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Abstract

Traditional path planning methods, such as sampling-based and iterative approaches, allow for optimal path’s computation
in complex environments. Nonetheless, environment exploration is subject to rules which can be obtained by domain experts
and could be used for improving the search. The present work aims at integrating inductive techniques that generate path
candidates with deductive techniques that choose the preferred ones. In particular, an inductive learning model is trained
with expert demonstrations and with rules translated into a reward function, while logic programming is used to choose the
starting point according to some domain expert’s suggestions. We discuss, as use case, 3-D path planning for neurosurgical
steerable needles. Results show that the proposed method computes optimal paths in terms of obstacle clearance and kinematic
constraints compliance, and is able to outperform state-of-the-art approaches in terms of safety distance-from-obstacles respect,
smoothness, and computational time.

Keywords Path planning - Artificial intelligence - Machine learning - Surgical robotics - Steerable needles - Answer set
programming

1 Introduction

Moving agents, such as mobile robots, are increasingly being
employed in many complex environments. Starting from
the initial applications of mobile robots to manufacturing
industries, a variety of robotic systems have been devel-
oped, and they have shown their effectiveness in performing
different kinds of tasks, including smart home environ-
ments (Khawaldeh et al., 2016), airports (Zhou et al., 2016),
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shopping malls (Kanda et al., 2009), and manufacturing lab-
oratories (Chen et al., 2014).

Nowadays, path planning is fruitfully employed in many
fields, such as entertainment, medicine, mining, rescuing,
education, military, space, agriculture, robots for elderly
persons, automated guided vehicles, for transferring goods
in a factory, unmanned bomb disposal robots and planet
exploration robots (Robert et al., 2008). Apart from robotic
applications, path planning finds use in planning the routes
on circuit boards, obtaining the hierarchical routes for net-
works in wireless mobile communication, planning the path
for digital artists in computer graphics, reconnaissance robots
and in computational biology to understand probable protein
folding paths (Raja & Pugazhenthi, 2012).

Inrecent years, path planning has been also widely used in
surgery (Adhami & Coste-Maniere, 2003). In current clinical
practice, a growing number of minimally invasive procedures
rely on the use of needles, such as biopsies, brachitherapy
for radioactive seeds placement, abscess drainage and drug
infusion (Shietal., 2016). With respect to standard open surg-
eries, the small diameter of the needle allows to access the
targeted anatomy inflicting limited tissue damage and thus
reducing the risks for the patient and speed up the recovery.
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Over the last two decades, different research groups have
focused their efforts on the development of needles able
to autonomously steer inside the tissue. These needles can
perform curvilinear trajectories planned to maximize the dis-
tance from sensitive anatomical structures to be avoided and
reach targets otherwise inaccessible via rectilinear insertion
paths (Wang et al., 2011). Accurate placement of the needle
tip inside tissue is challenging, especially when the target
moves and anatomical obstacles must be avoided. Moreover,
the complex kinematics of steerable needles (Favaro et al.,
2020) make the path planning challenging requiring the aid of
automatic or semi-automatic path planning solutions. In our
opinion, one of the most challenging path planning scenar-
ios in surgery is neurosurgery. The complexity of planning
within the brain is closely linked to the crowded anatomi-
cal structures and the relative delicacy of tissues that cannot
be damaged without the risk of causing permanent damage
or even death. In addition, due to the consistency of brain
matter, there are few catheters capable of tracing curvilin-
ear trajectories and those that exist have a minimal degree of
curvature (Audette et al., 2020). These reasons significantly
reduce the number of feasible trajectories that guarantee a
high level of safety. According to this, the planning space in
the brain is considered a complex environment. Furthermore,
in the majority of cases, reaching the target, located deep in
the brain, is very difficult due to the kinematic limitations of
the catheter and the various anatomical regions to be avoided.
Therefore, during the planning phase, several poses on the
surface of the skull have to be evaluated to guarantee the best
entry pose for reaching the target.

In general, moving agents in a static or dynamic known
environment means finding one or more admissible paths
from a starting configuration to a target configuration, avoid-
ing obstacles and some movement possibilities, identified
as kinematic constraints. The path planning problem is part
of a larger class of “scheduling” and “routing problems”,
and it is known to be non-deterministic polynomial-time
hard and complete (Obitko, 1998). In general, path planning
algorithms performance can be evaluated over two main char-
acteristics: “completeness” and “optimality”. An algorithm
is said to be complete if it can find a solution in a definite
interval of time, provided that the solution exists, or report a
failure otherwise. An algorithm is optimal if no other algo-
rithm uses less time or space complexity. Given a path, path
length is defined as the total distance covered by the mov-
ing agent from the starting position to the target, path safety
represents the distance from the path to the nearest obstacle,
and computation time is the time required to compute a path.

In this work, we propose a framework that couples induc-
tive and deductive techniques in order to improve path
planning performances. In particular, an inductive learn-
ing model, relying on demonstrations performed by expert
operators, is in charge of generating a set of paths as can-
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didate solutions; a deductive reasoning module selects then
the “best” starting point, according to explicit knowledge
modeled over domain experts suggestions. Interestingly, this
kind of coupling allows us to transfer to the automated path
planner some of the knowledge available at human level:
the inductive learning module “catches” via demonstrations
expert capabilities that are hard to explicitly express (e.g.,
visual-spatial, bodily-kinesthetic), while the deductive mod-
ule formally encodes what has been elaborated by the experts
upon long-lasting practice (e.g., domain knowledge, best
practices). Furthermore, the deductive technique based on a
declarative formalism grants several advantages: on the one
hand, it makes the knowledge easy to maintain and update;
on the other hand, it allows us to provide the final user with
a highly customizable tool with real time visual feedback, as
she can decide what is important for choosing the best path,
and to what extent, for each case at hand.

Eventually, we assess the viability of the proposed
approach in a use case, namely 3-D path planning for neu-
rosurgical steerable needle, proving that it stands or even
outperform state-of-the art solutions.

The remainder of the paper is structured as follows: in
Sect. 2 an overview of the path planning approaches proposed
in literature is presented. Section 3 outlines our path planning
method. Section 4 describes the experimental protocol used.
Section 5 presents the comparison between the presented
solution, the expert manual path definition and a state-of-
the-art path planning method for the specific neurosurgical
application. Discussion and Conclusions are reported in
Sect. 6.

2 Related works

Several approaches for path planning have been proposed in
literature: graph-based, sampling-based, optimisation-based,
heuristic-based, learning-based, reasoning-based methods.
These methods are described below, and summarised in
Table 1, according to optimality (i.e. an algorithm is known to
be and “optimal” since it can estimate the best path, accord-
ing to a certain criteria, given the specific resolution of the
approximation); completeness (i.e. an algorithms is known to
be “complete”, as it can determine whether a solution exists
in finite time); scalability (i.e. an algorithms is known to be
“scalable” as it can plan a path in areasonable time even if the
search space increase in size); computational time (i.e. the
execution time to obtain a solution); the ability to plan within
a complex environment (i.e. the environment is composed of
many obstacles with elaborate shapes, narrow passages and
tangled locations); and the ability to obtain a smooth path
(i.e. able to minimise the along the curvature).

Dijkstra algorithm (Dijkstra, 1959) and A* (Hart et
al., 1968) are graph-based methods based on the discrete
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Table 1 Related work (Color table online)

Method Optimal Complete Scalable Computation time Complex environment Smooth path
Graph-based v v X i X X
Sampling-based X X N | \ X
Optimisation-based v N X T N N
Heuristic-based X X N T X X
Learning-based X X N | v N
Reasoning-based v \ X | X X
ILDR N N N | N N

/=yes,x=no, {'=high, ||=low

approximation of the planning problem. Many methods
represent the environment as a square graph, or as an
irregular graph (Kallem et al., 2011), or a Voronoi dia-
gram (Garrido et al., 2006). A search is performed in order
to find an optimal path. These algorithms are known to be
“resolution-complete”, as the one proposed in Fuetal. (2021)
that provides more guarantees also in terms of efficiency,
and “resolution-optimal”. This approach may also be used
for identifying a restricted area where further optimisation
refinements can be performed (Huang et al., 2009). Notably,
even though graph-based methods are relatively simple to
implement, they require considerable computational time as
the environment size increases (Bellman, 1966) or becomes
complex. Tangent graph-based planning methods for a given
environment build a graph by selecting collision-free com-
mon tangents between the obstacles. These methods allow
more accurate path planning around curved obstacles without
errors caused by polygonal approximation; however, these
methods are not always suitable when considering the kine-
matics limitations of a moving agent and require additional
optimisation steps (Tovar et al., 2007) to obtain a smooth
path.

Sampling-based methods are based on a random sampling
of the working space, with the aim of significantly reduc-
ing the computational time. Rapidly-exploring Random Tree
(RRT) (LaValle & Kuftner Jr., 2000) is an exploration algo-
rithm for quick search in high-dimensional spaces, more
efficient than brute-force exploration of the state space.
In fact, this class of methods is scalable and capable of
planning in a complex environment. Its enhanced versions,
RRT* (Jordan & Perez, 2013; Favaro et al., 2018) and
bidirectional-RRT (Karaman & Frazzoli, 2011) are “proba-
bilistically complete” since the probability to find an existing
solution tends to one, as the number of samples goes to infin-
ity, and “asymptotically optimal”, as they can refine an initial
raw path by increasing the sampling density of the volume.

Paths computed with the approaches mentioned above can
be further refined using Bezier curves (Hoy et al., 2015),
splines (Lau et al., 2009), polynomial basis functions (Qu
et al., 2004), or with optimisation-based methods such as
evolutionary algorithms, simulated annealing, and particle

swarm (Besada-Portas et al., 2010) to obtain a smooth path.
These approaches have the advantage of working properly
in complex environments, as demonstrated in Favaro et al.
(2021); however, they require higher computational time than
the sampling-based methods.

Artificial Intellingence (AI) has been increasingly used
while dealing with path planning tasks (Erdos et al., 2013)
in the last decade. Heuristic-based techniques such as
greedy (Sniedovich, 2006) and genetic algorithm (Whitley,
1994) are two examples of Al approaches; they belong both
to the class of optimisation procedure. Greedy algorithms
for path planning are often used in combination with other
approaches. This kind of algorithms fails to find the opti-
mal solution, as it takes decisions merely on the basis of the
information available at each iteration step, without consid-
ering the overall picture. Genetic algorithms are also used
to generate solutions for path optimisation problems based
on operations like mutation, crossover and selection. For this
kind of algorithms, the most relevant limit is computational
time, as it significantly increases with the search space. Com-
pleteness depends on the heuristic function.

Learning-based methods are more flexible than graph-
based and sampling-based methods (Xu et al., 2008); indeed,
they allow one to directly include all expected constraints
and optimality criteria (obstacle clearance, kinematic con-
straints, minimum path length) in the optimisation process,
without the need for subsequent refinement steps, which
are time-consuming and may still not lead to the optimal
path (Segato et al., 2020). Mnih et al. (2015) and Lillicrap et
al. (2015) showed that Deep Reinforcement Learning (DRL)
is suitable for solving path planning problems, and several
studies (Mirowski et al., 2016, 2018; Tai et al., 2017) applied
DRL in path planning. Panov et al. (2018) made use of the
DRL approach to a grid path planning problem with promis-
ing results on small environments. Inverse Reinforcement
Learning, also known as an Inductive Learning (IL) tech-
nique (Michalski, 1983) that is a process where the learner
discovers rules by observing examples, has been applied
to a wide range of domains, including autonomous driv-
ing (Wulfmeier et al., 2016), robotic manipulation (Crooks et
al., 2016) and grid-world planning (Nguyen et al., 2017). In
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general learning-based method are not optimal or complete,
the computational time is not high, and it is not increasing
when the search space increase. They perform well in com-
plex environment even if it is dynamic because they don’t
need prior information about obstacles, as we demonstrated
in our previous work (Segato et al., 2021a).

Reasoning-based approaches for path planning have been
successfully designed, providing high-level methods like in
Lifschitz (2002). They are optimal and complete. Portillo
et al. (2011) successfully solved the path planning problem,
Gomez et al. (2021) and Erdem et al. (2015) encoded multi-
agents pathfindings and Erdem et al. (2012) used a deductive
reasoning-based approach to control and plan the actions
of multiple housekeeping robots whose aim is to tidy up a
house in the shortest possible time and to avoid collisions
between themselves and other obstacles. Reasoning-based
approaches have the capability of explicitly representing
domain knowledge; however, a path planning system for
complex environments based only on a deductive reasoning-
based method or similar approaches might be insufficient, as
current implementations cannot handle an excessive increase
of the search space and generalise on different environments
(Erdem et al., 2012).

3 Materials and methods

In this work, we propose a novel approach for path planning
in 3-D complex environments that combines IL and Deduc-
tive Reasoning (DR); we refer to it as the ILDR method. In
this way we can exploit all the advantages of the first tech-
nique (scalability, low computation time, capacity to plan in
a complex environment taking into account kinematic con-
straints of the robot providing a smooth path if necessary) and
the second technique (completeness, optimality, capability
of explicitly encoding medical knowledge, solid theoretical
bases coupled with a fully declarative nature) which allows
to produce formal specifications that are already executable
without the need for additional algorithmic coding, thus fos-
tering fast prototyping and easing the interaction with domain
experts. The novel aspects of this approach is that it not only
includes all the fundamental requirements of the path plan-
ning task, but take also into account the expert’s knowledge
to fully understand the decision-making process that guides
the optimal path selection.

To test viability and effectiveness of our approach, we have
chosen keyhole neurosurgery as a case study. In this context,
path planning is crucial when the pathological target (e.g.,
a tumor or left subthalamic nucleus (LSTN)) is located in
deep brain areas and cannot be safely reached by a flexible
probe. Thus, the optimization criteria involved in finding the
best path in this case scenario are: the maximisation of the
minimum and average distance with to obstacles, so as to
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avoid delicate structures in the brain and the minimisation of
the length and curvature of the path, so as to limit damage to
the brain matter.

3.1 Problem statement
3.1.1 Moving agent

Let us consider an “agent”, showed in Fig. l1a, moving in a
3D complex environment. The agent in this work is the tip of
a steerable needle, a new biomimetic flexible probe (PBN)
(Burrows et al., 2013), that can translate and rotate in space.
Its kinematic constraints are the “diameter”, d,,;, and the
“maximum curvature”, Ky 4.

3.1.2 Environment

The “3D complex environment” (Env) is showed in Fig. 1b.
The “configuration space”, C-space, is the set of all the pos-
sible ¢ “agent configurations”, Tygens,, With t € C-space.
The agent configurations are described by poses, denoted as
4 x 4 transformation matrices:

T - <Ragent, pagent,>
agent, = 0 1

where Pagenr, € R3 is the tip position and Rgens, € SO(3)
is the orientation relative to a world coordinate frame.

The “obstacle space”, C,psr € C-space, is the space occu-
pied by obstacles. The “free space” C .. € C-space, is the
set of possible configurations (Tagens = Trree € Cpree;
Tagenr # Tobst € Copsr). Moreover we can define: the “start
configurations” Ty4ry, € Crree with k € 1..N, the “target
space” Crarger € Cfree, that is a subspace of “free space”
which denotes where we want the needle to move to, and the
“target configuration” Trarger € Crarger-

3.1.3 Actions

The agent at every #-th time step can take an action a; =
(X¢, Y1, 2¢, @, Brs V1), moving towards the T;qy ¢/, Where x,y
and z are the axes and «, 8, y the angles around the axes
respectively. Actions moving the agent toward an T, or
outside the Env are considered inadmissible.

3.1.4 Path planning problem

The path planning problem, described in Fig. 2a, can
be formulated as follows: given the “start configurations”

Tsiary, & = 1 : N and a “target configuration”, T;qrger,
the task is to find a path, O = {Tugenry> Tagent;> -
Tugent,,,l}, Tagenl() = Tstartk, Tagem,,q = Ttargeta and
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Fig. 1 Agent and 3D complex environment. a (on the left) The mov-
ing agent kinematic constraints are the needle diameter (d,,;) and the
maximum curvature (k) that it can perform. At ¢th time step it can
translate (Pagens, ) and rotate (Rygens, ), performing an action a,, from its

Tagens, and Tygens, ., are connected by straight segments, as
an admissible sequence of “agent configurations”.

3.2 Inductive learning-based and deductive
reasoning-based (ILDR) architecture

The herein proposed approach to path planning in 3-D
complex environments, referred to as the ILDR method, is
summarized in Fig. 2b. The best path is obtained by means
of a learning approach that generates a set of path candi-
dates and an expert classifier that selects the “preferred” one,
according to a set of rules set by the domain expert.

3.2.1 Inductive learning model

As shown in Fig. 3, the inductive component iteratively trains
the moving agent to generate optimal paths, {Q,ﬁL}, thanks
to expert’s manual demonstrations, { QManualy,

3.2.2 Generator

With several successful applications in robot control, RL that
searches for optimal policies by interacting with the environ-
ment becomes one potential solution to learn how to plan a
path. Segato et al. (2020), based on DRL, demonstrated its
capability of directly learning the complicated policy of plan-
ning a path for steerable needle.

configuration, Tygeny, - b (on the right) The 3D complex environment
is represented by a brain structure, the obstacle space (Cyps; ), the free
space (C free), the agent configuration (Tggen;)

In the proposed approach, the agent interacts with the envi-
ronment, Env. At each time step (¢), the agent updates its
current state (Tqge,,) and selects an action (a,), according to
the policy (i), such that:

7T(Tagenh Env) = q ()

In response, the agent receives the next state (Tqgens, ) and
observations (explained in the next paragraph). The goal of
the agent is to determine an optimal policy m allowing it
to take actions inside the environment, maximizing, at each
t, the cumulative extrinsic reward r“* (T4gens, @). The latter
is associated to the real, full state of the system and to the
agent’s observations. In this way, the moving agent success-
fully learns to follow the best path in accomplishing its task
and its constraints of maximum curvature, k4, and diame-
ter, dyy;.
Observations The observations collected step-by-step by the
agent while exploring the environment are: the length (d;,;)
of the path, the minimum (d,,;,) and average (d,,g) distances
from the obstacle space {Cpps:}, the maximum curvature of
the path (cjnax), the target angle (@qrger) and the computa-
tional time (7).

For each path QG = {Tugenty> Tagentys - Tagenty_}
where Togeny = Tsrary k = 1: N, the observations are:

@ Springer
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Path Planning

Path Planning Method

[a] [b]

path Q= {Tagentor agentqs -+ Tagentn_l}

. V= B
0 manual ; - i 1
T, =T, i ; : i i '
agentn_,~ ‘target ) : demonstrations ; E. : e :
Hoode At ) L g ]
{QManual} __________________ o T
G\i ILDR method !
% start | | ¢ = te----------------- y
\e & target |1 kinematic

starty | Tconstraints

Ttarg et

% Tagenttﬂ

Tagentt

rules &
weights

Inductive learning-based approacl:iAg%}_6

Q;’CL={Q(’>LJ l J JQ{VL_l

=
-~
S
S

% Tagent1
6 ;

agenty™

starty

deductive reasoning-based approach e
=
(= =]
l QILDR

best path

RESRLLAEIEALLS

Fig. 2 Path planning problem and method. a Schematic representa-
tion of the 3D path planning problem elements, start configuration
(Tstaryy, = Tagenry) and target configuration (T;4rger = Tagens,_,)- The
task is to find the optimal path (Q = {Tugensy> Tagent;s --» Tagent,_i }-
At every tth time step Tygens, and Tygens,,, are connected by straight
segments, as an admissible sequence of “agent configurations”, taking
into account the “obstacle space”, C,ps;. b The proposed path planning
algorithm exploits two merged approaches: inductive learning-based

— Path length (d;,,): the distance, d, between any two posi-
tions can be calculated based on the Euclidean distance:

d(pugent;pugerlt,+1) = ”pagenl, - pagent,+| ” (2)
witht €1,....n,n =||Q% and
n—1
dtot = Z d(pagent, pagent,+1) (3)
t=0

— Minimum distance (d;,): given the the line segment

(Pagent, Pagent,.; ) and the m obstacles represented by the

Ro(l;st_,- pol{stj> with

j € 1,...,m, m = ||Cypss, the minimum distance of

the path from the nearest obstacle indicating the level of

safety is the minimum length between the line segments
and the closest obstacle, such that:

occupied configurations Tobs,j =

dmin = min{d(pagent,pagem,H s pobstj)} Vi, Vj (4)

— Average distance (dgyg) of the path from all the nearest
m obstacles: it is calculated over the whole length of the
path with respect to all the obstacles, such that:
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and deductive reasoning-based approaches. The expert indicates N start
configurations, (Ty;qr, With k € N), the target configuration, (T;qrger)
the rules and performs a set of demonstrations. While the agent acts and
observes in the virtual environment, the expert’s demonstrations and the
agent’s observations feed the inductive approach that generates a set of
optimal trajectories {Q,{L} witk k equal to the N start configurations.
The rules and the kinematic constraints feed the deductive approach
that extracts the best path Q'LPR,

1 n m
davg = —— d(Pagent,Pagent, ;1 Pobst;) Vi, ¥
avg n-m tzlzl Pagent; Pagent, 1> Pobs i
=1 j=

(&)

— Maximum curvature (c;,qy) of the path: curvature ¢ of
a path in a 3-D space is the inverse of the radius r,
of a sphere passing through 4 positions of the path
(Pagent, s Pagent, .1 » Pagent; ;2> Pagent,3) computed for each
t (the method is explained comprehensively in
“Appendix A.1”). Subsequently, the maximum curvature
can be extracted as follows:

1
Ct = — 6)

It

max ¢; (7)

Cmax =
0<t<n-3

— Target angle (csarger): given the 3-D unit vector repre-
senting the agent direction Pagen, Pagens;, and the one
representing the target direction [W, the target
angle is defined as follows:

Qtarget = Arccos (pagentt Pagent; - Pagent; ptarget) (8)



Autonomous Robots

o' an
f 21
g\ | S5 =
= start and target manual kinematic rules and
dataset configuration demonstrations constraints weights
pommooseees Copst Tstare, (QManuaty kmax Wemax .
i ILDR i Crree Ttarget dout W nin tot
i method !
! 1 | ittt 7Y st 1
———————————— ] —l—: DR SAIp :
— :generator ©{Q%} O i classifierss &5 e !
extrinsic reward G ____,'—| L BEea!
hard constraints
l‘rtarget v
,| Tdist To :-choose(Q™PR) with €, <Kpax
I "goal \ﬁ . .
’ Tex(Tagem»a)= ’ rgoa diserimi :-choose( QPR with d,,,i,,<d;“
environment " curv iscriminator .
Bl T network soft constraints
’ D
w
B Tonse #MIN{dyoe(O0) With wyeoc)
observations
) @ s N #max{d,;,( O™PR) with wy,;,
{:“ M K’;ﬁ\ X{dpin( OTLORY with Wy}
tot Cmax davg
dmin Qg Intrinsic reward #MING Coax( QH2F) WIEN Wonac}
a " = agent rm(Tagent, a) = 1§ Tsim Q”‘DR
o actions olicy
ag P ‘1 @ best path e -

Fig.3 ILDR architecture. The expert gives in input the dataset (C e,
and Copsr), the start and target configuration (T, and Tygrger) and
the kinematics constraints (d,,; and k). The IL model is trained
through a loop that starts with paths generated by an expert ({ QMamual })
and paths ({Q}) performed by the network generator (G) based on a
Reinforcement Learning (RL) approach. With a Generative Adversar-
ial Imitation Learning (GAIL) approach a discriminator (D) with its
network (D,,), takes in input the expert and generetor policies (g and
1) the starting value of the policy’s parameters and of the discrimina-
tor (g and wy). During the training phase, it makes a comparison of
these two paths generating an intrinsic reward rin (Tagent» a)) based

Algorithm 1 Reward function - pseudocode for each episode
1: for ¢ in S, do

2:  Compute action a,

3: Collect Observations dyin, » davg, » dior,» €1 and Qrarger,
4:  addReward(—1/Snax)

5: if Togens, = Trarger then

6: addReward(1)

7. newEpisode()

8:  elseif Tygen, = Tops: then

9: addReward(—1)

10: newEpisode()

11: if dypin, < dsafe then

12: addReward(—0.001)

13:  if ¢; > kjyax then

14: addReward(—0.001)

15:  if ajarger,! = NaN then

16: addReward(—ayarger, /tmax * 0.0001)

Reward function (Algorithm 1) the reward function associ-
ated with each time step 7 is shaped in order to make the agent

on the similarity score (rs;,, ), updating the agent’s polici 7. The loop
continues until the generator, moving in the environment (Env) with
actions (a;), collecting observations (d;or, dmin» davgs Cmax and o)
and computing an extrinsic reward(r** (Tagens, @)), can produce a path
similar to the expert’s demonstrations and that respects the kinematic
constraints. Once the IL model is trained, it generates a set of optimal
paths; the weights (wg,,, , wq,,;, and we,,,. ) and the kinematic constraints

min

are taken as input by the DR classifier that extracts the best path with
an approach based on Answer Set Programming (ASP). Applying hard
and soft constraints obtaining the best path Q//PR

learn to optimise the path, according to three main require-
ments:

1. path length minimisation
2. obstacle clearance maximisation
3. moving agent’s kinematic constraints respect.

The reward r** (Tygens, a) is defined as:

Ygoal, if Tagent, = Ttarget

re (Tagenf, ,ar) = Yobst; if Tagent, = Topss (9)

Vstep, + raist, + Feurv, + Ttarget, otherwise

— A positive constant reward, 4441, , i given upon reaching
the target.

— A negative constant reward, rops;,, i given if an obstacle
collision is detected.

— A negative reward, rgep, = 5 is given at each step
t of the agent in order to obtain a reduction in the com-
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Algorithm 2 Path planning with GAIL

Input: Expert paths { QM @@/} ~ 7 initial policy and discriminator parameters 6y, wo

1: fori=0,1,2,... do
2:  Generated paths { 06} ~ 6

3:  Update the D,, parameters from w; to w;; with the gradient V,,:

4:

E?Tgl [Vw log (Dw (Tugenh a))] + Enp [Vw log (1 — Dy (Tagenh a))]

W

Em;, [Vg log g (a|Tagent)Q(Tugenta a)] — LH (mg)

~

Compute reward rin (Tagent» a) = —log(1 — Dy (Togens, @))
8: return

Take a policy step from 6; and 6; 1 with Trust Region Policy (TRPO) cost function log (D, (Tagens, @)) with the gradient Vp:

Algorithm 3 Classifying Path with ASP

Input: {Q,ﬂL}, kmax, 1's Wd,y, » Wd,,;,, and we,, ... Output: QILDR.
1: for xin {Q{L} do
Compute dminx > dmt,\- and Cmax,

»

Sort {Q'LPR) by:

A A

return Q(I)LD R

if :- choose( Q)’(LDR), curvature(c,qx ), maxCurve( Q)’(LDR, Kiax,)s kmax < Cmax. then
if :- choose(QiLDR), radius(r), distObst(QiLDR, dmin,)> dmin < r. then

#min{dgor, @Qwg,,, . Q)ICLDR: choose( Q)ICLDR), length(Q,{LDR,dmtX )}.

#max{dyin, @wg,, . Q)’CLDR: choose( Q)’(LDR), distObst( Q)’(LDR,dminx )}
: ILDR. ILDR IL

#min{cnax, @We,,,. - Oy : choose(Q,~~"), maxCurve(Q,

scmaxx)}~

putational time (7"), where S, corresponds to a fixed
threshold representing the maximum number of steps ¢.

— A negative constant reward, r;, , is added whenever the
minimum value of d,,;,, is lower than a predefined safe
distance (dsqfe = d"z‘” ), corresponding to the occupancy
of the moving agent. This reward aims to maximise the
dmin, toreduce therisk of collision and increase the safety
rate of the path.

— A negative constant reward, 7, , 18 assigned if the cur-
rent path curvature ¢, overcomes the maximum value of
the curvature of the moving agents specified by the user
(kimax)-

— Finally, a negative reward, 7/4rger, T degs is
added to minimise o/qrger, in order to further minimise
c and T parameters. The value of this reward is pro-
portional to the ratio between a4, ger, and the maximum
angle o4y

Ararget;

The parameters of the reward function are reported in
Table 2. The optimal parameters’ value have been obtained by
fine-tuning with grid-search procedure. Sub-optimal param-
eter configurations caused the agent to learn and apply
inappropriate actions, e.g. moving too close to obstacles,
going in the opposite direction with respect to the target,
choosing non-optimal paths in terms of distance.

In this way, with the generator, G, we are able to obtain
new paths, QG.

@ Springer

Table 2 Training parameters

I'goal, Yobst, Yeurv, Vdist; Smax Amax Tdeg

1 -1 —0.001 —0.001 5000 180 —0.001

3.2.3 Discriminator

In GAIL (Ho & Ermon, 2016) the task of the discriminator,
D, is to distinguish between the paths, { Q€}, generated by G
with a RL approach, and the demonstrated paths { QMaual},
When D cannot distinguish {Q¢} from {QM anualy then G
has successfully matched the demonstrated path, { QM anualy
reaching a level equal to or higher than one of the expert
thanks to the additional observations collected and extrinsic
reward received.

As showed in Algorithm 2, the proposed path planning
approach receives in input the expert’s paths, { QM *"#4!} the
path generated from the Generator, {Q}, and the initializa-
tion of the policy’s parameters, 6y, and of the discriminator,
wo. The path { Q¥} fits a parameter policy 7y (where 6 repre-
sent weights), while the manual demonstration, { Q™ anualy
fits an expert policy, . The discriminator network Dy, (w,
weights) learns to distinguish the generated policy, 7y, from
the expert one, . The parameters w of D,, are updated in
order to maximise Eq. 10:
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(Tagens @))] +

Dy, (Tagent > a))]

n%ix Eq, [Vw log (Dw

Er, [Vw log (1 - (10)
where V,, is the gradient, E[ ] is the expectation value
with respect to a policy, mp, or to the expert policy, g,
Dy, (Tage,,,, a) is the Discriminator network that evaluates
the state (Tygens) and the action (a).

TRPO (Schulman et al., 2015) assures that the change of
parameter 6 between mg + 1 and 7y is limited:

0 = n’éln Exy[Vg logmg (a|Tagent) : Q(Tagent» a)l
7

—\H (7p) (11)
where Vj is the gradient, H (719) = Ex, [—log 7 (a|Tagent)]
is the causal entropy and its value by A € i, A > 0.

Finally the discriminator, D, updates the agent’s policy m
to be close to the expert policy 7 :
w (Tagent ,a)]

7 =argmax Ey, [—log(l — D (12)
TTH !

using an intrinsic reward, defined as ri”(Tagem,a)) =
Fsim. The similarity reward rg;,, proportional to —log(1 —
Dy(Tagens, a) is an increasing reward when the results
approach of D,, approaches rg;,,, = 1, i.e. Dy, is not able to

Algorithm 4 Calculation of radius curvature

1: Input: four successive position of the path pugens (x1, ¥1,21),
Pagent, (x2, ¥2,22), Pagent; (x3, y3, 23), Pagenty (x4,y4,24) € Q =
{Tagentgs Tagenfp ooy Tagentn_1}~

2: Output: Ray of the sphere r; that passes through the input positions.

xyy1 21 1
3 A=det [ 272!

x3 y3 23 1

X4 y4 24 1
4: if A == 0 then

5 =0 > The four positions are coplanar
6: else > Four positions determine a unique sphere if and only if they
are not coplanar
(x1 + yl +Zl) X1 Y121
7 T = det (xz + yz + Zz) X2 Y2 22
(x3 +y +23) x3 )3 23
(x4 + y4 +24) X4 y4 24
determined through the Cramer’s rule
8: fori=1in4do

> D, E, Fand G are

9: ti = —(xi2 + yiz + Z,-z)
tryrzr 1l x1tz1 1
100 D=det|? 22N poger2l
3y;z3l x3 1323 1
4 y4 24 1 X4 14 24 1
x1y1 4l X1 y1z1t
11: deetxzyztzl szetxzyzzzlz
x3y313 1 X3 y323 13
X4 y4 iy 1 X4 V4 74 14
12: ) > Coordinate of the centre of the sphere

-(2. 5.
- % J(D? + B2 + F2 - 4G) > Radius of the sphere

discriminate well the two paths. The inverse happens when
D,, approaches rsi;; = 0, i.e. it is able to discriminate well
between the two paths, and the reward goes to 0.

The trained IL model generates the paths {Q,{L
N.

Vk=1:

3.2.4 Deductive reasoning classifier

As already introduced above, the optimal path is selected
among the N paths given by IL and the paths produced by
the deductive module by means of an ASP-based DR Classi-
fier (Gelfond & Lifschitz, 1991; Brewkaetal.,2011; Leone &
Ricca, 2015). Among modern declarative formalisms, ASP,
originally developed in the field of logic programming and
non-monotonic reasoning, has became widely used in Al,
and it is recognized as an effective tool for Knowledge Rep-
resentation and Reasoning (KRR). This is especially due to
its high expressiveness and the ability to deal with incom-
plete knowledge, and also because of the availability of
robust and efficient solvers; more details on ASP are given
in “Appendix A.2”.

A domain expert provided the knowledge that we encoded
into a logic program consisting of rules and constraints and
readable by the ASP solver. For each instance of the path
planing problem, the ASP program is hence coupled to a
proper representation of the pool of paths calculated by the
IL model, {Q ,ﬂL} (the “input”) and fed to the ASP solver, thus
choosing the best one, { Q'L PR} In the following, we provide
more details about the encoded deductive path selector.

A path Q)ICLD R cannot be selected if the maximum cur-
vature ¢4y (Eq. 7) measured for Q)ICLD R is bigger than the
kmax, as it can be seen in the following code snippet (In
order to fully understand the syntax, we have provided some
examples in “Appendix A.27).:

:- choose(QiLDR), curvature(cmax),

maxCurve(Q)ICLDR, kimax)s kmax < Cmax-
where the atom maxCurve(QiLD R Conax) couples the path
Q)ICLD R with the maximum curvature gy

A path QIEPR must be discarded also if it approaches
the sensitive structures at a minimum distance d,,;, (Eq. 4)
smaller than the radius (r = %) of the moving agent:

T - choose(Q)[CLDR), radius(r),

diStobSt(Q)I(LDR» dmin)s dpmin <.

Along with these hard constraints, that make inappropri-
ate paths to be discarded, we identified several criteria for
expressing preferences among admissible ones. In particu-
lar, starting from the expert’s knowledge, we designed some
“soft constraints”, and three corresponding weights (wg,,,,
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Wq,,;, and we, ., w € R > 0) used to express preferences
towards paths that feature minimum (or maximum) adher-

ence to the criteria.
1. Minimization of the path length (d;.;):

#minimize{djy @uy,,, Q1FPR . choose(QIFPR),

X
length(QEPR dpy)).

where d;,; is the length of path Q1LPR,

2. Maximization of the distance from obstacles:

C o ILDR ILDR
#maximize{dyi, @Qwg,,,, Oy : choose(Q,"""),

distobst(QILPR dyin)).
3. Minimization of the curvature of the moving agent:

#minimize{cpa @ug,,,, QLFPR - choose(QIEPR),

maxCurve(Q,chDR s Cmax)}-

Some additional insights are provided in description of
Algorithm 3.

It is worth noting that the purely declarative nature of
ASP easily allows fine-tuning the desiderata by combining
the constraints. Not only the system can easily be improved
if new or more specific knowledge is available from the
experts, but the user can change the behavior of the clas-
sifier at will when in use. The provided interface gives the
user the possibility to compose the desiderata and repeat this
step multiple times, after the IL model has generated the
output, {Q,{L} (agnostic to the human-chosen desiderata),
changing the inputs until she is satisfied with the obtained
path. In this case, new weights and more (or less) restrictive
constraints (i.e., increasing k4. or dyy) can be set. Further-
more, the user can decide to take into account all, some, or
none of the encoded preferences, depending on the specific
application; if she chooses to apply more than one of these
rules, then also different priorities can be set, expressed by
the weights. Hence, the capability to customize the set of
rules and (hard/soft) constraints to use for each case study
makes our tool highly flexible and generalizable.

4 Experimental protocol

Criteria for defining the “best” surgical path are several,
their importance depends on the application at hand. In our
experiments, performed in static simulated environments, we
focused on Deep Brain Stimulation (DBS) and Convection
Enhanced Delivery (CED), which are two relevant applica-
tions of steerable needles in keyhole neurosurgery.

@ Springer

4.1 Neurosurgical environment

3-D brain structures for CED and DBS environment were
identified on two datasets: (1) Time-of-Flight (ToF) Mag-
netic Resonance (MR) for vessels visualisation, (2) T1 for
brain cortex, skull surface, arterial blood vessels, ventricles
and all the relevant deep grey matter structures visualisation,
segmented through FreeSurfer Software (Fischl, 2012) and
3-D Slicer (Pieper et al., 2004).

— As reported in Fig. 4a, in CED the target space is the
tumor=Cj;ger, surrounded by different essential struc-
tures (ventricles, thalamus, pallidum and vessels), that
represent the obstacle space, C,psr, While gyri represent
the free space, Cfyee.

— As reported in Fig. 4b , in DBS the target space is the
LSTN=C}4rger» located in the central brain core. The
obstacle space, C,py;, is represented by relevant struc-
tures (ventricles, thalamus, pallidum, vessels and CST),
while gyri represent the free space, C fyce.

4.2 Neurosurgical simulator

A planning tool is implemented in 3D Unity (Goldstone,
2009) and integrated with Machine Learning (ML)-Agents
Toolkit (Juliani et al., 2018) that allows to visualize the 3D
segmented risk structures of the brain of the patient derived
from that data. We designed and developed a neurosurgical
simulator, i.e. a “Brain Digital Twin”, described in Fig. 5 and
shown in the animation (Online Resource 6.2) to create the
environment, collect manual demonstrations by the expert
surgeon with a joystick controller (with a combination of
the translation along the z axis and the rotation around the
x and y axes) and train the moving agent. First of all the
surgeon is asked to choose the curvature k., and diam-
eter dyyr, and the parameters he/she wants to prioritize in
the selection of the best trajectory, wy,,,, Wq,,, and we,,,.
used either to minimize or to maximize the rule expres-
sion. The surgeon can then select a target configuration in
the brain (T;4g¢r), €.g. on the tumor and N start config-
urations (Ty;qrs, ), on the brain cortex. Once the start and
target configurations are defined, it is possible to proceed to
either a manual or automatic, pre- or intra-operative proce-
dure. The difference between these last two is the dynamism
of the environment in representing the needle-tissue inter-
action and so the non-holonomic constraints that affect the
behaviour and the needle movements. The surgeon can in fact
proceed with a static environment or with a dynamic environ-
ment whose model is based on a Positions Based Dynamics
simulator (Segato et al., 2021b) used to emulate the brain
tissues deformations in Key-hole Neurosurgery (KN). The
needle model is considered as particle system (O’Brien et
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CED Environment

sagittal axial

coronal

gyri= Cfree

DBS Environment

axial
+

coronal

b ventricles

v thalamus
1 pallidum  =Cobst
CST

» vessels

Fig. 4 CED and DBS environemnts. In a, sagittal, axial and coro-
nal view of the CED environment are reported. The obstacle space
(Cops: ={ventricles, thalamus, pallidum and vessels), the free space
(Cfree = gyri) and the target space (Ciqrger = tumor) were defined
accordingly. In b, sagittal, axial and coronal view of the DBS

al., 2001). For the validation a pre-operative procedure with
a static environment was considered. It is assumed that the
motion of the needle tip fully determines the motion of the
needle (“follow-the-leader” deployment) with a combination
of the translation along the z axis and the rotation around the
x and y axes.

4.3 Experimental validation

The results’ assessment for both scenarios, CED and DBS,
is based on the comparison of the proposed method, ILDR,
with the Manual and DR approaches. Moreover, in the DBS
scenario, ILDR was tested against the Rapidly-exploring
Random Trees (RRT)* algorithm.

As shown in Fig. 6, an expert surgeon (age: 37, performed
surgical procedures: 2440) was asked to select, for each envi-
ronment Envg, 10 desired start configurations, T, arty> ON
the brain cortex, a target configuraion, Tj,,.,,,, on the target
space, Crarger» and the weights, wimu, wfimm, w;}m for the
rules prioritisation, reported for both scenarios in Table 3. j
experiments, EX P; (with 1 < j < 5), were conducted for
each one of the four approaches: Manual, DR, RRT* (only
for DBS Environment) and ILDR.

environment are reported. Defining accordingly the obstacle space
(Copst ={ventricles, thalamus, pallidum, vessels and Corticospinal
Tract (CST)}), the free space (Cyree = gyri) and the target space
(Cturget = LSTN)

— Manual approach: For each EXP;, the surgeon was
asked to generate a pool of surgical paths, { path;} (with
1 < k < 10), and choose the optimal one, path?’l’m”al’s,
based on his expertise.

— DR approach: For each EXP; was considered the
same pool of surgical paths generated in the manual
approach,{ pathy}, and the optimal one, {patth’s},
was selected with the DR classifier, using rules, weights
and kinematic constraints given in input by the surgeon.

— RRT* approach: For each EXP; the pool of paths,
{ pathy}, was generated with the RRT* algorithm. The
optimal one, { patthT*’S}, was selected with a Cost
Function F,,y;, to be minimised:

Feost ({pathy})
00 if dpyin <0
=31 if Cmax > kmax

1 1 Cima .
Welyin dmin + Wror diot + Weygy kZZ: otherwise

tot (1 3)
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unity
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HARD CONSTRAINTS
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[ Drug Delivery

| Maximize the distance from the obstacles

v Minimization of the trajectory length

Minimization of the maximum curvature ]/
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ILDR

? QILDR
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9 Final Trajectory Visualization ]\

5

b Manual
Manual
F -
expe
N , J

Fig. 5 Neurosurgical simulator. It is possible to: (1) start a simula-
tion, (2) select the procedure between the DBS and CED, (3) input the
physical characteristics of the needle, dy,; and k4, and the param-
eters to be maximised or minimised in the selection of the best path,

Using rules, weights and kinematic constraints given in
input by the surgeon. For more information on the imple-
mentation of this approach please refer to our previous
work Segato et al. (2019).

— ILDR approach: For each EXP; the pool of paths,
{ path;}, was generated with the IL model. The optimal
one, { pathjLDR’s }, was selected with the DR classifier,
using rules, weights and kinematic constraints given in
input by the surgeon.

For each path, { pathj. }, we calculated:

— The length (d;,) of the path, as described in Eq. 3;

— The minimum (d;,) and the mean (d4yg) distances of
the path with respect to all the obstacles, as described in
Egs. 4 and 5;

— The maximum curvature (c;,4x ) of the path, as described
in Eq. 7.

@ Springer

(4) select starting and target configurations , T4y and Tygrger, (5)
perform manually the trajectories with a joystick controller or let the
agent to perform trajectories autonomously with ILDR and finally (6)
visualise all the generated trajectories

4.4 Hardware specification

Experiments were performed on a Linux machine equipped
with a 6-core i7 CPU, 16GB of RAM and 1 NVIDIA Titan
XP GPU with 12GB of VRAM.

4.5 IL training strategy

The training phase, for IL models, for each Environment,
takes in input w start (T4, with 1 < w < 20) and target
Z (Trarger,» with 1 < z < 5) configurations and y expert
manual path (Q’y"“”““l ,with 1 < y < 10) for each start and
target. The number of manual demonstrations ||x = 1000,
(with I < x < ||w x ||z x ||y), is obtained by combining the
number of demonstrations (||y) provided by the expert user
for each couple of start and target (||w X [|z). Atevery episode
randomly, anew T;,,;, Was chosen among the available ones
along with its relative 4 ger,. Table 4 presents the training
parameters values referred to the CED and DBS models.
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Fig.6 Schematic representation of the experimental protocol workflow
Each environment Env (with 1 < s < 2), takes in input the start con-
figurations, T, ., (with 1 <k < 10), the target configuration, T}, ..,
the weights, w? wflm_n, wy ~and the kinematic constraints of the

Cmax’ tot

Table 3 Expert constraints and rules

dour (mm) Kinax (mm_l) Wd,in W, Wepax
CED 2.5 0.014 9 6
DBS 2.5 0.014
Table4 Training parameters
Parameter Value Parameter Value
Beta 5.0e—4 Max steps 1.0e5
Batch size 64 Buffer size 256

4.6 Statistical analysis

All the performance metrics (dior, dmin» davg and Cpax),
extracted from the path, were analysed employing Matlab

moving agent, dyy; and ky,qx. j experiments, EX P; (with 1 < j <5),
were conducted for each approach: Manual, DR, RRT* (only for DBS
Environment) and ILDR. A pool of surgical paths, { pathy} is gener-
ated, and the optimal one, pathj, is selected

(The MathWorks, Natick, Massachusetts, R2020a). Lilliefors
test has been initially applied for data normality. Due to
the non-normality of data distribution, pairwise comparison
was performed with the Wilcoxon matched-pairs signed-rank
test. Differences were considered statistically significant at
p value < 0.05.

5 Results
5.1 Convection enhanced delivery

Figure 7a shows a comparison between Manual, DR and
ILDR approaches in terms of dpin, davg, Cmax and dyo
calculated over the best path of left hemisphere (for each
approach, the criteria for the selection of the best path have
been described in Sect. 4.3). DR approach keeps a greater
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Fig. 7 Comparison between the different approaches. For both CED
(a) and DBS (b) environment, expert’s rules, and needle kinematic con-
straints are reported in the upper part. a A comparison between Manual,
DR, and ILDR approaches in the CED environment. b A comparison
between Manual, DR, RRT*, and ILDR in the DBS environment. The
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results for both considered scenarios and used approaches are reported
in terms of the minimum (d,;;,) and the mean (d,,) distance from the
critical obstacles, the total path length (d;,;) and the curvature (¢qyx)
calculated over the five best paths for each approach. P values were
calculated using Wilcoxon matched-pairs signed-rank test
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@ scenario 1

smoothness & length

DR ILDR

DR ILDR

DBS

Fig.8 Comparison between DR and ILDR approaches. For both CED
(scenario 1) and DBS (scenario 2) environment, one example of the
obtained path is shown. In particular, a a comparison between DR and
ILDR approaches in the CED environment. b A comparison between

dmin and dg,g from obstacles and a significantly lower d,
(p value < 0.01) of the path with respect to Manual approach
following the rules dictated by the expert. ILDR approach
keeps a significantly greater dy.e (p value < 0.05) from
obstacles and a significantly lower ¢, (p value < 0.01)
and d;,; (p value < 0.01) with respect to DR approach and
Manual approach.

Figure 8a shows the visual comparison between one
resulting path obtained with DR and ILDR approaches
considering the previously mentioned optimisation criteria
(safety, smoothness and path length), that result better for
the ILDR approach even by visualization inspection.

5.2 Deep brain stimulation

Figure 7b shows a comparison between Manual, DR, RRT*
and ILDR approaches in terms of dyin, davg, Cmax and dio;
calculated over the best path of left hemisphere (for each
approach, the criteria for the selection of the best path have
been described in Sect. 4.3). DR approach keeps lower d;;
and ¢4y of the path than the Manual approach following
the rules dictated by the expert who gives more importance
to these two parameters in this case. While ILDR approach
keeps a significantly greater d,,i, (p value < 0.01) and

smoothness & length

DR ILDR

DR and ILDR in the DBS environment. The results for both consid-
ered scenarios show an increase in safety (>> d;i,) and smoothness
(<< Cmay)and areduction in length (< < d;,; ) for the proposed method
(ILDR)

dgvg (p value < 0.01) from obstacles and a lower cqx
and d;,; than the DR approach. The comparison between
ILDR and RRT* approaches is showed in terms of d,;y,
davg, Cmax and d;o calculated over the best path of left
hemisphere. ILDR approach keeps a significantly greater
dmin (p value < 0.0001) and d,ye (p value < 0.0001) from
obstacles and a lower ¢, and a significantly lower d;o; (p
value < 0.01) than the RRT* approach.

Figure 8b shows the visual comparison between one
resulting path obtained with DR and ILDR approaches
considering the previously mentioned optimisation criteria
(safety, smoothness and path length), that result better for
the ILDR approach even by visualization inspection.

5.3 Computational time

In Table 5, the computational time 7 for all the analysed
approaches is reported. The ILDR approach is twice as
fast compared to the Manual one and keeps much lower
computational time than the state-of-the-art sampling-based
method RRT*. Although this value is not essential for the
proposed pre-operative procedure that is performed off-line,
this demonstrates that the proposed method may be poten-
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tially applicable to an intra-operative procedure requiring a
fast planning time.

6 Discussion and conclusion

The present work proposes a novel automatic path planning
approach, called ILDR, for a moving agent in a complex
environment. The complexity of the environment represents
the worst-case scenario that grants the applicability and reli-
ability of the method. In our experiments, ILDR performed
better in terms of obstacle clearance and moving agent kine-
matic constraints compliance when tested against the Manual
approach, the DR classification approach and the RRT*
algorithm. By simultaneously optimising paths according
to all the requested features, the proposed method outper-
forms state-of-the-art approaches in terms of path safety, path
length, and computational time.

Our method succeeds in obtaining the optimal paths that
can be followed to reach a specific target according to rules
set by an expert. This approach allows to fully exploit an
expert’s knowledge: he/she first performs the demonstrations
used to train the GAIL model and then selects the constraints
and their priorities, which ultimately lead to the choice of the
best path with ASP.

It is worth noting that one of the main contributions of
the present work consists in the integration of an inductive
learning-based approach with a deductive reasoning-based
approach. The inductive learning-based method allows the
agent to learn the policy by a set of demonstrations pro-
vided by an expert, who can introduce in a path planning
algorithm all his requirements and knowledge that cannot
always be possible in graph- or sampling-based approaches
unless additional optimisation steps are applied with addi-
tional computational time. Explicit programming cannot
fully cover the complexity of the environment (represented
by the human brain in this case, due to the presence of
delicate and very complicated anatomical structure, narrow
passages), the number of parameters and possible compli-
cations that have to be considered during the path planning.
For this reason we implemented a DR classifier with a user
interface, as described in the final part of Sect. 3.2.4, where
the experts can express their individual preferences assigning
different weights, thus creating a priority list for maintain-
ing different path planning optimisation criteria (i.e., giving
more priority to path safety than path length) while visualiz-
ing the trajectory and changing the criteria in real time. The
DR method is implemented using ASP, that allowed us enjoy
several advantages. First of all, even if the whole machinery
can be embedded into a graphical user interface for user’s
convenience, under the hood we are dealing with knowledge
explicitly expressed via a declarative formalism: modifying
and adapting the criteria for dropping unwanted paths and
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Table 5 Results in term of computational time are shown

Method 25th (s) Median (s) 75th (s)
Manual 15.58 17.94 21.98
DR 11.25 15.00 32.69
RRT* 35.93 61.54 78.87
ILDR 8.02 8.06 8.10

selecting the preferred one(s) is rather easy. Furthermore, as
the specification are formally encoded, once the optimization
criteria are well-established, we are ensured that the best path
is actually chosen, and if more than one are present with the
same ‘“‘score”, then picking one or the other is completely
indifferent. If, for some reasons, this turns to be not the case,
this means that the criteria should be modified, which, as
already stated, can be easily done, especially given that the
resulting framework allows one to straightforwardly experi-
ments with this respect.

6.1 Clinical translation

As part of the EU’s Horizon EDEN2020 project, the cur-
rent study proposes a novel automatic planner for steerable
needles in keyhole-neurosurgery. Given the environment of
the brain, a surgeon-defined start, and a target, the pro-
posed method can provide an optimal path, according to
predefined features as insertion length, clearance from safety
regions, as blood vessels and eloquent morpho-functional
landmarks, and compliance to the needle’s kinematics limits.
It is intended to provide a state-of-the-art combined technol-
ogy platform for minimally invasive surgery. When tested
against the RRT* approach, the proposed method performed
better in terms of path smoothness and clearance from safety
regions, significantly decreasing the length and with a sensi-
bly lower computational time. Accordingly to the possibility
to perform curvilinear path for STN and tumor targeting,
the proposed algorithm allows optimising the fundamental
aspects of the DBS and CED and to maximising both the
effectiveness and safety of the procedure.

6.2 Future directions

The proposed methodology favours high applicability and
generalisability, as it could potentially be applied to different
path planning problems. Future perspectives may include the
exploitation of this automatic path planner method in many
applications additional to keyhole neurosurgical procedures.
The development of a surgical simulator defines an exam-
ple of applications based on anatomical topology but not on
anatomical dimensions. It is easy to see that different rules
and constraints can be defined upon expert suggestion, thus
making our methodology highly customisable and paving
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the way to extensions to additional 3-D complex environ-
ments, beyond brain surgery. Hence, this approach is widely
application-independent and can be adapted to other use
cases for path planning in a complex environment, where an
expert has a crucial role. The application to a totally different
context would require a thorough consultation with domain
experts and the creation, if missing, of a specific simulation
environment. Nonetheless, once the setup is created for a par-
ticular domain, as in the current study with brain surgery, it
is easily applicable to different problems in such domain, by
simply modifying or adding rules.

Supplementary Information Below is the link to the neurosurgical
simulator: https://youtu.be/OM4x4WIIWKE.
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A Appendix
A.1 Computing the radius of curvatures

In this appendix the method used for computing the radius of
curvature of the path is explained in algorithm 4. The method
is based on the computation of the equation of the sphere that
passes through four successive positions. The equation of a
generic 3D sphere is determined by the Eq. 14 where the four
coefficients D, E, F, G are unknown constant.

P+ + 224 DO+ EW+F@)+G=0 (14)

The radius of this sphere is the radius of curvature. First of
all, it is important to note that four positions defined a single
sphere if they are not coplanar (Purdy & Smith, 2010). In the
opposite case there are no spheres that pass through the four
positions or there are infinity number of them. For this reason
is necessary to verify if the four positions of the trajectory
are coplanar. And this is true if and only if the determinant
A of the matrix indicated in the algorithm is equal to zero.
Since the positions are on the sphere, the substitution of their
coordinates in Eq. 14 generates a system of four equations
where the unknowns are the coefficients D, E, F, G (Ram,
2009). For resolving this system the Cramer’s rule is applied.
Then the radius of the sphere can be computed.

A.2 Answer set programming

With ASP, computational problems in a large variety of sce-
narios can be described by means of simple and elegant
logic programs consisting of a set of rules; solutions to a
problem instance are then found by computing the semantics
of such programs combined with the representation, usually
expressed using factual rules, of the instance at hand.

One of the main advantages of ASP consists of its purely
declarative nature: rather than focusing on algorithm design
and coding, and thus on how fo solve a computational prob-
lem at hand, with ASP one can focus on how to describe
such computational problem (or how its solutions should look
like), completely avoiding the need for explicitly express the
steps to be executed. In turn, order of statements in a ASP
logic program is immaterial: explicit updates in the problem
specification can be more easily incorporated, thus fostering
advantages such as fast prototyping, quick error detection
and modularity. Besides, a clean model-theoretic semantics
grants correctness; intuitively, an ASP program can be seen
as a formal yet executable description of the problem. The
basic construct of ASP is a rule, that has a general form of
Head < Body; the Body is a logic conjunction in which
nonmonotonic negation may appear, and Head can be either
an atomic formula or a logic disjunction. Rules are inter-
preted according to common sense principles: roughly, the
intuitive semantics of a rule corresponds to an implication.
The answer set semantics associates a problem specification
with none, one, or many intended models, called answer sets,
each one corresponding to a solution; an ASP program that
models a computational problem, coupled with a proper rep-
resentation of an instance of such problem, can be fed to an
implementation of ASP, called ASP solver, in order to actu-
ally compute all corresponding answer sets. Efficient and
reliable ASP solvers exist, such as DLV/DLV2 (Adrian et
al., 2018; Leone et al., 2006), WASP for solving the preposi-
tional part of DLV2 (Alviano et al., 2019) and clingo (Gebser
et al., 2019).
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For a full description of ASP syntax and semantics, along
with examples of its applications in academy and industry,
we refer the reader to Calimeri et al. (2020) and Lifschitz
(2019) and the vast literature. We briefly recall here some
very basic preliminaries useful to understand the herein pro-
posed approach.

A variable or a constant is a term. Variables are denoted by
strings starting with some uppercase letter, while constants
can either be integers, strings starting with some lowercase
letter or quoted strings. If t1,...,t are terms (either constants
or variables) and p is a predicate symbol of arity k, then
p(tt,...,tx) is an atom of arity k.

A literal 1 is of the form a or not a, where a is an atom;
in the former case 1 is positive, negative otherwise. A rule is
of the following form:
aopl...lap: —bi1,..., b, not Dbuti1,...,bn. (15)

On the left, the symbol ““|”” connects atoms that are part of
a disjuction in the head, whereas comma separated literals in
the right side, i.e., the body, are part of a conjuction. An ASP
program is a finite set of rules.

A fact is a rule with empty body, and represents a piece
of information known to be true (typically, facts stand for
the knowledge granted before reasoning, or represent the
instance of a problem); usually, a fact is immediately fol-
lowed by the “.” symbol (i.e., the implication symbol “:-”
is omitted). A constraint is a rule with empty head; hard
(“strong” or “classical”) and soft (“weak’) constraints can
be specified in order to cut out undesired models and express
preferences, respectively. Weak constraints are expressed
with the symbol :~ instead of : -, that is one used for hard
constraints. These latter are conditions that must be satisfied,
whereas soft constraints represent conditions that should be
fullfilled; intuitively, when a solution violates a soft con-
straint it pays a cost: this induces an ordering among solutions
that allows one to express minimization and/or maximization
criteria.

ASP enjoys several additional language features for easing
knowledge representation; we mention here choice rules, that
are a compact way for expressing disjunction of atoms that
must adhere to some cardinality conditions and aggregates,
that can be used for compact representations of properties
and inductive definitions using sets of propositions (Alviano
& Faber, 2018). The scientific community agreed on a
standard language (Calimeri et al., 2020); furthermore, in
addition to the standard, several flavours of ASP are sup-
ported by solvers, featuring additional constructs such as
the #minimize and #maximize statements for express-
ing preferences in optimization problems similarly to what
can be done via weak constraints.

ASP is a very expressive formalism; indeed, in Eiter et
al. (1994) it is proved that disjunctive logic programs under
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answer set semantics capture the complexity class Ef (that
is, they allow us to express every property which is decid-
able in non-deterministic polynomial time with an oracle in
NP), and weak constraints make ASP well-suited to represent
a wide class of problems (including, e.g., NP optimization
problems) in a very natural and compact way (Buccafurri et
al., 1997).

The following example briefly illustrates how the common
“Guess&Check” paradigm is used for modelling problem
with ASP.

Example 1 Let us consider the well-known problem of 3-
colorability, which consists of the assignment of three colors
to the nodes of a graph in such a way that adjacent nodes
always have different colors; this problem is known to be NP-
complete (Brandstidt et al., 1998). Suppose that the nodes
and the arcs are represented by a set F of facts with predi-
cates node (unary) and arc (binary), respectively. Then, the
following ASP program allows us to determine the admis-
sible ways of coloring the given graph with the three given
colors.

ri: color (X, red) | color (X,green) |

color (X,blue) : — node (X) .

r: -arc(X,Y), color(X,C), color(Y,C).

Rule | (guess) above states that every node of the graph
must be colored as red or green or blue; r, (check) forbids
the assignment of the same color to any couple of adjacent
nodes. The minimality of answer sets semantics guarantees
that every node is assigned only one color. Thus, there is
a one-one correspondence between the solutions of the 3-
coloring problem for the instance at hand and the answer sets
of F U {ry, rp}: the graph represented by F is 3-colorable if
and only if F U {r{, r2} has some answer set.

The following example illustrates the use of weak con-
straints for expressing preferences while dealing with opti-
mization problems.

Example 2 Let us consider the same 3-colorability problem
of Example 1. Imagine that we know that some of our graphs
are not 3-colorable; as already stated, for such graphs our
programs would have no answer sets (meaning that there
is no admissible solution). Nevertheless, for such cases we
would like to have admissible colorings, even if not complete.
The following program, that is slightly different from the
previous, allows us to determine all partial colorings.

r3: color (X, red) | color (X, green)

| color (X,blue) | noColor (X) :-node(X) .

r::-arc(X,Y), color(X,C), color(Y,C).

Here, rule r| of Example 1 is replaced with rule r,; note
that now, for the program FU{r3, r»}, admissible answer sets
exist with some nodes with no color assigned. These contains
answer sets with no node colored at all, others with some
colored, and up to others with all node colored, in case the
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graph is 3-colorable. We can state that we prefer a solution
over another one if it features a higher number of colored
nodes by means of the following weak constraint:

rq: :~node (X), noColor(X). [ 1l@l, X]

Now, for a solution of F U {r3, r, r4}, while if it vio-
lates r, is inadmissible, and thus discarded, if it violates r4
then it is assigned a cost as specified in the square brackets.
In this latter case, for each node X that has no color, the
solution costs 1 at level 1. Weight and level can be constant
values or variables appearing in the body of the constraint;
furthermore, weights are additive, grouped by levels, among
all constraints in the program: in this simple example, just
a weak constraint is present, but one can make use of more
in order to express complex sets of desiderata. Higher levels
correspond to more important desiderata.
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