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A B S T R A C T

In this paper, we focus on the optimal operation of a multi-agent system affected by uncertainty. In particular,
we consider a cooperative setting where agents jointly optimize a performance index compatibly with
individual constraints on their discrete and continuous decision variables and with coupling global constraints.
We assume that individual constraints are affected by uncertainty, which is known to each agent via a private
set of data that cannot be shared with others. Exploiting tools from statistical learning theory, we provide
data-based probabilistic feasibility guarantees for a (possibly sub-optimal) solution of the multi-agent problem
that is obtained via a decentralized/distributed scheme that preserves the privacy of the local information. The
generalization properties of the data-based solution are shown to depend on the size of each local dataset and
on the complexity of the uncertain individual constraint sets. Explicit bounds are derived in the case of linear
individual constraints. A comparative analysis with the cases of a common dataset and of local uncertainties
that are independent is performed.
. Introduction

This paper addresses the optimal operation of a system composed
f multiple interacting agents that are affected by uncertainty. We
onsider a cooperative framework where agents aim at optimizing some
erformance index (either a loss to be minimized or a reward to be
aximized) compatibly with their local operational limitations and

ome global constraints, typically related to shared resources, that are
oupling their decisions. Problems in this form arise naturally in many
ngineering applications, from industrial multi-type energy generation
lants (Shen, Zhao, Du, Zhong, & Qian, 2019) to optimal collaborative
peration of microgrids (Zhang, Li, Wang, & Feng, 2018), and coopera-
ive adaptive cruise control of modern vehicle automation (Bevly et al.,
016). In many problems, the agents are characterized by both contin-
ous and discrete components, which causes the resulting optimization
roblem to be a Mixed-Integer Program (MIP). If the cost function and
he constraints are all linear in the decision variables, then the MIP
roblem becomes aMixed-Integer Linear Program (MILP). This is the case
or the class of Mixed Logical Dynamical systems, (Bemporad & Morari,
999) with a linear cost function.

The computational effort required to solve a MIP to optimality
rows exponentially in the number of discrete variables and becomes
rohibitive for large-scale systems. In many cases, even determining a
easible solution may be challenging due to the inherent combinatorial
omplexity of the problem. Multi-agent MILPs, however, exhibit a
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partially separable structure that can be leveraged to decompose the
problem into lower-dimensional MILPs and distribute the computa-
tional load among the agents according to a distributed or decentralized
paradigm. Recent works (Falsone, Margellos, & Prandini, 2018, 2019;
Manieri, Falsone, & Prandini, 2023a, 2023b) propose solution-seeking
algorithms for constraint-coupled multi-agent MILPs that combine dual
decomposition (to recover separability) and constraint tightening (to
guarantee the feasibility of the computed solution). In particular, they
lift the coupling constraints (that prevent separability) to the cost
function by means of a set of non-negative weights (the Lagrange
multipliers), and then compute a solution of this relaxed problem by
means of a decentralized or distributed iterative scheme where each
agent solves a lower-dimensional MILP at each iteration. Satisfaction
of the coupling constraint is enforced by adding a fictitious tighten-
ing, adjusted adaptively throughout the iterations. The application to
prosumers aggregation for providing balancing services to the grid
in La Bella, Falsone, Ioli, Prandini, and Scattolini (2021) showcases the
scalability of the decomposition approach whose theoretical guarantees
are proven in Manieri et al. (2023a).

In Camisa, Notarnicola, and Notarstefano (2022), primal decompo-
sition is used to derive a master-sub-problem architecture where the
master problem handles the coupling by assigning a portion of the
shared resources to each agent, whilst each agent solves a sub-problem
to retrieve the best solution compatible with such resource allocation.
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Even in this case, a tightening of the shared resource is needed to
enforce the feasibility of the coupling constraints.

All these approaches focus on deterministic MILPs and are not
applicable in contexts where the agents are operating in uncertain
environments affecting their operational constraints.

The presence of uncertainty introduces an additional challenge
and calls for a suitable notion of solution. According to the robust
aradigm (Ben-Tal & Nemirovski, 1998; Kwakernaak, 1993; Li et al.,
020), feasibility is required to hold for every and each uncertainty re-
lization (even those that are unlikely to occur), thus typically resulting
n a conservative solution. Also, knowledge of the set of values that
he uncertainty can assume is required, and the resulting semi-infinite
ptimization problem is often hard to solve.

On the other hand, the probabilistic paradigm calls for a characteri-
ation of the uncertainty through a probability distribution and requires
easibility to hold for most of the uncertainty realizations except for a
et of predefined (small) probability. The resulting chance-constrained
ptimization problem is often computationally challenging even when
he uncertainty is fully characterized (Ben-Tal & Nemirovski, 1997),
hich is rarely the case in practice.

The lack of a characterization of the uncertainty affecting the prob-
em can be addressed by collecting data and formulating a data-based
ptimization problem, where constraints are imposed only on the seen
ncertainty instances. This, however, adds another layer of uncertainty
ince data-based solutions inevitably depend on the available samples
nd the generalization properties to unseen uncertainty instances can
hen hold only with a certain probability.

For uncertain convex optimization problems, the scenario approach
Campi, Garatti, & Prandini, 2009) provides a-priori distribution-free
robabilistic guarantees in terms of a lower bound on the number
f samples (scenarios) needed to ensure – with tunable high confi-
ence – that a given data-based solution violates the uncertain con-
traints with small probability. Data-based multi-agent convex prob-
ems with a partially decoupled structure (either constraint-coupled or
ecision-coupled) were considered in Falsone, Margellos, Prandini, and
aratti (2020), by extending the scenario theory to decentralized and
istributed schemes preserving privacy of the local information.

As for the non-convex case, a-priori feasibility guarantees are ob-
ained based on the scenario approach in Esfahani, Sutter, and Lygeros
2014) for MILPs and in Calafiore, Lyons, and Fagiano (2012) for MIPs
ith constraints with a convex but not necessarily linear continuous

ounterpart. More recently, a-posteriori (distribution-free) probabilis-
ic guarantees based on the available data and the resulting support
onstraints have been derived for the solution to general non-convex
roblems (Campi, Garatti, & Ramponi, 2018). The above results are,
owever, not directly applicable to a multi-agent privacy-preserving
on-convex context for two main reasons: (i) agents are not willing
o share with the others their data, so that in the scenario problem
ormulation local constraints cannot be imposed on the same scenarios
f the uncertainty affecting the multi-agent system, and (ii) solutions
btained via state-of-the-art decentralized/distributed algorithms for
ulti-agent non-convex problems like those in Camisa et al. (2022),

alsone et al. (2018, 2019), Manieri et al. (2023a) are only guaranteed
o be feasible but not necessarily optimal.

In this paper, we exploit tools from statistical learning theory (Alamo
empo, & Camacho, 2009) and extend the results in Falsone, Margellos,
randini, and Garatti (2020) to non-convex multi-agent optimization
roblems with uncertain linear local constraints. We derive proba-
ilistic feasibility guarantees that preserve the privacy of the local
nformation of the agents, including that on the uncertainty, while
llowing for scalability in the number of agents. Differently from the
ork in Falsone, Molinari, and Prandini (2020) on uncertain multi-
gent MILPs, we do not require the agents to use the same uncertainty
ealizations and provide improved bounds when the agents are subject
2

o independent uncertainty sources.
Note that in a parallel stream of work, Pantazis, Fele, and Margel-
os (2022) provides probabilistic feasibility guarantees to data-based
ulti-agent problems with convex – not necessarily linear – local

onstraints. However, guarantees are obtained a-posteriori and require
procedure to determine the minimal support samples for the feasi-

ility region, which is computationally challenging in general. In the
ame vein, a-posteriori feasibility guarantees are provided in Pantazis,
ele, and Margellos (2021) for uncertain polytopic constraints in a
on-cooperative multi-agent setting. Though limited to linear local
onstraints, our guarantees are instead a-priori and do not require any
ssessment on the support samples of the feasibility region.

The remainder of the paper is structured as follows. The addressed
roblem is formally stated in Section 2, where we highlight its main
hallenges. We derive the main result of the paper in Section 3,
here we provide probabilistic feasibility guarantees for the case where
gents have private datasets that cannot be shared with the others and
e-derive the results in Falsone, Molinari, and Prandini (2020) for the
ommon dataset case. The two results are then compared in Section 4.
ection 5 concludes the paper.

otation. We denote with Z the set of integer numbers and with R the
et of real numbers. For a vector 𝑣, 𝑣⊤ denotes its transpose and [𝑣]𝑟
ts 𝑟th component. Symbols ∧ and ∨ denote the AND and OR logical
perators, respectively. The symbol ∅ denotes the empty set, while ∩, ∪,
nd ⧵ denote set intersection, union, and difference, respectively. Given
probability measure P over a set 𝛥, we denote with P𝑁 the product

probability measure to describe the joint distribution of 𝑁 independent
variables, each one taking value on 𝛥 according to P.

2. Problem setting and data-driven formulation

Let us consider a multi-agent system composed of 𝑚 cooperating
gents, where each agent 𝑖 has 𝑛𝑐,𝑖 continuous optimization variables
nd 𝑛𝑑,𝑖 integer decision variables, collected in a decision vector 𝑥𝑖 ∈
𝑖 = R𝑛𝑐,𝑖 × Z𝑛𝑑,𝑖 with 𝑛𝑖 = 𝑛𝑐,𝑖 + 𝑛𝑑,𝑖 elements.

The scalar-valued cost function of the multi-agent system is de-
oted as 𝐽 (𝑥1,… , 𝑥𝑚), while the local constraint set is a mixed-integer

polyhedral set

𝑋𝑖(𝛿) =
{

𝑥𝑖 ∈ X𝑖 ∶ 𝐷𝑖(𝛿)𝑥𝑖 ≤ 𝑑𝑖(𝛿)
}

,

defined by means of a set of linear inequalities where matrix 𝐷𝑖(𝛿) and
vector 𝑑𝑖(𝛿) are affected by some uncertain parameter vector 𝛿 ∈ R𝑝

taking values in a set 𝛥 ⊆ R𝑝 according to some probability distribution
P. The agents’ decisions are coupled by 𝑘𝑣 global constraints possibly
modeling the presence of some shared resources or the need to reach a
consensus, and expressed as

𝑣(𝑥1,… , 𝑥𝑚) ≤ 0,

where 𝑣 ∶ X1×⋯×X𝑚 → R𝑘𝑣 , with the understanding that the inequality
has to be intended component-wise. Global equality constraints can also
be accounted for without modifications.

The decisions that minimize the objective function subject to lo-
cal and global constraints can be obtained by solving the following
multi-agent MIP

min
𝑥1 ,…,𝑥𝑚

𝐽 (𝑥1,… , 𝑥𝑚) (1a)

subject to: 𝑣(𝑥1,… , 𝑥𝑚) ≤ 0 (1b)

𝑥𝑖 ∈ 𝑋𝑖(𝛿), 𝑖 = 1, … , 𝑚. (1c)

Since the value of the uncertain parameter vector 𝛿 in (1c) is not
known at decision time, then some alternative problem formulation
must be adopted. A possibility would be to replace 𝛿 in (1c) with
some nominal value 𝛿, which would, however, lead to a solution that
is guaranteed to be feasible only for 𝛿 = 𝛿. Another possibility is to

enforce the local constraints for all possible values that the uncertain
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parameters 𝛿 may take, thus opting for a robust paradigm and replacing
onstraint (1c) with

𝑖 ∈ 𝑋𝑖(𝛿), 𝑖 = 1,… , 𝑚, 𝛿 ∈ 𝛥.

owever, this approach requires knowledge of 𝛥 and typically attains
poor performance, as it also considers realizations of 𝛿 that are very
unlikely to occur. In between these two extremes, the chance-constraint
formulation leverages that 𝛿 is a random vector from 𝛥 distributed
according to P to enforce that the uncertain constraints are satisfied
with a certain probability. Formally, this is achieved substituting (1c)
with the following chance-constraint

P
{

𝛿 ∈ 𝛥 ∶ 𝑥𝑖 ∈ 𝑋𝑖(𝛿), 𝑖 = 1,… , 𝑚
}

≥ 1 − 𝜀, (2)

where 𝜀 (also called violation parameter) tunes the risk of violating
constraint 𝑋𝑖(𝛿) for at least one 𝑖. This is certainly the most flexible
approach, but it relies on the knowledge of P (and implicitly of 𝛥),
which may not be available. In addition, even when P and 𝛥 are known,
solving the resulting chance-constrained problem can be hard even
when all decision variables are continuous.

If realizations of the uncertainty are available, they can be directly
embedded in the optimization problem as a proxy for 𝛥 and P to
approximate (2), thus obtaining a standard MIP. Specifically, let us
assume that each agent 𝑖 has access to a collection

𝑖 =
{

𝛿(1)𝑖 , 𝛿(2)𝑖 ,… , 𝛿(𝑁𝑖)
𝑖

}

∈ 𝛥𝑁𝑖

of 𝑁𝑖 samples of the uncertain vector 𝛿, each extracted from 𝛥 ac-
cording to P. Then, by enforcing the local constraints 𝑋𝑖(𝛿) in (1c) for
ll values of 𝛿 in 𝑖, we obtain the following data-based optimization
rogram

min
𝑥1 ,…,𝑥𝑚

𝐽 (𝑥1,… , 𝑥𝑚) (3a)

ubject to: 𝑣(𝑥1,… , 𝑥𝑚) ≤ 0 (3b)

𝑥𝑖 ∈ 𝑋𝑖(𝛿𝑖), 𝛿𝑖 ∈ 𝑖, 𝑖 = 1 … , 𝑚, (3c)

hich is still a multi-agent MIP, but it is now deterministic. Its res-
lution does not require explicit knowledge of the domain 𝛥 where
ncertainty takes values nor its probability distribution P. Any solution
o (3) depends on the specific instances of the datasets 1,… ,𝑚.

Intuition suggests that as the number of samples 𝑁𝑖 increases, a solution
to (3) becomes more and more ‘‘robust’’ and more likely to belong
to the local constraints 𝑋𝑖(𝛿) for an unseen value of 𝛿 ∈ 𝛥. This
intuition rests on solid ground, as the generalization properties of data-
based solutions have been extensively analyzed both in the convex
and in the non-convex cases (Alamo et al., 2009; Campi et al., 2009,
2018), albeit the multi-agent framework has been considered only
recently (see Falsone, Margellos, Prandini, and Garatti (2020), Falsone,
Molinari, and Prandini (2020), Pantazis et al. (2022)).

Note that even if (3) is a deterministic problem, it can be difficult to
solve in a centralized fashion, especially when the number of agents 𝑚
is large. Additionally, a centralized resolution scheme requires agents
to share their dataset, which may overload the communication network
and also create privacy concerns. Computational tractability can be
recovered when (3) exhibits a partially decomposable structure like in
multi-agent MILPs where decentralized algorithms like Falsone et al.
(2019), Manieri et al. (2023a) can be used to find a feasible (possibly
suboptimal) solution, while preserving privacy.

In the next section, we show that by suitably selecting 𝑁𝑖, 𝑖 =
1,… , 𝑚, we can equip any feasible solution of (3) with probabilistic
feasibility guarantees for the chance-constraint in (2). Notably, such
guarantees are valid even if agents collect data independently and keep
them private, and also irrespective of the algorithm used to compute
3

the solution, which can then be freely chosen by the user.
3. Probabilistic feasibility guarantees

In this section, we present our main results. We start by charac-
terizing local feasibility guarantees at the level of the single agent in
Section 3.1, which are then used to provide feasibility guarantees that
hold for all agents jointly (and hence for problem (3)) in Section 3.2.

3.1. Local feasibility guarantees

Consider a generic agent 𝑖 ∈ {1,… , 𝑚} along with its local uncertain
constraint set 𝑋𝑖(𝛿) and impose the following assumption.

Assumption 1. Agent 𝑖 has access to a private dataset 𝑖 of 𝑁𝑖
ealizations 𝛿(1)𝑖 ,… , 𝛿(𝑁𝑖)

𝑖 of the uncertain parameter 𝛿, where each 𝛿(𝑗)𝑖
s extracted independently at random from 𝛥 according to P.

To ease the notation, let us denote the data-based local constraint
et of agent 𝑖 as

𝑖 =
⋂

𝛿𝑖∈𝑖

𝑋𝑖(𝛿𝑖).

ote that, since 𝑖 depends on the random dataset 𝑖, any decision
𝑖 ∈ 𝑖 selected based on the knowledge of 𝑖 will be a random quantity
tself and its properties will then hold with a certain confidence.

For a generic agent 𝑖, the following result relates the violation level
f a feasible decision 𝑥𝑖 ∈ 𝑖 with the number of samples 𝑁𝑖 in the
ataset 𝑖 and the confidence with which a local chance-constraint is
atisfied by 𝑥𝑖.

heorem 1. Under Assumption 1, with confidence no smaller than 1−𝛽𝑖,
ither 𝑖 is empty, or any decision 𝑥𝑖 ∈ 𝑖 satisfies
{

𝛿 ∈ 𝛥 ∶ 𝑥𝑖 ∈ 𝑋𝑖(𝛿)
}

≥ 1 − 𝜀𝑖, (4)

f 𝑁𝑖 is such that

𝑖 ≥
5
𝜀𝑖

[

2𝑛𝑐,𝑖 log2(4𝑒𝑘𝑐,𝑖) ln
(

40
𝜀𝑖

)

+ ln
(

4
𝛽𝑖

)

+ ln(𝑘𝑑,𝑖)
]

, (5)

where 𝑛𝑐,𝑖 is the number of continuous optimization variables of agent 𝑖, 𝑘𝑐,𝑖
is the number of linear inequality constraints of agent 𝑖 involving continuous
variables and affected by the uncertain parameter 𝛿, and 𝑘𝑑,𝑖 is the number
of combinations for the discrete variables of agent 𝑖.

Proof. Let 𝑔𝑖 ∶ R𝑛𝑐,𝑖 × Z𝑛𝑑,𝑖 × 𝛥 → {0, 1} be the binary measurable
function

𝑔𝑖(𝑥𝑐,𝑖, 𝑥𝑑,𝑖, 𝛿) =

{

0 if 𝑥𝑖 ∈ 𝑋𝑖(𝛿)
1 otherwise

(6)

describing the violation of local constraint of agent 𝑖 evaluated at
decision 𝑥𝑖 = [𝑥⊤𝑐,𝑖 𝑥⊤𝑑,𝑖]

⊤ and uncertainty instance 𝛿 ∈ 𝛥, where
subvector 𝑥𝑐,𝑖 ∈ R𝑛𝑐,𝑖 collects all the continuous decision variables, and
vector 𝑥𝑑,𝑖 ∈ Z𝑛𝑑,𝑖 all the discrete variables of agent 𝑖. Then, from Alamo
et al. (2009, Definition 1), the probability of violation of 𝑥𝑖 for the
function 𝑔𝑖 ∶ R𝑛𝑐,𝑖 × Z𝑛𝑑,𝑖 × 𝛥 → {0, 1} is defined as

𝑉𝑔𝑖 (𝑥𝑖) = 𝑉𝑔𝑖 (𝑥𝑐,𝑖, 𝑥𝑑,𝑖)

= P
{

𝛿 ∈ 𝛥 ∶ 𝑔𝑖(𝑥𝑐,𝑖, 𝑥𝑑,𝑖, 𝛿) = 1
}

. (7)

We are interested in computing the probability of extracting a
dataset 𝑖 and finding a solution 𝑥𝑖 ∈ 𝑖 which has violation bigger
than 𝜀𝑖. Formally, we want to estimate the probability of one-sided
constraint failure (cf. Alamo et al., 2009, Definition 3)

𝑝𝑔𝑖 (𝑁𝑖, 𝜀𝑖) = P𝑁𝑖
{

𝑖 ∈ 𝛥𝑁𝑖 ∶ ∃𝑥𝑐,𝑖, 𝑥𝑑,𝑖 ∶

(𝑔𝑖(𝑥𝑐,𝑖, 𝑥𝑑,𝑖, 𝛿) = 0, 𝛿 ∈ 𝑖) ∧ (𝑉𝑔𝑖 (𝑥𝑐,𝑖, 𝑥𝑑,𝑖) > 𝜀𝑖)
}

, (8)

which can be upper bounded as follows

𝑝𝑔𝑖 (𝑁𝑖, 𝜀𝑖) ≤
∑

𝑝𝑔𝑖,𝑥𝑑,𝑖 (𝑁𝑖, 𝜀𝑖), (9)

𝑥𝑑,𝑖∈𝛯𝑖
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where 𝛯𝑖 represents the set of all the possible combinations that dis-
crete variables 𝑥𝑑,𝑖 can take, and 𝑝𝑔𝑖,𝑥𝑑,𝑖 is similar to (8) but for a fixed
alue of 𝑥𝑑,𝑖, i.e.,

𝑔𝑖,𝑥𝑑,𝑖
(𝑁𝑖, 𝜀𝑖) = P𝑁𝑖{𝑖 ∈ 𝛥𝑁𝑖 ∶ ∃𝑥𝑐,𝑖 ∶

(𝑔𝑖(𝑥𝑐,𝑖, 𝑥𝑑,𝑖, 𝛿)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝑔𝑖,𝑥𝑑,𝑖 (𝑥𝑐,𝑖 ,𝛿)

= 0, 𝛿 ∈ 𝑖) ∧ (𝑉𝑔𝑖 (𝑥𝑐,𝑖, 𝑥𝑑,𝑖)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑉𝑔𝑖,𝑥𝑑,𝑖

(𝑥𝑐,𝑖)

> 𝜀𝑖)}. (10)

ased on Alamo et al. (2009, Definition 4) and following Alamo et al.
2009, Theorem 1 with 𝜌 = 0), the probability of one-sided constraint
ailure 𝑝𝑔𝑖,𝑥𝑑,𝑖 (𝑁𝑖, 𝜀𝑖) can be upper bounded by the probability of relative
ifference failure (cf. Alamo et al., 2009, Definition 4)

𝑔𝑖,𝑥𝑑,𝑖

(

𝑁𝑖,
√

𝜀𝑖
)

= P𝑁𝑖
{

𝑖 ∈ 𝛥𝑁𝑖 ∶ sup
𝑥𝑐,𝑖∈R

𝑛𝑐,𝑖

√

𝑉𝑔𝑖,𝑥𝑑,𝑖 (𝑥𝑐,𝑖) >
√

𝜀𝑖
}

(11)

s

𝑔𝑖,𝑥𝑑,𝑖
(𝑁𝑖, 𝜀𝑖) ≤ 𝑟𝑔𝑖,𝑥𝑑,𝑖

(

𝑁𝑖,
√

𝜀𝑖
)

. (12)

Then, according to Alamo et al. (2009, Theorem 5) we have

𝑟𝑔𝑖,𝑥𝑑,𝑖
(

𝑁𝑖,
√

𝜀𝑖
)

< 4𝜋𝑔𝑖,𝑥𝑑,𝑖 (2𝑁𝑖)𝑒−𝑁𝑖𝜀𝑖∕4 (13)

where 𝜋𝑔𝑖,𝑥𝑑,𝑖 (⋅) is the growth function (cf. Alamo et al., 2009, Defini-
tion 5) associated with 𝑔𝑖,𝑥𝑑,𝑖 and is defined as follows. Given the func-
tion 𝑔𝑖,𝑥𝑑,𝑖 ∶ R𝑛𝑐,𝑖×𝛥 → {0, 1} and the dataset 𝑖 =

{

𝛿(1)𝑖 ,… , 𝛿(𝑁𝑖)
𝑖

}

∈ 𝛥𝑁𝑖

if 𝜙𝑔𝑖,𝑥𝑑,𝑖
(𝑖) denotes the number of distinct binary vectors

{

𝑔𝑖,𝑥𝑑,𝑖
(

𝑥𝑐,𝑖, 𝛿
(1)
𝑖
)

,… , 𝑔𝑖,𝑥𝑑,𝑖
(

𝑥𝑐,𝑖, 𝛿
(𝑁𝑖)
𝑖

)

}

∈ {0, 1}𝑁𝑖 (14)

that can be obtained letting 𝑥𝑐,𝑖 vary in R𝑛𝑐,𝑖 , then the growth function
𝜋𝑔𝑖,𝑥𝑑,𝑖 (𝑁𝑖) is defined as

𝜋𝑔𝑖,𝑥𝑑,𝑖 (𝑁𝑖) = sup
𝑖∈𝛥𝑁𝑖

𝜙𝑔𝑖,𝑥𝑑,𝑖
(𝑖). (15)

By Alamo et al. (2009, Lemma 1), if the family of functions
{𝑔𝑖,𝑥𝑑,𝑖 (𝑥𝑐,𝑖, 𝛿), 𝑥𝑐,𝑖 ∈ R𝑛𝑐,𝑖} has a finite Vapnik–Chervonenkis dimension
(VC-dimension, cf. Alamo et al., 2009, Definition 6) 𝑉𝐶𝑔𝑖,𝑥𝑑,𝑖

< ∞, then,
for any 𝑁𝑖 > 𝑉𝐶𝑔𝑖,𝑥𝑑,𝑖

, it holds that

𝑔𝑖,𝑥𝑑,𝑖
(2𝑁𝑖) ≤

(

2𝑒𝑁𝑖
𝑉𝐶𝑔𝑖,𝑥𝑑,𝑖

)𝑉𝐶𝑔𝑖,𝑥𝑑,𝑖
. (16)

Using (12), (13) and (16) in (9), we can finally estimate 𝑝𝑔𝑖 (𝑁𝑖, 𝜀𝑖) as

𝑔𝑖 (𝑁𝑖, 𝜀𝑖) <
∑

𝑥𝑑,𝑖∈𝛯𝑖

4

(

2𝑒𝑁𝑖
𝑉𝐶𝑔𝑖,𝑥𝑑,𝑖

)𝑉𝐶𝑔𝑖,𝑥𝑑,𝑖
𝑒−𝑁𝑖𝜀𝑖∕4. (17)

If we upper bound 𝑉𝐶𝑔𝑖,𝑥𝑑,𝑖
with some value 𝑉𝐶 𝑖 independent of 𝑥𝑑,𝑖,

the right hand side is just a summation of the same quantity over
all possible combinations 𝛯𝑖 that 𝑥𝑑,𝑖 may take. Thus we can enforce
𝑝𝑔𝑖 (𝑁𝑖, 𝜀𝑖) ≤ 𝛽𝑖 by requiring

4

(

2𝑒𝑁𝑖

𝑉𝐶 𝑖

)𝑉𝐶 𝑖

𝑒−𝑁𝑖𝜀𝑖∕4 ≤
𝛽𝑖
𝑘𝑑,𝑖

. (18)

which, by Alamo et al. (2009, Theorem 6 with 𝑎 = 4, 𝑏 = 𝜀𝑖∕4, 𝑐 = 2,
= 𝛽𝑖∕𝑘𝑑,𝑖, and 𝜇 = 5), can be made explicit in 𝑁𝑖 as

𝑖 ≥
5
𝜀𝑖

(

𝑉𝐶 𝑖 ln
(

40
𝜀𝑖

)

+ ln
(4𝑘𝑑,𝑖

𝛽𝑖

))

. (19)

Since 𝑋𝑖(𝛿) is a mixed-integer polyhedral set, if we fix a combination
for the discrete variables 𝑥𝑑,𝑖, then the remaining continuous variables
𝑥𝑐,𝑖 are constrained to belong to the polyhedral set

𝑋𝑐 (𝑥 , 𝛿) =
{

𝑥 ∈ R𝑛𝑐,𝑖 ∶ 𝐷𝑐 (𝛿)𝑥 ≤ 𝑑 (𝛿) −𝐷𝑑 (𝛿)𝑥
}

4

𝑖 𝑑,𝑖 𝑐,𝑖 𝑖 𝑐,𝑖 𝑖 𝑖 𝑑,𝑖
and the function 𝑔𝑖,𝑥𝑑,𝑖 (𝑥𝑐,𝑖, 𝛿) can be expressed as

𝑔𝑖,𝑥𝑑,𝑖 (𝑥𝑐,𝑖, 𝛿) =
𝑘𝑐,𝑖
⋁

𝑟=1

{

0 if
[

𝐷𝑐
𝑖 (𝛿) 𝑥𝑐,𝑖

]

𝑟 ≤
[

𝑑𝑖(𝛿) −𝐷𝑑
𝑖 (𝛿) 𝑥𝑑,𝑖

]

𝑟
1 otherwise

(20)

here [ ⋅ ]𝑟 denotes the 𝑟th component of its vector argument. Rela-
ion (20) shows that 𝑔𝑖,𝑥𝑑,𝑖 (𝑥𝑐,𝑖, 𝛿) can be expressed as a (1, 𝑘𝑐,𝑖)-Boolean
unction (Alamo et al., 2009, Definition 7), as it is the result of a
oolean operation among 𝑘𝑐,𝑖 polynomials in 𝑥𝑐,𝑖 with maximum degree
qual to 1. Thus, we can leverage Alamo et al. (2009, Lemma 2) to get

𝐶𝑔𝑖,𝑥𝑑,𝑖
≤ 2𝑛𝑐,𝑖 log2(4𝑒𝑘𝑐,𝑖). (21)

etting 𝑉𝐶 𝑖 = 2𝑛𝑐,𝑖 log2(4𝑒𝑘𝑐,𝑖) in (19) yields (5), thus concluding the
proof. □

Note that the confidence parameter 𝛽𝑖 in (5) appears inside a
logarithm, meaning that we can push 𝛽𝑖 very close to zero (and have
that (4) holds with almost certainty) without increasing 𝑁𝑖 much.

3.2. Global feasibility guarantees

Building upon the above result for a single agent, we can now derive
feasibility guarantees for the joint decision of the agents. To this end,
we impose the following assumption.

Assumption 2. Let Assumption 1 hold for all 𝑖 = 1,… , 𝑚 and assume
that samples collected by different agents are independent.

The following result (inspired by Falsone, Margellos, Prandini, and
Garatti (2020, Proposition 1 and Theorem 3) for the case of convex
problems) confirms the intuition mentioned in Section 2 and relates the
cardinality of each agent dataset with the violation level of a (feasible
for (3)) joint decision 𝑥 = [𝑥⊤1 ⋯ 𝑥⊤𝑚]

⊤ and the confidence with which
he chance-constraint in (2) is satisfied by 𝑥.

heorem 2. Let 𝜀 =
∑𝑚

𝑖=1 𝜀𝑖 and 𝛽 =
∑𝑚

𝑖=1 𝛽𝑖. Under Assumption 2,
f, for each agent 𝑖 = 1,… , 𝑚, 𝑁𝑖 satisfies (5) in Theorem 1, then, with
onfidence at least 1 − 𝛽, either problem (3) is infeasible, or any feasible
olution 𝑥 = [𝑥⊤1 ⋯ 𝑥⊤𝑚]

⊤ satisfies
{

𝛿 ∈ 𝛥 ∶ 𝑥𝑖 ∈ 𝑋𝑖(𝛿), 𝑖 = 1,… , 𝑚
}

≥ 1 − 𝜀. (22)

roof. Recall that 𝑖 =
⋂

𝛿∈𝑖
𝑋𝑖(𝛿), let  =

⋃𝑚
𝑖=1 𝑖 and define

=
∑𝑚

𝑖=1 𝑁𝑖. The statement of the theorem can be equivalently written
s
𝑁
{

 ∈ 𝛥𝑁 ∶ (3) is feasible ∧

P
{

𝛿 ∈ 𝛥 ∶ ∃𝑖 ∈ {1,… , 𝑚} ∶ 𝑥𝑖 ∉ 𝑋𝑖(𝛿)
}

> 𝜀
}

≤ 𝛽. (23)

o show that (23) holds, let us focus on the left-hand side. Since
equiring that (3) is feasible is stricter than requiring 𝑖 to be non-
mpty for all 𝑖 = 1,… , 𝑚, the left-hand side of (23) is upper bounded
y
𝑁
{

 ∈ 𝛥𝑁 ∶ 𝑖 ≠ ∅ for all 𝑖 = 1,… , 𝑚 ∧

P
{

𝛿 ∈ 𝛥 ∶ ∃𝑖 ∈ {1,… , 𝑚} ∶ 𝑥𝑖 ∉ 𝑋𝑖(𝛿)
}

> 𝜀
}

. (24)

Let us denote with 𝐸𝑖 =
{

𝛿 ∈ 𝛥 ∶ 𝑥𝑖 ∉ 𝑋𝑖(𝛿)
}

the event that we extract
a 𝛿 ∈ 𝛥 and 𝑥𝑖 is not feasible for 𝑋𝑖(𝛿). Then (24) can be compactly
written as

P𝑁
{

 ∈ 𝛥𝑁 ∶ {𝑖 ≠ ∅, ∀𝑖} ∧ P
{
⋃𝑚

𝑖=1𝐸𝑖
}

> 𝜀
}

. (25)

From the sub-additivity property of probability measures (cf. Papoulis
& Pillai, 2002, Theorem 2.3), we have

P
{
⋃𝑚

𝑖=1𝐸𝑖
}

≤
𝑚
∑

P{𝐸𝑖},

𝑖=1
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Fig. 1. Pictorial representation of Theorems 1 and 2.
meaning that P
{
⋃𝑚

𝑖=1 𝐸𝑖
}

> 𝜀 is less likely to occur than ∑𝑚
𝑖=1 P{𝐸𝑖} > 𝜀

and, hence,

(24) = (25)

≤ P𝑁
{

 ∈ 𝛥𝑁 ∶ {𝑖 ≠ ∅, ∀𝑖} ∧
𝑚
∑

𝑖=1
P{𝐸𝑖} >

𝑚
∑

𝑖=1
𝜀𝑖
}

, (26)

where in the last expression we have used the definition 𝜀 =
∑𝑚

𝑖=1 𝜀𝑖.
Moreover, since ∑𝑚

𝑖=1 P{𝐸𝑖} >
∑𝑚

𝑖=1 𝜀𝑖 implies that there exist at least
one 𝑖 ∈ {1,… , 𝑚} for which P{𝐸𝑖} > 𝜀𝑖, then

(24) ≤ (26) ≤ P𝑁
{

 ∈ 𝛥𝑁 ∶ {𝑖 ≠ ∅, ∀𝑖} ∧ {∃𝑖 ∶ P{𝐸𝑖} > 𝜀𝑖}
}

≤ P𝑁
{

 ∈ 𝛥𝑁 ∶ ∃𝑖 ∶ {𝑖 ≠ ∅ ∧ P{𝐸𝑖} > 𝜀𝑖}
}

= P𝑁
{

 ∈ 𝛥𝑁 ∶
𝑚
⋃

𝑖=1
{𝑖 ≠ ∅ ∧ P{𝐸𝑖} > 𝜀𝑖}

}

, (27)

where the last inequality is due to the fact that the event is not requiring
𝑗 ≠ ∅ for 𝑗 ≠ 𝑖. Using again sub-additivity (cf. Papoulis & Pillai, 2002,
Theorem 2.3), we have

(24) ≤ (27) ≤
𝑚
∑

𝑖=1
P𝑁

{

 ∈ 𝛥𝑁 ∶ {𝑖 ≠ ∅ ∧ P{𝐸𝑖} > 𝜀𝑖}
}

. (28)

Under Assumption 2, for each agent 𝑖 = 1,… , 𝑚, Theorem 1 holds
irrespective of the samples extracted by the other agents, so that we
can rewrite the statement of Theorem 1 as

𝛽𝑖 ≥ P𝑁𝑖
{

𝑖 ∈ 𝛥𝑁𝑖 ∶ {𝑖 ≠ ∅ ∧ P{𝐸𝑖} > 𝜀𝑖}
}

= P𝑁
{

 ∈ 𝛥𝑁 ∶ {𝑖 ≠ ∅ ∧ P{𝐸𝑖} > 𝜀𝑖}
|

|

|

 ⧵𝑖 ∈ 𝛥𝑁−𝑁𝑖
}

= P𝑁
{

 ∈ 𝛥𝑁 ∶ {𝑖 ≠ ∅ ∧ P{𝐸𝑖} > 𝜀𝑖}
}

, (29)

where the last equality is obtained integrating over  ⧵𝑖. Using (29)
in (28) and recalling that 𝛽 =

∑𝑚
𝑖=1 𝛽𝑖 we obtain (24) ≤ 𝛽. Recalling

that (24) is an upper bound of the left-hand side of (23) finally
yields (23), thus concluding the proof. □
5

Note that Theorem 2 holds irrespective of how 𝜀 and 𝛽 are split
among 𝜀1,… , 𝜀𝑚 and 𝛽1,… , 𝛽𝑚. It is, therefore, intuitive to choose 𝜀𝑖
and 𝛽𝑖 in a way that minimizes the overall number of samples ∑𝑚

𝑖=1 𝑁𝑖
required. This can be achieved by solving the following optimization
problem

min
{(𝜀𝑖 ,𝛽𝑖 ,𝑁𝑖)}𝑚𝑖=1

𝑚
∑

𝑖=1
𝑁𝑖 (30)

subject to:
𝑚
∑

𝑖=1
𝜀𝑖 = 𝜀,

𝑚
∑

𝑖=1
𝛽𝑖 = 𝛽

(5), 𝑖 = 1,… , 𝑚

(𝜀𝑖, 𝛽𝑖) ∈ [0, 1]2, 𝑖 = 1,… , 𝑚,

which is a convex problem since the right-hand side of (5) is convex
in 𝜀𝑖 and 𝛽𝑖 as an effect of being a positive sum of three terms: 1

𝜀𝑖
ln 1

𝜀𝑖
,

1
𝜀𝑖
ln 1

𝛽𝑖
, and 1

𝜀𝑖
, which are all convex when (𝜀𝑖, 𝛽𝑖) ∈ [0, 1]2.

Inspired by Campi et al. (2009), the results in Theorems 1 and 2 can
be depicted as in Fig. 1. Each cube at the top represents the (private)
𝑁𝑖-dimensional space containing all possible datasets each agent may
have, and the cubes are separated because these datasets are assumed
to be independent. The extracted datasets are then used to formulate
problem (3) and obtain a feasible solution 𝑥 = [𝑥⊤1 ⋯ 𝑥⊤𝑚]

⊤. Each agent
component 𝑥𝑖 partitions the uncertainty space 𝛥 into two regions: a
satisfaction set (those 𝛿’s for which 𝑥𝑖 ∈ 𝑋𝑖(𝛿)) and a violation set
(those 𝛿’s for which 𝑥𝑖 ∉ 𝑋𝑖(𝛿)). Theorem 1 ensures that the violation
set of each agent 𝑖 has a P-probability measure of at most 𝜀𝑖, provided
that 𝑁𝑖 is sufficiently high. Finally, Theorem 2 leverages the previous
result to ensure that the union of the violation sets of all agents has
a P-probability measure of at most 𝜀, provided that 𝑁1,… , 𝑁𝑚 are all
sufficiently high. These local and global guarantees hold with a certain
confidence since the extracted dataset might not be informative enough
to generalize to unseen uncertainty instances. These ‘‘bad datasets’’ are
confined in the red region of each cube whose P𝑁𝑖 -probability measure
can be made arbitrarily small (by suitably increasing 𝑁 ) to make it
𝑖
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almost impossible to extract datasets for which (3) is feasible but the
union of the violation sets of all agents exceeds 𝜀.

Since Theorem 2 relies on Theorem 1, also in this case, we can push
to have a very small value so that chance-constraint (2) is satisfied
ith almost certainty. However, as the number of agents 𝑚 increases,

in order to keep 𝜀 =
∑𝑚

𝑖=1 𝜀𝑖 small, we need to reduce every 𝜀𝑖, which
in turn, according to Theorem 1, increases the number of samples 𝑁𝑖
each agent must have. In case 𝑁𝑖’s are fixed (because we have access
to only a finite number of data) 𝜀𝑖 are fixed as well and, therefore, 𝜀
increases with 𝑚, eventually leading to an 𝜀 > 1 and no generalization.

Finally, notice that, since the results in Theorem 2 hold for any fea-
sible solution of (3), they can be used to certify the (feasible) solution
returned by any distributed or decentralized solution algorithm.

Next, we show how the results in this section apply to the case
where agents are still affected by the same uncertainty but have access
to a common dataset and to the case where each agent is affected by
independent uncertainties.

3.3. Common dataset case

Let us now consider the framework of Falsone, Molinari, and Pran-
dini (2020), where each agent has access to the same dataset ̄ of
𝑁̄ uncertainty instances. According to the notation introduced in the
previous section, this corresponds to setting 𝑁𝑖 = 𝑁̄ and 𝑖 = ̄, for
all 𝑖 = 1,… , 𝑚, and the resulting data-based MIP reads as

min
𝑥1 ,…,𝑥𝑚

𝐽 (𝑥1,… , 𝑥𝑚) (31a)

subject to: 𝑣(𝑥1,… , 𝑥𝑚) ≤ 0 (31b)

𝑥𝑖 ∈ 𝑋𝑖(𝛿), 𝛿 ∈ ̄, 𝑖 = 1,… , 𝑚. (31c)

n Falsone, Molinari, and Prandini (2020), Theorem 1 ensures that any
easible solution of (31) satisfies chance-constraint (2) with confidence
t least 1 − 𝛽, if the dataset size 𝑁̄ satisfies

̄ ≥ 5
𝜀

[

2𝑛𝑐 log2(4𝑒𝑘𝑐 ) ln
(40
𝜀

)

+ ln
(

4
𝛽

)

+ ln(𝑘𝑑 )
]

, (32)

where 𝑛𝑐 is the total number of continuous decision variables, 𝑘𝑐 is the
total number of linear inequality constraints that involve continuous
variables and are affected by the uncertainty, and 𝑘𝑑 is the total number
of admissible combinations of the discrete variables, where total means
regarding (31) as a whole.

The fact that (32) is similar to (5) should not be surprising. In-
deed, Falsone, Molinari, and Prandini (2020, Theorem 1) can be in-
terpreted as a straightforward application of Theorem 1, where all
decision variables and local constraints of problem (31) are fictitiously
assigned to a single agent. In fact, if we define 𝑥̄ = [𝑥⊤1 ⋯ 𝑥⊤𝑚]

⊤, and
̄ (𝛿) = 𝑋1(𝛿) ×⋯ ×𝑋𝑚(𝛿), then problem (31) becomes

min
𝑥̄

𝐽 (𝑥̄) (33a)

ubject to: 𝑣(𝑥̄) ≤ 0 (33b)

𝑥̄ ∈ 𝑋̄(𝛿), 𝛿 ∈ ̄, (33c)

hich fits (3) with 𝑚 = 1. We can thus readily apply Theorem 1 and
ubstitute 𝑛𝑐,𝑖 = 𝑛𝑐 , 𝑘𝑐,𝑖 = 𝑘𝑐 , 𝑘𝑑,𝑖 = 𝑘𝑑 , 𝜀𝑖 = 𝜀, 𝛽𝑖 = 𝛽, and 𝑁𝑖 = 𝑁̄ in (5)
which is equal to (32)) to get that, with confidence no smaller than
− 𝛽, either ̄ =

⋂

𝛿∈̄ 𝑋̄(𝛿) is empty, or any decision 𝑥̄ ∈ ̄ satisfies
{

𝛿 ∈ 𝛥 ∶ 𝑥̄ ∈ 𝑋̄(𝛿)
}

≥ 1 − 𝜀.

he statement in Falsone, Molinari, and Prandini (2020, Theorem 1)
s then recovered noticing (similarly to the beginning of the proof of
heorem 2) that requiring (33) to be feasible is stricter than requiring
̄ ≠ ∅. Nonetheless, this result holds only when agents have access to
6

common dataset.
.4. Independent local uncertainty case

Another interesting case is the one in which each agent is affected by
ndependent uncertainty parameters. In this case, the parameter vector
can be decomposed as 𝛿 = [𝛿⊤1 ⋯ 𝛿⊤𝑚]

⊤, 𝛿𝑖 and 𝛿𝑗 being independent
andom vectors for all 𝑖 ≠ 𝑗, and agent 𝑖 local set 𝑋𝑖(𝛿) = 𝑋𝑖(𝛿𝑖)
epends on its local uncertainty parameters 𝛿𝑖 only, for all 𝑖 = 1,… , 𝑚.
f we assume that each agent has access to a collection of 𝑁𝑖 samples
(1)
𝑖,𝑖 ,… , 𝛿(𝑁𝑖)

𝑖,𝑖 of its uncertain parameters 𝛿𝑖, then the data-based problem
o be solved is given by

min
𝑥1 ,…,𝑥𝑚

𝐽 (𝑥1,… , 𝑥𝑚) (34a)

subject to: 𝑣(𝑥1,… , 𝑥𝑚) ≤ 0 (34b)

𝑥𝑖 ∈ 𝑋(𝛿(𝓁)𝑖,𝑖 ), 𝓁 = 1,… , 𝑁𝑖, 𝑖 = 1,… , 𝑚. (34c)

It is easy to show that (34) fits the framework presented in Section 2.
To see this, let us construct for each agent 𝑖 a fictitious dataset

𝑖 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛿(1)1,𝑖

⋮

𝛿(1)𝑖,𝑖

⋮

𝛿(1)𝑚,𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,… ,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛿(𝑁𝑖)
1,𝑖

⋮

𝛿(𝑁𝑖)
𝑖,𝑖

⋮

𝛿(𝑁𝑖)
𝑚,𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

,

complementing the 𝑁𝑖 realizations of its own uncertainty parameters 𝛿𝑖
with 𝑁𝑖 realizations 𝛿(1)𝑗,𝑖 ,… , 𝛿(𝑁𝑖)

𝑗,𝑖 of the uncertainty parameters 𝛿𝑗 , 𝑗 =
1,… , 𝑚 and 𝑗 ≠ 𝑖, of the other agents, extracted independently. In this
way, each agent has an independent dataset of independent samples of
the overall uncertainty vector 𝛿, thus satisfying Assumptions 1 and 2.
Since we assumed that each agent is affected by its local uncertainty
parameters 𝛿𝑖 only, then 𝑋𝑖(𝛿) = 𝑋𝑖(𝛿𝑖) and
𝑁𝑖
⋂

𝓁=1
𝑋𝑖(𝛿

(𝓁)
𝑖,𝑖 ) =

⋂

𝛿𝑖∈𝑖

𝑋𝑖(𝛿𝑖)

for all 𝑖 = 1,… , 𝑚, which shows that (34) is actually an instance of (3)
and, as such, inherits the guarantees granted by Theorems 1 and 2.

We would like to stress that, in practice, agent 𝑖 does not actually
need to extract samples of the uncertain parameters of the other agents
because its local constraints 𝑋𝑖(𝛿𝑖) are not affected by 𝛿𝑗 for 𝑗 ≠ 𝑖.

This case where the agents are affected by independent uncertain
parameters can also be seen as a special case of the common dataset
case of Section 3.3. To this end, let us further assume that 𝑁𝑖 = 𝑁̄ for
all 𝑖 = 1,… , 𝑚. To see that, in this case, (34) fits (31) it is sufficient to
define

̄ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛿(1)1,1

⋮

𝛿(1)𝑖,𝑖

⋮

𝛿(1)𝑚,𝑚

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,… ,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛿(𝑁̄)
1,1

⋮

𝛿(𝑁̄)
𝑖,𝑖

⋮

𝛿(𝑁̄)
𝑚,𝑚

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

,

which is equivalent to stacking the 𝛿(1)𝑖,𝑖 ,… , 𝛿(𝑁̄)
𝑖,𝑖 realizations of all agents

to build a common dataset of 𝑁̄ realizations of the overall uncertainty
vector 𝛿 = [𝛿⊤1 ⋯ 𝛿⊤𝑚]

⊤, and, then, note that

𝑁𝑖
⋂

𝓁=1
𝑋𝑖(𝛿

(𝓁)
𝑖,𝑖 ) =

⋂

𝛿∈̄
𝑋𝑖(𝛿).

This shows that also the results of Falsone, Molinari, and Prandini
(2020) can be applied to this case, but with the additional restriction
that all agents must have the same number 𝑁̄ of realizations of their
local uncertainty parameters. This is, instead, not required for the

results presented in this paper.



Annual Reviews in Control 56 (2023) 100925L. Manieri et al.

t
p

i
d
i
i
s
b
t

T
t

v
o
b
a
t
e
c
e

i
a

𝑛

𝜀
c

c

∑

b

p

b
c

4. Comparison with the common dataset case

Since we have two special cases (cf. Sections 3.3 and 3.4) in which
both the results of this paper and those of Falsone, Molinari, and
Prandini (2020) can be applied, it is interesting to compare the sample
size of the twos with 𝜀 and 𝛽 fixed and a varying number of agents 𝑚.

At first glance, the fact that Theorem 2 requires ∑𝑚
𝑖=1 𝜀𝑖 = 𝜀 suggests

hat there is a significant price to pay to allow the agents to have
rivate datasets since we need to decrease 𝜀𝑖 if 𝑚 increases, but a closer

look at (5) and (32) reveals that the right-hand-side of (5) is typically
much lower than that of (32) since the complexity (in terms of variables
and constraints) associated with a single agent is just a fraction of the
complexity of the overall problem, balancing the decrease in 𝜀𝑖.

This observation can be made more precise if we consider the case
of homogeneous agents (simpler in notation). To this end, assume that
the agents have the same number of continuous and discrete decision
variables and the same number and type of constraints so that

𝑛𝑐,𝑖 = 𝑛̄𝑐 , 𝑘𝑑,𝑖 = 𝑘̄𝑑 , 𝑘𝑐,𝑖 = 𝑘̄𝑐 , 𝑛𝑐 = 𝑚 𝑛̄𝑐 , 𝑘𝑑 = 𝑘̄𝑚𝑑 , 𝑘𝑐 = 𝑚 𝑘̄𝑐 .

Under these conditions, by strict convexity of the right-hand side of (5),
it is intuitive to uniformly split 𝜀 and 𝛽 across the agents by setting
𝜀𝑖 = 𝜀∕𝑚 and 𝛽𝑖 = 𝛽∕𝑚 to minimize ∑𝑚

𝑖=1 𝑁𝑖 as prescribed by (30).
Evaluating (5) and (32) in this homogeneous agents case, we obtain

𝑁𝑖 ≥
5𝑚
𝜀

[

2𝑛̄𝑐 log2(4𝑒𝑘̄𝑐 ) ln
( 40𝑚

𝜀

)

+ ln
(

4𝑚
𝛽

)

+ ln(𝑘̄𝑑 )
]

, (35)

and

𝑁̄ ≥ 5
𝜀

[

2𝑚𝑛̄𝑐 log2(4𝑒𝑚𝑘̄𝑐 ) ln
( 40
𝜀

)

+ ln
(

4
𝛽

)

+ 𝑚 ln(𝑘̄𝑑 )
]

, (36)

whose right-hand sides can be manipulated using log𝑐 (𝑎𝑏) = log𝑐 (𝑎) +
log𝑐 (𝑏) and log𝑎(𝑐) log𝑏(𝑑) = log𝑏(𝑐) log𝑎(𝑑) to get

𝑁𝑖 ≥
5
𝜀

[

2𝑚𝑛̄𝑐 log2(4𝑒𝑘̄𝑐 ) ln
( 40
𝜀

)

+ 𝑚 ln(𝑘̄𝑑 )

+ 2𝑚𝑛̄𝑐 log2(4𝑒𝑘̄𝑐 ) ln(𝑚) + 𝑚 ln
(

4𝑚
𝛽

)

]

, (37)

and

𝑁̄ ≥ 5
𝜀

[

2𝑚𝑛̄𝑐 log2(4𝑒𝑘̄𝑐 ) ln
( 40
𝜀

)

+ 𝑚 ln(𝑘̄𝑑 )

+ 2𝑚𝑛̄𝑐 log2
( 40
𝜀

)

ln(𝑚) + ln
(

4
𝛽

)

]

. (38)

Inspecting (37) and (38) it is immediately clear that the first two terms
inside the square brackets are the same. It is also clear that the term
containing the confidence parameter is different, and the one in (37)
scales as 𝑚 ln(𝑚) while the one in (38) does not scale with 𝑚. This is
ntuitive because whilst in the common dataset case there is only one
ataset accessible to all agents, in the case of private datasets there
s an increased chance of extracting a bad dataset that must be taken
nto account. The analysis of the remaining term is a bit more subtle
ince, as a function of 𝑚, it scales in the same way in both expressions
ut with a different coefficient depending on 𝑘̄𝑐 and 𝜀. Specifically, the
erm in (37) is lower than the corresponding one in (38) if and only if

log2(4𝑒𝑘̄𝑐 ) < log2
( 40
𝜀

)

⟺ 𝑘̄𝑐 𝜀 < 10
𝑒
, (39)

which can be interpreted as follows: asking for a low violation parame-
ter 𝜀 is less demanding for less complicated sets (low 𝑘̄𝑐), hence splitting
the complexity of the overall problem into 𝑚 sub-problems requires
fewer samples for the local constraints. As a matter of fact, this term
could even compensate for the difference in the terms depending on
the confidence parameters, effectively yielding 𝑁 < 𝑁̄ .
7

𝑖 t
Indeed, by further expressing 𝑚 ln(4𝑚∕𝛽) as 𝑚 ln(4∕𝛽) + 𝑚 ln(𝑚) and
using the property log𝑐 (𝑎) − log𝑐 (𝑏) = log𝑐 (𝑎∕𝑏), the difference between
the right-hand-side of (37) and (38) is given by

5
𝜀

[

(

2𝑛̄𝑐 log2

(

4𝑒𝑘̄𝑐𝜀
40

)

+ 1
)

𝑚 ln(𝑚) + (𝑚 − 1) ln
(

4
𝛽

)

]

= 5𝑚
𝜀

[

(

2𝑛̄𝑐 log2

(

4𝑒𝑘̄𝑐𝜀
40

)

+ 1
)

ln(𝑚) + 𝑚 − 1
𝑚

ln
(

4
𝛽

)

]

≤ 5𝑚
𝜀

[

(

2𝑛̄𝑐 log2

(

4𝑒𝑘̄𝑐𝜀
40

)

+ 1
)

ln(𝑚) + ln
(

4
𝛽

)

]

,

which will be negative (hence implying 𝑁𝑖 < 𝑁̄) for sufficiently high
𝑚 whenever

2𝑛̄𝑐 log2

(

4𝑒𝑘̄𝑐𝜀
40

)

+ 1 < 0 ⟺ 𝑘̄𝑐 𝜀 < 1
2𝑛̄𝑐
√

2

10
𝑒
, (40)

which is slightly stricter than (39), but approaches it as 𝑛̄𝑐 increases.
he interpretation of condition (40) is very similar to that of condi-
ion (39).

Up to now, we compared the sample complexity for each agent
ersus the sample complexity of a common dataset. However, the
verall number of samples for the case of the private datasets is given
y ∑𝑚

𝑖=1 𝑁𝑖 = 𝑚𝑁𝑖 for the homogeneous case, which introduces an
dditional 𝑚 factor. Yet, such a comparison may seem somewhat unfair
o further consideration since (regardless of the privacy requirements)
ach agent must have access to a dataset, and in the common dataset
ase every agent uses the same, while in the case of private datasets
ach agent has to (unavoidably) have its own.

To support the previous discussion, we report in the sequel a numer-
cal comparison of (35) and (36) where we set the problem parameters
s

̄𝑐 = 10, 𝑘̄𝑑 = 25, 𝑘̄𝑐 = 15, 𝜀 = 0.01, 𝛽 = 10−6,

and we let 𝑚 vary between 1 and 100. We checked numerically that
𝑖 = 𝜀∕𝑚 and 𝛽𝑖 = 𝛽∕𝑚 was indeed the optimal solution to (30) for the
onsidered case.

In Fig. 2, we compare the minimum number of samples for the
ommon dataset case 𝑁̄ and the minimum number of samples 𝑁𝑖

for each agent for the private dataset case. As expected, since 𝑘̄𝑐 𝜀 =
0.5 ≪ 10

𝑒 , 𝑁𝑖 is smaller than 𝑁̄ irrespective of the number of agents
considered, meaning that the sample complexity of each local problem
is slightly lower for the private dataset case than for the common
dataset case.

Clearly, the common dataset case outperforms the private dataset
case if we compare, instead, the overall sample complexity 𝑁̄ vs. 𝑁 =

𝑚
𝑖=1 𝑁𝑖, as reported in the upper plot of Fig. 3, which shows that 𝑁 is

etween 1 and 2 orders of magnitude bigger than 𝑁̄ (as 1 ≤ 𝑚 ≤ 100),
thus requiring far more data to get the same feasibility guarantees. The
ratio 𝑁∕𝑁̄ is reported in the lower plot of Fig. 3 (blue dots) for different
values of 𝑚. It grows linearly with the number of agents but is generally
such that 𝑁 < 𝑚𝑁̄ .

Conversely, Fig. 4 shows how different values of 𝜀 affect the sample
complexity for a fixed number of agents 𝑚 = 100. For values of the
violation parameter 𝜀 smaller than 1

𝑘̄𝑐
1

2𝑛̄𝑐
√

2
10
𝑒 = 0.2539 (denoted in the

lot with a vertical dash-dotted black line), the term log2(4𝑒𝑘̄𝑐 ) in (37)
is lower enough than the corresponding term log2(

40
𝜀 ) in (38), so as

to compensate also for the confidence term in (37), yielding a local
sample size 𝑁𝑖 smaller than 𝑁̄ and thus fewer local constraints in (3).
The behavior of 𝑁 and 𝑁̄ as a function of 𝜀 is reported for the sake of
completeness in Fig. 5. Not surprisingly, the overall number of samples
for the private dataset is still two orders of magnitude (roughly 𝑚 times)
igger than the number of samples required by the common dataset
ase.

To summarize, enforcing the privacy of the agents’ local datasets
akes a toll in terms of the total number of samples required, which
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Fig. 2. 𝑁̄ (blue asterisks) vs. 𝑁𝑖 = 𝑁̃ (red circles) for different values of the number of agents 𝑚.
Fig. 3. Upper plot: 𝑁̄ (blue asterisks) vs. 𝑁 = 𝑚𝑁̃ (red circles) for different values of the number of agents 𝑚.
Lower plot: ratio 𝑁∕𝑁̄ (blue asterisks) vs. 𝑚 (magenta line) for different values of the number of agents 𝑚.
Fig. 4. 𝑁̄ (blue asterisks) vs. 𝑁𝑖 = 𝑁̃ (red circles) for different values of 𝜀 with 𝑚 = 100.
Fig. 5. 𝑁̄ (blue asterisks) vs. 𝑁 = 𝑚𝑁̃ (red circles) for different values of 𝜀 with 𝑚 = 100.
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increases as the system grows in scale. However, the complexity of the
local constraint set that each agent has to enforce when the dataset is
private is comparable and, in some cases, smaller than the case of a
common dataset, thus yielding a computational advantage.

5. Conclusions

This paper extends results of statistical learning theory to constra-
int-coupled multi-agent MIPs affected by uncertainty. Differently from
the existing approaches in the literature, we derived a-priori proba-
bilistic feasibility guarantees for any feasible (as opposed to optimal)
data-based solution. The proposed guarantees can thus be combined
with any decentralized or distributed solution-seeking algorithm orig-
inally devised for deterministic MIPs and applied to the data-based
formulation of an optimization problem affected by uncertainty. Since
the data-based formulation preserves the multi-agent structure, in the
case when the problem presents a partially separable structure the
computational effort can be eventually reduced by distributing the com-
putational load while preserving the privacy of the local information
and uncertainty data.

A comparison with existing guarantees for set-ups with a common
dataset suggests that enforcing the privacy of the agents’ information
generally results in a higher number of total samples to be collected, yet
it reduces the number of constraints of the data-driven local problems,
and thus their complexity.

Ongoing research focuses on deriving similar results for uncer-
tain decision-coupled multi-agent MIPs where the decision vectors of
all agents are identical, without exploiting their reformulation as a
constraint-coupled multi-agent MIP by creating 𝑚 copies of the common
decision vector and imposing that they are identical via global coupling
constraints.
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