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Abstract

Human-robot collaboration (HRC) is expected to add flexibility and agility to

production lines in manufacturing plants. In this context, versatile scheduling

algorithms are needed to organize the increasingly complex work-flow and to ex-

ploit the gained flexibility, ensuring the optimal use of resources and the smart

management of failures. Moreover, intuitive user interfaces are needed to com-

municate with the human worker, informing him/her of the next operation to

perform. Usually, grounded or wearable screens are used to this aim. Whenever

human sight is impaired or needs to be free, other sensory channels could be

used as well. In this work, we present a new dynamic scheduler that adapts to

the system variability, and a novel way of communicating instructions to the hu-

man operators based on haptic guidance. The proposed strategies were applied

to a complex assembly task involving three agents and compared to baseline

methods with an experimental campaign involving 16 subjects. Results show

the clear advantage of using dynamic scheduling over the static one and suggest

that a combination of visual and tactile stimuli is a viable and effective solution

for displaying instructions in complex HRC scenarios.
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Figure 1: Communication paradigm: the scheduler communicates instructions to the hu-

man(s), through haptic interfaces and/or a screen, and to the robot(s). Agents make the

scheduling algorithm aware of their status, communicating operation completion and other

information, like robot faults.

Assembly

1. Introduction

Human-Robot Collaboration (HRC) has gained increasing attention in the

robotics community, as it is expected to add flexibility to manufacturing pro-

cesses. Today’s collaborative robots are machines that are safe to work with,

5 but are still far from fluently interacting with human co-workers [1][2]. On the

one hand, versatile scheduling algorithms are needed to organize the complex 

flow of human and robot operations and obtain a seamless collaboration, going 

beyond mere workspace sharing [3]. On the other hand, multimodal commu-

nication interfaces become essential to guarantee safety while not interrupting

10 the task flow [4] and to allow for a rich exchange of information between the

agents [5].

In this paper, a novel dynamic scheduler is coupled with a visuo-haptic 

interface to perform complex HRC tasks involving multiple human operators 

and robots. Fig. 1 shows the general principles behind the proposed paradigm.
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The most important feature of a scheduling algorithm is its capability of15

outputting plans that are robust against the uncertainties, while attaining good 

performance. One way to achieve this is to apply dispatching rules [6], which are 

based on predetermined heuristics, with the advantage of being easy to apply at 

runtime. However, when dealing with HRC, high flexibility is required

to rapidly adapt to the variability of human behaviour and the occurrence of20

robot faults. Hence, the need for more complex dynamic schedulers that must

work in real-time.

The scheduling algorithm introduced in this work leverages a Digital Twin

(DT) of the cell, based on Petri Nets (PN), to predict the future evolution of

the system and determine the optimal control action with a receding horizon25

approach. In particular, the proposed method:

1. Accounts for the variability in the duration of human tasks and the oc-

currence of robot faults;

2. Allows the concurrent assembly of multiple products to increase produc-

tivity;30

3. Considers many feasible sequences to complete the assembly. The opti-

mal one for each product is selected in real-time and can change during

operation;

4. Dynamically solves on-line both task allocation and sequencing to adapt

the plan to the process variability.35

To the best of our knowledge, no other work in HRC embeds all these features

to allow the highest degree of flexibility, which results in smart use of resources

and in the minimization of the overall cell idle time.

In the HRC scenario proposed in this paper, the human agent needs to be

40 informed, through a suitable interface, of the next operation he/she must exe-

cute. While previous works on collaborative assembly usually rely only on visual 

interfaces, i.e., screens on which instructions are displayed through images and 

text [7], here we propose to combine visual and tactile information, introduc-ing 

a new method to convey instructions through wearable haptic interfaces.
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A general rule is conceived to associate each operation to a vibration pattern45

displayed either on the left or on the right arm of the user. The wearability

of interfaces allows human body parts to move freely and perform the assigned

task without difficulty.

The paper is organized as follows. Sec. 2 discusses related works, Sec. 3

50 describes the proposed dynamic scheduler, Sec. 4 presents two different modal-

ities of giving instructions to the human: through visual cues only or through a 

combination of visual and tactile stimuli, and Sec. 5 and 6 present and discuss 

experimental results.

2. Related Works

55 The emergence of HRC environments results in multiple agents, that are 

both humans and robots, working together in dynamic and complex workspaces. 

In [8], an exhaustive classification for HRC scenarios in product assembly with 

respect to the agents’ multiplicity and initiative is discussed. In addition, the 

authors envision a collaborative environment with intuitive multimodal inter-

faces and a DT that can be leveraged for monitoring and planning. More in60

general, a DT supports the entire life cycle of HRC systems by providing a 

virtual counterpart that can be exploited for fast and reliable validation and 

control [9].

Effective task allocation and scheduling become crucial to orchestrate the

65 operations of such manufacturing processes. These problems can be taken into 

account starting from the workplace design phase. For instance, in [10], a multi-

criteria decision-making framework is employed for the automatic optimization 

of the workplace layout through the allocation of tasks to humans and robots. In 

[11], instead, a method for static task allocation based on task complexity,

70 ergonomics, payload, and repeatability is proposed. In the static scheduling 

approach, the sequence of operations, and possibly the agent responsible for 

them, are fixed in advance according to the product to assemble and to suitable 

decision criteria. Thanks to their simplicity, static schedulers do not require
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constant monitoring of agents’ operations and are a common choice in manufac-

turing plants. However, when a high degree of flexibility in the production cell75

is required, and especially when the HRC paradigm is adopted, static schedulers

are not robust to the uncertainties occurring in the system. In these cases, the

use of dynamic schedulers is preferable.

To reduce computational load, decentralized market-based approaches are

80 presented in [12, 13], where auctions are exploited for dynamic task allocation. In 

[14], the authors propose a distributed architecture where each agent ex-ploits a 

neural network to schedule dynamic operations with real-time sensor data. The use 

of AI algorithms improves decision-making and learning abilities. In [15], a multi-

agent algorithm that combines offline proactive scheduling with

85 online reactive repair according to predetermined heuristics is proposed. In [16], a 

similar centralised approach for the dynamic scheduling of shared human-robot 

activities is introduced. Multiple alternatives are evaluated offline to find the 

best nominal plan, which is then corrected online in case of unexpected events. 

A satisficing algorithm for task scheduling in multi-robot teams is proposed

90 in [17], whereas a hierarchical framework for the optimal task assignment and 

sequencing in human-robot assembly is described in [18]. The latter work does not 

consider the variability in the duration of operations, nor the possibility of faults, 

which are instead taken into account in this paper. To account for the 

uncertainties related to human operations, [3] proposes a scheduling algorithm

95 that leverages prediction of human intentions from visual tracking data, whereas

[19] introduces a method to adapt the robot schedule to the operator’s prefer-

ences by switching between pre-computed alternatives. Similar to the approach 

followed in this paper, [3, 20] exploit PN to model the assembly process and 

support the scheduling problem. Also, [21] applies transition-timed PN and A*

to search for a near optimal schedule for remanufacturing on parallel processing100

machines.

The role of human-machine interfaces in achieving effective HRC is often

neglected by works that focus on scheduling performance. However, the choice

and design of interfaces are crucial when scheduling algorithms are applied in
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practice to real HRC scenarios. Suitable interfaces can be used to create a105

bidirectional exchange of information between the scheduling system and the 

human operator, ensuring human-aware scheduling of the operations. In [22], a 

method for the allocation of sequential tasks without concurrency is presented, 

and human safety is achieved through gesture commands, which are used for

starting, stopping, and guiding the robot action. Gestures, however, distract the110

operator from his/her work and require the continuous tracking of the operator. 

In this work, instead, we decided to focus on a multimodal interface including 

visual and tactile displays which do not interrupt or obstruct the operator’s 

motions. While the former are widely used in HRC contexts [7, 23], the latter

are less exploited.115

The advantages of tactile feedback, however, are several. Previous work 

showed that it outperforms visual and auditory signals for sensory substitu-

tion [24], while a combination of visual-tactile feedback leads to a reduction in

reaction times and a better attention allocation with respect to visual feedback

120 alone [25, 26]. In addition, haptic feedback can be employed when other senses

are busy or impaired and it has been shown that wearable haptic interfaces 

can be successfully exploited for spatial guidance in human-robot teams [27], 

operator awareness in collaborative assembly [28, 29], and command acknowl-

edgement for the control of wearable robots [30].

3. Scheduling Algorithm125

In the proposed method, a collaborative robotic cell consists of a set of

resources R (humans, robots, tools, shared workspace) used to repeatedly com-

plete a job. A job is a finite set of tasks (or operations) Ω = {o1, . . . , ono
}

required to assemble a product P = {p1, . . . , pnp} composed of np parts. A task

is a fixed sequence of actions that transforms a stable intermediate assembly130

into another stable intermediate assembly. A typical example is the pick and

place of a part onto a partial product. To increase productivity, resources work

on multiple jobs concurrently.
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Let oki be the i-th task of the k-th instance of the job and tki its start

time. Then, the solution to the scheduling problem is the optimal set S =135

{(oki , tki ), (okj , t
k
j ), . . . } of future tasks that minimizes a cost function J over a

planning horizon. The scheduler sends commands to the agents according to

the computed schedule, and the single agents are responsible for the actual ex-

ecution of the operations. In case of tasks assigned to robots, commands from

the scheduler start robot programs (with a one-to-one correspondence) that are140

implemented locally in the robot control unit. In this sense, the scheduler con-

stitutes a higher-level layer of the overall control system and remains agnostic

to the specific implementation of each task. This approach makes the control

system modular and allows to fully exploit the capabilities of each resource.

Also, it makes it easier to modify and upgrade the implementation of specific145

tasks without affecting the overall control system.

3.1. Job definition

When computing the optimal schedule, constraints among tasks arise from

the assembly structure of the product, the workspace layout, and the current

state of the production. Thus, a model able to describe the cell state and its150

evolution is needed, which is applicable to a wide variety of use-cases.

In general, a given product can be completed following different sequences

of tasks. To give a compact representation of all viable assembly plans, one can 

use AND/OR trees [31], which in this work have been expanded to include

155 information on resource requirements and workspace layout. An AND/OR tree 

is a hypergraph H = (N, E), where N is the set of nodes and E the set of

(hyper)edges. Each node in the graph represents a step in the assembly process.

It is uniquely associated with an intermediate assembly, i.e., Work-in-Progress

(WIP) part, and the physical buffer where it is stored between operations. A

160 node is thus described by n = (W, cB), where W ⊆ P defines the WIP part 

and cB the buffer capacity. Starting with all parts pi ∈ P disconnected from 

each other, we join them to form the final assembled product P . Thus, leaves

of the tree are np nodes with Wi = pi for i = 1, ..., np, while the root node has
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W|N | = P .

The graph has an edge for each task. A task is described by o = (d,RO, RF ),165

where d is its expected duration and RX stands for a set (possibly empty) of

resources. Namely, RO collects resources that must be available at the beginning

of the task and are needed for its execution, whereas RF collects resources that

are released at the end of it. The two sets can be different, so to account

for cases where a resource is kept occupied along multiple tasks and is not170

released at the end of each one. An assembly operation connects a single parent

node f ∈ N to a set of children nodes C ⊂ N . Each edge is thus defined by

e = (o, C, f). For the AND/OR graph to be well-defined, each edge must be

such that Wi ∩Wj = ∅,∀i 6= j ∈ C, and Wf =
⋃

c∈C Wc, i.e., the set describing

the WIP part associated to the father node is the union of the sets of all WIP175

parts coming from the children nodes.

A feasible assembly sequence for the job Ω is the set ΩS ⊆ Ω of tasks

associated to the edges of a minimal sub-graph that includes the root node and

all the leaves of the complete graph, i.e., a graph describing a set of operations

to obtain the complete product from its base parts. The job is considered to180

be completed after the execution of all and only the tasks belonging to one of

its feasible assembly sequences. Usually, the optimal ΩS is determined offline

based on nominal behaviour. In this work, the scheduler dynamically makes

this choice for each product to improve flexibility and adaptation to the current

status of the production.185

Fig. 2 shows an example of augmented AND-OR graph for a product com-

posed of three parts p1, p2, p3. These are specified in the leaves with the relative 

buffer capacities. The root represents the complete product W6 = {p1, p2, p3},

and the intermediate nodes contain the WIP parts W4 = {p1, p2} and W5 =

{p2, p3}. Robot r1 performs operation o2, the human operator r2 performs o1190

and o4, and a third agent r3 performs o3. To assemble the product part p3 a

tool r4 is needed. Thus, the tasks that operate on p3, i.e., o2 and o3, cannot be

performed simultaneously. Overall, in the presented illustrative example, two

assembly sequences are possible, namely (o1, o3) and (o2, o4).
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Figure 2: Example of augmented AND-OR tree.

3.2. Cell model195

The AND/OR graph allows us to define the job structure in a simple, yet

rigorous, way that is suitable also for non-expert users. However, it cannot

be used to track the state of the robotic cell and the production, as it does

not include state or timing information. As a consequence, AND/OR graphs

are unable to model the concurrency of several products in the assembly cell.200

Given the augmented AND/OR graph description of the job, it is possible to

automatically build a partially controllable PN model that can be seen as the

DT of the complete assembly cell. The PN describes both the physical structure

of the workspace and the evolution of the assembly process, considering i) the

state of all concurrent WIP products, ii) the situations originating from human205

actions, and iii) the occurrence of robot failures. During operation, the DT 

tracks the state of the workspace in real-time based on information coming 

from the robot controllers and the human interfaces (see Sec. 4).

A PN is a tupleM = (Π,Θ, I,m0), where Π is the set of places, Θ the set of

transitions, I the |Π| × |Θ| incidence matrix and m0 the |Π|-dimensional initial210

marking vector. In the PN, the presence of many tokens allows for modelling a

composition of individual states related to products, resources and operations.

A resource is modelled by a place that is marked when the resource is available.

A buffer comprises two places, to track free and occupied slots, with the sum

of the markings equal to the buffer capacity. The basic structure of operations215
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is composed of a start and a stop transition plus a place that is marked as

long as the operation is in progress. Moreover, additional nΠ
F places and nΘ

F

transitions are included to model possible robot failures and associated recovery

actions. Several operation places can be marked at the same time to model the

simultaneous execution of independent operations by different resources.220

The cardinality of the set of places and that of transitions is:

|Π| = 2|N |+ |E|+ |R|+ nΠ
F |Θ| = 2|E|+ nΘ

F

The set Θ is partitioned as Θ = ΘC ∪ ΘU , ΘC ∩ ΘU = ∅, with ΘC the set of

controllable transitions, whose firing is decided by the scheduler, and ΘU that of

uncontrollable transitions related to exogenous events. In this work, controllable

transitions determine the start of new tasks, whereas uncontrollable ones relate

to tasks completion and faults occurrence.225

The evolution of the state of the cell is tracked in real-time through subse-

quent transitions firings. Given the |Θ|-dimensional transition vector θk having

in the j-th position the number of times transition j is to fire, the updated

marking vector is computed as mk+1 = mk + Iθk.

Fig. 3 shows a PN that models a simple cell with three tasks (o1, o2, and o3)230

performed by two resources (r1 and r2, highlighted in red). Both resources can

take a WIP part of type W2 from the input buffer and complete a task to obtain

a W4 part, while the first resource can also assemble a W3 part by combining W1

and W2 parts. For each buffer Wi, tokens in the upper place indicate available

235 parts, tokens in the lower place indicate the number of free slots, and their sum is 

equal to the buffer capacity. Based on the initial marking (Fig. 3a), all the 

controllable transitions (θ1, θ2, and θ3) are enabled: at least a WIP part is in 

the input buffer, and the resources are free (marked place). If, for instance, θ1

fires (Fig. 3b), a marked place indicates that the operation o1 is ongoing. Also,

240 one place of the input buffers is freed and the resource r1 becomes busy. While 

o1 is in progress, task o3 can start in parallel, since another W2 part is present in 

the buffer. Conversely, θ2 is no longer enabled, as r1 is busy. The uncontrollable 

transition θ̄1 fires upon task completion (Fig. 3c): the operation place empties,
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the resource returns available and the output buffer contains the W3 part.

3.3. Scheduling problem solution245

The solution to the scheduling problem is based on an MPC-like approach.

The underlying idea is to predict the evolution of the system over the planning

horizon from the current state to determine the control input sequence that

minimizes a cost function. The exact form of the cost function depends on

the specific application. Usually, minimization of the production cycle time250

is the main objective in assembly processes, but other considerations can be

included, such as penalization of energy consumption or a measure of the level

of human effort. The value of the planning horizon, which is expressed in terms

of the number of operations in the sequence, is guided by a trade-off between

computational load and performance. At each step, only the first command255

is applied and a new prediction starts from the new state of the system. The

receding horizon paradigm allows the schedule to adapt to the natural variability

of the process (e.g., task durations) and unforeseen events, such as faults.

To simulate the future evolution of the robotic cell, and the firing of uncon-

trollable transitions in particular, a temporal characterization must be included260

in the model. Therefore, a Timed Petri Net (TPN) description is adopted for the 

prediction phase [32]. In a TPN, each transition θi ∈ Θ can only fire with a delay 

of at least di seconds after it has been enabled. Specifically, controllable 

transitions have zero delay, uncontrollable transitions linked to task completion

have delay equal to the expected task duration, while fault-related transitions265

have infinite delay, i.e., are prevented to fire, as they describe an abnormal

behaviour of the system.

The initial state of the TPN is defined by the current marking mk and the

remaining time to completion of ongoing operations, i.e., the initial delay of the

associated uncontrollable transitions. This information reflects the current state270

of the real system and is retrieved by monitoring the workspace with the help

of a database of past task durations, which is updated each time a new one is

completed.
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(a)

(b) (c)

Figure 3: Example of PN DT for a cell with two resources (in red) and three operations.

Initial state (a), state after θ1 fires (b) and state after θ̄1 fires (c).
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Figure 4: Partial RT for the product in Fig. 2 (Hyp. d3 > d4). Nodes are numbered in order of 

exploration, labels indicate enabled transitions and arrival time. Costs are computed from eq. 

(1). θ̄3 is enabled in v2 but would lead to an unfeasible state, thus the related branch is not 

explored. Expansion stops at v5 as its cost is higher than the current best J4.

As already stated, the decisions of the scheduler are limited to the firing

of controllable transitions. Instead, uncontrollable transitions always fire with275

the minimum delay. In addition, since an unnecessary delay of controllable

transitions increases the idle time of resources, the only decision at each step

is either to fire one enabled controllable transition immediately, or wait for the

firing of an uncontrollable one. The latter choice means waiting for the end

of an ongoing operation, that can enable new tasks. If several uncontrollable280

transitions are enabled at the same time, the scheduler can only choose to wait

for the one with minimum delay. Otherwise, the uncontrollable transitions with

smaller delay are no longer able to fire at the correct time. This is equivalent

to say that the scheduler has to choose one transition among all the enabled

ones, that is that the scheduling problem reduces to determining the optimal285

sequence of transition firings.

From the initial state, feasible system evolutions are found by exploring the 

Reachability Tree (RT) of the TPN [3, 21]. The compact matrix representation and 

simple update rule of the PN model allow for an efficient simulation of the

290 system. The RT is a pair (V, A), where V is a set of nodes connected by arcs
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in A. Each node vi represents a reachable state for the TPN and is described

by (mk,i, ti, Ji), that is a marking, the arrival time to the state, and its cost.

Arc aij represents the transition whose firing brings the system from vi to vj .

A path between two nodes vi and vj , referred to as 〈vi, vj〉, can be equivalently

described by the set of connected nodes (i.e., states) or the sequence connecting295

arcs (i.e., transitions).

For a node vb to be the children of node va, the transition associated with

aab must be enabled in va. The farthest enabling ancestor of the node vb, is

the node ve ∈ 〈v0, vb〉, such that 〈ve, vb〉 is the largest subpath that contains

only nodes for which the transition leading to vb is enabled. Then, the arrival300

time to the state vb is equal to tb = te + δab, where te is the arrival time to the

farthest enabling ancestor of vb and δab = max{ta, dab} is the delay with which

the transition described by arc aab fires. A node is a leaf, i.e., has no children,

either in case no transitions are enabled in that node, or the expansion depth

limit has been reached.305

The optimal path in the RT is 〈v0, v∗〉 from the root node to the leaf v∗ with

minimum cost J∗. The cost function minimized in the generation of the optimal

schedule is:

J(vi) = J(〈v0, vi〉) = kStS + kI

|R|∑
j=1

cjt
I
j + kW

|N |∑
j=1

tWj (1)

where kS , kI , kW are weight coefficients and tS , tIj , tWj are functions of the

arrival times to nodes in 〈v0, vi〉, which in turn depend on the sequence of

fired transitions, i.e., the control inputs. The first term reduces the time tS of

completion of the last operation in the plan. The second term penalizes the idle

time of resources, being tIj the idle time of resource j in the interval (0, tS) and310

cj the unit idle cost for resource j. Finally, the last term facilitates product

flow, being tWj the total time a part waits in the j-th buffer.

Pruning strategies are implemented to speed up the exploration of the RT

without losing optimality. The tree is explored depth-first to rapidly find a

feasible evolution of the system, then new nodes are generated only if their315
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320

cost is smaller than the current optimal one. Also, the exploration of duplicate 

branches is avoided by noting that changing the order of two subsequent con-

trollable transitions generates equivalent evolutions. Fig. 4 shows an example 

of RT exploration.

The final schedule S is obtained from the optimal path 〈v0, v∗〉, as the se-

quence of controllable transitions along the path and their firing time. Com-

mands are sent to the free resources, then the cell state is updated and the plan 

recomputed.

4. Communication paradigm

325 As already mentioned, this paper aims at creating a bilateral communica-

tion among humans and robots, mediated by the scheduler described in Sec. 3. 

The scheduler outputs instructions for humans and robots, while agents com-

municate their status to the scheduler (see Fig. 1). With this information, the 

scheduler can continue planning the next operations.

From the robot side, communication is enabled by TCP/IP sockets between330

the CPU running the scheduling algorithm and the robot controller that stores

the robot programs for the single operations. When a robot must perform a new

operation, the scheduler sends the associated command to the agent. In turn,

the robot sends periodic updates on its status to the scheduler. Specifically,

feasible robot states are i) idle; ii) busy (with the indication of the operation335

being performed); iii) failed (with the indication of the specific error occurred).

A transition from busy to free marks the completion of the ongoing operation,

a transition to failed marks the occurrence of an error or fault.

From the human side, communication is enabled by the wearable devices

shown in Fig. 7a. The ring contains three push-buttons and a 3 mm vibra-340

tion motor (Precision Microdrives) that are controlled through an Arduino Pro

Mini. The same Arduino controls the two 25 mm vibration motors (Precision

Microdrives) of the bracelet. The communication between the central CPU

and the wearable devices is wireless, thanks to two XBee® RF modules (Digi

15



International Inc.).345

4.1. Human input to the scheduler

While [3, 33] estimate the duration of human tasks through human intention

prediction based on visual sensing, here we choose a simpler, yet effective, solu-

tion, that does not require continuous monitoring of the operator. The human

350 explicitly communicates the completion of his/her current task by pressing a 

button on the ring. This allows keeping track of the current process state, as 

described in Sec. 3. The signal fires the uncontrollable transition that marks the end 

of the ongoing task, updating the availability of WIP parts and re-sources for the next 

operation. Besides, the change in the cell status triggers

355 the re-computation of the schedule, which can adapt to the actual duration

of the just-finished task. As the human presses the button, a vibration burst

(duration = 150 ms, frequency = 200 Hz, amplitude = 0.6g) from the motor

of the ring acknowledges that the pressure was correctly recognized. If, by any

chance, the human presses the wrong button, different vibration patterns are

sent to the user to notify the error. The importance of the acknowledgement360

365

370

has been recognized by the users during the experiments (see Sec. 6) and the 

wearability of the interface allowed for a prompter user input with respect to 

using a push-button located on the workbench.

4.2. Instructions from the scheduler to human operators

Two different modalities for displaying information to the human are em-

ployed: visual (through images on a screen) and tactile (through vibration pat-

terns transmitted by haptic bracelets). Images with overlaid information (Fig. 5) 

and vibration patterns (Fig. 6) are automatically displayed to the human as soon 

as the scheduler has dispatched his/her next operation.

Visual instructions are static images that include the name of the operation 

and a photo of the workspace highlighting the main stages of the task (e.g., which 

parts are required and where to place the product at the end). Fig. 5 shows an

16



Figure 5: Example of visual instruction provided to the operator. Circles highlight the parts

required to perform the operation, the arrow indicates the feeder where to put the obtained

intermediate assembly.

Figure 6: Haptic communication principle: the operator is guided towards the sector of the

workspace associated with the next operation that he/she must perform (LB = left bracelet,

RB = right bracelet).
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example of visual instruction provided to the operator. Different background

colours emphasize waiting and fault-related commands to ease identification.

Two vibrotactile bracelets, worn on the two arms, are used to provide tactile375

cues to the operator indicating his/her next task or the occurrence of unexpected 

events. The approach we use to send haptic signals depends on the type of 

information to be transmitted and mixes typical features of spatial guidance 

paradigms [27] with techniques to send complex messages through tactons [34].

For failures, emergencies, or other operations that require particular atten-380

tion or immediate intervention, a fast sequence of several vibrations is sent. In 

the experiments, for example, we used 10 vibrations lasting 50 ms with an in-

terval of 50 ms between them. This type of signal was found to be suitable to 

communicate the importance of an event [35]. Depending on which bracelet is

activated and for how long the train of vibrations lasts, different messages can385

be conveyed.

For assembly operations, i.e., those that are part of the productive cycle 

and are not responses to unexpected events, the approach sketched in Fig. 6

is followed. When the left (right) bracelet vibrates, the human has to work in

the left (right) part of the workspace. The number of vibration bursts indicates390

the sector associated with the starting point of the operation to be performed,

where the user should move the hands. In our experiments, vibration bursts

lasted 100 ms, had a frequency of 220 Hz, an amplitude of 0.7g, and were

equally spaced of 100 ms.

To the best of our knowledge, this is the first attempt to combine visual and395

tactile cues to communicate instructions during a HRC task supervised by a

dynamic scheduler. The proposed paradigm is easy to learn and general, as it

unequivocally associates each operation to a specific tactile cue using a simple

rule, and it can be applied to different set-ups, provided that each portion of the

workspace corresponds to one operation maximum. Though this may seem a400

strict constraint, it is well suited to most structured activities, such as industrial

assembly tasks, as the workspace layout can be designed accordingly.
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(a) (b)

Figure 7: (a) Haptic devices: ring with a vibrating motor and three push-buttons and bracelet

containing the controller box and two vibrating motors. (b) Emergency button and its parts.

5. Experimental setup and protocol

The proposed method was tested in a collaborative task where a human

405 operator assembles an emergency button (Fig. 7b) with the help of two robots

(ABB dual-arm YUMI and IRB140). The human wears haptic bracelets on both 

arms and a vibrotactile ring with push-buttons on the non-dominant hand. 

Tactile interfaces and robots are connected to a CPU, where the scheduling 

algorithm is implemented. Fig. 8 shows the experimental setup.

The assembly of the emergency button consists of 5 steps:410

1. Screw the Internal Ferrule onto the Body ;

2. Position the Top and fix the External Ferrule;

3. Fasten the Bottom with the Screws, then fix the Head ;

4. Pack the completed product inside a Container Box ;

5. When the Box is full, change it for an empty one.415

Fig. 9 shows the AND/OR graph that defines all viable assembly plans for the 

product and the tasks of which they are composed. Edge colours specify the agent 

that performs the task: YuMi (red), IRB (blue) or human (green). Some steps can be 

performed independently by more than one agent to increase

420 flexibility. For instance, step 2 is performed either by YuMi or IRB alone, or with
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Figure 8: Experimental setup.

a combination of a human and an IRB task. A constraint of mutual exclusion

holds among step 2 tasks to avoid the simultaneous access to the buffer that

stores the Top part, which is shared between the two robots.

Note that when more than one operation per agent is present in the same

assembly step (e.g., o8 and o12), their definition is not identical, as they differ425

at least with respect to the RO and RF sets. As a consequence, each task is a 

distinct edge in the AND/OR graph, as it is shown in Fig. 9. In turn, each task is 

described by different places and transitions in the PN. Therefore, when the 

scheduler explores the future evolution of the assembly process, it automatically

determines which operation to include in the plan based on the optimal path in430

the PN reachability tree.

In total, 12 assembly operations are possible in the considered use-case, for 6

assembly sequences. Also, 5 additional human tasks are added to recover from

as many robot faults that may occur in the execution of steps 2 and 4. Table 1

435 lists the robot tasks, while Table 2 details those available to the human and the

associated haptic signals according to Sec. 4.2.

During the experiments, faults have been injected to consistently test the 

behaviour of the schedulers. Specifically, at the sixth step 2 task performed by
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Figure 9: AND/OR graph of the job considered in the experiments. Product part names 

refer to Fig. 7b. Edge labels identify operations and the associated fault recovery actions 

(in brackets, if present). Colours specify the agent that performs the task: YuMi (red), IRB 

(blue) or human (green).

YuMi, the gripper got stuck and was not able to grasp the product, the robot had

to be reset by the operator, but the product was still available for processing.440

To recover from such a failure, a human operator had to use the robot teach

pendant to perform a sequence of steps able to restore the gripper functionality

and restart the robot program. Conversely, IRB executed the fourth step 4

operation in a wrong way: the robot was still working, but the product needed

human intervention to be completed. In this case, the operator had to move to445

pick up the invalid product, adjust it, place it in the final container, and finally

return to his/her working position.

We tested three different conditions: static scheduling with visual feedback
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Table 1: List of robot operations.

ID# Robot Operation description Assembly step

15-16 YuMi Start new product 1

12-13 YuMi Assemble Top 2

9 IRB Clamp product & assemble Top 2

10 IRB Assemble Top 2

7 IRB Store finished product in box 5

Table 2: List of human operations and haptic signals.

ID# Operation description Assembly step Haptic signal

17 Start new product 1 3 left

11 Clamp product for IRB task 2 2 left

12 Complete product from YuMi 3 1 left

8 Complete product from IRB 3 1 right

6 Change full box 5 3 right

4-5 Recover failed YuMi - fast left

1-2-3 Recover failed IRB - fast right
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(S), dynamic scheduling with visual feedback (V), and dynamic scheduling with

visual and haptic feedback (H). In the S condition, the optimal production450

plan was computed off-line as the sequence of operations that minimizes the

cost function throughout the entire trial. To do so, the nominal duration of

human operations was used. When a fault occurred during the experiments,

the associated recovery action was inserted in the plan as soon as possible,

without interrupting the current human task. Other common solutions for fault-455

tolerant static schedulers, such as reserving slack time or switch to precomputed

contingency plans, were deemed inadequate for the specific application.

Instead, the dynamic scheduler introduced in Sec. 3 was employed in V and

H conditions. The complete TPN that models the assembly process results in 50

460 places and 34 transitions. The scheduling problem was solved in less than 0.02s 

using an off-the-shelf laptop (Intel Core i7-8550U CPU 1.80GHz, 8 GB RAM) 

with the planning horizon set to 14 tasks. In all three conditions, the next 

operation for the human was displayed on a screen above the workbench (see 

Fig. 8). In the H condition, participants also received tactile feedback according

465 to Table 2. The association between haptic signals and operations was learnt by

the user before testing the H condition. Participants were instructed to press

the button on the wearable ring upon completion of each operation.

Twelve volunteers (3 females and 9 males, age range 23-33) participated in

our study. Informed consent was obtained from all of them and the experimental

evaluation protocol followed the Declaration of Helsinki. Participants did not470

perceive any payment and were able to leave the experiment at any moment.

None of them had prior experience with the scheduling algorithms, nor with the

selected assembly task, nor with the proposed use of haptic bracelets. The au-

thors of this paper did not take part in the study. During a preliminary training

phase, volunteers 1) were taught how to complete the different human opera-475

tions and tried each of them twice, 2) performed a complete trial (10 products)

to get comfortable with all tasks and associated visual instructions. Then, in

the test phase, we divided the participants into 3 groups of 4. Each group tested

a pair of conditions in different orders. For example, four participants tested
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Figure 10: Cycle time obtained for the different conditions (S, V and H) with 12 (a), and 16

(b) participants. Boxplots show median and quartiles.

conditions S and V, two in the order SV and two in the order VS. The same480

approach was applied to the groups that tested S and H, and V and H. Thus,

each participant performed two test experimental trials. A single experimental

trial consisted of the assembly of 10 emergency buttons, and participants were

asked to finish as quickly as possible. The average duration of a trial was about

7 min.485

6. Experimental results and discussion

6.1. Comparison between dynamic and static scheduling

Firstly, we analysed the experimental results based on the cycle time, i.e.,

the average time between the completion of two subsequent products. This

is measured from the end of the first product assembly to the end of the 9th
490

product assembly. The initial and final parts of the experiments have been

neglected to remove transient behaviour.

Fig. 10a shows the measured values for the cycle time for the three conditions.

The advantages of the dynamic scheduling over the static one are evident: the

495 use of a dynamic scheduler (V, H) attains better performance than the static 

one (S). For instance, the average cycle time in the V condition, which shares 

the same communication interface with the S condition, decreases by 15.6%
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Figure 11: Portions of plans from experiments showing how the static (a) and dynamic (b)

schedulers handle a failure of YuMi (red crosses). Arrows mark when the robot is reset. The

dynamic scheduler minimizes the overall idle time by delaying the recovery action.

(p < 0.0002, Wilcoxon test), from 40.6 s to 34.3 s. The improvement is related

to two main properties of the dynamic scheduler: it adapts to the actual duration

of human tasks and it optimizes the management of the fault recovery actions,500

which can be delayed to avoid a complete stop of the production, giving priority,

e.g., to the preparation of a WIP part for another agent before restoring the

failed one.

An example of the latter situation is shown in Figs. 11a and 11b, which

505 compare two typical cases for the S and V conditions, respectively. With the

static scheduler, the human recovery action (o5) is planned as soon as possible

after the failure of task o14 (at t ≈ 200 s). However, this leads to a complete

stop in the production and long idle times of all three agents, since IRB has no

feasible operation to perform. Conversely, the dynamic scheduler inserts task

11 in the human plan before the recovery action to allow IRB to continue the510

assembly of a product, which is then ready for the human task o12. In this way,

the sum of the idle times of all resources is minimized.

On the other hand, the comparison between conditions V and H is more

challenging. The reason is twofold. First, cycle time data show high variability

in the H case. This can be due either to the use of haptic interfaces or to the515
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small amount of available data. Second, since the difference between conditions

V and H lies in a change of interface, it is critical to understand how the two

approaches influence not only the performance, but also the attitude of the

operator. To gather more data for the comparison between the interfaces, the

experimental campaign was extended to other 4 novice volunteers (different520

from those that performed the first 12 tests), for a total of 16. Two of them 

tried the pair VH, and the other two the pair HV. We obtained the informed 

consent also for these additional participants and the experimental protocol was 

the same applied for the other 12. Fig. 10b shows the cycle times achieved with

conditions V and H considering all 16 participants. One can notice that the large525

dispersion displayed in Fig. 10a is no longer present in the results obtained for 

the H condition and the performance in the two conditions is comparable.

Two other aspects were additionally taken into account, which are discussed

in the following: the frequency with which the experimenter directed his/her

gaze towards the screen, and the users’ subjective impressions on the performed530

HRC task. The first was measured from videos acquired by a webcam mounted 

below the screen (see Fig. 8). The second was assessed through questionnaires 

filled in by volunteers just after their trials.

6.2. The role of tactile communication

535 Fig. 12a reports the average number of looks the operators gave to the screen

per operation. When only the visual interface is present (V case), the average

number of looks remains constant, slightly above 1. This is reasonable since

the operator had to look at the screen at least once per operation, to know

which task to perform. The extra gazes mostly account for occasional double

checks. Conversely, when the tactile instructions are introduced, experimenters540

consistently gave fewer looks to the screen, with a median of 0.1 looks per

operation that constitutes a significant reduction over the V case (p = 0.0010).

Residual looks concentrate during idle time periods, between the end of a task

and the reception of the next haptic command, or occasionally to check the

received haptic command.545
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Figure 12: (a) Average number of looks per operation for V and H conditions and (b) cycle 

time variation from V to H.

Fig. 12b reports the ratio between the cycle time achieved in condition H and 

the one obtained in condition V by the same subject. Data show a significant 

reduction in the H-to-V cycle time ratios between the subjects that tested the H

condition first and those that tested it as the last trial (p = 0.0286). Instead, the

median cycle time in the V condition does not change significantly between the550

two groups (p = 0.4857). Thus, the level of expertise of the operator influences

more the performance attained using haptic interfaces and allows more expert

users to improve results, with a median reduction of the cycle time of 5.8%.

To obtain information on the participants’ subjective opinions, we relied on

two questionnaires: one focusing on the acceptance and usage of the haptic555

devices, the other comparing users’ impressions on the two feedback modalities.

The four subjects that never tested the H condition were not considered for the

survey as they had no experience of the haptic interface, whereas the S and V

conditions were considered as equal as they both rely on the visual interface

only.560

The first questionnaire was composed of 10 questions (Table 3, B1-B5, R1-

R5) formulated as five-level Likert items, with answers varying from “strongly 

disagree” to “strongly agree”, similarly to [28]. Results are shown in Fig. 13. 

Overall, the interfaces were not perceived as cumbersome or obstructing, as only
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Table 3: Questionnaires answered by the 12 subjects.

Questions on the haptic interfaces (5 levels Likert items)

B1/R1: I found the vibrotactile bracelets/ring very cumbersome to use.

B2/R2: Vibrations produced by the bracelets/ring are easy to distinguish.

B3/R3: Wearing the bracelets/ring impedes some movements.

B4/R4: The vibration is annoying.

B5: With the haptic feedback I can avoid looking at the screen.

R5: The tactile acknowledgement produced by the ring is useful.

Questions on the two feedback modalities (7 levels linear scale)

F1: It is easy to use.

F2: Using it is effortless.

F3: I don’t notice any inconsistencies as I use it.

F4: I can recover from mistakes quickly and easily.

F5: I can use it successfully every time.

F6: I learned to use it quickly.

F7: I easily remember how to use it.

F8: I am satisfied with it.

F9: The collaboration proceeded smoothly.

F10: I complete the operation more quickly when using it.

one person agreed with statements B1 (subject #6) and R1 (subject #11), and565

nobody agreed with B3 and R3. Vibrations produced by the ring were easily

distinguishable and not annoying (nobody disagreed with R2 and nobody agreed

with R4), while vibrations produced by the bracelets were perceived as difficult

to distinguish by two subjects (#6 and #11), and annoying by the same two

people plus another one (#8). Nobody disagreed with statement R5.570

The questionnaire to compare the two feedback modalities was formulated 

as a linear scale going from 1 (only visual feedback) to 7 (visual plus tactile feed-

back), with statements taken in part from the USE Questionnaire [36] (Table 3,
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Evaluation of haptic devices
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strongly agree

Figure 13: Answers of the 12 subjects that tested the H condition to the questions on the 

vibrotactile devices (Table 3, B1-B5 for the bracelets, R1-R5 for the ring). Ratings express the 

level of agreement with the statement according to a five-level Likert scale.

F1-F10). The distribution of the replies of each subject is shown in Fig. 14.

575 By adding the ratings given to all questions, ranging from a minimum score 

of 10 to a maximum of 70, we distinguished between two attitudes: preference 

for the V condition (score 10–40, subjects #6, 8, 11) and preference for the H 

condition (score 41–70, the other 9 subjects). Although some people preferred 

the V condition, there was an overall preference for the H condition, as 75% of

580 the subjects appreciated the use of haptic feedback. The bottom part of Fig. 14 

includes a table summarizing the trials performed by the 12 experimenters that 

tested the haptic feedback and the percentage of looks given to the screen dur-

ing the H trial with respect to the other one. Nine out of twelve subjects have a 

percentage of looks that is � 50%, meaning that while testing the H condition

585 they followed the haptic instructions, without the need of looking at the screen. 

The relation between the order of execution and task performance has al-

ready been discussed, and we noticed that it might have also influenced the 

acceptance of condition H, as the two most negative evaluations came from sub-

jects that tested the haptic interface in the first trial (#6, 11). Both of them

590 negatively evaluated the haptic bracelets (they disagreed with statement B5) 

and relied more on the screen than on the haptic interfaces during their H trial,
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Evaluation of the two feedback modalities per person

1
2
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4
5
6
7
8
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11
12

020406080100 20 40 60 80 100

Percentage

1 (V)

2

3

4

5

6

7 (H)

# Order Looks (%)

1 HS 56.8

2 SH 14.5

3 SH 26.4

4 HV 0.0

5 HV 22.2

6 HS 73.7

# Order Looks (%)

7 VH 8.7

8 VH 4.8

9 VH 10.5

10 HV 5.0

11 HV 100

12 VH 12.0

Figure 14: Top: answers of the 12 subjects that tested the H condition to the questions on 

feedback modalities (Table 3, F1-F10) according to a linear scale going from 1 (only visual) to 

7 (visual+tactile). Bottom: trials performed by each subject, and percentage of the number 

of looks in H condition over the condition with visual feedback only.
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as indicated by their percentage of looks. As expected, in the subjective evalua-

tion of the interfaces, the acceptance of the feedback devices plays a fundamental

role.

Overall, results show that the haptic interface has been appreciated and595

effectively used by most of the participants, despite the complexity of the task

and the variety of commands conveyed through the vibrotactile paradigm. In

particular, subjects that tested the H case as the second trial were able to

exploit the haptic interfaces to increase performance, showing the crucial role

of operators’ confidence with the task.600

7. Conclusions

This work builds upon the concept of human-robot collaboration, proposing

a framework that goes beyond the pure human-robot coexistence, achieving

a flexible and human-aware integration of different agents in a work-cell. The

contribution is twofold. First, a dynamic scheduler able to plan the operations of605

multiple agents with on-line adaptation to human completion times and flexible

management of failures is introduced. Second, a new tactile communication

paradigm based on the association between operations and the portion of the

workspace in which they are performed is presented. The scheduler and tactile

communication were tested in a realistic HRC scenario through an experimental610

campaign that involved 16 participants, for a total of about 6 hours of assembly

time.

The improvement brought in by the proposed dynamic scheduler with re-

spect to a static one used as baseline is evident: the cycle time decreases by

15.6% when using the dynamic scheduler. This is a consequence of the higher615

adaptability and optimal fault management of the latter. The differences be-

tween the adopted feedback methods (visual vs visual+tactile) are more subtle.

It was demonstrated that combining vibrotactile and visual inputs to give in-

structions during HRC tasks is the solution that is preferred by participants,

and is viable even in complex scenarios with many agents and operations. In620
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addition, more expert users tend to rely more on the haptic interfaces, thus

avoiding looking at the screen. This allows them to improve their performance.

This paper is a first step towards the understanding of the implications of

using vibrotactile feedback in combination with dynamic scheduling for complex

collaborative assembly tasks. To advance the described results and ensure the625

usability and acceptance of the proposed collaboration paradigm in real-world

contexts, further analyses on the visuo-haptic interface should be conducted.

These include, for example, i) studying whether and how the operators’ level of

expertise influences their preference for a certain type of interface, ii) investigat-

ing whether and how the use of tactile information during the training of workers630

can affect their learning curve, and iii) determining what is the maximum num-

ber of different vibration patterns (corresponding to different operations) that

users can discriminate and remember without compromising their performance.

Another possible future research direction consists in examining whether the

use of haptic feedback can improve the interaction and cooperation between635

visually-impaired users and collaborative robots.
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