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Abstract: Risks and uncertainties are inevitable in construction projects and can drastically change
the expected outcome, negatively impacting the project’s success. However, risk management (RM) is
still conducted in a manual, largely ineffective, and experience-based fashion, hindering automation
and knowledge transfer in projects. The construction industry is benefitting from the recent Industry
4.0 revolution and the advancements in data science branches, such as artificial intelligence (AI), for
the digitalization and optimization of processes. Data-driven methods, e.g., AI and machine learning
algorithms, Bayesian inference, and fuzzy logic, are being widely explored as possible solutions to RM
domain shortcomings. These methods use deterministic or probabilistic risk reasoning approaches,
the first of which proposes a fixed predicted value, and the latter embraces the notion of uncertainty,
causal dependencies, and inferences between variables affecting projects’ risk in the predicted value.
This research used a systematic literature review method with the objective of investigating and
comparatively analyzing the main deterministic and probabilistic methods applied to construction
RM in respect of scope, primary applications, advantages, disadvantages, limitations, and proven
accuracy. The findings established recommendations for optimum AI-based frameworks for different
management levels—enterprise, project, and operational—for large or small data sets.

Keywords: artificial intelligence; construction industry; machine learning algorithms; project
management; risk management

1. Introduction

The construction industry has some of the highest accident and fatality rates, delays,
and cost overruns, which are caused primarily by uncontrolled risks. Risks occur at various
levels, operational, project, portfolio, strategic, and business and enterprise levels, derived
from external and internal factors, and can be: (a) a field-based risk, including financial,
market, operational, political, reputational, and disaster risks, or (b) a property-based risk,
including uncertainty, dynamics, interconnection and dependence, and complexity [1].
Risk management (RM), as depicted in best practices and project management standards,
tends to be a proactive approach consisting of risk identification, analysis and assessment,
mitigation planning, and control stages [2] to exploit or enhance positive risks (opportu-
nities) while avoiding or mitigating negative risks (threats) and to ensure the project’s
success, to meet the project’s objectives and constraints, and to secure the project’s safety.
However, it is still conducted in a manual, time-consuming, superficial, and ineffective
manner. Risk identification and assessment, in their conventional ways, are conducted
based on individual and experience-based expert judgments and seem highly personalized
and context-dependent [3]. Therefore, knowledge transfer and model generalization remain
critical issues for future projects.
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On the other hand, the construction industry is experiencing a digitalization revolution
thanks to the abundant production of data and the development of digital tools and data-
driven decision-support systems such as artificial intelligence (AI), digital twins, and
the Internet of Things (IoT). These technologies prepare the technical foundation for an
intelligent and ever-improving construction industry. AI is one of the key pillars of the
Industry 4.0 revolution and digitalization era, to create an active connection between the
physical and digital worlds. It includes the science and engineering techniques that aim
to make machines mimic human cognitive processes of learning, reasoning, perception,
planning, and self-correcting [4]. AI is gaining vast applications for fostering, optimizing,
and automating processes throughout the entire construction project life cycle for the
“intelligent management” of projects.

AI models can improve analytical capabilities across the RM domain whilst offering
a high granularity and depth of predictive analysis [5]. However, through its vital role
in securing the project’s success and ability to solve the shortcomings of traditional RM
methods, AI applications in construction RM have been limited and behind other industries.
Robust AI-based RM frameworks are missing [6]. This study aims to analyze the AI
algorithms and models from the risk reasoning and judgment point of view, for a functional
classification addressable by practitioners and researchers in the field. This is a novel way of
grouping the widespread AI algorithms’ applications in the construction industry. Unlike
previous studies where the AI algorithm’s structure was the focus of analysis [7–11], this
study bases the analysis and comparison of AI algorithms on the risk assessment statistical
models and reasoning approaches that they utilize.

2. Background

Construction engineering and management are going through constant innovations
toward digitalization and intelligence in the context of “Industry 4.0” [6]. AI is receiving
increased attention due to its ability to provide increasingly accurate results in uncertain,
dynamic, and complex environments [12], such as the construction industry. Having the
intent of boosting labor efficiency by 40%, and doubling annual economic growth rates by
2035 [13], AI is becoming the focus for companies. The construction industry is experiencing
a considerable boost in automation, productivity, and reliability and is reshaping itself
along the whole life cycle of projects, including planning, construction, operation, and
maintenance [10].

The advancement of AI and digital technologies can significantly change conventional
risk assessment and management methods, making them factual, efficient, generalizable,
and able to be performed in real time [6]. However, RM is a lesser studied and progressed
domain in construction projects due to the complex and probabilistic nature of assessments,
inferences, and the direct influence of RM on other knowledge areas such as stakeholders
management [14]. The key reasons are (a) lack of structured data and infrequent documen-
tation in the projects, (b) over-reliance on individual and experience-based judgement by
experts in RM, (c) isolated risk analysis and ignorance of the causal inferences between
variables in risk path analysis, and (d) incorrect choice of the AI model for a given problem,
regarding data availability and requirements, the role of probability, expert judgement, and
the reasoning behind the analysis [6,15].

AI is a vast umbrella term that includes various technologies, applications, types, and
subfields. Based on a categorization provided by Abioye et al. [16], these subcategories
are (a) machine learning, (b) knowledge-based systems, (c) computer vision, (d) robotics,
(e) Natural Language Processing, (f) automated planning and scheduling, and (g) optimiza-
tion. Machine learning (ML) algorithms can draw on extensive real-time data generated
by cutting-edge technologies such as the Internet of Things (IoT), sensors, Cyber-Physical
Systems (CPS), cloud computing, Big Data Analytics (BDA), text mining, and Information
and Communication Technologies (ICT) for more reliable and smart management and
decision making in construction projects [4]. This data, if transformed into a structured and
understandable form, can serve as the basis of further data-driven analysis, which brings
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valuable insights for knowledge management in projects and economical and societal
development in the industry [17]. ML processes take place based on historical data records,
in which the machine tries to recognize the relationships between input data and output
data by constant weighting and correction [16]. ML algorithms can analyze large volumes
of data to extract insights from previous data, recognize the data pattern, generalize the
rules, and make a prediction for upcoming data entries in complicated, non-linear, and
uncertain problems [18]. Figure 1 presents the key pillars of the Industry 4.0 revolution in
the construction industry.
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Figure 1. Pillars of Industry 4.0 Revolution in the Construction Industry [7,8,10,16,17,19].

AI-based RM systems can function as (a) early warning systems for risk control, (b) AI-
based risk analysis systems, using algorithms such as neural networks for identifying
complex data patterns, (c) risk-informed decision support systems for predicting various
outcomes and scenarios of the decisions, (d) game-theory-based risk analysis systems,
(e) data mining systems for large data sets, (f) agent-based RM systems for supply chain
management risks, (g) engineering risk analysis systems based on optimization tools, and
(h) knowledge management systems by integrating decision support systems, AI, and
expert systems, to capture the tacit knowledge within organizations’ computer systems [1].

As depicted in Figure 2, an AI-based RM system aims to (a) mine and analyze real-time
project data, historical records, or elicited experts’ opinions [20], (b) conduct automatic
identification, evaluation, and assessment of risks, (c) conduct proactive decision making
on responses to mitigate these risks, and (d) share these insights and predictions in a collab-
orative environment of data integration, such as Cloud Building Information Modelling
(BIM), and digital twin platforms [10]. This research focuses specifically on the AI-based
analytical models for risk assessment and management and aims to study the relevant as-
pects of a successful AI model, i.e., input data requirements, model structure and reasoning,
application and scope, et cetera.

Most of the data-driven methods, such as ML algorithms, require a significant amount
of data in a structured format to draw information from and make a prediction for future
projects [21]. However, risk data are usually not frequently registered or updated in project
documents. The data are often presented as unstructured text or in image formats, have
missing values and scarcity problems, and are affected by different individual perceptions.
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As there are a variety of risk types, individual experts might not have encountered, nor
have sufficient knowledge on, all of them. Human-based risk analysis systems tend to
suffer from low accuracy, incomplete risk identification, and inconsistent risk breakdown
structures [22]. Therefore, AI-based methods for data structuralizing and pre-processing
are required, such as Natural Language Processing for text mining, Generative Adversarial
Networks (GANs) for synthetic data production, and clustering and classification methods
such as Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) [23–26].
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ML algorithms’ structures, processing formats, and the role of probability in the
process are important issues to consider. Probability theory has been studied via vari-
ous models within the past few decades, such as Gaussian models, Pareto distributions,
stochastic process theory, Markov processes, and Monte Carlo simulations [1]. However,
an important factor that is missing in many of the previous techniques is the isolated
analysis of risks [14] and there is ignorance of the causal interrelations and correlations
among risk factors. The assessment of the individual risk factor’s magnitude, regardless
of the occurrence, the probability of the risk events chain, and the effects each risk cause
to the others, may result in an underestimation of the overall project risk level. Some
previous studies have focused on the concept of risk paths and scenario analysis, rather
than individual risk factors, which is a more accurate and realistic delineation [29].

The same concept is also applicable to the ML algorithms’ structures and processing
formats. ML algorithms can generally conduct deterministic or probabilistic analyses which
are grouped under deterministic or probabilistic approaches. Deterministic models follow
a frequentist statistic and provide a fixed prediction amount, simply based on historical
data and the effects of input variables on the output. Therefore, they require high volumes
of data to base the judgements on [10]. The probabilistic approaches mainly follow a
Bayesian statistic and base judgement on multiple sources, such as experts’ opinion, model
simulation, and historical records [30–34]. Moreover, they provide a probability distribution
of possible outcomes, considering the interrelation and causal inferences of input variables
on each other. Therefore, they do not need a big database to draw from, and can update the
probability distribution based on new observations or sources of judgement [35]. The first
step, therefore, is to create a statistical analysis model, identify the problem to solve, and
then decide which statistical approach to use, as improper choice of the statistical approach
can result in the wrong influence of priors and variables, the wrong interpretation of results,
and an improper reporting of results.

The same judgment-based and distribution-based grouping exists in conventional and
non-AI-based RM methods, classifying them into deterministic and stochastic (probabilistic)
models [36]. Deterministic models, such as the Probability–Impact matrix [37] or Pareto
analysis [38], predict a fixed value and mostly follow a frequentist statistic. On the other
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hand, the stochastic models represent the random behavior of risk factors through various
types of distributions that emerge from data (frequentist) or expert opinion (Bayesian) and
provide a probability distribution of each outcome. For instance, the Monte Carlo method
runs multiple simulations on the model to reach a frequentist distribution of possible
outcomes with an objective and data-based judgment [36], or Program Evaluation Review
Technique (PERT) is a probabilistic method based on the assumption that the duration of a
single activity can be described by a probability density function [39]. However, a main
difference between these methods and AI-based algorithms is that they predict outcomes
based on some rules, distributions, and formulas set by the model, whereas AI algorithms
learn these rules by observing many samples of input and output data and detecting the
patterns between them. Therefore, the processing process and structure are not comparable
to the ML algorithms.

This research aims to address the above-mentioned issue through a thorough study of
ML algorithms applied in the construction RM domain, which can have either a determin-
istic (frequentist inference) or probabilistic (Bayesian inference) approach. A systematic
literature review and comparative analysis between AI models for RM domain was con-
ducted to answer the following questions:

(a) In which capacities, and through the application of which algorithms, can the RM
domain benefit from AI?

(b) What are the entry data requirements for each algorithm? In the case of data scarcity
and uncertainty, which algorithms are the most applicable?

(c) What are the advantages, disadvantages, applications, scope, prediction accuracy, and
limitations of probabilistic and deterministic AI-based RM approaches?

3. Research Methodology

This research used a systematic literature review approach with various analysis meth-
ods to answer the research questions. The systematic literature review has a comprehensive,
structured, reproducible, transparent, and quantitative nature [40]. There are also some dis-
advantages such as potential biases in the search. These have been minimized by following
a systematic process throughout [40]. As topics and domains related to the scope of this
research are numerous, the systematic literature review approach helped locate the most rel-
evant inter-disciplinary publications, extract knowledge areas, and categorize their applied
AI techniques, after some filtering. The publication search was conducted in Scopus and
Web of Science libraries in July 2022, as the result of a preliminary search. These sources
provided relevant publications for the research theme. The Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used as required
by the Buildings journal author guidelines, to conduct the systematic literature review,
consisting of a 27-item checklist, and a 4-phase flow diagram consisting of (a) identification,
(b) screening, (c) eligibility, and (d) inclusion for review. Following PRISMA provides a
systematic structure for the review process and allows better and unbiased comparisons of
findings, strengths, and weaknesses.

Figure 3, which was created based on the PRISMA guidelines, presents the literature
search scheme, including the four phases which are further elaborated in the following
paragraphs. The findings serve as the source papers to identify and classify AI algorithms
for RM. The algorithms are classified into two groups of probabilistic and deterministic
approaches. These are based on their analytical reasoning, input data requirements, and
level of intaking uncertainty, and helped shape an important component of the AI-based
RM framework in Figure 2.
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In the identification phase (Figure 3), the search rule in the scientific databases was
((“construction”) OR (“AEC”) OR (“construction industry”) OR (“construction project”))
AND ((“risk”) OR (“risk assessment”) OR (“risk management”) OR (“risk evaluation”))
AND ((“Artificial Intelligence”) OR (“Machine Learning”) OR (“Data Mining”)). As a result
of which, and after duplicates removal, 533 articles remained.

In the screening phase (Figure 3), the criteria used included the engineering domain,
English language, and the type of review paper. Among the 533 papers in this phase, only 356
were in the engineering and building domain, and the rest in other domains were excluded.
Moreover, only 314 of these 356 were in English, only 69 of which were review papers. As
a result, 69 articles were selected for this phase. Review papers were the focus, as they had
a wider variety of techniques included, often had had a comparison conducted, and had the
correct level of detail for each method for our research scope. It is noteworthy that the exclusion
process up to this point was fully automatic and based on the filtering rules of the scientific
libraries. Therefore, any potential biases or errors were out of the control of the researchers.

In the eligibility phase (Figure 3), which had some overlaps with the screening phase,
abstracts and keywords of the 69 documents were reviewed to remove the outlier publications.
For instance, some publications were studying RM in other industries, some were focused
on AI methods for other purposes such as data generation, and some were focused on
non-AI methods. As an example, Li et al. [41] developed an occupational risk assessment
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indicators system of power grid enterprises using AHP, which, although containing valuable
insights, was out of the scope of this study. A similar case was the review study conducted by
Cao et al. [42] on AI algorithm applications in civil engineering issues, such as determining
the compressive strength of concrete and predicting and evaluating the different parameters
of composite beams and shear connectors, which was also out of this study’s scope. The
exclusion process at this point was manual and based on the researcher’s judgment. There
might have been some mistakes caused by incomplete abstracts, which could have led to
the wrong exclusion or inclusion of papers. However, the final 48 source papers were fully
reviewed to guarantee their compliance with the research questions and objectives and to
reduce selection errors. There might have been other insightful papers not included in the
analyzed scientific libraries, which is an inevitable issue in any literature review study.

In the inclusion phase (Figure 3), 48 final documents were selected as the source papers,
and these were thoroughly studied and analyzed using quantitative and qualitative analyses
to answer the research questions. For the quantitative analysis, a bibliometric analysis was
conducted as it includes many techniques, such as science mapping and particularly co-word
analysis—both considered to be applicable for this research. Co-word analysis examines
the content of the publications’ “words” themselves [43]. As an example, co-word analysis
can show a thematic relationship with words that frequently appear together. It also shows
keywords’ and research areas’ co-occurrence. Main areas of research concentration, common
techniques, interrelation of topics, application scopes, and trending topics were identified. It
is noteworthy that a number of papers were particularly focused on health and safety risks,
which were only analyzed regarding the AI algorithms that they proposed. For instance,
Kamari and Ham [33] presented a vision-based digital twinning and thread assessment
framework for natural disaster risk modeling at a construction jobsite and analyzing the
impacts of potential windborne debris in construction site digital twin models.

As the bibliometric analysis is quantitative in nature and produced mainly background
data, qualitative analyses followed to answer the research questions in more detail. AI-based
risk data structuralizing and pre-processing methods through qualitative content analysis were
undertaken first. Then, secondly, thematic content analysis was carried out, using a deduc-
tive approach to identify, analyze, and report repeated patterns [44]; in this case, these were
deterministic and probabilistic approaches for risk identification, analysis, and mitigation plan-
ning. Thirdly, a comparative analysis was performed between probabilistic and deterministic
approaches regarding their reasoning basis in risk identification, assessment, and mitigation
planning stages, advantages and disadvantages, application areas, and data requirements.

The PRISMA checklist is best suited for quantitative studies and analyses. Due to
the qualitative nature of the main analysis stage, some of the checklist items, such as risk
ratio, risk of bias, mean difference, and sensitivity analysis, were not applicable for this
study. However, the reporting herein does follow the PRISMA checklist topics: rationale
and objectives can be found in the Introduction and Background, methods in the Research
Methodology, results and discussion in the Findings and Discussion sections and finally in
the Conclusions and Further Research section.

4. Findings and Discussion
4.1. Background Data

All the 48 source papers served as references for the bibliometric analysis of the
findings. Figures 4–6 were created for a visual presentation of trending topics and research
areas, technologies, and publication rate. Figure 4 illustrates the co-occurrence diagram
between keywords and research areas in the source papers created by the Bibliometrix
application, providing the big picture of the interdisciplinary research in the field. The
circles represent the keywords in articles, and their colors are assigned by the clustering
algorithms in Bibliometrix. Moreover, the authors grouped these keywords into five main
areas based on their similarity and content, represented by the colored squares. As indicated
on the diagram, the papers introduce a number of AI algorithms applicable to various steps
of RM, such as risk identification and analysis and for decision making on different aspects
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of construction projects, such as contracts or cost. There are a number of papers particularly
focused on health and safety risks, which were only analyzed regarding the techniques
they proposed. Figure 5 records the annual scientific publication rate in the research area
and demonstrates a significant increase within the past couple of years. Figure 6 indicates
the various topics’ trends within the past 15 years. Big Data, machine learning, and deep
learning lead the current trend, followed by health, safety, and occupational risks. Decision
support systems and knowledge-based systems used to be trending during the last decade,
but have now been superseded by AI-based techniques that foster decision making.

Figure 4. Co-occurrence diagram of keywords/research areas of source papers.

Buildings 2023, 13, x FOR PEER REVIEW 8 of 26 
 

4. Findings and Discussion 

4.1. Background Data 

All the 48 source papers served as references for the bibliometric analysis of the find-

ings. Figures 4–6 were created for a visual presentation of trending topics and research 

areas, technologies, and publication rate. Figure 4 illustrates the co-occurrence diagram 

between keywords and research areas in the source papers created by the Bibliometrix 

application, providing the big picture of the interdisciplinary research in the field. The 

circles represent the keywords in articles, and their colors are assigned by the clustering 

algorithms in Bibliometrix. Moreover, the authors grouped these keywords into five main 

areas based on their similarity and content, represented by the colored squares. As indi-

cated on the diagram, the papers introduce a number of AI algorithms applicable to vari-

ous steps of RM, such as risk identification and analysis and for decision making on dif-

ferent aspects of construction projects, such as contracts or cost. There are a number of 

papers particularly focused on health and safety risks, which were only analyzed regard-

ing the techniques they proposed. Figure 5 records the annual scientific publication rate 

in the research area and demonstrates a significant increase within the past couple of 

years. Figure 6 indicates the various topics’ trends within the past 15 years. Big Data, ma-

chine learning, and deep learning lead the current trend, followed by health, safety, and 

occupational risks. Decision support systems and knowledge-based systems used to be 

trending during the last decade, but have now been superseded by AI-based techniques 

that foster decision making. 

 

Figure 4. Co-occurrence diagram of keywords/research areas of source papers.   AI algorithms,    

decision support systems,    RM domains    construction project disciplines,     health and 

safety. 

AI algorithms,

Buildings 2023, 13, x FOR PEER REVIEW 8 of 26 
 

4. Findings and Discussion 

4.1. Background Data 

All the 48 source papers served as references for the bibliometric analysis of the find-

ings. Figures 4–6 were created for a visual presentation of trending topics and research 

areas, technologies, and publication rate. Figure 4 illustrates the co-occurrence diagram 

between keywords and research areas in the source papers created by the Bibliometrix 

application, providing the big picture of the interdisciplinary research in the field. The 

circles represent the keywords in articles, and their colors are assigned by the clustering 

algorithms in Bibliometrix. Moreover, the authors grouped these keywords into five main 

areas based on their similarity and content, represented by the colored squares. As indi-

cated on the diagram, the papers introduce a number of AI algorithms applicable to vari-

ous steps of RM, such as risk identification and analysis and for decision making on dif-

ferent aspects of construction projects, such as contracts or cost. There are a number of 

papers particularly focused on health and safety risks, which were only analyzed regard-

ing the techniques they proposed. Figure 5 records the annual scientific publication rate 

in the research area and demonstrates a significant increase within the past couple of 

years. Figure 6 indicates the various topics’ trends within the past 15 years. Big Data, ma-

chine learning, and deep learning lead the current trend, followed by health, safety, and 

occupational risks. Decision support systems and knowledge-based systems used to be 

trending during the last decade, but have now been superseded by AI-based techniques 

that foster decision making. 

 

Figure 4. Co-occurrence diagram of keywords/research areas of source papers.   AI algorithms,    

decision support systems,    RM domains    construction project disciplines,     health and 

safety. 
decision support systems,

Buildings 2023, 13, x FOR PEER REVIEW 8 of 26 
 

4. Findings and Discussion 

4.1. Background Data 

All the 48 source papers served as references for the bibliometric analysis of the find-

ings. Figures 4–6 were created for a visual presentation of trending topics and research 

areas, technologies, and publication rate. Figure 4 illustrates the co-occurrence diagram 

between keywords and research areas in the source papers created by the Bibliometrix 

application, providing the big picture of the interdisciplinary research in the field. The 

circles represent the keywords in articles, and their colors are assigned by the clustering 

algorithms in Bibliometrix. Moreover, the authors grouped these keywords into five main 

areas based on their similarity and content, represented by the colored squares. As indi-

cated on the diagram, the papers introduce a number of AI algorithms applicable to vari-

ous steps of RM, such as risk identification and analysis and for decision making on dif-

ferent aspects of construction projects, such as contracts or cost. There are a number of 

papers particularly focused on health and safety risks, which were only analyzed regard-

ing the techniques they proposed. Figure 5 records the annual scientific publication rate 

in the research area and demonstrates a significant increase within the past couple of 

years. Figure 6 indicates the various topics’ trends within the past 15 years. Big Data, ma-

chine learning, and deep learning lead the current trend, followed by health, safety, and 

occupational risks. Decision support systems and knowledge-based systems used to be 

trending during the last decade, but have now been superseded by AI-based techniques 

that foster decision making. 

 

Figure 4. Co-occurrence diagram of keywords/research areas of source papers.   AI algorithms,    

decision support systems,    RM domains    construction project disciplines,     health and 

safety. 
RM domains

Buildings 2023, 13, x FOR PEER REVIEW 8 of 26 
 

4. Findings and Discussion 

4.1. Background Data 

All the 48 source papers served as references for the bibliometric analysis of the find-

ings. Figures 4–6 were created for a visual presentation of trending topics and research 

areas, technologies, and publication rate. Figure 4 illustrates the co-occurrence diagram 

between keywords and research areas in the source papers created by the Bibliometrix 

application, providing the big picture of the interdisciplinary research in the field. The 

circles represent the keywords in articles, and their colors are assigned by the clustering 

algorithms in Bibliometrix. Moreover, the authors grouped these keywords into five main 

areas based on their similarity and content, represented by the colored squares. As indi-

cated on the diagram, the papers introduce a number of AI algorithms applicable to vari-

ous steps of RM, such as risk identification and analysis and for decision making on dif-

ferent aspects of construction projects, such as contracts or cost. There are a number of 

papers particularly focused on health and safety risks, which were only analyzed regard-

ing the techniques they proposed. Figure 5 records the annual scientific publication rate 

in the research area and demonstrates a significant increase within the past couple of 

years. Figure 6 indicates the various topics’ trends within the past 15 years. Big Data, ma-

chine learning, and deep learning lead the current trend, followed by health, safety, and 

occupational risks. Decision support systems and knowledge-based systems used to be 

trending during the last decade, but have now been superseded by AI-based techniques 

that foster decision making. 

 

Figure 4. Co-occurrence diagram of keywords/research areas of source papers.   AI algorithms,    

decision support systems,    RM domains    construction project disciplines,     health and 

safety. 
construction project disciplines,

Buildings 2023, 13, x FOR PEER REVIEW 8 of 26 
 

4. Findings and Discussion 

4.1. Background Data 

All the 48 source papers served as references for the bibliometric analysis of the find-

ings. Figures 4–6 were created for a visual presentation of trending topics and research 

areas, technologies, and publication rate. Figure 4 illustrates the co-occurrence diagram 

between keywords and research areas in the source papers created by the Bibliometrix 

application, providing the big picture of the interdisciplinary research in the field. The 

circles represent the keywords in articles, and their colors are assigned by the clustering 

algorithms in Bibliometrix. Moreover, the authors grouped these keywords into five main 

areas based on their similarity and content, represented by the colored squares. As indi-

cated on the diagram, the papers introduce a number of AI algorithms applicable to vari-

ous steps of RM, such as risk identification and analysis and for decision making on dif-

ferent aspects of construction projects, such as contracts or cost. There are a number of 

papers particularly focused on health and safety risks, which were only analyzed regard-

ing the techniques they proposed. Figure 5 records the annual scientific publication rate 

in the research area and demonstrates a significant increase within the past couple of 

years. Figure 6 indicates the various topics’ trends within the past 15 years. Big Data, ma-

chine learning, and deep learning lead the current trend, followed by health, safety, and 

occupational risks. Decision support systems and knowledge-based systems used to be 

trending during the last decade, but have now been superseded by AI-based techniques 

that foster decision making. 

 

Figure 4. Co-occurrence diagram of keywords/research areas of source papers.   AI algorithms,    

decision support systems,    RM domains    construction project disciplines,     health and 

safety. 
health and safety.

Buildings 2023, 13, x FOR PEER REVIEW 9 of 26 
 

Figure 5. Annual scientific publication rate in the research area. 

 

Figure 6. Trending topics in the domain within the past 15 years. 

4.2. AI-Based Risk Data Structuralizing and Pre-Processing 

Text mining tools such as Natural Language Processing and adaptive lexicon have 

been implemented to convert textual and unstructured risk data into a proper structured 

Figure 5. Annual scientific publication rate in the research area.



Buildings 2023, 13, 1312 9 of 25

Buildings 2023, 13, x FOR PEER REVIEW 9 of 26 
 

Figure 5. Annual scientific publication rate in the research area. 

 

Figure 6. Trending topics in the domain within the past 15 years. 

4.2. AI-Based Risk Data Structuralizing and Pre-Processing 

Text mining tools such as Natural Language Processing and adaptive lexicon have 

been implemented to convert textual and unstructured risk data into a proper structured 

Figure 6. Trending topics in the domain within the past 15 years.

4.2. AI-Based Risk Data Structuralizing and Pre-Processing

Text mining tools such as Natural Language Processing and adaptive lexicon have
been implemented to convert textual and unstructured risk data into a proper structured
format for AI algorithms [45]. Given that 80% of construction data are stored in text format
in project reports, TM can extract valuable data for identifying contract risks from contract
conditions, socio-technical risks from licensee event reports, and safety risks from accident
reports [46] for the further analysis of risks. Computer vision techniques are for detecting
hazardous objects and situations that might trigger safety risks through images. Clustering
and classification methods are used to categorize risks and can be integrated with text
mining methods as a next step in text structurization. These methods are widely applied in
the safety and contract risk domains, for instance, various ML methods, such as Support
Vector Machine (SVM), Linear Regression (LR), K-Nearest Neighbor (KNN), Decision Tree
(DT), and Naïve Bayes (NB) models, are used in the literature to classify the causes of
accidents [47].

As construction companies and institutions do not document frequently and do not
share their data in the form of open sources, a common issue in construction is data scarcity
and missing values, which hinders the application of machine learning and deep learning
algorithms requiring huge amount of data to have proper performance. There-fore, data
augmentation techniques such as Generative Adversarial Networks (GANs) are applied to
improve the quantity and distribution of data by producing synthetic data through learning
from the training sample [48]. Although GANs have broader application in creating
synthetic images, which can be highly beneficial in analyzing safety risks and hazards in
construction sites, they are recently being applied on tabular data as well, which are the
common form of risk data registration. However, advanced GANs’ algorithms for tabular
data generation are still missing and the produced data might face an overfitting problem.
Another solution to the data scarcity problem is elicitation. Elicitation is the process of
obtaining knowledge and subjective assessment about the underlying relationships and
dependencies between variables and their probabilities from domain experts, which is
being vastly used in learning structure and parameters in Probabilistic Graphical Models
such as Bayesian Networks [49].
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4.3. AI Algorithms Classification for Risk Identification, Analysis, and Mitigation Planning

Various categories have been proposed for AI-based risk analysis and reasoning
methods in the literature. Based on the categorization for AI application areas in the
construction industry proposed by Pan and Zhang [10], RM falls under the category of
expert systems/fuzzy logic for knowledge representation and reasoning mainly formed
on probabilistic, qualitative, and linguistic analysis, and machine learning for supervised
learning based on either probabilistic or deterministic analysis. Samantra et al. [50]
classified construction risk assessment approaches as (a) probabilistic, dealing with risk
probability and impact estimation based on historical numeric data, including sensitivity
analysis, Decision Tree analysis, Bayesian Networks, Monte Carlo simulation, etc. [51],
and (b) possibilistic, dealing with risk possibility and impact estimation based on quali-
tative or descriptive data including fuzzy logic [52]. The advantage of the possibilistic
approach is that it can embrace the uncertain and vague definition of risk factors and
their magnitude in a linguistic and subjective description [50]. Although called by
various names, the notion and reasonings for classifying the methods are the same, in
most cases. For ease of reference, this paper called them probabilistic and deterministic
approaches. It is noteworthy that this classification basis is the risk reasoning itself,
which is applicable to all phases of the RM process from risk identification to assessment
and mitigation planning. This classification aims to bridge the gap in previous studies
and provide a standardized and holistic grouping applicable to all ML algorithms in the
realm. Furthermore, unlike previous studies that focus mostly on the structure of the ML
algorithms and their theoretical backgrounds, this study has a practical and problem-
driven approach, assessing and grouping the algorithms based on their potential to fit
different situations and scenarios in real-world projects.

The probabilistic approach is mostly based on Bayesian inference, which allows for
making judgements on prior and posterior probabilities in random variables based on
various sources, such as expert judgement, model simulation, or historical data [53]. Prior
probability is the likelihood of a particular state of a variable happening without seeing
any evidence, and posterior probability is the updated belief or likelihood of that state of a
variable happening after seeing evidence [54].

Benefitting from multiple sources of data in probabilistic approaches, the priors can be
learned based on one source and the posteriors can be updated by another source. On the
other hand, the deterministic approach is mostly based on the frequentist approach, which
can be based on historical records and the priors are learned based on the frequency of an
event happening in the database. These methods perform best when a huge amount of
data is available. The learning and development processes are much more straight forward
and simpler compared to the probabilistic approach, as the elicitation process to obtain
information on probabilities from experts is usually challenging and time-consuming.
However, the downside, in contrast to probabilistic approaches, is the inability to assign
probability to a particular event happening after witnessing evidence, i.e., the posterior
update. The downside of the probabilistic approaches, on the other hand, is the subjectivity,
bias, and over reliance on experts’ opinions if not calibrated properly [55].

4.3.1. Probabilistic Approach

The probabilistic approach is used by Structural Equation Modelling (SEM), Bayesian
Network (BN), fuzzy logic, and fuzzy cognitive map that can be integrated with other
methods such as fault tree analysis. These methods have a vast application in expert
systems and knowledge representation and can have one of the below-mentioned risk
reasonings [56]:

1. Probability-based reasoning, referring to probability theory to indicate the uncertainty
in knowledge, including fault tree analysis (FTA), SEM, and BNs.

2. Rule-based reasoning, deploying a set of rules in the “if <conditions>, then <conclu-
sion>” format with logical connectives, such as AND, OR, and NOT, for analyzing
the qualitative and linguistic data of expert opinion, including fuzzy logic.
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3. Fuzzy cognitive map (FCM) learned from data or expert opinions, in which the fuzzy
graph structure enables interpreting complex relationships and systematic causal propa-
gation for the immediate identification of risks’ root causes in uncertain conditions.

SEM is a versatile multivariate statistical technique consisting of a schematic diagram
representing causal structural relationships among multiple variables [57], and has a vast
application in construction safety risk analysis with Exploratory Factor Analysis (EFA).
EFA can uncover the underlying structure of a large set of variables when there are no
hypotheses about the nature of the underlying structure of a model [58].

Bayesian Networks are the most applied Probabilistic Graphical Model in the con-
struction industry [20], and are statistical techniques based on probability and graph theory
that represent the causal relationships between the variables and their probabilities in a
risk networks. BNs are presented as graphs consisting of nodes, as random variables,
and directed arcs, as causal relationships among these variables, which is referred to as
the Directed Acyclic Graphical model (DAG) [59] and includes a Conditional Probability
Distribution (CPD) for continuous variables or a Conditional Probability Table (CPT) for
categorical variables, representing the influences between the nodes. The structure and
parameters for CPD or CPT can be learned through algorithms from extensive historical
data, expert opinion, or both. BNs have a wide application in modelling, identifying, and
analyzing project-related risks such as claims and contract risks, structural health, operation
quality, cost and schedule overruns, and safety hazards [60,61].

Fuzzy logic has wide application in modelling qualitative and subjective data ex-
tracted from expert opinion, which allows reasoning with ambiguous information. The
probability of verbal expressions are transformed into fuzzy numbers, with degrees of
truthfulness or falsehood represented by a range of values between 1 (true) and 0 (false),
using triangular, trapezoidal, or Gaussian fuzzy membership functions, and through four
subprocesses of fuzzification, inference, composition, and defuzzification [62]. Fuzzy
logic integration with Bayesian Network, Analytic Hierarchy Process (AHP), and TOPSIS
is proven to be a robust risk assessment and decision-making approach, especially when
the problems are characterized by subjective uncertainty, ambiguity, and vagueness [63].
A fuzzy cognitive map [56] is a combination of fuzzy logic and cognitive map, which uses
subjective and vague linguistic variables from domain experts, performs a Root Cause
Analysis, and models complex and dynamic systems with numerous indicators, causal
dependencies, and weights. FCM forms a what-if scenario analysis for the prediction and
evaluation of risks in a fuzzy weighted graph model with a tolerance of imprecision and
uncertainty [64].

There are some interesting previous studies that proposed probabilistic and subjec-
tive RM models for construction projects. Afzal et al. [65] proposed a hybrid method of
fuzzy logic and BBN based on a systematic literature review on subjective RM methods
for cost overrun risk in construction projects, which proved to have better performance
compared to other AI-based methods. The integration of Monte Carlo simulation (MCS)
and multi-criteria decision model (MCDM) techniques for measuring complexity and
risk relationship for cost overrun in construction projects was studied and proposed by
Floyd et al. [66] and Qazi et al. [67]. Cardenas et al. [31] addressed the data unavailability
and incompleteness problem in tunneling projects through expert elicitation in BBNs. Lee
and Kim [68] proposed a Failure Mode and Effects Analysis (FMEA)-based method to find
primary factors responsible for causing cost increases throughout the modular construction
life cycle. Ferdous et al. [69] developed a Quantitative Risk Analysis model based on event
tree analysis (ETA) and fault tree analyses (FTA) to handle and describe the uncertainties in
the input event likelihoods. Kim et al. [70] conducted a comparative analysis between SEM,
multiple regression, and ANN and developed an SEM-based model to predict the project
success of uncertain international construction projects.

There is a trend of integrating fuzzy logic with other AI-based methods in the literature.
Fuzzy logic applications in construction management literature can be divided into two
main fields (a) fuzzy set/fuzzy logic and (b) hybrid fuzzy techniques, with the applications
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in four main categories, including decision making, performance, evaluation/assessment,
and modeling [71]. For instance, Zhao et al. [72] developed a risk assessment model using
a fuzzy synthetic evaluation approach for green building projects in Singapore, which
grouped and calculated the likelihood of each risk factor’s occurrence, risk magnitude,
and criticality. Kabir et al. [73] incorporated fuzzy logic into BBN and proposed a fuzzy
Bayesian belief network (FBBN) model to represent the dependencies of events and uncer-
tain knowledge (such as randomness, vagueness, and ignorance) for the safety analysis
of oil and gas pipeline projects. In another study, Shafiee [74] proposed a fuzzy analytic
network process (FANP) approach to select the most appropriate risk mitigation strategy
for offshore wind farms with regard to four criteria: safety, added value, cost, and feasibility.
Zhong et al. [75] proposed a project risk prediction model using an entropy weight method
(EW), a fuzzy analytic hierarchy process (FAHP), and a 1D convolutional neural network
for risk indexing. Cheng and Lu [76] presented a hybrid risk analysis model combining
fuzzy inference with failure mode and effect analysis (FMEA) to improve the existing risk
assessment methods for pipe jacking construction by mapping the relationship between
occurrence (O), severity (S), and detection (D) and the level of criticality of risks. Liu and
Ling [77] constructed a fuzzy-logic-based artificial neural network model, or fuzzy neural
network (FNN), to facilitate the decision-making process for contractors, providing a clear
explanation to justify the rationality of the estimated markup output. There are also some
remarkable literature review studies on fuzzy and hybrid risk assessment methods in
construction projects, such as the one that Islam et al. [78] conducted, which delineated
the advantages of the fuzzy Bayesian belief network (FBBN) over other hybrid models
such as FANP, due to overcoming systematic constraints such as the lengthy calculations
required for the pairwise comparisons. Petroutsatou et al. [79] proposed a probabilistic
model for pre estimating the life cycle cost of road tunnels’ construction using multiple
regression analysis and Monte Carlo simulation. A detailed table of related papers and
their techniques can be found in Appendix A.

4.3.2. Deterministic Approach

A list of ML techniques applied in construction-related disciplines includes artificial
neural networks (ANN), Decision Trees, Logistic Regression, Naïve Bayesian Models,
and Support Vector Machines. ML combines methods from statistics, database analysis,
data mining, pattern recognition, and AI to extract trends, inter-relationships, patterns of
interest, and useful insights from complex data sets [80]. A deterministic approach is used
by most of the machine learning algorithms. These algorithms can be used for one of the
following applications in RM: (a) regression to predict continuous numerical outcomes
such as delay caused by a risk, including Linear Regression, Decision Trees, Support Vector
Machines (SVM), and neural network (NN) techniques; (b) classification to present the
class of the output based on some input features, such as risk identification, including NNs,
Random Forest, SVM, and Genetic Algorithm; (c) clustering to explore data for natural
groupings, such as finding related events causing a risk, including K-means and SVM;
(d) attribute importance to rank attributes based on their relationships to the target variable,
such as identifying the most significant causes of accidents, including Decision Trees and
Random Forest; (e) anomaly detection to identify unusual cases based on deviation, such
as identifying accident risks, including SVM and deep neural networks. In contrast to other
realms in construction, ML applications have been limited and mainly related to predicting
delay risks in construction, predicting the impact of contract changes on the time and
quality performance, and analyzing and modeling incident databases for predicting H&S
risks. The format of the input risk data for risk assessment in the deterministic approach
can be numeric, categorical, video data, sensor data, textual data, etc., and input data
acquisition approaches could be historical, real-time, or a combination of historical and
real-time data [81].
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ANNs are the most applied ML method in engineering risk assessment, followed
by SVM, Decision Trees, RF, CART, Naïve Bayes, K-means, KNN, Linear Regression, and
BRT [81]. NNs are formed by layers of interconnected nodes using activation function,
weight, and bias, which simulate the human brain structure and behavior for solving
problems such as recognition, classification, and regression [82]. The reasoning behind
these layers relies on the weights and biases assigned to each node, being learned and
optimized, based on forward propagation and backpropagation processes, with an objective
to minimize the loss function as an indicator of prediction precision. They provide notable
performance in the presence of abundant data, capturing linear and nonlinear relationships
of the data. They also act as a predicting–analytical model for industrial RM control and
accidents’ severity assessment, firstly to estimate the S-curve in a construction project,
secondly to analyze the causes of accidents, and to also predict delay risk in construction
logistics [83].

DT is a supervised learning method that explores the relationships of many input
attributes to an output attribute by creating a top-down branching structure consisting of a
root node splitting into branches as probable outcomes. DTs do not need any assumptions
regarding the independence of variables or variable values. They can process both numeri-
cal (continuous) and categorical (discrete) data and perform regression and classification.
Support Vector Machines (SVM) perform regression and classification by mapping data
to a high-dimensional feature space. This is to categorize the data points by forming a
separator between the categories in the form of a hyperplane. Genetic Algorithm, which is
an optimization and complex problem-solving method using an adaptive heuristic search,
is also useful in measuring project risk interdependencies for the optimal cost solution
under uncertainties [84].

The deterministic approach has been widely studied in the RM literature. Jallan and
Ashuri [85] used text mining and Natural Language Processing techniques to identify
and classify risk types and trends affecting publicly traded construction companies
by leveraging their 10-K reports filed with the Securities and Exchange Commission.
Chattapadhyay et al. [86] used a cross-analytical machine learning model with K-means
clustering and Genetic Algorithm to exploit different risk factors and their impacts on the
performance aspects of construction megaprojects. Valpeters et al. [87] determined the
probability of contract execution risk at a given stage of its establishment using Logistic
Regression, Decision Tree, and Random Forest algorithms. Creedy et al. benefited from
Multivariate Regression Analysis for evaluating risk factors that lead to cost overruns in
delivering highway construction projects. Yaseen et al. [12] developed a hybrid artificial
intelligence model called integrative Random Forest classifier with Genetic Algorithm
optimization (RF-GA) for delay problem prediction. Joukar and Nahmens [88] extracted
and forecasted the short-term volatilities of the Construction Cost Index (CCI), like price
volatilities, by assessing the cost risk of construction projects, and quantified the risk
of overestimation or underestimation, using Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) model and ARIMA. Gondia et al. [83] used Decision Tree
and Naïve Bayes model to analyze and predict project delay risks using objective data
from previous projects. Alshboul et al. [89] implemented an ensemble machine learning
technique combining various ML algorithms, such as XGBoost, Categorical Boosting,
K-Nearest Neighbor, Light Gradient Boosting, ANN, and DT, to predict the liquidated
damages in highway construction projects.

Neural networks are the most used algorithms in this group and have been integrated
with other algorithms in hybrid models as well. Goh and Chua [90] used NN analysis
in a quantified occupational safety and health management system audit with accident
data obtained from the Singaporean construction industry in order to predict accidents
and identify safety critical factors. Gajzler [91] developed a method for supporting the
decision-making process of materials and technology selection for repairing industrial
building floors using knowledge-based NN and fuzzy logic. Jin and Zhang [92] developed
an ANN-based risk allocation decision-making process in public–private partnership (PPP)
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projects. Chenyun and Zichun [93] conducted an analysis and evaluation of project cost
risk and the identification of critical factors based on NN. A detailed table of the related
studied papers and their techniques can be found in Appendix A.

4.4. Comparative Analysis between Probabilistic and Deterministic Models

Following determining and listing the probabilistic and deterministic algorithms based
on the source papers in Figure 3, an analytical comparison was performed between them
regarding their reasoning basis in risk identification, assessment, and mitigation planning
stages, advantages and disadvantages, application areas, and data requirements for each,
presented in Table 1. The basis of this comparison was the points mentioned in the sourced
papers of the systematic literature review regarding the precision, problem type, analytical
reasoning, input data requirements, level of probability included, and characteristics of
each of these methods.

Table 1. Analytical comparison between probabilistic and deterministic RM models.

Comparison Criteria Probabilistic Approach Deterministic Approach

Reasoning basis
Probability-based reasoning

Rule-based reasoning
Fuzzy logic [44,50,87,94]

Forward propagation and backpropagation
Loss function

Weights and biases [95,96]

Structure Interconnected graphs [67,68,97] Layers of neurons or branches [91,92]

Data Source Historical Data, model simulation
Experts’ opinion [98,99]

Historical data, model simulation
[95,96,100]

Inference Bayesian inference [101] Frequentist inference [102]

Data Requirements
Limited amount of data

Able to deal with missing values
Numerical, categorical, and linguistic data [103,104]

High amount of data
Partial ability to deal with missing

values [24]

Probability and
dependencies’ role

Embrace probability in assessments
Considering variables interdependencies with each

other and final output [105,106]

Does not embrace probability in
assessments

Considering variables interdependencies
on final output [87,107]

Prediction precision Mid-high [108] Very high [25]

Application scope Subjective and uncertain problems with limited
data [109]

Objective and complex problems with
abundant data [83]

Application in RM processes
Risk identification

Qualitative analysis
Risk control [110–112]

Risk identification
Qualitative and quantitative analysis

Mitigation planning
Risk control [86,87,113]

Advantages

Flexibility to various problems
Ability to integrate qualitative and quantitative data

(subjective and objective)
Risk path approach

Ability to include dynamic data [114,115]

Quick processing and learning
Ability to consider linear and nonlinear

relationships among data
Ability to include dynamic data [116,117]

Disadvantages
Takes longer time to create the structure

Not high precision if merely based on historical data
High processing time in complex problems [67,118]

Individual risk analysis approach (isolated)
Not flexible toward change

Requirement of high data volume [119,120]

In general, algorithms with a deterministic approach have advanced structure, quicker
processing time, and higher result precision in complex problems, but they require a
large amount of structured data with no missing values or uncertainties. Given that
documentation is in a less than optimum condition in the industry, data scarcity and
infrequent data updates are the main challenges in these models. The probabilistic approach,
on the other hand, due to functioning in the state of data scarcity and missing values and
being closer to reality regarding the inter-dependencies between risk variables, is more
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practical. It can integrate subjective and experience-based experts’ opinions through
the elicitation of objective historical data gathered from previous projects or simulations
to overcome the data scarcity issue. Moreover, it benefits from the risk path approach
instead of isolated risk assessment. However, the structure and parameter learnings are
daunting and complicated tasks as the model becomes more complex, containing more
variables and relationships. The probabilistic approach is based on Bayesian inference,
as mentioned in Equation (1), and the deterministic approach is based on frequentist
inference, as mentioned in Equation (2). These equations are the basis of risk reasoning and
assessment for different AI algorithms, which can lead to different results and accuracies
in the RM process. Construction firms can refer to this study and Table 1 to choose the
most appropriate AI model to foster their RM processes, their enterprise requirements, and
data availability.

PPosterior(H|D) =
P(D|H)PPrior(H)

P(D)
(1)

Likelihood L(H; D) = P(D|H) (2)

4.5. Results Comparison with Previous Studies

The main foci of previous review studies were the structure of the AI algorithms
or the data mining technologies [121], the classification of AI methods based on their
structure, or the used technology, such as ML or computer vision [15]. The grouping of
these technologies was based on their area of application in construction projects. For
instance, Afzal et al. [65] conducted a comprehensive review analysis on AI-based risk
assessment methods, and listed papers based on the technique used, identifying six key
techniques used. In another study, the tree structure consisting of nodes in data mining was
studied by Rao and Chen [121] in the scope of construction risk control. Islam et al. [78]
conducted an extensive review of hybrid and fuzzy models’ structures and then explored
the areas of their applications, such as roads and highways and building projects [122]. A
few articles just focused on one type of risk, such as safety risk, and one type of project,
such as urban railway construction. Some other studies [7–11] highlighted the RM domain,
focusing on the types and structures of AI technologies applied in construction. In other
studies, a specific method, such as the SEM, was analyzed thoroughly regarding technical
aspects, sample size issues, data screening and reliability testing, model evaluation and
validation processes, etc. [57].

Although such studies provide helpful insights, they contain highly detailed and
advanced information and formulas that might be from the experience and roles of the
audience and, in our case, the practitioners and industrial researchers in the field. Most of
the technologies discussed in these papers are at the research stage. Their future potential
application in practice is therefore still unknown. Applying a practical approach to the
topic, this study aims to analyze the ML algorithms from the risk reasoning and judgment
point of view, and classify the methods based on the established statistical reasonings in
probability studies, i.e., frequentist and Bayesian approaches. Such a functional and right-to-
the-point classification is easily comprehensible and able to be addressed by practitioners
and researchers in the field, meaning they can choose the method that best fits their
requirements and resources. This is an interdisciplinary and novel way of grouping the
widespread ML algorithms already implemented in the construction industry. Furthermore,
this practical viewpoint assisted the integration of the various, heterogeneous findings
of previous studies in the literature, which had differing scopes. Underlying similarities
between this study and previous investigations in terms of the systematic literature review
process are inevitable and expected in part.

It is noteworthy that the validation of results produced by different ML algorithms
is outside the scope of this study. However, previous studies proved the higher accuracy,
efficiency, and processing speed of the ML algorithms compared to traditional methods.
Their accuracy is assessed using performance metrics such as Root Mean Square Error
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(RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and
Coefficient of Determination (R2) [89], which compare the estimated value with the actual
value of outcomes. Different algorithms are of varying accuracy and performance in
different contexts; therefore, it is only possible to evaluate their overall performance and
validate them by knowing the context and scope of their application.

5. Conclusions and Further Research

The construction RM process benefits significantly from AI in terms of automation,
optimization, fostering decision making, and standardization, as supported by the system-
atic literature review findings. Machine learning and deep learning algorithms, with ANN,
SVM, BN, and fuzzy logic in the lead, have found significant applications in RM research.
However, in order to implement these methods in practice, and to identify the causes of
various risks and to analyze them in construction projects, experience, prior knowledge,
and historical data are required. In most cases, those experiences are not always well
documented nor easily accessible. Therefore, the data requirements, reasoning, and struc-
ture of each AI model needs to be thoroughly analyzed to select the most appropriate one
based on the requirements and data availability in an organization. Furthermore, AI-based
methods, such as text mining and computer vision, can assist in structuring the risk data
and overcome the data scarcity problem.

This study provided a systematic literature review based on the PRISMA guidelines
provided for classifying AI algorithms that can be applied during different phases of the
RM process. The source papers were studied thoroughly to extract insights on common
AI algorithms used for risk management, as well as their main areas of application. These
algorithms were grouped under probabilistic and deterministic groups based on their risk
reasoning, learning process, data requirements, flexibility toward data scarcity, uncertainty,
integration of qualitative and quantitative data, and application scope.

The deterministic approaches are mostly based on frequentist statistics and can
predict an outcome without attaching a likelihood to it. Moreover, ML algorithms
with a deterministic approach, such as deep learning algorithms, have a black-box
structure; that is, the workflow between input and output variables is complex and
incomprehensible to users. Therefore, there is no room for subjective expert judgment
in the process. The relationships between inputs and outputs are merely learned from
historical data and simulations, making the model require a huge amount of data for
learning and adjusting weights.

Alternatively, the probabilistic approaches are based on Bayesian statistics and pre-
dict the likelihood of different possible outcomes. While black-box models are being
programmed with minimum human guidance, probabilistic models such as Bayesian Net-
works and SEMs are the closest examples to the Explainable AI (XAI) concept, being more
comprehensible for users due to their transparent and graph-based structure indicating the
inter-relationships between input variables and the output. Therefore, they can serve as
knowledge-based systems representing domain knowledge and expert opinions through
elicitation, integrating subjective expert judgment with objective historical data. This is an
advantage when there are not enough data available to base the entire learning process
on. It is noteworthy that hybrid models, such as fuzzy neural networks or Bayesian neural
networks, combine the two approaches and benefit from both linear and non-linear rela-
tionships between input variables. They usually have more robust performance and better
flexibility and are becoming more widespread in construction research.

The contribution of this paper is providing an analytical comparison between different
AI algorithms for practitioners and researchers to choose the appropriate AI model for a
targeted risk, which, as proven by the results of previous studies in the literature, can bring
many advantages in terms of automation, optimization, digitalization, and decision making,
increasing the RM processes’ performance and projects’ success rate. This comparison is
made from a practical and problem-driven viewpoint and highlights the most influential
features when choosing and implementing a model in practice. That is, instead of focusing
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on the structure of each algorithm and trying to fit them into the RM problem, which can
often fail, this study focuses on the situations and problems in which each algorithm can
work best regarding data availability, the emphasis on uncertainty, the existence of different
data sources, etc. The algorithms’ categorization provided by this study is also based on
risk reasoning statistics to bring the theoretical topics one step closer to practical processes.
It is the main difference from previous literature review studies, which put their focus
on the algorithms’ structures and types with great theoretical detail and formulas rather
than their practical capacities, reasonings, and challenges. An AI-based RM framework is
presented, in which this study focuses on the data analysis phase. Future phases will be
the subject of further studies.

One of the limitations of this research was the paucity of publications when validating
the proposed analytical comparison. Being a highly specialized topic, many previous stud-
ies were out of the scope of this study and could not serve as a benchmark for comparing
results. Another limitation was using English language as one of the filters. This might
have excluded some relevant studies. Further, the classifications provided by previous
researchers for the AI algorithms were based on different criteria, such as the project phase,
the algorithms’ efficiency levels, supervised or unsupervised learning, etc., which in some
cases were incompliant, contradictory, or partial. Therefore, this study grouped them under
probabilistic and deterministic approaches to include the majority of these criteria. A more
detailed classification would provide a more accurate comparison. Another limitation is the
variety of methods and techniques, both AI-based and non-AI-based; each has a different
scope and target process. Therefore, not all of the techniques could be analyzed within one
article, and most of them applied to other phases such as data gathering and digital twin
integration. However, these topics will be the focus of future research work to complete the
AI-based RM framework proposed in this study.

In addition to analyzing the AI-based data gathering and preprocessing tool, a
further study can involve the discussion and validation of the comparative table by ex-
perts in the field and/or through case studies for the implementation of algorithms and
comparison of the results. The systematic literature review could also be expanded into
other generic AI-based RM framework phases, such as data production and documenta-
tion techniques, integration with digital twins, etc. Moving toward a fully automated
RM process, the findings of the practical application of AI in real-world case studies
throughout different phases of the proposed framework, for instance, the data gathering,
data analysis, and automating document update, would be the topic of further studies.
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Appendix A

Table A1. References of source papers and partially used papers for the systematic literature review.

References Model Technique Context

Love et al. (2021) [123] Review Paper Review on risk and uncertainty of rework in construction

Afzal et al. (2019) [65] Review Paper Systematic literature review and content analysis on AI-based risk
assessment methods

Cao et al. (2021) [42] Review Paper
Review on AI algorithms, e.g., ANN, GA, SVR, etc., applications in
civil engineering domains such as predicting and evaluating the
different parameters of composite beams and shear connectors

Chenya et al. (2022) [6] Review Paper Systematic literature review on research gaps and future trends of
intelligent risk management in construction projects

Saka et al. (2023) [124] Review Paper Review on conversational AI systems, e.g., Natural Language
Processing

Xiong et al. (2015) [57] Review Paper Critical review of SEM applications in construction

Basaif et al. (2020) [27] Review Paper Study on technology awareness of AI application for risk analysis
in Malaysian construction projects

An et al. (2021) [15] Review Paper
Literature review on five type of popular AI algorithms, including
Primary Component Analysis, Multilayer Perceptron, fuzzy logic,
Support Vector Machine and Genetic Algorithm

Okudan et al. (2021) [125] Review Paper Review of knowledge-based RM tools in construction projects
using AI, ML, and fuzzy set

Abioye et al. (2021) [16] Review Paper Review on AI status, opportunities and future challenges in the
construction industry

Adams (2008) [126] Review Paper Review on risk identification and analysis techniques in
construction projects in the UK

Pan and Zhang
(2021) [10] Review Paper

A systematic literature review and qualitative analysis on the
current state of AI adoption in the context of construction
engineering and management and discussion on its future trends.

Wu et al. (2021) [122] Review Paper Safety risk investigation framework in urban rail transit
engineering construction using AI algorithms and data clouds

Yucelgazi and Yitmen
(2020) [112] Probabilistic Analytical network

processing (ANP) Risk assessment for large infrastructure projects

Khodabakhshian and Re
Cecconi (2022) [60] Probabilistic BN, process mining Risk identification in construction projects

Chen et al. (2012) [127] Probabilistic Expert system
Knowledge management

Evaluating performance heterogeneity through a knowledge
management maturity test in the building sector

Khademi et al.
(2014) [128] Probabilistic ANP and AHP Construction risk analysis

Liu et al. (2016) [129] Probabilistic SEM International construction projects risk assessment

Lu et al. (2022) [130] Porbabilistic BN, fuzzy logic System risk management

Qazi et al. (2016) [67] Probabilistic ANP and BN Risk path measuring and modeling project complexity in
construction projects

Khakzad et al. (2013) [97] Probabilistic BN Risk analysis of offshore drilling operations

Boughaba and Bouabaz
(2020) [131]

Probabilistic and
Deterministic ANN, fuzzy logic, RNN AI-based tendering decision-making model considering the success

and failure factors

Islam et al. (2017) [78] Probabilistic MCS Hybrid methods for risk assessment in construction projects

Samantra et al. (2017) [50] Probabilistic Fuzzy Set Fuzzy-based risk assessment module for an underground metro rail
station construction project

Tian et al. (2022) [132] Probabilistic BN Crossed risk assessment of construction safety

Adeleke et al. (2018) [133] Probabilistic SEM Nigerian companies’ construction risk management

Chen et al. [94] Probabilistic BN, fuzzy logic Catenary construction risk assessment based on expert fuzzy
evaluation and BN

Kabir et al. (2016) [134] Probabilistic ANN, BN, and FTA Risk assessment in energy projects
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Table A1. Cont.

References Model Technique Context

Chen et al. (2020) [135] Probabilistic
Fuzzy set, ELECTRE III,
multi-attribute
decision making

Fuzzy- and ELECTRE III-based construction bid evaluation
framework under uncertainty

Moradi et al. (2022) [136] Probabilistic Bayesian neural
networks, BN

Condition and operation risk monitoring of complex
engineering systems

Karakas et al. (2013) [110] Probabilistic Multiagent systems, BN,
fuzzy set

Multiagent system to simulate risk-allocation and cost-sharing
processes in construction projects

Eybpoosh et al.
(2011) [29] Probabilistic SEM Risk rath identification of international construction projects

Vagnoli and
Remenyte-Prescott
(2022) [137]

Probabilistic BN Expert knowledge elicitation into system monitoring data

Omondi et al. (2021) [105] Probabilistic MCS, Markov chain
model, Bayes’ theorem

Investigate how the capacity of probabilistic reasoning to handle
uncertainty can be combined with the capacity of Markov chains to
map the stochastic environmental phenomena to improve
performance of tuning decisions under uncertainty

Valipour et al.
(2016) [138] Probabilistic Fuzzy ANP Hybrid fuzzy cybernetic model to identify shared risks in projects

Senova et al. (2023) Probabilistic MCS Financial risk assessment using Monte Carlo simulation

Kamari and Ham
(2022) [33] Deterministic

Computer vision, point
cloud segmentation,
digital twinning

Deep-learning-based digital twinning framework for construction
siter disaster preparedness

Fang et al. (2013) [113] Deterministic GA Risk planning under resource constraints

Choi et al. (2021) [26] Deterministic NLP, text mining Developing a digital EPC contract risk analysis tool for contractors,
using AI and text mining techniques

Wu and Lu (2022) [139] Deterministic RF, XGBoost, Bagging
Regressor, SVR,

AI-based for accident and safety risk assessment in
bridge construction

Alshboul et al. (2022) [89] Deterministic XGBoost, KNN, ANN,
DT, LightGBM, CatBoost Liquidated damages prediction in highway construction projects

Esmaeili and Hallowell
(2012) [140] Deterministic Delphi method, SSRAM Developing a decision support system called scheduled-based

safety risk assessment and management (SSRAM)

Habbal et al. (2020) [95] Deterministic ANN ANN-based planning risk forecasting model in
construction projects

Yaseen et al. (2019) [12] Deterministic RF, GA Risk delay prediction in construction projects by hybrid an
AI model

Choi and Lee (2022) [141] Deterministic
NLP, bi-directional long
short-term memory
(bi-LSTM)

Contractor’s risk analysis of Engineering Procurement and
Construction (EPC) contracts Using Ontological Semantic
Model and bi-long short-term memory (LSTM) technology

Hosny et al. (2015) [96] Deterministic NN Development of an NN-based predictive and decision awareness
framework for construction claims using backward optimization.

Chattapadhyay et al.
(2021) [86] Deterministic

Cross-analytical machine
learning model, K-means
clustering, GA

Exploiting different risk factors and their
impacts on the performance aspects of construction megaprojects

Valpeters et al. [87] Deterministic Logistic Regression, DT,
Random Forest

determination of the probability of contract execution at a stage of
its establishment

Fan et al. (2020) [142] Deterministic NN, AHP Development of a credit risk index system of water
conservancy projects

Anysz et al. (2021) [107] Deterministic Decision Tree, ANN Predicting the result of a dispute

Zhong et al. (2021) [75] Deterministic
and Probabilistic

CNN, fuzzy AHP,
entropy weight method

Cost and schedule risk prediction model for construction projects
using 1D-CNN, EW, and FAHP.
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