α ·mi + β · ki ⇒ ξi =
ci

2miωi
=

α

2ωi
+

βωi
2

(7)

where ξi and ωi are the modal damping and the natural frequency associated with the
vibration mode i, respectively. Moreover, in general, ξ and ωi are derived by analyzing the
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vibrational response of the structure via a modal analysis. The following over-determined
system of equations can be written:

1
2ω1

ω1
2

... ...
1

2ωi

ωi
2

 · [α
β

]
=

ξ1
...
ξi

 (8)

which is then resolved through a least square minimization process. In this paper, during the
experimental campaign, which will be further discussed in the following sections, the modal
damping, ξi, and the natural frequency, ωi, are derived for the four vibration modes of
the structure, and the resulting coefficients for Rayleigh’s damping model are reported in
Table 2.

It is important to underline the fact that the approach described in this paper can be
extended to more complex continuum structures such as bridges. In this case, the model
can be approximated by estimating and considering the modal parameters of the N first
vibration modes with an experimental modal analysis [26] or by developing a finite ele-
ment model.

Table 2. Results of the least square minimization process.

α 0.03
β 0.028

3. Experimental Campaign

To locate damage, both the conventional method and the machine learning algorithm
rely on detection of the changes in the behavior of the structure. In particular, the methods
studied in this paper use the differences in the vibration measurements between the
building in its nominal configuration, called “healthy”, and the “damaged” configuration
as an indicator of damage. For this reason, the experimental campaign conducted on the
tested structure aims to acquire raw data for both “healthy” and “damaged” structures.
The experimental setup for both the cases consists of:

• Four TE triaxial capacitive MEMS accelerometers, one per storey;
• A PCB piezotronics impact hammer;
• A National Instruments c-DAQ.

The structure is excited by an impact hammer and the transversal vibrations are
measured. In particular, as the impact hammer is used manually, it was checked that
the peak force for each acquisition ranged between 15 N and 70 N in order to excite the
structure with similar impact energies. For the “healthy” case, a set of 1000 records of
70 s each was recorded with a sampling frequency equal to 128 Hz. An example of the
responses, limited to the first 30 s, is shown in Figure 3.

As the vibration signals were acquired in Volts, they need to be pre-processed before
being analyzed. To do this, the sensitivity of both the accelerometer and the impact hammer
must be taken into account and the unit of measurement must be correctly restored (m/s2

and N, respectively). Moreover, it must be kept in mind that the measured data are digitized
signals and acquired over a finite window of time. For this reason, they may be affected
by issues such as (i) noise, (ii) aliasing (as they are sampled), and (iii) leakage, as the
signals are acquired for a finite window of time. For these reasons, an averaging procedure
was conducted and two different estimators, reported in Equation (9), are considered to
evaluate the inertance (acceleration/force) Frequency Response Function (FRF) for each
accelerometer.

H1( f ) =
X( f )
F( f )

=
GXF( f )
GFF( f )

H2( f ) =
X( f )
F( f )

=
GXX( f )
GFX( f )

(9)



Appl. Sci. 2023, 13, 5683 6 of 16

where F and X are, respectively, the Fourier transforms of the input force and the output
vibration and GFF and GXX are the estimates of the auto spectra, while GXF and GFX are
the estimates of the cross spectra, which in general are evaluated as:

GXX( f ) =
1
N

N

∑
j=1

X∗j ( f ) · Xj( f )

GXY( f ) =
1
N

N

∑
j=1

X∗j ( f ) ·Yj( f )

(10)

where X and Y are two general sampled signals and N is their length. It could be inter-
esting to evaluate the cross and power spectra among the different floor accelerations.
This is represented in Figure 4, where it is possible to observe the natural frequencies of
the system and the ratio between the responses of the different floors corresponding to
these frequencies.

Figure 5 shows an example of FRFs for the case in which the structure was excited by
an input force acting on the 5th floor.

Once the FRFs were computed for each accelerometer, the natural frequencies and the
mode shapes were extrapolated by means of the Experimental Modal Analysis (EMA) [29,30].
In particular, the natural frequencies of the system are reported both for the numerical and the
experimental model in Table 3. The mode shapes, normalized with respect to their maximum
value, are reported in Figure 6.

(a) 2nd floor. (b) 3rd floor.

(c) 4th floor. (d) 5th floor.

Figure 3. Acceleration of each floor after an input was applied on the 5th floor.
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(a) 2nd accelerometer as a reference. (b) 3rd accelerometer as a reference.

(c) 4th accelerometer as a reference. (d) 5th accelerometer as a reference.

Figure 4. Cross and power spectra for each accelerometer and different references.

(a) 2nd floor. (b) 3rd floor.

(c) 4th floor. (d) 5th floor.

Figure 5. FRFs evaluated for each accelerometer, one for each floor, after an input was applied on the
5th floor.
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Table 3. Natural frequencies for both the numerical and the experimental models.

Mode Numerical Model (Hz) Experimental Model (Hz)

1 0.79 0.75
2 2.51 2.41
3 3.88 3.74
4 5.01 5.04

(a) 1st mode. (b) 2nd mode. (c) 3rd mode. (d) 4th mode.

Figure 6. Vibrational modes of the structure in the healthy scenario.

It is important to highlight that the natural frequencies and the mode shapes derived
for the “healthy” structure and previously presented will be used as a reference for the
vibration-based damage detection method, which, in turn, will be adopted as a reference to
compare the performance of the two machine learning algorithms.

When considering the damaged case, it should be kept in mind that typically internal
structural damage is not determined by a loss of material and hence to a related change in mass,
but by a change in the geometry or material properties which affects one or many elements in
the stiffness matrix [31]. For this reason, the “damaged” time histories are acquired, changing
only the stiffness value of the laminas. In particular, six different sets of laminas with same
sections but different lengths, as reported in Table 4, were used to decrease the stiffness of the
spring connecting two subsequent floors in the range of 10–60% of the nominal value.

In total, 240 time histories of 70 s each were acquired, with a sampling frequency of
128 Hz, resulting in 10 records per combination of type of the damage (type of lamina) and
damage location (four floors).

Table 4. Lengths of the set of laminas used to reproduce damage in the structure.

Damage Percentage Length

0% 180.0 mm
−10% 186.5 mm
−20% 194.0 mm
−30% 203.0 mm
−40% 213.5 mm
−50% 227.0 mm
−60% 244.0 mm

4. Network Architecture and Training

The basic idea behind this work is to compare the ability of detecting damage between
a physics-informed neural network and a purely data-driven neural network. Moreover,
the results obtained through a conventional vibration-based technique, based on the analy-
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sis of the changes in both the natural frequencies and the modes of vibration of the structure,
are taken as a reference to understand the advantages in using machine learning algorithms
compared to conventional methods.

4.1. Pre-Processing

As previously mentioned, for the healthy structure, 1000 time histories of 70 s were
recorded. In particular, the transversal accelerations were measured by the four accelerometers
with a sampling frequency of 128 Hz arranged in a four-column matrix. Then, the dataset must
be normalized [32]; to do this, the maximum absolute value for each channel was computed and
stored in a vector G, that will be useful in the following experiments. In this way, each sample
signal will range between−1 and 1. Finally, the dataset was divided into training, validation,
and test subsets composed of 800, 100, and 100 records, respectively.

4.2. Training and Test

The training set was used to train the autoenconder model shown in Figure 7. The
key difference between the training phase of the PINN-CAE and the DD-CAE lies in
the implementation of a custom function loss in the former, which is capable of taking
into account the mathematical model of the system. This custom function loss will be
addressed in the following subsections. Regarding the training of the CAE, 200 epochs
were considered, with MAE as a loss function. Moreover, a callback setting in the validation
loss was adopted. The MAE was then evaluated separately for each accelerometer to
evaluate the reconstruction error in the prediction of the test set by the previously trained
model. The maxima over all the test sets were taken as thresholds, to be considered for
detecting anomalies. Indeed, as already said, the MAE is expected to be greater than these
thresholds for time histories representing the damaged structure.

The models were trained on a Nvidia RTX 3080 GPU and the training times were different;
the time taken was 320 s and 1031 s for the DD-CAE and the PINN-CAE, respectively.

4.3. Autoencoder

Both the machine learning algorithms, that in the following will be respectively re-
ferred as PINN-CAE and DD-CAE, share the same neural network architecture (char-
acterized by a total number of 31,240 trainable parameters), based on a convolutional
autoencoder. Autoencoders are unsupervised learning algorithms which, after several
transformation and data compression series, aim to reconstruct the input at the output
with the least distortion. This technique is widely used to remove noise and for compress-
ing and visualizing high-dimensional data [33]. Convolutional neural networks (CNNs),
on which convolutional autoencoders (CAEs) are based, are a class of artificial neural
networks (ANNs) which make use of algorithms based on convolution operations and are
characterized by many advantages: (i) each neuron is no longer connected to all neurons
of the previous layer but to a smaller portion, reducing the parameters and speeding up
convergence and (ii) dimension reduction allows the removalf of trivial features while re-
taining useful information [34]. In this paper, the autoencoder was built using the package
TensorFlow and assembled with Keras API.

As reported in Figure 7, the model has 11 layers of the following types:

1. Separable convolutional 1D layer: This layer applies 1D-convolutional windows
separately to every channel. Then, it mixes the channel by point-wise multiplication.
Indeed, the application of convolutional layers is proven to be particularly efficient in
the analysis of time series [35].

2. MaxPooling layer: A limitation of convolutional layers is that they greatly increase the
number of parameters in the output tensors compared to the input ones; when many filters
are involved, the magnitude of the tensors grows exponentially. For this reason, a pooling
layer usually follows a convolutional one. Its purpose is to sub-sample the feature map by
retaining only the most attractive information extracted by the convolutional layer. There
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are many possible pooling functions, but in this work, the MaxPooling function is adopted,
which takes only the max value out of a predefined sub-matrix.

3. Dropout layer: A common problem in the development of an ANN is overfitting; this
occurs when a model learns from a particular random feature in the training data so
that it is able to perfectly manage that set, but these learned concepts may not apply
to new data, leading to poor performance. Dropout is a form of regularization, i.e., an
approach that makes the network more robust in the training phase by forcing the
network to learn general and recurrent patterns. During training, if a tensor passes
through a dropout layer, some of its values are randomly dropped according to the
dropout probability, i.e., the fraction of input’s elements whose value is set to zero.
During testing, no values become zero, but the output is scaled by a factor equal to
the dropout probability. Sometimes, the values are adjusted by the same fraction only
in training to leave the test and prediction phases untouched. Some guidelines to
manage the dropout layer can be found in [36].

4. Dense layer: This is the simplest and most straight-forward type of layer that can
be used. It is used to define the latent space. All the neurons in a dense layer are
connected to all the neurons in the previous layer. Every connection is characterized
by a weight, which multiplies the input value. The dense layer defines a bias b and
an activation function f . If x is the input tensor, z is the output tensor, and W is the
weights tensor, the mathematical equation of a dense layer is:

z = f (z̃) = f (Wx + b) (11)

where z̃ is called the weighted sum of the input.
5. Transposed convolutional 1D layer: This is a type of convolutional layer that can

be used to increase the spatial resolution of an input tensor while maintaining a
connectivity pattern that is compatible with some convolutional layer. It can be
thought of as an operation that takes an input tensor and produces an output tensor
with a larger spatial resolution. This operation is also called deconvolution.

The training of the autoencoder was performed taking into account the Mean Absolute
Error (MAE ) as a loss function. As can be seen in Equation (12), the MAE measures the
average magnitude of the absolute differences between the predicted values (outputs of
the autoencoder) yi and the inputs xi [37].

MAE =
∑N

i=1 |yi − xi|
N

=
∑N

i=1 |ei|
N

(12)

where N in the number of samples of the signals. Moreover, at the end of the training phase, the
MAE is also taken as indicator for the detection of anomaly time histories for the tested structure.
Indeed, the MAE loss represents the error of reconstruction performed by the autoencoder. Thus,
it is likely to assume that the greater the error of reconstruction, the greater the damage [38].

Figure 7. Autoencoder model.
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4.4. Physics-Informed Neural Network

The training of deep neural networks requires the availability of large datasets, which
may not always be simple to acquire for pre-existing structures and are difficult to retrieve
in damage scenarios. Physics-informed neural networks are able to overcome this limitation.
Indeed, such networks can be trained with additional information from the physical laws
governing the dynamic behavior of the system taken into account, seamlessly integrating
data and mathematical models, which may not be even totally understood and may be
uncertain and highly dimensional [39,40]. For this reason, the built-in loss function is not
useful for training the PINN and a custom loss function is needed. In particular, this loss
function should take into account the physical laws governing the dynamic response of
the system, restricting the space of admissible solutions in the training of the autoencoder.
The scheme of the proposed custom loss is reported in Figure 8.

Figure 8. Custom loss scheme.

The signals outputs yi of the autoencoder are the reconstructed time histories of the
scaled vibration signals acquired for the healthy scenario, which in turn represent the
response of the system to the input force applied by the hammer. However, after a certain
amount of time, set equal to 10 s in this case, it is possible to assume that the transient
behavior due to the forced motion of the system completely dies out. Thus, after inverse
scaling through the vector G, containing the values of the scaler used during the pre-
processing phase, the remaining part of each reconstructed time history should satisfy,
with low error, the already presented set of ODEs (1). In particular, in order to be coherent
with the measurements units, the ODEs are divided by the mass of the correspondent floor;
in this way, the error functions are expressed in acceleration units. This is performed in
order to ensure that the physical loss has the same measurements units as that calculated
by the data-driven model. Moreover, it is likely that a greater error will result when
considering the time histories of the damaged scenario. For this reason, after proper
integration in the time domain [41,42], the following error functions were evaluated for
each time instant:

err1 =
m11 · ÿ1 + c11 · ẏ1 + c12 · ẏ2 + k11 · y1 + k12 · y2

m11

err2 =
m22 · ÿ2 + c21 · ẏ1 + c22 · ẏ2 + c23 · ẏ3 + k12 · y1 + k22 · y2 + k23 · y3

m22

err3 =
m33 · ÿ3 + c32 · ẏ2 + c33 · ẏ3 + c34 · ẏ4 + k32 · y2 + k33 · y3 + k34 · y4

m33

err4 =
m44 · ÿ4 + c43 · ẏ3 + c44 · ẏ3 + k43 · y3 + k44 · y4

m44

(13)
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where, as already said, yi, ẏi, and ÿi are the displacement, the velocity, and the acceleration
signals coming from the reconstruction of the autoencoder, respectively. Then, the absolute
of their mean values is used to constitute the physical portion of the custom function loss:

Lphysic =
∑N

i=1 |err1,i|
N

+
∑N

i=1 |err2,i|
N

+
∑N

i=1 |err3,i|
N

+
∑N

i=1 |err4,i|
N

(14)

where N is the number of time steps for which the error functions are evaluated.
In order to demonstrate the validity of the information coming from the physical

portion of the loss, the error functions, reported in Equation (13), are evaluated for both a
“healthy” and a “damaged” time history, in which the defect, identified by a reduction in
stiffness of 20% of the nominal value, is located in the third floor. The results, shown in
Figure 9, confirm the equation of motion of the system as a valuable option for the physics
portion of the custom loss. Indeed, it is clear that for a generic anomaly time history, the
error of the equations of motion is larger with respect to the healthy one, especially for the
degrees of freedom near to the damage location.

On the other hand, for the data-driven portion of the custom loss, again, the MAE loss
function is taken into account.

At the end, the obtained custom loss function is:

L = K ·
[

∑n
i=1 |err1,i|

n
+

∑n
i=1 |err2,i|

n
+

∑n
i=1 |err3,i|

n
+

∑n
i=1 |err4,i|

n

]
+ MAE

(15)

where K is a constant to express the physical part of the custom loss in an adimensional
form as the data-driven portion of the loss function.

(a) err1. (b) err2.

(c) err3. (d) err4.

Figure 9. Error functions evaluated for two different scenarios: “healthy” and “damaged”.
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5. Results

The 240 damaged records were firstly analyzed via an EMA. However, the natural
frequencies and mode shapes were found to slightly change for a damage of 10%, as shown
in Figure 10.

(a) 1st mode. (b) 2nd mode. (c) 3rd mode. (d) 4th mode.

Figure 10. Vibration modes of the structure for a 10% reduction in the stiffness value and for different
positions of damage.

For damage of a higher degree, reported in Figure 11, the differences are appreciable,
but the detection of the damage position is not straightforward, confirming the main issue
described in the literature concerning the fact that vibration signals are a strong indicator
of damage, but it is difficult to retrieve its location in this way [43].

(a) 1st mode. (b) 2nd mode. (c) 3rd mode. (d) 4th mode.

Figure 11. Vibration modes of the structure for a 50% reduction in the stiffness value and for different
positions of damage.

With this in mind, the anomalies set were pre-processed with the same scaler obtained
for the training set and then fed to both the PINN-CAE and the DD-CAE. The MAE
errors for each of the anomalies recorded and for each channel (accelerometer) were then
compared to the previously found MAE test thresholds. Each record with a loss higher than
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the threshold is classified as an anomaly. Both the architectures detect all the time histories
considered in the anomaly set as anomalies, confirming the expected higher precision of
data-driven algorithms in detecting structural damage compared to conventional methods.
In particular, the difference is extremely significant for the cases in which the extent of
damage is not so high. Moreover, for each detected anomaly, the channel (corresponding to
the accelerometer position, i.e., the floor) with the maximum value of the MAE loss was
selected as the predicted damage position and compared with the real and known one.
Then, for each damage extent in the range of 10–60% taken as a reference, the following
accuracy indicator was evaluated for both the considered algorithms:

A =
nd

ntot
× 100 (16)

where nd is the number of anomalies with damage extent equal or higher than the reference
value and whose position is correctly detected by the model, while ntot is the total number
of anomalies with a damage extent equal to or higher than the reference value. The results
are reported in Table 5.

Table 5. Anomaly detection rates as a function of the damage percentage for both PINN-CAE
and DD-CAE.

Damage Accuracy A
Percentage DD-CAE PINN-CAE

−10% 33.19% 79.43%
−20% 40.20% 82.81%
−30% 52.24% 87.22%
−40% 65.11% 92.03%
−50% 84.61% 100%
−60% 100% 100%

It is possible to conclude that the PINN outperforms the results obtained with the
purely data-driven approach, as expected.

6. Conclusions

The accuracy in detecting structural damage is investigated for two different machine
learning algorithms: a physics-informed convolutional autoencoder (PINN-CAE) and a
purely data-driven convolutional autoencoder (DD-CAE). In particular, raw data from
experiments on a four-storey building were fed to the autoencoder, whose structure was the
same in both strategies. The MAE error of reconstruction is taken as an indicator to detect
anomalous records. Both the PINN-CAE and the DD-CAE outperformed conventional
vibration-based methods in the capability of detecting damage and finding its location.
Indeed, they are able to detect all the anomalous time histories, showing good precision
in the detection of structural change locations. The physics-informed network was more
precise in the detection of the damage location compared to the data-driven one, with a
significant increase in the accuracy for a lower damage extent. However, as shown in
Table 5, it is possible to observe that the higher the damage percentage, the higher the
possibility of correctly locating the damage. With the hybrid approach, it is possible to
continuously monitor the structure and to identify accumulated damage, i.e., damage that
increases over time, in advance and with a better accuracy with respect to traditional NNs.
This confirms the high potential of combining a data-driven architecture and information
about the physical characteristics of the system under study. Future developments of this
work will include changes in the mass of the system and the use of the model together
with NNs for detecting anomalies in more complex structures, such as bridges or viaducts.
In particular, when dealing with these types of structures, an analytical representation of
the system is difficult to construct, but a numerical model based on simulation methods
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(such as finite element methods) can be adopted. The extension of this work by considering
a numerical model of a more complex system will be developed in the future by the authors.
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