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Abstract—We propose an innovative fast 3D approach for the
accurate computation of electromagnetic losses in the metallic
armors of submarine cables. In order to develop a scheme that is
more efficient with respect to most commonly used 3D simulation
methods, typically based on the Finite Element Method (FEM),
we proceed by proposing a suitable discretization of an integral
formulation. In the proposed approach, each wire of the armor is
modeled as filamentary which leads to a dramatic reduction in the
number of degrees of freedom in the numerical model and in the
overall computational burden. The new approach can be applied to
cables where armor wires are stranded either with opposite (con-
tralay) or same (equilay) orientation as the central phase cables.
The efficiency of the proposed method is especially notable in latter
case for which FEM is very demanding due to the extremely large
model size. The reduction in both computation times and memory
footprint allow performing extensive sensitivity studies with respect
to geometrical parameters and material properties that would be
otherwise unaffordable with existing 3D methods.

Index Terms—Submarine cables, method of moments, eddy
currents, magnetic losses.

I. INTRODUCTION

S INCE the installation of the first offshore wind farm on the
Denmark coast in 1991 [1], there has been an exponential

increase in installed offshore wind capacity, and there is a general
agreement that this trend is going to continue in the next few
years [2], [3].

An important component of every offshore wind farm is
represented by the submarine power cables used to interconnect
the different generators of an eolic wind farm and to export the
generated power to the mainland.

The proper design of these power cables must take into
account several different and often contrasting requirements and
constraints. In this respect the thermal behavior of the cables
is an important aspect for the overall efficiency and reliability

Manuscript received June 3, 2020; revised September 3, 2020; accepted
October 13, 2020. Paper no. TPWRD-00821-2020. (Corresponding author:
Luca Giussani.)

Luca Giussani and Luca Di Rienzo are with the Dipartimento di Elettronica,
Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy
(e-mail: luca.giussani@polimi.it; luca.dirienzo@polimi.it).

Massimo Bechis is with the Prysmian S.p.A., 20126 Milano, Italy (e-mail:
massimo.bechis@prysmiangroup.com).

Carlo de Falco is with the MOX - Modeling and Scientific Computing,
Dipartimento di Matematica, Politecnico di Milano, 20133 Milano, Italy (e-mail:
carlo.defalco@polimi.it).

Color versions of one or more of the figures in this article are available online
at https://ieeexplore.ieee.org.

Fig. 1. Three-core AC submarine cable.

of the installation: the cables must dissipate the heat generated
during their operation in a sufficiently efficient way to avoid
overheating phenomena, which can deteriorate the cable itself,
and in particular the insulating materials therein.

In order to produce a cable with a satisfactory thermal be-
havior without recurring to an oversized design, it is crucial to
accurately estimate the power losses which occur in the cable.

Fig. 1 shows the structure of a typical submarine AC three-
core power cable. The sources of losses are the three-phase con-
ductors, the three conductor sheaths (which protect the enclosed
conductors and insulators from seawater), and the external armor
(which provides mechanical protection and tensional stability
during both the installation and operation of the cable).

The focus of the present article is on the computation of
armor losses. For this reason phase conductors are considered
filamentary and the presence of sheaths is neglected. These sim-
plifying assumptions lead to an overestimation of armor losses,
because both the proximity effect of finite-size conductors and
the screening effect of metallic sheaths contribute to a reduction
of the magnetic field on the armor.

However we want to emphasize that the formulation presented
in this article does not necessarily require these assumptions.
Including the sheaths in the model would actually be quite
straightforward, by coupling the formulation presented here to
the classical integral equation formulation for thin conductive
foils presented for example in [4]. As a matter of fact, this will
be the subject of a future work [5]. A more refined modelization
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of the conductors, on the other hand, would be quite difficult,
not for inherent limitations of the presented formulation, but
because real world cables do not employ solid-core conductors,
which could be easily modeled, but rather Milliken conductors,
whose modelization is still an open problem [6], [7].

Most of the existing methods for computation of losses in
the armor rely on a 2D description of the cable geometry, with
various expedients to include effects caused by the 3D structure
of the cable. Fully 3D simulations have been carried out in
the recent years, and they provide a high accuracy, but at the
price of high computational burden in terms of memory and
computational time.

In this paper we present a numerical method for the 3D com-
putation of armor losses which is both accurate and computation-
ally inexpensive. The method extends the integral formulation
presented in [8] by deriving formulas for the computation of
losses.

In the following, we begin by providing context for this study
discussing the existing calculation methods (in Section II) and
then pointing out their shortcomings (in Section III); then, in
Section IV and Section V we review the discretized integral
formulation of [8] while in Section VI we extend it by describing
how its solution can be post–processed to obtain estimates of
magnetic and electric losses. In Section VII we proceed to
compare results of the new method with those of Finite Element
Method (FEM) simulations performed with a commercial tool
in order to, on the one hand, validate the accuracy of the pre-
dictions of the new method and, on the other hand, to assess the
performance gain it provides. In Section VIII we use simulation
results to discuss the complex interplay between geometrical
cable design parameters and material properties in determining
the losses. The detailed derivation of the formulas for losses
computation used in Section VI is postponed to the Appendix
which follows the concluding remarks of Section IX.

II. EXISTING CALCULATION METHODS

Losses in cable armor are commonly computed according to
IEC 60287 standard [9]. The semi-empirical formulas contained
therein are based on the assumption that the armor can be
approximated by a closed pipe [10]. Both armor wires and phase
cables, however, are usually helically twisted with different lay
lengths. One of the effects of this relative twisting is to prevent
circulation of net currents along the armor wires when a balanced
three-phase system of currents is supplied to the cable. The
calculation method of IEC 60287 standard fails to take this effect
into account, leading to an overestimation of armor losses.

Several works try to address this problem by including the
effect of twisting in otherwise 2D description of the cable [11]–
[14]. While these models manage to suppress the circulation of
net currents in armor wires, they do not consider the presence of
a magnetic field component parallel to the armor wires, leading
in turn to an underestimation of armor losses.

Reference [15] acknowledges the importance of the magnetic
field component parallel to the armor wires, and [16] proposes
an accurate analytic formula for losses computation which takes
into account that component of the magnetic field. However that

Fig. 2. Example of computational mesh for FEM analysis of submarine cable.

formula is rigorous only when armor wires are straight or suf-
ficiently distant from each other, so that the parallel component
of the magnetic field is not influenced by the presence of other
wires. When armor wires are twisted this does not hold true.
As a matter of fact, the model in [16] is validated against FEM
results only for the case of straight and widely spaced wires.

Simplified 2D FEM models and equivalent-circuit models
based on an equivalent material representation of the armor
are proposed in [17] to take into account the 3D nature of the
problem. Unfortunately the accuracy of the proposed models
cannot be evaluated since they have not been validated against
full 3D FEM models.

A fully 3D modelization of the geometry of a submarine
cable therefore could be very useful both for directly computing
power losses for real applications and for checking the actual
accuracy of simpler models. Only in recent times the advances
in computing resources have allowed such an approach. In
[18]–[20] 3D FEM simulations of realistic cable geometries are
performed. These studies are very valuable for understanding
the electromagnetic behavior of submarine cables, but their high
computational costs (tens of hours of computing time and tens
or hundreds of GB of memory usage for each simulation) make
them unsuitable for day to day use in cable design.

III. SHORTCOMINGS OF FINITE ELEMENT ANALYSIS

One of the most widely adopted methods for the 3D compu-
tation of losses in submarine cable armor is the FEM. Although
this method is potentially very accurate, it is computationally
expensive, owing to the high number of degrees of freedom
required (see Fig. 2 for a typical computational mesh of a
submarine cable).

There are several factors which contribute to the necessity of
a high number of elements in the mesh, namely the elongated
shape of armor wires, the need to resolve the skin effect caused
by the high magnetic permeability of armor wires and the effects
of protective layers, such as zinc-galvanizing treatment, the need
to discretize also the magnetically inactive regions, and the need
to extend the computational domain sufficiently far away from
the cable to limit the influence of boundary conditions.

This paper tries to provide a 3D method for the computation of
losses in armor wires which addresses the shortcomings of FEM.
First of all inside the armor wires an equivalent tensor-valued
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Fig. 3. Structure of submarine AC three-core cable: (a) equilay configuration
(b) contralay configuration.

 permeability is used in place of the actual wire permeability and 162 

conductivity. As shown in [8], this allows to take into account 163 the 
magnetic and eddy currents inside the wires in a simple 164 

magnetostatic setting, eliminating the skin effect and relaxing 165 the 
need to finely mesh the cross section of the wires. Moreover a 166 

line integral formulation is adopted. It requires to discretize only 167 

the magnetically active regions, leaving the domains occupied
by air unmeshed.

Another problem is that the armor of AC submarine cables
is usually made of ferromagnetic material (e.g. steel), whose
electromagnetic behavior is nonlinear and affected by hysteresis.
To rigorously take this aspect into account a nonlinear, time-
domain FEM simulation would be required, which would further
aggravate the computational cost of the analysis.

A common approach employed to overcome this issue is to
approximate the hysteresis behavior of the material by means
of a complex valued permeability μr ∈ C [21]. By doing so,
a single, linear, time-harmonic FEM simulation is enough to
analyse the behavior of the cable. In [22] an accurate estimation
of complex valued magnetic permeability of a cable armor
steel in the presence of a strong skin-effect is carried out. The
nonlinear relationship between the magnetic field intensity and
the magnetic flux density is linearized since being the magnetic
steel armor far from saturated in a typical working condition. The
hysteretic behavior is approximated by using a complex valued
permeability. This same approach is adopted in this article for
both the FEM simulations and the proposed formulation.

IV. MATHEMATICAL MODEL

In [8] it is shown that a thin conductive and magnetic wire
can be replaced by a purely magnetic wire characterized by an

Fig. 4. Local frame of reference along wire.

anisotropic permeability. In other words the constitutive laws of 
the material 

B = μ0μrH (1)

J = σE (2)

are substituted with the following laws

B = μ0KH (3)

J = 0 (4)

where K is the permeability tensor, defined in such a way as
to take two different values μ

‖
r and μ⊥

r in the wire axial and
transverse directions, to take into account the different behavior
of the eddy currents flowing in these two directions.

More precisely, let Γ(s) : [0, L] → R3 be the centerline of
the wire, parametrized by the curvilinear coordinate s. To every
point Γ(s) of the centerline we associate a triplet of mutually
orthogonal unit vectors (t(s),n(s),b(s)), where t(s) is tangent
to Γ, whilst n(s) and b(s) are orthogonal both to Γ and to each
other (Fig. 4). The tensor permeability along the wire can then
be expressed in Cartesian coordinates as

K(s) = Q(s)MQT (s) (5)

where

M =

⎡
⎢⎣
μ
‖
r 0 0

0 μ⊥
r 0

0 0 μ⊥
r

⎤
⎥⎦ (6)

and

Q(s) =

⎡
⎢⎣
tx(s) nx(s) bx(s)

ty(s) ny(s) by(s)

tz(s) nz(s) bz(s)

⎤
⎥⎦ (7)

The two valuesμ‖
r andμ⊥

r depend on the wire geometrical and 
physical parameters (radius r, conductivity σ, permeability μr)  and 
on the angular frequency ω = 2πf of the external magnetic 209 field. 
They are given by [8], [17] 

μ‖
r = μr

2

kr

J1(kr)

J0(kr)
(8)

μ⊥
r = μr

J1(kr)

krJ ′
1(kr)

(9)
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Fig. 5. Wire geometry discretization.

where

k = j
√

jωσμ0μr (10)

and Jα is the order-α Bessel function of the first kind.
Using the equivalent permeability (8) and (9) allows to model

the effect of both magnetization and eddy currents up to the
dipole moment. Higher order moments are not considered. When
armor wires are very close to each other this can introduce
inaccuracies.

The three-phase conductors are modeled as infinitely long he-
lical filamentary conductors, each one carrying a known current.
Under this assumption the magnetic field generated by the phase
conductors at any point of the space can be computed by means
of analytical formulas [23].

V. NUMERICAL DISCRETIZATION SCHEME

We use a formulation with wire magnetizationM as unknown.
The relation between the magnetization M and the fields B and
H is given by

B = μ0(H+M) (11)

By substituting (11) inside (3), we get the basic equation of our
formulation

M =
1

μ0

(
I −K−1

)
B (12)

 where I indicates the identity operator. The total magnetic field  B in 
(12) can be split into two contributions as

B = Bext +BM (13)

 where the term Bext denotes the magnetic field generated by the 
phase conductors, and the term BM denotes the magnetic field

generated by the wire magnetization itself.
Equation (12) cannot be solved in closed form and must be

treated numerically. The geometry of the armor wires is dis-
cretized intoN cylinders as show in Fig. 5. Then the permeability
tensor in each cylinderΩi, i = 1, . . . , N is a constant matrix (de-
noted by Ki). We assume that also the magnetization is constant
in each cylinder Ωi and we denote it by Mi. The unknowns of
the problem are thus the N values of the magnetization Mi.

In order to find N independent equations for these unknowns
we collocate (12) at the centers xi of the cylinders

M(xi) =
1

μ0

(
I −K−1(xi)

) (
Bext(xi) +BM (xi)

)
(14)

Of course from the previous discussion, M(xi) = Mi, and
K−1(xi) = K−1

i . Concerning Bext(xi), it can be computed by
means of analytical formulas [23] (and will be denoted by Bext

i

in the following). The term BM (xi) instead can be written as

BM (xi) =
N∑
i=1

BM
i,j (15)

where BM
i,j is the magnetic field produced by cylinder Ωj , 

magnetized with magnetization Mj , at the center xi of cylinder 
Ωi. It can be shown [8] that BM

i,j can be expressed as the surface 
integral

BM
i,j = −μ0

4π

∫
∂Ωj

(n×Mj)× xi − x

|xi − x|3 dσ (16)

Then (12) can be written as

Mi =
1

μ0

(
I −K−1

i

)⎛⎝Bext
i +

N∑
j=1

BM
i,j

⎞
⎠ (17)

A straightforward implementation of (17) leads to a linear sys-
tem whose matrix is full. The computational cost of assembling
the matrix however can be greatly reduced by taking into account
the symmetries characterizing the cable geometry, which confer
a block-circulant structure to the matrix. This particular structure
can be exploited both during the matrix assembly and the linear
system solution phases [24].

VI. COMPUTATION OF LOSSES

As already stated in Section II, the overall shape of armor
wires and their path along the cable has a noticeable effect on
armor losses. For this reason (17) takes into account the detailed
path Γ of armor wires through the term BM

i,j , which depends on
the physical positions of the wire segments Ωj , which in turn
are determined by the paths of the armor wires.

Once the distribution of magnetization M along the armor
wires is determined, however, the wires detailed geometry can
be safely disregarded, and losses computation can be carried out
using formulas valid for straight and infinitely long conducting
and magnetic cylinders placed in a uniform magnetic field.

This approximation is justified by the fact that in a typical
submarine cable, the radius of armor wires is much smaller than
both the laying pitch and the cable radius, hence armor wires
are locally almost straight. Moreover the variations of magnetic
field along the wire are slow enough that the magnetic field can 
be assumed locally uniform. 
Let H0 be the value of magnetic field at a given point of 
the wire axis. H‖

0 and H⊥ are the components parallel and 
0

perpendicular to the axis of the wire respectively. Then the losses 
value per unit length of wire at that point is given by

P =
2π

σ

[
Re [−krJ0(k

∗r)J1(kr)]
|J0(kr)|2 |H‖

0|2

+
8Re [−krJ1(kr)J

′
1(k

∗r)]
|(μr + 1)J0(kr) + (μr − 1)J2(kr)|2 |H

⊥
0 |2

]
(18)
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Fig. 6. Cross-section of the cable used for validation.

Fig. 7. Losses per unit length of cable for various number of armor wires: (a)
equilay configuration (b) contralay configuration.

 A detailed derivation of (18) is included in the Appendix, where  
the splitting of the total losses P into the resistive component 283 

Pr and hysteresis component Ph can be found as well.

Fig. 8. Losses per unit length of cable for different values of armor pitch: (a)
as a function of the ratio pw/pc (b) as a function of the cross-pitch.

Before using (18), it is necessary to relate the external mag-
netic field H0 to the magnetization M, which is the unknown
of the proposed formulation (17).

Since the proposed approach, as explained in Section IV,
reduces the problem to a magnetostatic formulation with a
modified tensor permeability, the relation between H0 and M
should be found by considering an infinitely long, straight wire,
whose tensor permeability is given by (6), placed in a uniform
static magnetic field H0.

The solution of the problem can be found in [25]:

H
‖
0 =

1

μ
‖
r − 1

M‖ (19)

H⊥
0 =

1

2

μ⊥
r + 1

μ⊥
r − 1

M⊥ (20)

where M‖ and M⊥ are the parallel and transverse components  of M 
with respect to the wire. 
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Fig. 9. Sensitivity study of losses per unit length of cable as a function of armor wire resistivity and complex permeability (modulus and angle).

VII. VALIDATION OF THE METHOD

The method is validated by comparing its results with those
obtained using the commercial FEM software Comsol, for a ca-
ble whose cross-section is shown in Fig. 6. The FEM calculations
explicitly model eddy currents in armor wires, without resorting
to the equivalent tensor valued permeability model presented
before.

The radius of the armor wires is r = 3.5 mm. Their distance
from the axis of the cable is Rw = 110 mm. The distance of the
three-phase conductor c1, c2, and c3 from the axis of the cable
is Rc = 57 mm. As already said, the three-phase conductor
are modeled as filamentary conductors carrying a system of
three-phase currents of known value I = 800Arms. Although
it is not apparent from Fig. 6, both the armor wires and the
phase conductors are helically twisted (Fig. 3), with twisting
pitches pw = 2 m and pc = 3 m respectively. We designate by
the term equilay a cable in which the twisting directions of the
armor wires and the phase conductors are the same. Vice versa,
if the twisting directions are opposed, we speak of a contralay
cable.

For the sake of validation, the complex permeability of the
armor wires is fixed at μr = |μr|e−φi with |μr| = 300 and
φ = 60◦ and the resistivity is fixed at ρ = 2.08E − 7Ωm. These
values are coherent with measurements performed internally

by Prysmian S.p.A. This choice of physical parameters leads
to values |μ‖

r| = 179.97, φ‖ = 70.13◦ for the longitudinal per-
meability and |μ⊥

r | = 127.33, φ⊥ = 74.42◦ for the transverse
permeability. The number of armor wires is varied from 1 to 95,
even if the lower values are not used in practice. Resistive and
hysteresis losses computed by FEM and by the proposed method
are compared in Fig. 7, and a good agreement is obtained. Larger
differences are observed in the results of hysteresis losses in the
contralay case, which is probably a consequence of ignoring
moments higher than dipole in the magnetization and eddy
current distribution in the wires.

The simulations using the proposed method have been per-
formed on a standard laptop computer, with the most expensive
simulation requiring approximately 90s and 1 GB of memory.
On the other hand, FEM simulations demand much larger com-
putational resources and have been carried out on a computing
server, with the most expensive simulation requiring approxi- 
mately 33 h and 1300 GB of memory.

VIII. RESULTS

The dramatic improvement in computational time and mem-  
ory requirement of the proposed method allows extensive sim-  
ulation campaigns that would be practically unfeasible using 
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FEM. Except where explicitly noted, the geometrical and phys-
ical parameters used in this section are the same as the ones used
for the validation, and the armor is made of 95 wires.

A first analysis is carried out computing losses vs. the ratio
of the twisting pitch of the armor wires and the one of the
phase conductors (Fig. 8). The phase conductors laying pitch
is held fixed at pc = 3 m, while the armor laying pitch pw
is varied between 2.1 m and 300 m both for the equilay and
contralay configurations. Some of the combinations of armor
and conductors lay-lengths used for constructing Fig. 8 are not
used in practice but are included nonetheless in order to give
a complete picture of the theoretical behavior of losses with
respect to these two parameters. The configurations not used
in practice are equilay with pw ≈ pc (mechanically weak) and


 pc (almost straight armor wires). pw
The minimum losses are attained in the equilay configuration

with pw ≈ pc, which is unfortunately a condition of poor me-
chanical robustness. Furthermore even if equilay configurations
are characterized by lower armor losses than contralay config-
urations, the latter are preferred for deep installations due to
mechanical reasons [26].

Fig. 9 shows the behavior of losses as the physical parameters
of the steel armor (resistivity ρ, complex permeability modulus
|μr|, complex permeability angle φ) are varied. Resistive losses
increase with |μr|, while they are insensitive to the angle. On
the other hand, hysteresis losses are less sensitive to |μr| and, as
expected, much more sensitive to the angle of μr. The increase
of the total losses with |μr| and with the angle is an important

 suggestion for the choice of the material.

IX. CONCLUSION

The proposed numerical method is based on an integral ap-
proach and on some approximations inspired by the physical
insight of the involved eddy current phenomena, described by
analytical formulas. It reveals to be much more efficient than any
general purpose approach using a FEM commercial software.
Dramatically reducing the computational times and the memory
requirements, the new method allows extensive low cost sim-
ulation campaigns in the design phase of submarine cables. In
particular, the effects of the variation of steel properties and of
the laying pitch on the armor losses has been investigated.

APPENDIX

We consider an infinitely long, straight wire of radius r, con-
ductivity σ and complex permeability μr = |μr|e−jφ. For con-
venience we define both a cartesian coordinate system (x, y, z)
and a cylindrical coordinate system (ρ, θ, z) whose z-axes
both coincide with the axis of the wire. Let (ex, ey, ez) and
(eρ, eθ, ez) denote the unit vectors associated to the cartesian
and cylindrical coordinate systems respectively (Fig. 10).

The wire is subject to a uniform time-harmonic magnetic
field H0, which can be decomposed into two components: H‖

0,
parallel to the wire, and H⊥

0 perpendicular to the wire. Without
loss of generality we can write H

‖
0 = H

‖
0ez and H⊥

0 = H⊥
0 ex.

Fig. 10. Reference frame for losses computation.

The external magnetic field generates power losses in the wire,
whose total value is the sum of two contributions, namely resis-
tive losses and hysteresis losses. We indicate the time-averaged,
per-unit-length value of total, resistive, and hysteresis losses by
P , Pr, and Ph respectively.

Total losses can be computed as the real part of the flux of the
Poynting vector S = E×H∗ entering the boundary ∂Σ of the
wire cross section

P =

∫
∂Σ

Re [E×H∗] · (−n) d


=

∫ 2π

0

Re [E(r, θ)×H∗(r, θ)] · (−eρ)r dθ (21)

Computing the resistive and hysteresis contributions requires 
instead an integration on the wire cross section Σ:

Pr =

∫
Σ

Re [J ·E∗] dA

= σ

∫
Σ

|E|2dA

= σ

∫ r

0

∫ 2π

0

|E(ρ, θ)|2ρ dθ dρ (22)

Ph =

∫
Σ

Re [jωB ·H∗]

= Re [jωμ0μr]

∫
Σ

|H|2dA

= Re [jωμ0μr]

∫ r

0

∫ 2π

0

|H(ρ, θ)|2ρ dθ dρ (23)

In order to actually compute P , Pr, and Ph, it is therefore
necessary to know the distribution of the electric field E(ρ, θ)
and of the magnetic field H(ρ, θ) on the wire cross section.
These expressions can be found in [27]. We have that

E‖(ρ, θ) = H
‖
0

k

σ

J1(kρ)

J0(kr)
eθ (24)

H‖(ρ, θ) = H
‖
0

J0(kρ)

J0(kr)
ez (25)
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for the fields generated by the axial component H‖
0, and

E⊥(ρ, θ) = 4H⊥
0

k

σ

J1(kρ)

F (kr)
nθez (26)

H⊥(ρ, θ) = 4H⊥
0

(
J1(kρ)

kρF (kr)
cos θeρ − J ′

1(kρ)

F (kr)
nθeθ

)
(27)

for the fields generated by the transverse component H⊥
0 , where

F (kr) = (μr + 1)J0(kr) + (μr − 1)J2(kr) (28)

Substituting first (24)–(25), and then (26)–(27) inside (21), the total 
losses due to the axial and transverse components of the magnetic 
field can be computed

P ‖ =
2π

σ

Re [−krJ0(k
∗r)J1(kr)]

|J0(kr)|2 |H‖
0|2 (29)

P⊥ =
16π

σ

Re [−krJ1(kr)J
′
1(k

∗r)]
|F (kr)|2 |H⊥

0 |2 (30)

 Substituting (24) and (26) inside (22) and performing the integral in 
θ leads to

P ‖
r =

2π

σ

|k|2
|J0(kr)|2 |H

‖
0|2

∫ r

0

kρJ1(kρ)J1(k
∗ρ) dρ (31)

P⊥
r =

16π

σ

|k|2
|F (kr)|2 |H

⊥
0 |2

∫ r

0

kρJ1(kρ)J1(k
∗ρ) dρ (32)

 The integrals appearing in (31) and (32) are Lommel’s integrals,  
whose general form is [28]

(
α2 − β2

) ∫
xJn(αx)Jn(βx) dx

= x [βJn−1(βx)Jn(αx)− αJn−1(αx)Jn(βx)] (33)

 Using (33) to evaluate the integrals in (31) and (32) yields the  
resistive contribution to the losses

P ‖
r =

2π

σ

|k|2
|J0(kr)|2

Im (k∗rJ0(k∗r)J1(kr))
Im(k2)

|H‖
0|2 (34)

P⊥
r =

16π

σ

|k|2
|F (kr)|2

Im (k∗rJ0(k∗r)J1(kr))
Im(k2)

|H⊥
0 |2 (35)

 The hysteresis contribution can finally be computed as the  
difference between the total losses (29) and (30) and the resistive  
losses (34) and (35).

P
‖
h = P ‖ − P ‖

r (36)

P⊥
h = P⊥ − P⊥

r (37)
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