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Abstract11

Heterogeneity across a broad range of scales in geologic porous media of-

ten manifests in observations of non-Fickian or anomalous transport. While

traditional anomalous transport models can successfully make predictions in

certain geological systems, increasing evidence suggests that assumptions re-

lating to independent and identically distributed increments constrain where

and when they can be reliably applied. A relatively novel model, the Spatial

Markov model (SMM), relaxes the assumption of independence. The SMM

belongs to the family of correlated continuous time random walks and has

shown promise across a wide range of transport problems relevant to natural

porous media. It has been successfully used to model conservative as well as

more recently reactive transport in highly complex flows ranging from pore

scales to much larger scales of interest in geology and subsurface hydrology.

In this review paper we summarize its original development and provide a

comprehensive review of its advances and applications as well as lay out a
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vision for its future development.

1. Introduction12

Heterogeneity is a characteristic feature of natural porous media and the13

complex geological media that make up the subsurface, and their associated14

flow and transport processes, span a vast range of scales from nanometers to15

hundreds of kilometers (1). Subsurface heterogeneities occur at every scale16

and specific forms include physical heterogeneities like transitions between17

hydrofacies (2), chemical heterogeneities that reflect changing mineralogies18

(3), and biological heterogeneities like biofilm growth (4), among others.19

Each kind of heterogeneity can strongly influence the velocity at which sub-20

stances can move through the porous medium or their residence times. One21

of the most influential parameters on transport is certainly the intrinsic per-22

meability of the medium, which governs fluid velocity and pressure through23

Darcy’s law. Permeability is linked to hydraulic conductivity and can vary24

by orders of magnitude over relatively short distances. This extreme vari-25

ability often yields behaviors that exhibit broad spatial and temporal veloc-26

ity distributions, which are not predicted well by classical, continuum-based27

transport theories that model linear scaling of the mean squared displace-28

ment, i.e. by specifying Fickian dispersion with constant coefficients. The29

transport of contaminants, nutrients, other dissolved substances, such as bac-30

teria, colloids, nanoparticles, viruses, etc. often exhibits nonlinear temporal31

scaling of the mean squared displacement (〈x2〉 ∼ tα;α 6= 1) over time scales32

of practical interest (5; 6), and thus is classified as displaying “anomalous”33

transport characteristics; superdiffusive transport is obtained for α > 1 with34
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subdiffusive transport occurring in the opposite case. Since transport in35

natural porous media routinely violates the assumptions of the prevailing36

state-of-the-art models, we need models that can capture the influence of37

heterogeneity across this range of scales that causes these deviations.38

Much of the early work on developing effective transport models in porous39

media built on the pioneering ideas of Taylor (7) and Aris (8). These sem-40

inal works demonstrated that transport can be described by an effective41

advection-dispersion equation with a Fickian dispersion coefficient when a42

plume is given sufficient time to sample the full distribution of heterogeneous43

velocity scales. Common approaches following this idea include the method44

of moments (9), volume averaging (10) and homogenization (11; 12). As45

powerful and elegant as these upscaling approaches are, they are restricted46

in their application for three main reasons: i) they are limited to specific47

ranges of transport regimes, e.g., in terms of Péclet or Damköhler numbers48

(the latter in the case of reactive transport), ii) they require the definition49

of a spatially periodic unit cell to compute effective parameters and iii) the50

effective coefficients so derived may be valid only at asymptotic times, which51

may be prohibitively long depending on the underlying flow structure. Other52

pioneering works studying dispersion in porous media include (13) and (14),53

who introduced the concept of residence times to study particle displacement54

statistics.55

In general, anomalous transport behaviors can be predicted, starting from56

a detailed model of the system heterogeneity. This, for example can be57

obtained by applying an effective Fickian transport model at local scales58

where the heterogeneity of the system is fully resolved, as it is in a multi-59
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dimensional, spatially distributed model of flow and transport (15; 16; 17;60

18; 19). Once a spatial resolution is chosen to represent heterogeneity,61

this effectively averages out the sub-grid heterogeneity, allowing transport62

in each cell to be modeled as a Fickian process, but the interactions be-63

tween cells with disparate velocities lead to larger scale non-Fickian behav-64

iors (20; 21; 22; 23; 24). The main issue with this approach is that it requires65

a detailed model of the subsurface heterogeneities; the inaccessibility of the66

subsurface means that geostatistical techniques are required to approximate67

it (25; 26). In fully saturated media (e.g., at aquifer scale) perturbation68

approaches may be used to characterize transport statistics as a function69

of a permeability spatial heterogeneity model (e.g. 27). However, these lin-70

earized approaches become inaccurate for increasing degrees of heterogeneity71

(i.e. when the variance of natural logarithm of hydraulic conductivity exceeds72

unity). Even beyond the mere estimation of the intrinsic permeability, signif-73

icant uncertainty exists in the parameter fields (e.g., porosity) as well as the74

initial and boundary conditions, and this may require numerically evaluating75

ensemble statistics to quantify the uncertainty, all of which is computation-76

ally expensive. Similar issues arise when considering non-Fickian behavior77

emerging from pore scale simulations (28; 29): anomalous transport can be78

predicted using a pore scale model, but this is computationally unfeasible in79

real, large-scale applications, i.e. beyond mm-scale samples. In short, the80

uncertainty and complexity of a distributed parameter model may outweigh81

its benefits in a predictive capacity and this further motivates the need for82

simplified, or upscaled, models.83

A variety of upscaled models have been proposed to describe anomalous84
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transport in geological porous media and have been applied with success.85

Some of the most widely used are multi-rate mass transfer (MRMT) (30),86

fractional advection dispersion models (fADE) (31) and continuous time ran-87

dom walks (CTRW) (32). It is important to emphasize that these are by no88

means the only anomalous transport models used in porous media, but the89

most widely used, due to their demonstrated success across a wide range of90

temporal and spatial scales. Their dissemination into the scientific commu-91

nity has been also promoted by openly available computational toolboxes92

(33; 34; 35). Despite the specifics of their individual origins, it is noteworthy93

that these models are all highly inter-related (e.g. 36; 37; 38; 39; 40). Choos-94

ing any one model over another typically depends on the conceptual model95

developed by the user, which often aligns more naturally with one framework96

than the others. It has been shown that all of these models can be repre-97

sented by a random walk or by Eulerian nonlocal (integro-differential) par-98

tial differential equations. We focus in this review on Lagrangian approaches99

where particles transition through space and time following prescribed rules100

(41; 32; 31). Random walks in general are commonly used in the study of101

transport in porous media as highlighted in a review by Noetinger et al (42).102

Classical Fickian transport can be represented as a random walk, but the103

primary difference is that anomalous transport is generated when the dis-104

tributions of random increments (in space or time) have infinite variance or105

mean (43). As such, the broad or heavy tailed distributions cannot converge106

by the central limit theorem to classical Fickian limiting behavior, resulting107

in anomalous transport.108

It is important to note that, in most implementations of Lagrangian ran-109
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dom walk models (Fickian or non-Fickian), successive increments are either110

implicitly or explicitly assumed to be independent and identically distributed.111

While this is a common assumption, it is not necessarily correct. In this con-112

text, Le Borgne and co-workers (44) clearly showed the importance of cor-113

relation for geologically realistic heterogeneous porous media and suggested114

a need to develop models that relax the assumption of independence. Other115

authors (Painter and Cvetkovic) (45; 46; 47), studying transport in fractured116

geologic media, also demonstrated the existence and importance of correla-117

tion effects that must be included to upscale transport correctly. This can118

be achieved upon modeling transport by considering probabilistic rules to119

determine residence times in successive steps using a Markov chain, as was120

already envisaged in earlier works (13). In a conceptual sense, consider that121

it is more likely for rapidly moving solute particles to continue moving quickly122

over small time scales than they are to abruptly slow down; the latter is pos-123

sible but less likely on average, thus violating the assumption of independent124

transitions. For practical problems relating to transport through porous me-125

dia, the spatial scale where transitions become independent may be larger126

than the scales of interest for predictions. Later numerical studies of flow127

through highly heterogeneous porous media by Le Borgne et al. (20; 48)128

showed similar behavior, including a dependence of Lagrangian correlations129

on the local velocity as well as the ability for a particle to experience abrupt130

changes in velocities. From these observations, they suggested and then ver-131

ified that velocities at equidistant positions along a particle trajectory form132

a Markov process. In particular, they confirmed that fast particles tended to133

persist at being fast and slow particles tended to remain slow at fixed spatial134
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increments. From this, they justified a fixed spatial step Langevin equation135

where successive increments in time are correlated (reflecting velocity cor-136

relation between individual particles’ steps); this kind of model is what we137

call the Spatial Markov Model (SMM). The SMM has shown great promise138

in replicating simulated and observed transport behaviors across the diverse139

range of settings and transport scales in geological porous media. The model140

has also gone by the name correlated CTRW and we will use the names in-141

terchangeably throughout this article, although it should be noted that the142

name correlated CTRW pertains to a broader family of models than just the143

SMM.144

The objective of this article is to provide an overview of the SMM and145

its many developments and applications over the last decade or so. We open146

with a general overview of the method in Section 2 followed by its histori-147

cal development, and applications in porous and fractured media at multiple148

scales. A discussion of random walks defined in terms of analytical models149

of velocity transitions is then provided, complemented with an overview of150

SMM applications to nonlinear transport processes. We then close with a151

critical review of the challenges, limitations, and avenues for improving the152

model in the future and consider how to improve parameterizations and pa-153

rameter identification, as well as how to link specific SMM model elements154

with the properties of natural geological media. The work presented here155

focuses exclusively on the development and application of such models in the156

context of geologic media; however, it must be noted that correlated CTRWs,157

similar in nature to the SMM presented here, play an important role in other158

branches of physics also (49; 50). As noted by Magdziarz et al. (51), cor-159
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relations arise when dealing with living systems, including bacterial motion160

(52), the ecology of animal motion (53) and human mobility (54), as well as161

in other dynamic systems such as financial markets (55; 56), seismology (57)162

and chaotic and turbulent flows (58).163

2. The Spatial Markov Model164

The SMM is a particle based random walk model that simulates transport.

The system is described by a large number of particles N , where during each

step a particle takes a uniform fixed step in space of size L [L]. In this sense

it can be seen as a CTRW model, or as a time domain random walk model

(TDRW), using the distinction noted by Aquino & Dentz (59). The amount

of time it takes to perform the step is random, but, unlike other approaches,

it is not independent and is conditioned on the time taken to execute the

previous step. We then describe transport of each particle according to the

discrete equation

x(n+1) = x(n) + L

t(n+1) = t(n) + τ (n+1) n = 0,1,2,...
(1)

where x(n)[L] is the particle position at step n, t(n) [T ] denotes the total travel

time at step n and the transition time, τ (n+1) [T ], is sampled from

f(τ) =

f(τ1) if n= 0

f(τ (n+1)|τ (n)) if n = 1,2,... .

(2)

where f [−] is a joint distribution function of transition times between the165

discrete travel times. In practice, SMM applications have predominately been166
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1-d, which significantly reduces the complexity and data requirements of the167

upscaled model, but multi-dimensional forms also exist (e.g. 60; 61; 62).168

The distribution of transition times, f(τ1), is defined as part of the pa-

rameterization of a specific SMM and f(τ2|τ1) is modeled using a conditional

transition matrix. To obtain the transition matrix, f(τ1) is separated into

N discrete bins (typically, but not necessarily, equiprobable), where N is

sufficiently large for convergence (63). Bin 1 contains the particles with the

fastest travel times and Bin N contains particles with the slowest travel

times. A particle with travel time τp is in Bin i if tc,i ≤ τp < tc,i+1, where tc,i

is the cutoff time for Bin i, tc,1 = 0, and tc,N+1 is greater than the maximum

value of τ1 and τ2 for all particles. Then, the transition matrix is defined by

Ti,j = P (τ2 ∈ Bin j|τ1 ∈ Bin i) ≈ f(τ2|τ1). (3)

It is assumed that the process is stationary such that f(τ (n+1)|τ (n)) = f(τ2|τ1).169

Thus, each block of the transition matrix, Ti,j, describes the probability that170

a particle will have a travel time in Bin j given that its travel time was in171

Bin i in the previous step. A typical transition matrix, in this case taken172

from a pore scale flow by Le Borgne et al. (63), is shown in Figure 1.173

For equiprobable binning of the travel time distribution, an uncorrelated174

CTRW can be obtained in this formulation if Ti,j = 1/N ∀ i, j. This creates175

a uniformly distributed transition matrix where all bins are equally accessi-176

ble to all others, meaning that the conditional probability f(τ (n+1)|τ (n)) =177

f(τn+1), and there can be no correlation between steps. Indeed, strictly178

speaking an uncorrelated series of waiting times also represents a Markov179

model, a so-called Markov-0 model. Thus, in this sense, any continuous time180

random walk for the modeling of particle positions in space is based on a181
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Figure 1: A typical spatial transition matrix for SMMs in porous media, where classes

with low (high) numbers have associated fast (slow) transit times. Each transit travel time

has a corresponding travel distance equal to the mean pore size. Adapted with permission

from (63).
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spatial Markov process. A non-uniform transition matrix is the distinguish-182

ing feature of the SMM as we refer to it here, relative to their uncorrelated183

CTRW cousins. The travel times, τn, for each step along the path is drawn184

from the conditional distributions, and this produces the total time to reach185

the nth step. Conceptually, the resulting paths share some similarity with186

stochastic-convective transport models (64; 65) or a streamtube ensemble187

(66; 67; 68).188

3. Development, Applications and Implications189

3.1. Transport in Highly Heterogeneous Permeability Fields190

The first application of the SMM in the context of porous media flows191

was performed by Le Borgne et al. (20; 48), who were interested in upscaling192

transport of a conservative scalar through highly heterogeneous porous media193

represented by a Darcy continuum. Darcy-type flow is described by194

q(x) = −K(x)∇h (4)

where K (x)[L/T ] is a hydraulic conductivity tensor, h [L] is the head (poten-195

tial), and the so-called Darcy velocity is q(x) [L/T ]. The Darcy velocity is a196

mass averaged velocity resulting from the homogenization of pore scale flows197

that are not explicitly represented in the upscaled model, so the influence of198

all processes below the support scale of the Darcy continuum are embedded199

in the effective parameter K(x), which is often reduced to a single scalar200

value K, assuming an isotropic medium, which is questionable in geologic201

media but often invoked for simplicity. Given the size of geologic systems, it202

is typically not feasible, not possible and not even desirable, to represent pore203
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scales in their full detail for domains larger than a soil column (i.e. beyond204

the characteristic length scale of cm-dm). As such, an effective continuum205

perspective is typically considered when studying practical applications of206

transport in geologic systems, i.e. velocity is approximated through Darcy’s207

law. The Darcy velocity is defined to maintain continuity of the flow and is208

not the mean pore-water velocity v(x)[L], that dictates how solutes advect,209

but this can be obtained from v(x) = q(x)/φ(x) where φ[−] is the porosity.210

One of the challenges in groundwater hydrology is developing accurate211

transport models for highly heterogeneous systems, for which the variance212

of the log conductivity field is typically much larger than one (σ2
lnK > 1).213

While it is known that the limit σ2
lnK < 1 may be respected within individual214

geological depositional units (69; 70), the hierarchical nature of large-scale215

geological formations juxtaposes geomaterials with dramatically different K216

ranges over short distances and this causes σ2
lnK to grow rapidly.217

Le Borgne et al. investigated 2-d hydraulic conductivity fields that were218

well above the σ2
lnK > 1 threshold. In particular, they studied transport in219

three heterogeneous systems, that contain several of the important features of220

real geologic systems: (i) a multilognormal K field, (ii) a field with identical221

variance but fully connected highly permeable preferential flow paths, and222

(iii) a stratified system with σ2
lnK = 9. The K fields were characterized by an223

isotropic correlation distance λ. Sample conductivity and associated velocity224

fields are shown in Figure 2. All three fields have identical point distributions225

of hydraulic conductivity values, but clearly vary in their structure and this226

creates velocity fields that vary by over 10 orders of magnitude. The velocity227

fields also exhibit varying degrees of connectivity in terms of slow regions228
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and longer connected fast flow channels as one moves from (i)-(iii). The229

more connected fields typically result in earlier first arrivals and larger late230

arrivals with more disperse breakthrough curves, reflecting that fast particles231

persist at being fast to arrive quickly and slow particles persist at being slow232

(trapped) to arrive later.233

The fields shown in Figure 2 were used to develop a domain-wide, upscaled234

model of the longitudinal (mean flow direction) Lagrangian velocities defined235

as236

vL =
xn+1 − xn

t(xn+1)− t(xn)
(5)

which accounts for diffusive and advective motion. The velocities were237

defined by considering the probability for a particle to transition from velocity238

v′ at travel time t′ to velocity v at travel time t239

rt(v, t|v′, t′) = 〈δ(v − vt(t))〉vt(t′)=v′ (6)

as well as the probability for a particle to make a transition from velocity240

v′ at travel distance x′ to velocity v at travel distance x241

rs(v, x|v′, x′) = 〈δ(v − vs(x))〉vs(x′)=v′ . (7)

After discretizing the velocity distribution into N equiprobable classes,242

they defined the temporal and spatial velocity transition matrices for tem-243

poral increment t and the spatial increment s as244
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T ti,j =

∫ vi+1

vi

∫ vj+1

vj

rt(v, t|v′, t′)dv′dv T si,j =

∫ vi+1

vi

∫ vj+1

vj

rs(v, x|v′, x′)dv′dv

(8)

where Ti,j is the probability to make a transition from a velocity v′ ∈ Cj to245

a velocity v ∈ Ci.246

These metrics allowed Le Borgne et al. to demonstrate that the La-247

grangian velocity fields are characterized by a broad range of correlation248

times, as quantified by T t, but a relatively narrow range of correlation dis-249

tances, as quantified by T s. Based on this observation the authors applied a250

test for Markovian behavior in space and time. In order to describe a Markov251

chain, the Chapman-Kolmogorov condition requires that the transition ma-252

trix must satisfy253

T(ω + ω′) = T(ω)T(ω′) ⇒ T (nω) = T n(ω), (9)

where ω is a dummy variable. The analysis revealed that Markovian behavior254

in time was never observed over the time scales considered, owing to a broad255

distribution of correlation times, but that spatial increments greater than256

λ/2 were Markovian. These observations motivate the use of an SMM as257

described in § 2 and also explain the origin of the name.258

The SMM model was proposed by Le Borgne et al. (48) and applied259

in (20) to predict two commonly measured features in porous media: (i)260

first passage time distributions at a distance 12.5λ corresponding to a flux261

weighted initial line condition spanning most of the vertical extent of the do-262

main and (ii) evolution of the spatial variance of the concentration field. In263

both cases, the results of a fully resolved direct numerical simulation (DNS)264
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Figure 2: The hydraulic connectivity K (left) and corresponding velocity fields (right)

studied by Le Borgne et al. (48). All three fields have the same point K distribution.

Row 1 is a multilognormal connectivity field with σ2
f = 9; row 2, a connected hydraulic

connectivity field; and row 3, a stratified hydraulic connectivity field. Adapted with

permission from (48)
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were compared to predictions made with an SMM, as well as a model that265

considers no correlation between successive spatial steps (referred to in their266

paper a classical CTRW, although we will not adopt that notation here).267

Their results are shown in Figure 3 and demonstrate that the SMM can re-268

produce the dominant features of the DNS, whilst the model that does not269

account for correlation is unable to accurately reproduce the DNS. Most no-270

tably, the uncorrelated model fails to adequately capture early arrivals, but271

it also under-predicts late time arrivals for the multi-lognormal case, which272

can be summarized as under-estimating spreading over time. The example273

clearly demonstrates the importance of accounting for velocity correlation274

since both models (correlated and uncorrelated) used the same limited in-275

formation in the space-time domain of interest to infer velocity distributions276

at larger scales. The concept is simple enough in principle, whereby fast277

particles tend to persist at being fast (i.e. once in a fast channel they can278

remain their for quite a while) and slow particles can also persist at being279

slow, but it has a profound impact on the performance of the upscaled trans-280

port model. It should be noted that the same numerical dataset was later281

analyzed by (71) with an uncorrelated CTRW, which was also able to accu-282

rately reproduce the DNS data. This can be explained by observing that the283

correlated model will ultimately converge to an uncorrelated one (72), whose284

space-time transitions pdf is of course different than the one measured on a285

smaller scale.286

3.2. Transport in Fractured Media287

Another common setting that is of interest in the geosciences is flow288

through fractured media, where flow, rather than occurring through pore289
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Figure 3: First passage time distributions and temporal evolution of the plume variance

for multilognormal and connected hydraulic connectivity fields. Numerical simulations

are compared with correlated and uncorrelated CTRW models. Adapted with permission

from (20)
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spaces in unconsolidated media, happens through fractures in an otherwise290

near impermeable rock matrix. Such settings are common in nature and the291

broad range of fracture properties and architectures are known to result in292

complex flow networks that display anomalous transport (e.g. 73). Anoma-293

lous transport in such systems may arise from different physical characteris-294

tics that define the fractures, such as the aperture of individual fractures or295

the angle between the fracture direction and the average pressure gradient.296

The spatial arrangement of fracture intersections also plays a relevant role297

in this context. Painter, Cvetkovic and coauthors, using discrete fracture298

network models to simulate flow and transport in fractured geologic media,299

demonstrated the existence and importance of correlation effects that must300

be included to upscale transport correctly (45; 46; 47).301

In the context of the SMM, Kang et al. (60) studied flow and transport302

in a fractured medium. To focus only on one form of heterogeneity, they303

idealized their fracture network, as depicted in Figure 4. Their lattice is304

made up of two sets of parallel, equidistant links separated by distance l.305

The links are oriented at a fixed angle α with respect to the longitudinal x306

axis. The flow is driven by a unit potential drop in the longitudinal direc-307

tion (Φ = 1 at the inlet and Φ = 0 at the outlet). Along each link flow is308

governed by Darcy type flow (an averaged Poiseuille flow) where the flow309

velocity depends on the fracture conductivity (k), length (l) and potential310

drop across a fracture such that for a link between node i and j the velocity is311

uij = kij
Φi−Φj

l
. A further physical constraint of incompressibility is imposed312

such that the sum of all inflows and outflows at a node is zero; i.e. at node313

i
∑

j uij = 0. This results in a linear set of equations that can readily be314
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Figure 4: (Top) A schematic of the lattice networks considered by Kang et al. (60).

Lattice link velocities are independent and identically distributed and network realizations

are quenched disordered in particle velocities. A snapshot of particle density (circle size)

for t=30, where particles initialize at x = 0 (b). (Bottom) A contour plot of ensemble

averaged particle density at fixed time for the lattice networks considered by Kang et al.

(60). Monte Carlo ensemble averaged particle densities are compared with predictions

from an uncorrelated and correlated CTRW. Adapted with permission from (60)
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solved. The only form of heterogeneity that the authors considered was in315

the fracture conductivities k, where each link was assigned an independent316

and identically distributed value (they considered lognormal, Cauchy and317

truncated power law distributions); that is there is no correlation imposed318

in the medium structure. From this setup, the set of all realizations of the319

random fracture network form a statistical ensemble that is both stationary320

and ergodic. They then perform particle tracking simulations, neglecting321

diffusion and assuming complete mixing at each node (i.e. a particle’s exit322

from each node is determined randomly by flux- weighted probability). Con-323

sidering a point initial condition x(t = 0) = δ(x), they run simulations over324

O(1000) realizations, and average over realizations to obtain mean particle325

density P (x, t).326

As in (20), Kang et al. studied individual particle trajectories by consid-327

ering ensemble statistics of Lagrangian velocities and focusing on transition328

times at fixed space increments as in (7). They demonstrated that correla-329

tion between subsequent transition times does indeed exist. Despite the fact330

that the random fracture permeabilities are completely independent, the im-331

position of incompressibility induces correlation in space, i.e. flow develops332

along minimum resistance pathways that connect inflow to outflow. They333

also successfully demonstrated that a Markov model predicted the transi-334

tion probabilities, suggesting that a SMM may be a suitable upscaled model.335

They proposed such a correlated CTRW, where particle locations are gov-336

erned by the following equation337

xn+1 = xn + l
vn
|vn|

tn+1 = tn +
l

|vn|
. (10)
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Successive velocities follow a Markov chain with one step transition proba-338

bility density as in 7. From this the particle density can be written as339

P (x, t) =

∫ ∫ t

t−l/|v|
R(x,v, t′)dt′dv where R(x,v, t′) = 〈δ(x−xn)δ(v−vn)δ(t′−tn)〉.

(11)

where R(x,v, t′) represents the particle distribution in space, velocity and340

time after n steps. It satisfies Kolmogorov type recursion equation341

R(x,v, t′) = δ(x)p(v)δ(t) +

∫ ∫
r(v|v′)δ(x−x′− lv′/|v′|)R(x′,v′, t′)dx′dv′,

(12)

which describes how this distribution evolves over successive jumps. If one342

assumes that successive jumps are uncorrelated, i.e. r(v|v′) = p(v), then an343

uncorrelated CTRW model is recovered, where344

P (x, t) =

∫ t

0

∫ ∞
t−t′

∫
R(x, t′)ψ(x, τ)dxdτdt′ (13)

with recursion equation345

R(x, t′) = δ(x)δ(t) +

∫ ∫
R(x′, t′)ψ(x− x′, t− t′)dx′dt′ (14)

and joint transition length and time density is given by346

ψ(x, t) =

∫
p(v′)δ(x− lv′/|v′|)δ(t− l/|v′|)dv′. (15)

Finally, Kang et al. compare the results from fully resolved DNS sim-347

ulations to predictions obtained with both the correlated and uncorrelated348
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CTRW models. Their results are shown in Figure 4 (bottom). Particle den-349

sity is non-Gaussian in space, having a sharp leading edge and elongated350

tail. As in (20), an uncorrelated model where subsequent transition times351

are random and mutually independent and are drawn from numerically mea-352

sured distributions fails to accurately capture the full behavior of the system.353

Similar mismatches (not shown here) are observed in predictions of first pas-354

sage times and evolution of second centered moments in time, which persist355

in displaying anomalous superdiffusive growth over the full range of space356

and times considered. It is worth repeating here that there is no correlation357

in the fracture network permeability field, but rather that this correlation358

structure emerges due to the fact that mass must be balanced at each node359

and the flow is incompressible. The application of this approach to a frac-360

tured rock field site (74) is described in further detail in §3.5. The model361

presented in this section has been further elaborated in (75; 76). Other re-362

cent applications in random discrete fracture networks of potential interest363

include (77; 78; 79; 80).364

3.3. Transport at pore scales in porous media365

Working at the continuum (Darcy) scale of flow and transport is practical366

when studying systems at geologic scales, as was the case in the previous367

two sections, but it is also important to recognize that heterogeneity in the368

flow exists below those scales, within individual pores and fractures. Most369

natural media are highly complex at this scale and the resulting flows can370

have a very broad range of transport time and velocity scales, leading to371

anomalous behaviors. While this complexity is often ignored and replaced372

with an effective advection-dispersion equation at Darcy scales, it is well373
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known that such an effective model rests on strong assumptions that are374

often not met and that can lead to incorrect predictions. Most of these375

effective models are built on ideas relating to Taylor dispersion (7), which is376

strictly only valid at asymptotic times; that is at a time τD > L2/D where377

L is a characteristic length and D the diffusion coefficient. Physically this378

timescale represents the characteristic time it takes a particle to sample a379

system’s full velocity variability. Depending on the system in question or the380

problem being solved, it may not be possible to reach the characteristic time381

scale so models capable of representing behaviors below this are needed.382

3.3.1. Pore Scale SMMs383

Le Borgne et al. in (63) were the first to apply the SMM in the context of384

a pore scale flow and transport setting. They considered a two dimensional385

porous medium as depicted in Fig 5. The medium is made up of voids and386

circular grains of two diameters that fill the space resulting in a porosity of387

0.42. The flow is driven by a uniform pressure drop from top to bottom.388

Periodic conditions are imposed for flux on all boundaries. This particular389

domain was chosen as it had been the basis of previous transport upscaling390

studies (81; 82) due to the fact that the velocity field displays interesting391

features, including a braided network of preferential flow paths as well as392

low-velocity and stagnation zones, two features that are often associated with393

anomalous or highly non-Fickian pre-asymptotic transport. Dispersion in394

this setting has been observed to be superdiffusive (over 2 orders of magnitude395

in time), with higher-order moments further reinforcing that transport is396

strongly anomalous (83).397

The authors compute the transit time and the transition matrix due to398
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Figure 5: (Left) The pore scale geometry and velocity field used in (63). (Right) A compar-

ison of the longitudinal distribution of particle positions between pore scale simulations,

a correlated and an uncorrelated model. Adapted with permission from (63)

purely advective transport over a distance corresponding to the mean pore399

length. The resulting transition matrix is depicted in Figure 1 and, as with400

previous studies, depicts a strong diagonal dominance, reflecting that par-401

ticles will most likely persist to move at a similar velocity with the two402

strongest hot spots at the extremes: fast particle persist at being fast (i.e.403

they are trapped in fast channels) and slow particle persist at being slow.404

A comparison of the distribution of longitudinal position of particles from405

a line injection at the boundary at various times between numerical results406

from high resolution direct numerical simulation as well as correlated and407

uncorrelated CTRW models is shown in Figure 5. The SMM is well able to408

reproduce the pore scale DNS values, even at the very earliest times, while409

the uncorrelated model fails.410
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Figure 6: The pore scale velocity field for an idealized porous medium with a particle

trajectory highlighted in red (a). (b) and (c) display particle velocity and acceleration

through time. Notice the intermittent behavior of the particle trajectory, i.e. long periods

of slow velocity and no acceleration followed by short periods of abrupt accelerations.

Adapted with permission from (83)

3.3.2. Intermittency411

The results of (63) are ultimately quite similar to previous studies, merely412

in a different setting. When the authors dug deeper into this system in (83),413

they found something that adds more significantly to the entire story. In414

Figure 6 we see the same two dimensional porous medium as above along415

with the trajectory of a single advective particle superimposed. Below are the416

time series along that trajectory for the particle’s velocity and acceleration.417

Looking carefully at these series, the Lagrangian acceleration displays418
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an intermittent behavior as it switches between periods of low variability to419

periods with strong fluctuations in magnitude. The low variability regime420

corresponds to when a particle is in low velocity regions; here Lagrangian421

longitudinal velocities and accelerations are small and strongly correlated.422

The large fluctuation regime occurs when the particle is in regions of high423

velocity such as flow channels where accelerations are large and erratic.424

Intermittency is a phenomenon that is observed in many physical settings425

(e.g. 84), but some key and unique aspects exist in the context of porous426

media. Some insight can be gained by considering the correlation function of427

the Lagrangian acceleration as well as that of its absolute value, respectively428

given by429

χa(τ) =
〈[a(t+ τ)− 〈a〉][a(t+ τ)− 〈a〉]

σ2
a

χ|a|(τ) =
〈[|a(t+ τ)| − 〈|a|〉][|a(t+ τ)| − 〈|a|〉]

σ2
|a|

,

(16)

where a denotes acceleration. A related and useful measure that is often stud-430

ied in intermittent systems is the Lagrangian velocity increment associated431

with some time lag τ , given by432

∆τv = v(t+ τ)− v(t) (17)

or better said the distribution of these accelerations normalized by its stan-433

dard deviation P (∆τv/σ∆v(τ)).434

Both of these metrics are displayed for the considered system in Figure 7.435

For the case of acceleration, the correlation decreases rapidly in time, briefly436

becoming anti-correlated, due to the rapid fluctuations in acceleration in high437

velocity channels noted above in Figure 6. On the other hand the correlation438
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Figure 7: (Left) de Anna et al. (83) compared the correlation in acceleration and absolute

acceleration for pore scale simulations and a correlated CTRW. The correlation of absolute

acceleration is shown in the inset. (Right) The distributions of Lagrangian longitudinal

velocity increments at different time lags. As the time lag increases, the distribution

approaches Gaussian (dashed line). Adapted with permission from (83).
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for absolute value of acceleration decays more slowly showing something more439

like a power law decay over the observed timescales. In other systems, such440

as turbulent flows, intermittency is associated with an exponential decay in441

correlation of |a|, which in turn leads to a rapid convergence to Gaussian442

like behavior. As such, this persistence is a unique and important aspect443

of intermittency in porous media. Its persistence highlights why it is im-444

portant to consider, as anomalous effects may play a role for longer times445

than assumed in conventional models. The distribution of Lagrangian veloc-446

ity increments at fixed time lags has a sharp peak around 0 with symmetric447

exponential tails, whose slope increases as the lag increases. The sharp peak448

in the center is associated with low velocity regions that correspond to small449

accelerations as seen in Figure 6. Such a peak is typically not seen in other450

intermittent systems such as turbulent flows, where the time varying nature451

of the flow allows particles to sample velocities more quickly. Also shown452

in the figure is the Gaussian distribution which would arise at asymptotic453

times, but that is never obtained here, once again highlighting the persis-454

tence of intermittency and anomalous behavior. The observations from this455

study suggest that any upscaled model for transport should ideally capture456

these behaviors in accelerations in order to be able to replicate intermittent457

behavior with these specific characteristics. De Anna et al. (83) proposed458

that the SMM is such a model.459

A clear definition of acceleration for comparison with these observation is460

not obvious in the context of the SMM and so (83) suggested the following.461

The acceleration during step n, considering spatial increment λ and time462

increment τ , can be seen as463
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λ = vn−1τn +

∫ tn+τn

tn

∫ t′

tn

andt
′′dt′. (18)

Assuming a constant acceleration over each step and continuity of velocity464

at turning points465

an =
2λ

τ 2
n

− 2vn−1

τn
vn = vn−1 + anτn. (19)

With this they were able to compare to observations from the full pore466

scale simulations. The SMM is able to accurately represent both the correla-467

tion of the acceleration and absolute value of acceleration, including anticor-468

relation and long range effects, as shown in Figure 7. Likewise the distribu-469

tion of velocity increments for different time lags are in excellent agreement470

for all considered time lags with peaks and tails well represented. For com-471

parison, a single example for an uncorrelated model is also included. Such a472

model leads to an overestimate of probabilities of large increments over small473

lag times, allowing particles to switch velocities too quickly relative to what474

happens in the real incompressible flow.475

The setting considered by (63) and (83) is a highly idealized porous476

medium relative to what a real geologic medium might look like. To ex-477

plore whether their findings extended to more realistic systems, the model478

has been applied to predict solute transport (61) in an image-based recon-479

struction of a real rock system. Their flow field is shown in Figure 8 along480

with velocity and acceleration time series in both longitudinal and transverse481

directions. These time series display the same intermittent behavior as re-482

ported in (83). They found that transport is highly anomalous, observing483

superdiffusive spreading in the longitudinal direction and subdiffusive spread-484
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ing in the transverse one, again reflecting a balance that likely arises due to485

the incompressible nature of the flow. In this system they also show that an486

SMM can faithfully reproduce the behavior measured from their DNS both in487

terms of temporal scaling of spatial moments and instantaneous distributions488

of particle locations at various times.489

It is important to note that the intermittency discussed in this section490

applies to time series such as those shown in Figures 6 and 8. However, if one491

looks at spatial series, that is velocities of particles over fixed spatial incre-492

ments, a pretty regular spatial signal emerges, where the velocity appears to493

remain roughly constant/correlated for over an (almost) constant distance;494

see (85) Figure 2 for a clear example. Such observations again justify the495

choice of a spatial over temporal Markov model, validating Le Borgne et al.’s496

(20; 48) original observations and suggestions.497

3.4. Transport in periodic domains498

Many of the classical upscaling theories that are commonly applied in499

the context of porous media typically rely on the assumption of some repre-500

sentative elementary volume that is assumed periodic in order to close the501

resulting mathematical system (e.g. 9; 10). While the SMM does not appear502

to explicitly require such an assumption, a reasonable question is whether it503

can perform well in such a context also. In particular, many of these classical504

theories are only valid at asymptotic times and it is often desirable to make505

predictions at pre-asymptotic times. While these theories can be general-506

ized to pre-asymptotic times, the resulting set of differential equations can507

be highly nonlocal in space and time and almost as difficult to solve as the508

full microscale problem as noted by (86; 87). Note that a recent paper (88)509
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Figure 8: The normalized Eulerian velocity magnitude field through a Berea sandstone

sample, with particle trajectories colored blue and cyan (a). (b) and (c) cross sections

of the sandstone’s pore space (white) and velocity field, respectively. Average porosity is

18.5%. (d) and (e) show the time series of velocity and acceleration for the blue particle

trajectory in (a). Adapted with permission from (61).
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does demonstrate the existence of an REV as a necessary condition for any510

CTRW. However, this REV is not defined in the traditional sense in terms511

of medium properties but rather in terms of the representativeness of the512

Eulerian flow properties.513

Recognizing that a periodic domain has a natural length scale, that is514

the length of the actual cell, (63) proposed that this should be the fixed515

spatial jump in the SMM equations in (1). In order to test this, they consid-516

ered a simple benchmark problem that has often been considered as a useful517

idealization of a porous medium - flow through a periodic channel with a518

sinusoidal boundary as depicted in 9 (89; 90). One of the reasons that this519

flow is considered interesting is that it has a fast preferential flow down the520

center line and depending on the aspect ratio of the pore, as well as the con-521

sidered Reynolds number, the emergence of recirculation zones, which act522

as traps causing particles to potentially be retained for long times relative523

to the main flow. Two simulated trajectories in such a setting are shown524

in Figure 9, reflecting both a very fast as well as a very slow trajectory. In525

particular, note that the slow one is repeatedly trapped, while the fast one526

persists at being fast, suggesting a correlated process similar to the ones we527

have discussed in the settings above.528

In (63) Stokes flow is considered and the system behaves in a very similar529

manner to the more realistic porous medium discussed above and shown in530

Figure 5. Later, Bolster et al. (72) considered a diverse range of Reynolds531

numbers to explore the impact of flow inertia on transport in the same pe-532

riodic geometry. In both studies the authors simulated transport across two533

periodic elements recording the amount of time it took each particle to tra-534
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Figure 9: The top figure shows a periodic pore domain, where the dashed line is one

representative cell. The middle figure shows the streamlines in the periodic pore for a

Reynolds number of Re = 30. The bottom figure displays two sample particle trajectories,

for a Pe = 1000, Re = 30. Particles initialized at the pore throat tend to persist in the

main channel, while particles that start in the trapping zone are more likely to enter the

trapping zone in the next cell. Adapted with permission from (63).
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verse the first and then the second periodic element. From this they measured535

the transition matrix of the system. In particular, unlike previous studies536

which predominantly focused on purely advective transport, or only consid-537

ered one particular Péclet number, these studies explored behavior over a538

range of Péclet numbers from diffusion to advection dominated. Here the539

Péclet number is defined as540

Pe =
2Uh

D
(20)

where U is the mean velocity, h the characteristic half-width of the chan-541

nel and D the diffusion coefficient. A typical transition matrix for Pe = 100542

and Pe = 1000 is shown in Figure 10. The Pe = 1000 case shows the charac-543

teristic behavior that we have described in several settings so far - that fast544

particles are most likely to persist at being fast and that slow particles are545

most likely to persist at being slow, reflected by the strong diagonal band.546

Predominance of diagonal terms is much less evident in the Pe = 100 case,547

suggesting that correlation effects here are much less important than for the548

larger Pe case. Using this result, the authors compared breakthrough curve549

and moment evolution measured from DNS to predictions using both corre-550

lated and uncorrelated CTRW models, where the uncorrelated model draws551

transition times from the distribution obtained for transition times across a552

single periodic cell. They found that for all cases of Pe ≤ 100 that the uncor-553

related and correlated models performed equally well, while for Pe ≥ O(100)554

the model that did not include correlation effects failed to reproduce ob-555

servations, in particular missing early arrivals and late time tails. Samples556

highlighting this can be seen in the breakthrough curves in Figure 10. This557
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threshold has been confirmed by other studies also, suggesting that correla-558

tion effects should be accounted for any time a system with Pe > O(100) is559

considered.560

An additional question that was addressed by (63) relates to the discrete561

nature of the transition matrix: how many bins should the transition matrix562

be discretized into to effectively capture large scale behavior. Via an error563

analysis, they found that as long as more than ten bins were used, that SMM564

predictions converged to the reference solution. While this is an entirely565

empirical observation for an isolated case, it has been found to hold in other566

settings also (e.g. 91; 92).567

As in previous implementations of the SMM for the first set of periodic568

systems considered (63; 72), parameterization of the model was conducted569

by simulating particle transport across two periodic elements in order to570

measure both the transition time as well as the transition matrix. For most571

other upscaling approaches only one element is typically considered and so572

some have criticized the SMM as gaining an unfair advantage over other573

models in this regard. Sund et al. (93) realized that in a periodic setting this574

parameterization could actually be done by simulating transport over only575

one single periodic element.576

The key to their approach was recognizing that a particle’s travel time577

across a single element is dictated by the location where it enters that ele-578

ment. Given its starting point, a particle has a finite range of travel times579

and exit locations. The exit location can then be used as the inlet location580

for the next element. This is depicted pictorially in Figure 11, where trajec-581

tories are shown for three different start locations across one periodic element582
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Figure 10: (Top row) Transition matrices for a periodic pore domain for Pe = 100 (left)

and Pe = 1000 (right) for a flow with Re=100. Correlation strength increases with

increasing Pe. (Middle row) shows uncorrelated CTRW (left) and SMM (right) predictions

vs DNS (solid lines) of the periodic pore domain at Pe = 100. The bottom row shows

uncorrelated CTRW (left) and SMM (right) predictions vs DNS (solid lines) at Pe = 1000.

Adapted with permission from (72).
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for two different Péclet numbers (Pe = 100 and 1000). For the lower value583

of Pe there are a broad range of possible outlet locations with significant584

overlap between the three distinct starting points. On the other hand, for585

the higher Pe the range of possible outlet locations is much tighter, induc-586

ing the correlation. An effective transition matrix is also shown for the two587

cases highlighting probability inlet versus outlet location, with very similar588

structural features to that which relates travel times in Figure 10. Note that589

this transition matrix is for illustration purposes only as it is never explicitly590

used.591

The parameterization for this novel approach is developed by simulating592

trajectories for NPS particles distributed across all possible inlet locations.593

With this, one can define a set of S = {s1, . . . , sNPS} of trajectories si,594

each of which travels from an inlet to an outlet location. Each trajectory595

si has an associated inlet location yin(si), an outlet location yout(si) and596

a travel time τ(si). A specific order of the trajectories si is assumed by597

setting yin(s1) < yin(s2) < . . . < yin(sNPS). For computational reasons,598

the trajectories are subdivided into a number of Nbin subsets (similar to the599

discretization of the transition matrix),600

S(jbin) = {si ∈ S : yin (sjb−) ≤ yin (si) ≤ yin (sjb+)} , (21)

where

jb− =

(
jbin − 1

Nbin

)
NPS + 1; jb+ =

jbin
Nbin

NPS; jbin = 1, . . . , Nbin. (22)

This sets a mapping between a location yin at the inlet section and a601

bin number jbin, which establishes a direct link between the location of the602
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particle at the inlet section and the travel time through the trajectory si.603

As noted, the outlet position associated with trajectory si serves as the in-604

let position for the next transition (or better said, sets the bin from which605

the next trajectory is sampled). Sund et al. (93) chose to study the same606

geometry as shown in Figure 9. By doing this the authors were able to run607

a fully parameterized SMM that performed as well as previous versions, but608

with only half the simulation required for parameterization. Additionally,609

the actual implementation of the model is more efficient resulting in an even610

faster model (since as noted above, no transition matrix step is ever explic-611

itly needed). Finally, as further discussed later in section 5.1, this version of612

the SMM includes the ability to recover particle spatial distributions within613

each periodic cell. This trajectory-based framework can be indeed seen as a614

Lagrangian numerical closure for a model, that can be used to approximate615

solute mixing and particle positions below the cell resolution, thus retaining616

close analogy with closure variable invoked in classical Eulerian upscaling617

approaches.618

3.5. Applications to real systems619

A criticism of the SMM is that proper parameterization requires exten-620

sive data that cannot readily be obtained in field and laboratory settings. In621

all cases discussed so far this comes from high resolution simulations, which622

directly measure particle travel times and correlations. Most commonly,623

particle trajectories are measured over two characteristic lengths in high res-624

olution direct numerical simulations that fully resolve flow and transport625

across the domain of interest. This then provides sufficient data to quantify626

velocity transition probabilities. Due to this, most SMM applications have627
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Figure 11: Sample trajectories and the respective transition matrices for particle trans-

port through the periodic pore domain with Pe = 100 (top) and Pe = 1000 (bottom).

Trajectories are initialized in the fast region (blue), intermediate (red), and slow (green)

regions of the pore throat. Adapted with permission from (93).

been primarily limited to synthetic numerical systems. Two approaches have628

emerged recently aiming to overcome these challenges and enable application629

of the SMM in field-scale and laboratory settings. In the first, Kang et al.630

(74), assume an idealized simplified diagonal transition matrix structure with631

a single correlation parameter, which can be found by fitting tracer exper-632

iments. In the second method, Sherman et al. (94) introduce an inverse633

modeling approach, which infers the transition matrix from two successively634

measured breakthrough curves. This method was applied using column ex-635

perimental data to predict transport at the laboratory scale (95). Both of636

these methods have their associated strengths and weaknesses which are dis-637

cussed below.638
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3.5.1. Fractured Media639

Kang et al. (74) is to our knowledge the first and only study where the640

SMM is applied to non-synthetic data at the field-scale. The setting that641

they worked on was experimental data collected from a fractured granite at642

the Ploemeur field site in France (Figure 12). The matrix permeability within643

the granite at this site is very low and so groundwater flows primarily through644

the fracture network, where four major conductive fracture intersections have645

been identified. Two boreholes, 83m and 100m deep, are spaced apart by646

a distance rc = 6m, enabling easy injection and extraction of tracer into647

the network. Kang et al. conducted two types of experiments to quantify648

transport behavior: convergent and push-pull tracer tests. In the convergent649

tests, a known mass of nonreactive tracer (flourescein) is injected at borehole650

1 and tracer concentration is measured at borehole 2. A pump at borehole651

2 creates a stationary pressure field driving flow from borehole 1 to 2. In652

the push-pull tests, a known mass of tracer is again injected into borehole 1653

followed by a continuous injection of water for a set amount of time (push).654

Then a pump at borehole 1 is used to reverse the direction of flow (pull) and655

the tracer is measured at the point of injection.656

In fractured media, the four mechanisms that influence transport are657

heterogenous advection, matrix diffusion, hydrodynamic dispersion, and ad-658

sorption, with heterogenous advection being partially time reversible, while659

the others are not. For this reason, solute spreading due to heterogenous660

advection is partially reversed in the push-pull experiments. Therefore, the661

advective spreading in the push-pull experiments is minimized and the ob-662

served breakthrough curves display a narrower distribution than the conver-663
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Figure 12: An outcrop of the granite fracture network at the Ploemeur field studied by

Kang et al. (74). A schematic of the associated convergent test, where a pump drives

flow towards borehole 2, tracer is injected at borehole 1 and then measured at borehole 2.

Adapted with permission from (74)
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gent breakthrough curves, thereby indicating velocity correlation is impor-664

tant in this system. Additionally, the observed breakthrough curves displayed665

different power-law tailing exponents depending on the fracture upon which666

tracer was injected, indicative of the varying levels of heterogeneity for each667

fracture. These heterogeneities, as well as heterogenous advection, must be668

effectively represented in the SMM for accurate modeling of solute transport669

through this fractured media.670

Kang et al. (74) proposed a simplified SMM framework to model the671

observed transport behavior. To do so, they assume an idealized diagonal672

transition matrix structure, determined by a single constant parameter a.673

The idealized transition matrix has diagonal elements with a value a and the674

remaining elements have equal probability (1 − a)/(N − 1), where N is the675

number of matrix columns:676

Tij =

a i = j

1−a
N−1

i 6= j

i, j = 1..N. (23)

a quantifies the probability of persisting in the same velocity class over suc-677

cessive model steps. Note that, as with many empirically measured tran-678

sition matrices, the fully parameterized transition matrix T converges to a679

uniform matrix after many model steps, [limn→∞T n]i,j = 1/N , and thus680

correlation decays exponentially, specifically correlation at the nth model681

step is related to the second eigenvalue of T, C(n) = χn2 = exp(n ln(|χ2|)).682

The second eigenvalue of the diagonalized transition matrix in eq. (23) is683

χ2 = (Na− 1)/(N − 1). It follows naturally that a dimensionless correlation684

λ length can be expressed as685
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λ =
l

rc

1

ln N−1
Na−1

≈N>>1 l

rc

1

ln a−1
. (24)

Here l is the streamwise jump distance of the SMM and rc is a char-

acteristic length between the tracer injection and withdrawal points. This

simplified transition matrix of Kang et al. (74) allows velocity correlation to

be described with a single parameter a, which is related to the correlation

length and allows easier parameterization of SMM. Particle motion in the

SMM as applied in (74) follows

rn+1 = rn + l +
√

2αlξn

tn+1 = tn +
lrn
kv
ηn,

(25)

where α is dispersivity, ξ is a identical independently distributed Gaussian686

random variable, η is a dimensionless time, and kv is proportional to discharge687

divided by the fracture aperture. Hence, in addition to λ, the velocity dis-688

tribution and dispersivity input parameters are required to run the SMM. In689

this study, the velocity distribution assumed the form of a truncated Pareto690

distribution with power law slope 1 + β, meaning λ, β and α are the only691

three parameters that need to be estimated for SMM application.692

To this end, random walk equation parameters α (dispersivity), β (veloc-693

ity distribution), and λ (velocity correlation) were fitted to measured break-694

through curve data. The velocity and dispersivity parameters β, α showed695

best fit values of 0.75, 0.03 and 0.85, 0.02, for two different fractures, respec-696

tively. The velocity correlation length was determined to be the same order697

of magnitude as the mean distance between fracture connections, suggesting698

that velocities are strongly correlated through a single fracture and decorre-699
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late at intersections. CTRW model predictions show significant improvement700

when accounting for velocity correlation, even with this simple idealized cor-701

relation structure. Note that the same authors later applied this idealized702

matrix structure to predict transport observed in numerical simulations of703

a stressed fracture system with heterogeneous aperture and flow fields (96).704

The success of the idealized transition matrix structure in both of these sys-705

tems is exciting for future field SMM applications because it suggests that706

only certain correlation properties need to be included to faithfully predict707

transport in certain subsurface media. Furthermore, this simplified structure708

closely resembles a Bernoulli CTRW, an emerging subclass of SMM models709

that is discussed further down in section 4.2. We must note that the as-710

sumed correlation structure may not reflect universal behavior and therefore711

it remains an open challenge to fully parameterize the velocity correlation in712

non-synthetic field scale systems.713

3.5.2. Laboratory experiments714

One of the challenges with real experimental settings is that detailed in-715

formation on individual Lagrangian trajectories is not typically available, nor716

realistically obtainable. Thus directly measuring the transition matrix is next717

to impossible. In most settings, the best one can hope for is breakthrough718

curve measurements at multiple downstream locations.719

To this end, Sherman et al. (94) introduced an inverse modeling approach720

to estimate the transition matrix from two successive breakthrough curves,721

specifically breakthrough curves positioned at distances Lc and 2Lc from the722

inlet where a pulse injection is introduced. The inverse modeling procedure723

solves the discretized form of the governing SMM equation, which requires724
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that particle travel times sample from a discrete probability distribution.725

The inverse model, like the forward SMM, assumes that travel time distribu-726

tions between successive spatial increments Lc are stationary. Therefore, the727

porous medium is conceptualized as a column of identical cells, analogous728

to the periodic pore domains presented previously. The travel time distri-729

bution for each cell is equivalent to the normalized breakthrough curve at730

the first cell’s outlet. A particle’s arrival time at the second cell then must731

be a combination of two times sampled from this travel time distribution.732

The inverse model leverages the stationary assumption to find combinations733

of times sampled from breakthrough curve 1 that equal times measured in734

breakthrough curve 2. Discretizing breakthrough curves 1 and 2 enables all735

variables in the discretized SMM equation to be known, except the transition736

matrix, meaning the transition matrix can be estimated by solving a system737

of equations.738

The governing discretized SMM equation can be expressed as:

P (τ̃2) = ΣiΣj
τ̃a1 +

˜
τb1=τ̃2

P (cell 1 ∈ τ̃a1 , bin i)Ti,jP (cell 2 ∈ τ̃ b1 |binj) (26)

Here P (τ̃2) is the probability associated with arrival times at x = 2Lc within a739

discrete interval (τ̃2), Ti,j is an element in the transition matrix, and τ̃a1 , τ̃
b
1 are740

discrete time intervals to travel across 1 increment Lc, i.e. within x = [0, Lc]741

and x = [Lc, 2Lc], respectively.742

More simply, this equation states that the probability of a particle ar-743

riving at x = 2Lc within the interval (τ̃2) is all combinations where the744

time to traverse [0, Lc] plus the time to traverse [Lc, 2Lc] lies in (τ̃2). Con-745

verting breakthrough curves into discrete distributions means that each dis-746

crete arrival time interval has an associated empirical probability and can747
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be sorted by velocity class, i.e. P (cell 1 = τ̃a1 , bin i) is known. Assuming748

spatial stationarity of travel time distributions throughout the domain allows749

P (cell 2 = τ̃ b1 |binj) to be calculated from the discretized breakthrough curve750

at Lc, leaving Ti,j as the only unknown in equation 26. Every discrete time751

from breakthrough curve 2Lc has a corresponding equation, which form a sys-752

tem of equations that estimates the transition matrix when solved. Note that753

when the number of discretized times from breakthrough curve 2Lc exceed754

the number of elements in the transition matrix, the system of equations is755

overconstrained, as is the case in (95). The overconstrained system is solved756

with a least squares method and then transition matrix rows are normalized757

so that their sum is unity.758

To date application of this inverse model has been both on synthetic (94)759

as well as, more excitingly, a non-synthetic experimental system (95). In760

(95) transport of a conservative solute through a 1.2 m long column packed761

with zeolite clinoptilolite, a material with multiscale porosity known to yield762

anomalous transport, is measured. A pulse of NaCl tracer was injected at the763

column inlet and breakthrough curve data was obtained at 1
6
, 2

6
and 5

6
the col-764

umn’s length. Experiments were run at Pe ∼ O(100), O(1000) in triplicate.765

A schematic of the experimental setup is shown in Figure 13. Breakthrough766

curves sampled at the first two ports were discretized, then fed into the in-767

verse algorithm, and the transition matrix was estimated. The transition768

matrix and measured breakthrough curves parameterize the forward SMM,769

enabling breakthrough curve predictions at port 3 to be compared with ex-770

perimental data.771

Correlation was determined important for both Pe numbers as the esti-772
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mated transition matrices displayed a diagonalized structure, indicating fast773

velocities preferentially remain fast and slow velocity preferentially remain774

slow. As expected, correlation increased with increasing Pe. Estimated775

breakthrough curves using the inferred transition matrix significantly im-776

proved upon predictions using an uncorrelated CTRW model as shown in777

Figure 13. Specifically, both breakthrough curve peak and tailing behavior778

was better captured when correlation was included for both Pe experiments.779

As expected in any inverse modeling process, discretization and measure-780

ment error in the data induce uncertanties in parameters’ estimates (i.e.,781

transition matrix entries) and the inverse method requires further iteration782

and optimization. (95) did so in a very simple manual manner, obtaining783

excellent agreement with experimental measurements. Fully automating this784

secondary optimatization still remains to be done. However, to date and785

to our knowledge, this remains the only study where a fully parameterized786

SMM, i.e. where the entire matrix correlation structure is faithfully repre-787

sented, is applied in a non-synthetic setting.788

3.6. Higher Dimension Processes: Training Trajectories in 3-d domains789

While a great deal can be learned by studying the idealized periodic790

pore systems that we have mentioned, it is also important to recognize the791

limitations. The fact that the system is so simple means that while it may792

display some of the interesting features of a real porous medium, such as793

preferential flow channels and trapping regions, these features are of one size794

unlike a real geologic medium where a broad distribution of channel sizes795

and trapping regions can exist. Additionally the completely periodic nature796

of the system is not reflective of subsurface porous media.797
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Figure 13: A schematic of the column experiments of Sherman et al. (95), where sampling

ports 1 and 2 are used to measure breakthrough curves for inverse SMM parameterization

and sampling port 5 validates predictions. The model predictions, experimental measure-

ments and transition matrices are shown for Pe = 120, 1200. Adapted with permission

from (95). 48



Figure 14: The top figure shows the flow field of the sandstone studied by (122). Sub figure

b shows two particle trajectories for Pe = 10 (yellow and blue) and Pe = 100 (orange

and purple). Sub figure c gives a schematic of the Most et al. preprocessing procedure.

The middle figure displays how a particle trajectory is subdivided by (62), where red

diamonds show where the trajectory is divided; the bottom figures are predicted arrival

time distributions and dilution index using the training trajectory approach. Adapted

with permission from (62)
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To overcome some of these limitations and focus on a more realistic system798

(122) simulated high resolution trajectories through a series of real geologic799

media (a Doddington Sandstone), whose structure was digitally mapped us-800

ing high CT scanning. The velocity field and representative trajectories are801

shown in Figure 14 (top). Unlike many previous studies they focused not802

just on the correlations between successive longitudinal jumps, but looked at803

the full correlation of velocities in all three dimensions of the system, finding804

that there is a strong cross dependence between longitudinal and transverse805

increments. Based on an extensive empirical analysis of the 3-d trajectories,806

they concluded that i) memory and cross dependence are persistent in and807

among all directions, ii) that the dependence is highly-nonlinear, iii) that808

this co-dependency occurs at different temporal scales, and iv) that it is de-809

pendent on the Péclet number. Their work suggests that should one want to810

extend the SMM to predict realistic concentration fields in three-dimensions811

that one would need to thoroughly describe the governing statistics of a812

three-dimensional transport problem, which would require parameterization813

of a nine-dimensional transition matrix. While possible, it requires immense814

effort and computational power.815

Recognizing the practical limitations of a 9-d transition matrix, (62) pro-816

posed a novel solution called the training trajectory approach (TTA). In it,817

the authors take the full length trajectories that are simulated from the DNS818

(Figure 14) and use these as a library of plausible paths. Each trajectory is819

divided into equidistant segments of length as depicted in the middle row of820

Figure 14. The segments are stored in a database, from which the increments821

for the SMM model are sampled, giving a transition time and displacement822
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direction. The key difference is that this decomposes the 3-d transport into a823

series of steps that are also 3-d, but the steps in the Cartesian directions are824

not simulated independently, so the 9-d transition matrices are avoided en-825

tirely. The necessary assumption is that this archive of training trajectories826

inherently captures all the processes and correlations required to represent827

larger scale transport. (62) provide extensive criteria required to ensure this828

and for a comprehensive discussion we direct the interested reader there.829

4. Velocity Transition Models830

The previous section highlighted empirical approaches to modeling the831

transition matrix, reflecting much of the early work in the field. More re-832

cently, theoretical frameworks based on analytical velocity transition models833

have emerged. These are the focus of this section. In general, the velocity834

field in steady, divergence-free flows often satisfies the stationary assump-835

tion. However, particle transport through both fractured and porous media836

has been found to be quite sensitive to the initial Lagrangian velocity distri-837

bution (97; 98). Therefore, a CTRW framework must properly account for838

the spatial evolution of the initial Lagrangian velocity. To this end, random839

walks through velocity space have emerged to characterize the Lagrangian840

velocity evolution through disordered media, while still invoking a spatial841

Markov process.842

Dentz et al. (99) studied the evolution of Lagrangian velocity statistics843

and developed a Markov chain CTRW that accounts for such evolution with844

a stochastic relaxation process. To do so, the authors established a relation-845

ship between the Lagrangian and Eulerian velocity fields, showing that any846
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Lagrangian velocity distribution evolves to the flux-weighted Eulerian distri-847

bution for ergodic systems. Here, we highlight some key arguments of Dentz848

et al. that lay the framework for velocity space random walks.849

In the absence of diffusion, particle trajectories through a heterogeneous850

steady velocity field u(x) is described with the advection-equation:851

dx(t, a)

dt
= v(t, a) (27)

Here v(t, a) is the Lagrangian velocity, and a = x(t = 0, a) is the particle

location at initial time. Similarly, particle motion can be described along

particle trajectories s and in time:

ds(t, a)

dt
= vt(t, a)

dt(s, a)

ds
=

1

vs(s, a)
(28)

vt(t, a) and vs(s, a) represent t(ime)-Lagrangian and s(pace)-Lagrangian ve-852

locity distributions, respectively, which represent velocities obtained by uni-853

form sampling in time or space. As discussed in the previous sections, the854

SMM framework is based on the approximation of vs(s, a).855

Consider the absolute Eulerian velocities ve(x) = |u(x)| within the do-856

main volume V . Then the Eulerian PDF is defined through spatial sampling857

as858

pe(v) = lim
V−→∞

1

V

∫
Ω

dxδ[v − ve(x)] (29)

With these definitions and under certain assumptions, it is possible to

link the Eulerian and Lagragian velocity field distributions. By assuming

ergodicity of both Eulerian and Lagrangian velocities, sampling Lagrangian

velocities along one particle trajectory is equivalent to sampling velocities
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for many particles. Sampling particle trajectories can be done over fixed

temporal or spatial increments to find the t(ime)-Lagrangian and s(pace)-

Lagrangian velocity distributions.

pt(v,a) = lim
T−→∞

1

T

∫ T

0

dt δ[v − vt(t,a)] (30)

ps(v,a) = lim
L−→∞

1

L

∫ L

0

ds δ[v − vs(s,a)] (31)

Here T, L are a sampling time and length, respectively. The Lagrangian

ergodic assumption requires that the particle t-velocity distribution is spa-

tially independent and equivalent to the ensemble average over all particles.

Additionally, the incompressibility of the flow field and volume conservation

requires that the t-sampled and Eulerian velocity distributions are equiva-

lent, pt(v) ≡ pe(v). Through a variable change of s and t, Dentz et al. (99)

shows the s-Lagrangian velocity distribution is linked with the t-velocity dis-

tribution and thus also the Eulerian velocity distribution by flux-weighting,

ps(v) =
vpe(v)

〈ve〉
(32)

Relating the Eulerian and Lagrangian velocity distributions is important859

as it lays the foundation for random walks through velocity space. Equation860

(32) indicates that in asymptotic conditions (i.e., distances) the s-Lagrangian861

velocities converge to flux weighted velocity distributions. It also implies862

that when the initial Lagrangian velocity distribution does not coincide with863

the steady state velocity distribution, the Lagrangian velocity distribution864

evolves along streamlines towards this asymptotic limit, i.e., under ergodic865

assumptions any Lagrangian velocity distribution evolves to the flux weighted866
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Eulerian distribution given that sampling temporal/spatial scales can suffi-867

ciently represent all fluctuations in the global flow field.868

As previously emphasized, flow properties in the subsurface are often869

strongly correlated in space because of the inherent correlation structure of870

porous and fractured media. For example (100) quantifies the correlation871

length of the inverse of vs, also termed as slowness. These results show872

that the integral scale of s-Lagrangian velocity can be related to the one873

of the underlying hydraulic conductivity fields. For velocity distributions874

resulting from multi-Gaussian conductivity fields, the integral scale of 1/vs875

decreases with increasing heterogeneity. For σ2
Y > 6 the slowness integral876

scale converges to 4/3 of the hydraulic conductivity. These results show877

that it is possible to define an inherent correlation length to model transport878

velocity through a Markov chain, exploiting the emerging correlation.879

In other words, it is reasonable to define a characteristic correlation length880

scale lc for which velocities persist. Given lc, the characteristic time of particle881

velocity persistence is lc/vt. This implies that small velocities will persist for882

longer times than fast velocities and is consistent with the earlier discussion883

on intermittent behavior: relatively long temporal durations of slow velocities884

are mixed with sudden abrupt and short lived high velocities periods. The885

characteristic length scale lc naturally informs implementation of random886

walk models; a correlated random walk model will only be useful when model887

spatial jump lengths are smaller than lc, ∆s << lc. Lag distance ∆s needs888

to be large enough to capture correlation properties, but sufficiently small889

such that successive models steps remain correlated.890
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The equations describing particle motion in velocity space are as follows:

sn+1 = sn + ∆s

t(sn+1) = t(sn) +
∆s

vs(sn)

(33)

Here ∆s is a spatial increment along a particle pathline. Multiple frameworks891

have emerged for random walks in velocity space that model the evolution of892

velocity along a particle trajectory, following the above framework. To this893

end, two methodologies were extensively applied by Dentz and co-workers894

and are discussed here, i.e., an Orstein-Uhlenbeck process and a Bernoulli895

CTRW framework.896

4.1. Ornstein-Uhlenbeck Process897

The Ornstein-Uhlenbeck framework is a classical formalism to express898

transport through a Markov process and has been applied throughout the899

physics literature for about a century (101). The reasons for the success of900

this approach have been extensively reported in the literature, e.g. (102; 103).901

In the context of our discussion a relevant feature of the OU framework is that902

it naturally describes relaxation to an asymptotic state through a Markov903

chain, and that it incorporates fluctuations around a stable state through904

linearization. The OU framework therefore provides an ideal candidate to905

ground the parameterization of the s-Lagrangian velocities through a SMM.906

Morales et al. (98) experimentally traced flow particles in a transparent

three-dimensional porous medium using particle tracking velocimetry (PTV)

methods, which allowed them to quantify correlation and velocity evolution.

The particle velocity distribution evolved from an initial to steady state dis-

tribution, which were accurately approximated with a lognormal distribution.
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A benefit of a lognormal distribution is that the log-velocity steady state dis-

tribution ws(s) = ln (vs(s)) is Gaussian,. The evolution of a particle’s log

velocity can be then modeled as an Ornstein-Uhlenbeck process such that

wn+1 = wn −
∆s

lc
(wn −Ms) +

√
2Σ2

s∆s

lc
ηn

tn+1 = tn + ∆s exp (−wn)

(34)

where M and Σ are related to the mean and variance of the velocity

distribution and η is a random number drawn from a standard Gaussian.

The Gaussian variable simulates subpore scale fluctuations of the velocity

magnitude. In the presence of general (i.e., non lognormal and non gaussian)

velocity distributions, the scores w(s) can be defined through a transforma-

tion

w(s) = Φ−1(Ps[vs(s)]) (35)

where Φ(w) and Ps(v) represent unit Gaussian and vs cumulative distribution907

functions, respectively. After approximating the OU process through (34) the908

velocity is obtained as vs(s) = P−1
s {Φ[w(s)]}. The velocity is persistent over909

∆s, i.e. ws(s) decays exponentially exp (−s/lc) and ∆s satisfies the ∆s << lc910

constraint. Note through PTV all model input parameters in (34) can be911

measured experimentally.912

Morales et al. (98) demonstrated that this Ornstein-Uhlenbeck spatial913

Markov framework captured intermittent behavior and the velocity distri-914

butions at all time scales, as observed in their laboratory PTV experiments.915

The OU SMM simulated isochronal particle trajectories faithfully reproduced916

the magnitude and duration of high velocity events as measured by the PTV917

t-Lagrangian particles velocities, meaning that the velocity distribution and918
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intermittent behavior is captured at all time scales.919

Puyguiraud et al. (85; 104) demonstrated that the Ornstein-Uhlenbeck920

SMM correctly predicts the evolution of the s-Lagrangian distribution in pore921

scale numerical simulations of transport through a Berea sandstone sample922

over a range of time scales. This OU approach enables the evolution of923

non-stationary velocity statistics and intermittent behavior to be faithfully924

modeled, which in turn means that pre-asymptotic behavior is well repre-925

sented. OU SMM approaches therefore have exciting potential applications926

in many environmental flows, where Lagrangian velocity statistics display927

intermittent behavior and non-stationarity over a range of scales. A benefit928

of this framework is that it is parameterized with only the global Lagrangian929

velocity distribution, which is related to the Eulerian velocity distribution,930

and a characteristic length scale, which (85) found is the same order of mag-931

nitude as the characteristic pore scale. Hence the model does not require932

extensive Lagrangian data for parameterization, which has been a limitation933

of most commonly used SMM frameworks.934

4.2. Bernoulli CTRW935

Assuming that velocity transitions via a Bernoulli process is another

method to capture intermittent behavior and model the evolution of ve-

locity statistics along particle streamlines (99; 105; 106; 107; 85; 104). In a

Bernoulli framework, particles transition through time and space according

to eq. (33). Velocity correlation is captured by assuming velocity follows

a Bernoulli process, i.e. particle velocity persists from the last model step

with probability P and samples a new velocity otherwise with probability

1−P ; hence particle trajectories are still conceptualized as a spatial markov
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process. Dentz et al. (99) first proposed a Bernoulli framework, where the

s-Lagrangian velocity series is modeled as:

vs(s+ ∆s) = [1− ξ(s)]v(s) + ξ(s)ν(s) (36)

where ξ is a Bernoulli variable that returns 1 with P and ν(s) are iden-936

tically independently distributed velocities that sample from the steady s-937

Lagrangian velocity distribution. The value of P can be estimated by assum-938

ing that velocity transitions at a constant spatial rate inversely proportional939

to the correlation length lc (99; 106; 107) such that P = exp (−∆s/lc). Note940

that the Bernoulli CTRW is very similar to the idealized diagonal transition941

matrix by Kang et al. (74; 96), except in their framework sampling from a942

bin allows particle velocity to fluctuate somewhat even when the Bernoulli943

variable favors a persistent velocity. The benefit of the Bernoulli CTRW944

framework is that velocity correlation is parameterized with a correlation ve-945

locity scale determined by lc, and therefore an entire transition matrix is not946

required. A simple way to estimate lc is to find the distance where particle947

velocity anti-correlates as determined by a velocity correlation function.948

The Bernoulli CTRW has been successfully applied in both three-dimensional

and two-dimensional fracture networks (107; 108). In fracture networks, par-

ticle velocity is highly correlated on the fracture scale and then may rapidly

transition at a fracture intersection. Hence, the characteristic length scale is

on the same order of magnitude as the mean fracture length. Such a Bernoulli

CTRW framework has been applied to accurately reproduce breakthrough

curves generated from 3D numerical simulations of stochastically generated

networks whose fracture radii followed a power law distribution (107) and

2D geologically mapped fracture networks under different stress conditions
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(108). In these studies, an additional tortuosity parameter was introduced

to account for the fact that the multi-dimensional network structure allows

for particle motion in transverse directions and so the advective distance a

particle travels is greater than the linear distance in the primary flow direc-

tion. This added distance delays downstream solute breakthrough, meaning

the travel time between model steps in (33) must be modified via a tortuosity

parameter χs:

xn+1 = xn + ∆x

t(xn+1) = t(xn) +
χs∆x

vs
.

(37)

Here, particle velocity transitions along streamlines, but traverses only in949

x-space, the direction of primary flow, because longitudinal spreading is of950

primary interest. χs is an effective tortuosity parameter that corrects parti-951

cle travel distances, accounting for transverse excursions, and thereby delays952

effective transport. In these studies χs is calculated as the mean particle953

pathline distance divided by the total linear distance in the primary flow di-954

rection. Note that other definitions of tortuosity, such as the ratio of the mean955

velocity norm over the mean velocity in the mean flow direction are also com-956

monly used (109; 110) and, for volumes that are large enough, equivalent to957

this definition. Hyman et al. (107) demonstrated the Bernoulli CTRW model958

accurately captures breakthrough curve tailing behavior for networks whose959

fracture radii are sampled from power law distributions with varying power960

law slopes and showed that model accuracy improves when initializing the961

particle velocities with the inlet velocity distribution. Kang et al. uncovered962

that under specific stress conditions, the correlation length scale is correlated963

with velocity and proposed a dual correlation length Bernoulli CTRW, i.e.964
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P is dependent on velocity. The authors applied this dual correlation length965

Bernoulli to predict breakthrough curves in complex 2D networks. These966

findings agree with a study by (85), who found that the convergence rate for967

velocity evolution in numerical simulated Berea sandstone is velocity depen-968

dent. Note that in heterogeneous fractured media, a transition matrix may969

be spatially dependent due to the heterogeneity of the network structure at970

the scales of interests, meaning using the traditional SMM parameterized971

from two initial cells may impose false correlation structures on transport972

behavior. The Bernoulli CTRW framework, simply assumes that velocities973

transition over a characteristic length related to fracture radii, which relaxes974

the correlation structure and therefore is more suitable in this context.975

Bernoulli CTRWs have also been applied to model transport through976

porous media (85; 111). Carrel et al. (111) applied a Bernoulli CTRW to977

model transport processes through a porous media with varying degrees of978

biofilm growth. To do so, Nafion pellets were added to a bacterial inocu-979

lum, which were packed in a saturated flow cell to create a porous medium.980

The medium was saturated with glucose aqueous solution, thereby promoting981

biofilm growth in the flow cell. Fluoresecent tracer particles were seeded in982

the flow and tracked through time with particle tracking velocimetry (PTV),983

enabling t-Lagrangian velocity distributions to be quantified for different984

periods of biofilm growth. Particle trajectories displayed intermittent behav-985

ior, and larger biofilm growth resulted in fewer channels in the flow structure986

and increased average longitudinal velocity because porosity progressively987

decreased with increased growth. The Lagrangian trajectories enabled ve-988

locity correlations to be quantified, which was shown to increase with in-989
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creased biofilm growth. Transport through each biofilm snapshot was mod-990

eled with a Bernoulli CTRW, where velocities moved along streamlines and991

P = exp (−∆s/2λ), where exponential decorrelation occurs over twice the992

correlation length and the correlation length is found as the integral of a cor-993

relation function. Note that the characteristic length scale is similar to that994

found in (85), which was 2.5 times the average pore length. Bernoulli CTRW995

predictions for mean and centered mean squared displacements (MSD) are996

in good agreements with PTV measurements and the MSD exponent in-997

creased with biofilm growth, suggesting increasing biofilm growth causes an998

increase in anomalous transport, which is consistent with observations in999

other settings also (e.g. stream beds 4). Again, the study demonstrates1000

the exciting potential of a Bernoulli CTRW framework, as it faithfully cap-1001

tures anomalous transport at the pore scale without requiring as extensive a1002

parameterization process as measurement of a full transition matrix.1003

5. Mixing and Reactions1004

The primary goal of most of the cases presented so far has been to de-1005

scribe, or predict, the mean transport behavior as a 1-d, upscaled approxi-1006

mation. The simplification to 1-d is practical in the context of subsurface hy-1007

drogeological systems because the inaccessibility of the subsurface introduces1008

significant uncertainty in the 3-d architecture, making precise simulations im-1009

possible, but also because observations are not abundant. Consider that the1010

most reliable data about subsurface conditions comes from boreholes, which1011

are vertically averaged samples at fixed points. It is possible to simulate, and1012

verify, an upscaled model at these points but there are many relevant appli-1013
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cations where knowledge of a concentration field, or its variance about the1014

mean, are necessary, instead of time series of concentration at a point. For1015

example, mixing and chemical reactions depend on local concentrations and1016

concentration gradients (e.g. 112; 113), meaning that an average concentra-1017

tion is not sufficient to make an accurate prediction. In order to be useful for1018

such problems, the SMM would need to be able to represent concentration1019

fluctuations in an effective manner. This section describes some recent work,1020

much of it still in early developmental stages, that has begun to explore how1021

to do so efficiently.1022

5.1. Studies in Periodic Domains1023

Describing mixing in a Lagrangian sense generally means estimating spe-1024

cific particle positions over time, instead of estimating total travel times.1025

Sund et al. (93), who proposed the trajectory based SMM in periodic do-1026

mains, suggested that one could make an educated guess as to a particle’s1027

specific location if some additional information was stored on each trajec-1028

tory. The goal is to provide a method for downscaling that enables a more1029

complete representation of the spatially variable concentration field and its1030

fluctuations, enabling the calculation of mixing measures.1031

The approach used by (93) was to store a discrete form of each trajectory

si. For each trajectory the discretized counterpart can be defined as

P (si) =

χ1 χ2 . . . χn

η1 η2 . . . ηn

 , (38)

where the pairs (χ, η)ω identify locations along trajectory si, at travel time1032

ω
n
τ (si), with ω = 1, . . . , n, and n is the number of intervals that build the1033
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trajectory (see Figure 15a where blue dots show the locations χi, ηi along1034

a single trajectory). The collection of points that defined each trajectory1035

were then used to downscale the SMM model by linearly interpolating the1036

particle positions between those stored in P (si), providing a spatially explicit1037

description of particle positions at all times.1038

The model was developed and tested in a simple periodic pore scale set-1039

ting. The authors compared measurements from direct numerical simulations1040

and their modified SMM to evaluate predictions of two nonlinear global mea-1041

sures of mixing, generally considered to be necessary for the accurate upscal-1042

ing of mixing-driven chemical reactions. These are the dilution index (or1043

entropy) E(t) and integral of squared concentration M(t), respectively de-1044

fined as1045

E(t) = exp

(
−
∫

Ω

p(x, t) log p(x, t)dΩ

)
M(t) =

∫
Ω

p2(x, t)dΩ (39)

The DNS results and the modified SMM were compared at two different1046

Péclet numbers (Pe = 100 and 1000) using the downscaling procedure ex-1047

emplified in Figure 15. The agreement between the two was excellent over1048

all times considered, suggesting that this procedure can effectively model1049

mixing and dilution processes, at least in a global sense, thereby providing a1050

significant expansion of the simulation capabilities of the SMM.1051

The rates of many thermodynamically favorable reactions in porous me-1052

dia are limited by mixing rates in porous media. This implies that one can use1053

simplified reactions to study mixing instead of the complex multi-component1054

geochemical systems in natural systems. One of the most commonly stud-1055

ied, simplified models is the irreversible, bi-molecular, mixing driven reaction1056
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Figure 15: Graphical illustration (a) of the algorithm proposed by Sund et al. (93) to

downscale particle trajectories and SMM predictions (red) of the dilution index (b) and

second concentration moment (c) vs DNS (solid lines) using the proposed downscaling

algorithm with Pe = 1000; similar agreement is found for Pe = 100 (not shown). Adapted

with permission from (93).

given by A+B → C, where the letters denote generic chemical components.1057

(114) adopted this reaction in a periodic domain made up of packed cylinders1058

and proposed a scheme with Lagrangian transport and Eulerian reaction rates1059

stemming from volume averaging. Their proposed model takes advantage of1060

the fact that the SMM can be used to provide accurate predictions of trans-1061

port, but existing Eulerian approximations can be used for mixing-limited1062

reactions since they do not require the computationally costly calculations of1063

particle-particle interactions (e.g. 115; 116; 117). The approach was shown to1064

be effective for representing subscale fluctuations in concentration fields and,1065

as such, it was also able to accurately predict the amount of product C that1066

is produced. Note that the downscaling approaches in (93) and (114) have1067

some slight differences, but conceptually they are very similar and interested1068

readers are referred to those papers for more details.1069

Another family of reactions that are very important in the context of1070
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geologic media are surface reactions, which are any reactions that involve1071

mobile phases which directly interact with the liquid-solid surface within a1072

porous medium. Examples include sorption and desorption processes, where1073

a solute can be temporarily (or permanently) trapped relative to the flow-1074

ing fluid, or biological reactions where bio-organisms living on the surface1075

consume nutrients in the water, removing them permanently from the flow,1076

among many others. Under the assumption of dilute conditions, these reac-1077

tions can be modeled using linear approximations so they are amenable to1078

the SMM framework without the need for downscaling.1079

Sund et al. (118) considered the same periodic pore system as in Figure1080

9, but included a hypothetical biofilm layer that particles could diffuse into,1081

where particles were consumed according to a first-order rate law while in1082

the biofilm layer. This study showed that the main effect of biofilm reactions1083

was to truncate the late times in travel time distributions, as these are the1084

ones that spend most time in the biofilm and thus are most likely to react.1085

The travel time distribution for this system was split into two parts - one1086

that accounted for particles that “survive” and another that represented a1087

state of limbo (equivalent to an infinite residence time). The results again1088

showed that accounting for correlations was critical to ensure that fast par-1089

ticles persist at being fast and thus are also more likely to stay alive, while1090

slower particles are more likely to become stuck in limbo. One difference1091

that they found relative to the conservative transport case is that account-1092

ing for correlation effects remained somewhat important even at Pe = 100,1093

meaning that the sensitivity to correlation effects changes when reactions1094

are involved. Sherman et al.(119) came to a similar conclusion when study-1095
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ing sorption-desorption reactions in a similar system. In this case, particles1096

that hit the liquid-solid boundary have a finite probability of being trapped1097

(depending on a first order adsorption rate) and being trapped for a finite1098

amount of time (depending on a desorption rate). Following the trajectory1099

approach developed by (93), the number of times a given trajectory strikes1100

the liquid-solid boundary was added as an additional piece of information in1101

the model and combined with the approach proposed by (120) to link reac-1102

tion probabilities with sorption rates. Accounting for the number of impacts1103

proved to be sufficient to transform a simulation of conservative transport1104

into one with probabilistic adsorption-desorption. The main difference is1105

that the latter adds delays to the conservative transition times based on the1106

rates of adsorption, desorption and the number of times a trajectory strikes1107

the liquid-solid boundary where the reactive process is taking place. Later1108

(121) applied the model to a more complex non-periodic porous medium.1109

6. Discussion1110

So far this paper has reviewed and summarized the Spatial Markov Model1111

over the first decade since its introduction to the porous media community1112

by Le Borgne et al. (20). The model aims to represent effective (upscaled)1113

transport in complex porous media from pore- to geologic-scales by building1114

on previous modeling studies that demonstrated the importance of account-1115

ing for correlation effects. While the SMM has already shown great promise1116

and evolved immensely in that time, it is still a work in progress and we are1117

excited to see where the next steps will take us. In this final discussion, we1118

highlight some of the primary challenges and limitations of SMMs in their1119
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current forms as well as propose our personal views on pathways forward.1120

6.1. Challenges and limitations1121

• Applications to real systems and real data: Two examples were high-1122

lighted where the SMM was applied to two sets of real data: a field-1123

based study (74) and a laboratory study (95). The experiments of (95)1124

were in an idealized setting, a 1-d column, but, even in such a con-1125

trolled environment, additional steps were still needed to optimize the1126

fit of the SMM model to the data. The example of (74) used a site with1127

an uncommon level of characterization developed over years of meticu-1128

lous data collection, and the transport experiments were designed using1129

this knowledge. While the models could have fit the data well with-1130

out this characterization, interpretation of the results and success were1131

significantly aided by it. While theoretical studies are advancing fast1132

towards predictive approaches there is still an important gap between1133

the information required to constrain the model parameters and what1134

is typically available in field scale scenarios. Recent efforts based on1135

velocity CTRW (85) require knowledge of the Eulerian velocity pdf1136

of the system to predict transport. This information would rarely be1137

available in a real field setting. The vast majority of SMM applications1138

have relied on high resolution numerical simulations, most of which1139

are a far cry from “typical” field conditions. So, there is a clear need1140

for studies designed around the practical limitations of real systems.1141

This includes testing the SMM in settings with limited characteriza-1142

tion, incomplete sampling of tracers, and developing new approaches1143

to parameterization that can provide accurate results without requir-1144
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ing abundant information. These approaches will have to encompass1145

uncertainty quantification and sensitivity analyses to assess the impact1146

of the flow model parameterization on transport dynamics, extending1147

current studies (123).1148

• Stationarity across scales: A defining feature of the SMM compared1149

to previous, popular models for anomalous transport in porous me-1150

dia is that the SMM relaxes the reliance on independent, identically1151

distributed random variables. The justification for this is that it is1152

necessary in order to capture correlation effects, but all the SMM ap-1153

plications to date have contained an embedded assumption of incre-1154

mental stationarity for the correlations. This assumes that the same1155

transition matrix is valid along the entire SMM path, but this assump-1156

tion is not consistent with the complex, hierarchical structure of porous1157

media. However, it may be possible to define transition matrices in a1158

“zonal” fashion in order to capture the changes in correlations along the1159

SMM path. Doing so confidently would likely require abundant char-1160

acterization, but some geostatistical techniques are able to incorporate1161

conceptual data and incorporating those advances into the SMM could1162

help relax the requirement of strict stationarity.1163

A related, subtle point is that many of the numerical studies described1164

herein used multi-Gaussian random fields with fixed length scales for1165

their heterogeneity structures, and the models worked well because1166

the assumption of stationarity was valid. The issue is that the evolv-1167

ing length scales of heterogeneity in natural geologic systems are non-1168

stationary. Studies are needed that use realistic, multi-scale hetero-1169
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geneity fields to investigate when the stationarity assumption is valid,1170

when it breaks down, and how to account for systematic changes as new1171

features in the hierarchy are sampled. A recent example attempting to1172

do this is (124), who use the SMM to study transport in a variably sat-1173

urated watershed, including overland, vadose zone and saturated flow1174

domains, defining unique transition matrices for different parts of the1175

flow domain. While this preliminary study shows some promise much1176

work is needed here.1177

• Generalization to nonlinear processes: The SMM is generally designed1178

to represent the mean, effective behavior in the evolution of a concen-1179

tration field, and its simplest forms assume that transport processes are1180

linear. However, many processes in porous media, particularly chemical1181

reactions which are ubiquitous in geologic systems, are highly nonlin-1182

ear and so simply predicting mean behavior is not sufficient and some1183

knowledge of fluctuations below the support scale is required. Ad-1184

ditionally many forms of calculating reactions require calculation of1185

concentrations in fixed volumes, naturally necessitating an Eulerian in-1186

terpretation with which the SMM must be compatible. Some efforts1187

have been made along these lines; e.g. the trajectory based methods in1188

periodic domains (93; 114) but generalizing these approaches to more1189

realistic complex settings still remains to be done. The training tra-1190

jectories approach proposed in (62) shows promise in this regard; how-1191

ever, it has currently only been applied in a relatively simple setting1192

and validated at a scale (O(mm)) well below typical scales of interest1193

(O(m− km)).1194
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• Enhancing predictive power: Perhaps one of the biggest criticisms of1195

transport models in porous media in general is that in order to param-1196

eterize the models one typically has to run a transport experiment at1197

the same scale; that is to predict transport one must first measure it.1198

It would be desirable to establish procedures leading to reliable pre-1199

dictions relying only on prior information available about the geologic1200

system (e.g. distribution of permeabilities in space) or at most about1201

the flow (e.g. approximate velocity distribution in space) and from1202

that information alone, predict transport with reasonable uncertainty.1203

This would truly take anomalous transport models to the next level in1204

terms of actually helping solve practical engineering problems in the1205

subsurface environment, but in order to get there the SMM needs to1206

be studied in more diverse settings and the role of uncertainty and1207

sensitivity on its predictions needs to be considered.1208

6.2. Vision for Next Steps1209

While we report here the historical progress of the SMM, we are also1210

excited to see where it will go over the next decade. Here we put forward1211

a few of our own personal visions and hopes to try and stimulate future1212

debates, engagement and efforts:1213

• Data driven approaches: The complexity of real geologic systems is1214

such that uncertainties can be tremendous and these can even be dif-1215

ficult to quantify in 3-d models because of excessive parameters and1216

runtimes. Using analytical or purely theoretical approaches to ap-1217

proximate real systems is an attractive solution but is not necessar-1218

ily feasible because of their excessive simplicity. This suggests that1219
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finding a parsimonious balance between complex models, theories, and1220

efficient numerical approaches (for data assimilation and model pa-1221

rameterization under uncertainty) might be an excellent way forward,1222

which could build from recent advances in machine and deep learning,1223

as well as other model reduction approaches like polynomial chaos or1224

Gaussian emulation (125; 126). Generally, these are purely numerical1225

approaches, unconstrained by physics, and this can justifiably make1226

users uneasy about actual predictability or extrapolation of informa-1227

tion beyond training data sets. However, coupling such methods and1228

constraining them with models based on physical processes, such as1229

the SMM, is an exciting pathway forward to leverage the best of both1230

worlds. This is a place where the simplicity of the SMM is particu-1231

larly advantageous because it allows one to capture the variability of a1232

complex transport processes using a less complicated model. Reduced1233

complexity numerical approaches could be used to capture the time1234

dependent nature of model parameters (e.g., due to flow variability) or1235

their spatial variability due to the heterogeneity of the subsurface.1236

• Smart tracers: Most applications of the SMM to date have relied on de-1237

tailed information that can realistically only be measured in high reso-1238

lution numerical simulations (e.g. direct measurement of correlation by1239

tracking successive travel times of individual particles). Such methods1240

are not typically possible with current day experimental approaches.1241

However, the advent and continued emergence of novel tracers (e.g. in-1242

dividual particles tagged with unique DNA markers (127; 128)), makes1243

us believe that some day it might actually be possible to obtain such1244
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information in real experiments. While none of the authors of this ar-1245

ticle are experimentalists, we find the idea of such smart tracers very1246

exciting.1247

• More seamlessly blending geostatistics with SMMs: As noted above, a1248

major barrier is that most state of the art models require one to run1249

a transport experiment to infer model parameters. Alternative data1250

sources are needed to break this cycle, but the inaccessibility and uncer-1251

tainty of the subsurface makes it a challenge. One source that is largely1252

overlooked is conceptual geological data, which is typically known with1253

high confidence. We suggest that blending categorical geostatistics, us-1254

ing for example transition probability approaches (25; 15; 129), with1255

SMMs is a natural pairing because both focus on delineating major1256

transitions; changes in geology are strong controls on changes in veloc-1257

ity fields, so there is good reason to expect positive correlation between1258

them. Such a model could be based entirely on commonly available1259

field observables like water levels, borehole tests, well logs, and out-1260

crop analogs, to inform process parameterization in the SMM, which1261

would also provide better connections to data as suggested above. For1262

instance, in the context of heterogeneous conductivity fields’ charac-1263

terization, (23; 130) proposed the link between anomalous transport1264

characteristics and an emerging disorder indicator termed geological1265

entropy. Future works may be directed towards linking such indicators1266

with SMM model parameters.1267
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• Extension to transient flows: Almost all applications of the SMM to1268

porous media flows to date have been under the condition of steady1269

flow conditions (with one notable exception of (91), who considered1270

turbulent flow). Real hydrogeologic systems are rarely, if ever, under1271

true steady state flow conditions as they are continuously forced by1272

intermittent rain events and other elements of the hydrologic cycle,1273

but also by anthropogenic factors like pumping. Extending the SMM1274

to naturally account for temporal variability would require a model1275

framework that relaxes strict stationarity in time, but, considering the1276

linear nature of flow and transport in low Reynolds number settings, it1277

is reasonable to expect that one could do so in a systematic manner that1278

is physically motivated and theoretically based. One approach could be1279

to use stationary (velocity) ranked transition matrices, then scale the1280

velocities up or down as the SMM evolves to account for the impacts of1281

any changes in forcing. This could be as simple as shifting the mean,1282

but in some cases models for the evolution of transition matrices over1283

time might also be needed.1284

• Generalizing training trajectories: The training trajectory work of (62)1285

is one of the most exciting for us because it is one of the first SMMs1286

that truly attempts to build a model that can predict three-dimensional1287

concentration fields within a still parsimonious framework. Trajectory1288

matching might also be a way of using a combination of synthetic mod-1289

els and data to improve field-scale predictions; however, its current1290

limitation is size. To date, the trajectory-based approach has only1291

been applied in the context of relatively simple sandstone at very small1292
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scales. Trajectory reconstructions are needed for more complex porous1293

media but also at different spatial scales. This could lead to a robust1294

approach for upscaling/predictive purposes where training of the mod-1295

els performed at one scale (sample) could be used to model transport1296

in a different and/or larger sample. This would help develop practical1297

tools for simulating 3-d transport but these will need to be verified1298

against detailed simulations and multi-scale physical experiments to1299

develop confidence.1300

• Formally connecting Lagrangian and Eulerian view points: For most1301

anomalous transport models that have been used in hydrogeologic sys-1302

tems, one can write clear Eulerian and Lagrangian descriptions of the1303

system (e.g. 32; 41). Typically the Lagrangian picture is written in1304

terms of a discrete equation such as those presented in this paper and1305

the Eulerian one as integro-differential equation (with nonlocal in space1306

and/or time terms). For the SMM, while some efforts have been made,1307

this is not entirely the case. Indeed, we the authors believe that the1308

success of the SMM in periodic systems suggests that one should be1309

able to formally link the Lagrangian framework as we have described1310

it here to the Eulerian framework that evolves from formal upscaling1311

approaches such as volume averaging, where nonlocal in space and time1312

equations can emerge (e.g. 131; 86; 87). Approaches discussed above1313

(93; 114) have shown that numerical closures can be implemented to1314

relate the SMM formulation to subscale features. Establishing a for-1315

mal link between Eulerian and Lagrangian closures would unlock the1316

possibility to merge the two approaches, which could be beneficial, e.g.1317
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to predict reactive transport processes relying on measurable Eulerian1318

characteristics.1319

• Connecting state of the art mixing and spreading models: As noted1320

in the previous subsection, the SMM as described here is most con-1321

ducive to describing one dimensional effective transport, or predicting1322

mean/projected behavior. Another way of expressing this is to say that1323

they do a good job of capturing spreading (i.e. replicating nonlinear1324

scaling of the second centered moment). Nonlinear processes, such as1325

chemical reactions, will require further additions to the SMM. Some ex-1326

citing developments have taken place in recent years, using the concept1327

of lamellae to describe mixing and reactions in complex heterogeneous1328

systems ranging from pore to Darcy scales (e.g. 132; 133). Elaborat-1329

ing extensively on these would require an entirely new review article,1330

but a large element of these theories relies on balances between mixing1331

and spreading (134). It would be exciting to see the SMM and such1332

approaches coupled together more formally to improve our ability to1333

use the SMM to predict nonlinear processes also.1334

• Multiphase systems: Multiple fluid phases typically coexist in the sub-1335

surface. Examples of common interest of multiphase systems and set-1336

tings include (i) the unsaturated zone between the Earth’s surface and1337

the saturated aquifer where air and water both occupy the void space,1338

(ii) geologic carbon sequestration where supercritical CO2 is injected1339

into saline aquifers for permanent storage so that it cannot access the1340

atmosphere, (iii) conventional and unconventional oil and gas extrac-1341
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tion. Multiphase flows in porous media can be highly complex, leading1342

to even stronger anomalous transport than typically observed. Recent1343

experiments by (135; 136) highlight these very clearly. Another numer-1344

ical study by (137) highlights that pre-asymptotic anomalous transport1345

at pore scales in a multiphase system can persist for much longer than1346

one would anticipate in a single phase flow. While such observations1347

have been made, applications of the SMM to such systems has been1348

limited. Formally connecting the single phase and multiphase system1349

behaviors within a unified framework with the SMM, perhaps using1350

auto- and cross-transition matrices between the phases, would provide1351

an ability to make more general predictions in real systems of interest.1352

• Incorporation of further microscale processes from digital rock and soil1353

samples: One of the great advances in porous media over the last decade1354

has been our ability to visualize and measure the full range of com-1355

plexity at the smallest of scales using innovative technologies able to1356

reconstruct the spatial structure of rock and soil 3D samples and/or1357

and 2D sections (using micro computed tomography, nuclear magnetic1358

resonance, Raman spectroscopy, etc.). To date, these techniques have1359

been used to model the structure of porous media, or the resulting ve-1360

locity fields, and then impose transport. However, rich data relating to1361

microporosity, mineral composition, heterogeneous reactivity, organic1362

matter/biofilm distributions, imaged phase distributions and so on also1363

exist and all may play a role on how contaminants move and react in1364

real porous media. Being able to incorporate such information in an ef-1365

fective model such as the SMM could be a way to reduce the uncertainty1366
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that currently plagues numerical modeling of biogeochemical processes1367

in soils, e.g. biodegradation of emerging contaminants and agrochemi-1368

cals (138; 139). New paradigms are needed to incorporate micro-scale1369

information into emerging properties with the aim of constraining pre-1370

dictions, as extensively discussed in a recent review (140). The SMM1371

framework has the potential to overcome the limitation of currently em-1372

ployed approaches, by providing a flexible tool to upscale multi-scale1373

measurements and characterization, going beyond just physical hetero-1374

geneity, but embracing the full range of biogeochemical heterogeneity1375

that is ubiquitous in real systems and that can often play an even more1376

important role than previously thought.1377

Although there are still many obstacles that currently prevent these vi-1378

sions from being realized today, the authors remain optimistic and excited1379

to see the progression of the SMM in the coming years. In just over a decade1380

from conception, significant advances have occurred in SMM research. We1381

expect nothing less than continued growth through the foreseeable future, as1382

field based and computing technologies advance at unprecedented rates. Such1383

technological advancement will expand applications to larger scale geologic1384

systems and other natural flows, while also assisting the scientific community1385

in solving some of the most challenging global problems, including improved1386

methods for energy extraction and mitigating climatic effects induced by an-1387

thropogenic emissions. Such advances will also pave the way for new and1388

different models that can hopefully build on the advances presented here.1389

In this review, we have detailed the progression of the SMM and its many1390

successes, while also identifying limitations that must be overcome in order1391
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to bring the SMM (or its successors) to new frontiers.1392
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