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Abstract
Continuum models of active nematic gels have proved successful to describe a
number of biological systems consisting of a population of rodlike motile sub-
units in a fluid environment. One of the prominent features of active systems
is their ability to sustain, above a critical threshold of the active parameter, an
autonomous collective motion that results in a spontaneous flow of particles.
In this paper we show that in a simple channel geometry, the characteristics
of this spontaneous motion are largely independent of the model that is used
to describe the dynamics of the active system, but are dictated by material
symmetry. The natural symmetry for active nematics in a channel is found to
be described by the Klein four-group K4 ' Z2 ×Z2. We perform a Lyapunov–
Schmidt reduction and an equivariant bifurcation analysis to show that the
K4-equivariance of the problem generically results in two pitchfork bifurca-
tions with four solution branches.
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1. Introduction

An active system is a collection of self-driven units that are able to continuously exchange
energy with the environment and create a collective motion. It is a recent physical paradigm
used to represent the collective dynamics of many biological systems such as filaments of the
cytoskeleton [15, 16], dense bacterial suspensions [20, 22, 23], and, on a more macroscopic
scale, also flocking of birds or fishes [1].

Since these systems are intrinsically out of equilibrium, it is possible to observe many inter-
esting instabilities that lead to very complex patterns of collective motion and self-organized
structures [3–5, 9, 10, 14], with features not observed in passive systems, such as intern-
ally generated flow patterns, large-scale collective motion, active turbulence, and sustained
oscillations.

A distinguishing feature of active system, and the most prominent example of collective
motion, is the spontaneous flow of particles induced by activity in a simple shallow channel
geometry. Specifically, when the active parameter crosses a suitable threshold the active sub-
units spontaneously flow along the channel in the absence of any external field.

However, even for this simple example, different models apparently predict different flow
profiles. For instance, the analyses in [3, 4, 15, 19] predict only one bifurcation mode at the
transition. In particular, when an active gel is confined between two channel walls and the
velocity vanishes on both walls, no net flow of particles is observed, but only a shear flow
with the formation of bands flowing in opposite directions. By contrast, other analytical and
numerical studies [11, 12, 18, 21] on similar equations show that both spontaneous flow in a
single direction and banding are possible at the same critical value of the activity. Therefore,
the flow-transition seems to have two equivalent modes, a condition which we refer to as ‘two-
fold degeneracy’ of the bifurcation.

In the present paper we show that this degeneracy is a generic feature for every
K4-equivariant system. That is, any active nematic model with symmetric boundary condi-
tions, regardless of the assumptions made to derive it and the specific equations obtained,
must have this degeneracy in the bifurcation modes. The bifurcation diagram is essentially
determined by the material symmetries of the system.

The paper is organised as follows. We present the problem in section 2. For the sake of con-
cretenesswewill adopt themodel described in [18], but any other set of equations, derived from
similar models and possessing the same equivariant properties, could be used. In section 3,
we show that the active instability is robust against changes of the model parameters. To
have a more precise picture of the bifurcation diagram beyond linear analysis, we perform
a Lyapunov–Schmidt reduction of our equations in section 4. In section 5 we find that the nat-
ural symmetries of an active nematic system are represented by the Klein group K4. By using
an equivariant bifurcation analysis, we then show that the obtained bifurcation diagram is a
generic feature of any system possessing K4 invariance. Finally, we draw the conclusions in
section 6.

2. Model description and linear analysis

In order to study the spontaneous flow in a channel geometry, we consider the continuum
equations, namely the balance of linear momentum and the director equation, as obtained in
[18]. The model described in [18] is based on the classical neo-hookean nematic elastomer
free-energy density per unit mass
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σ(ρ,Be,n,∇n) =
1
2
µ[tr(L−1Be− I)− log(det(L−1Be))]+

1
2
k|∇n|2, (1)

where n is the director or preferred orientation of the molecules, L is the elastomer shape
tensor representing the volume-preserving uniaxial stretch along the director, k is the Frank
constant, ρµ is the shear modulus, ρ is the density and Be is the effective left-Cauchy-Green
deformation tensor. The shape tensor is typically written as

L= a2(n⊗n)+ a−1
(
I−n⊗n

)
, (2)

where a is the material parameter3 that gives the amount of spontaneous elongation along n in
an uniaxially ordered phase. The shape tensor is spherical, prolate, or oblate, respectively, for
a= 1, a> 1 and a< 1.

A key ingredient of this model is that the stress in the material is allowed to relax, so that
the effective left-Cauchy-Green deformation tensor Be has its own evolution equation

D(B∇
e )+ ρ

∂σ

∂Be
= Ta, (3)

where D is the dissipation tensor, containing information about the relaxation times and vis-
cosity coefficients, B∇

e := (Be)
.
− (∇v)Be −Be (∇v)T is the codeformational derivative of

the effective left-Cauchy-Green deformation tensor, and Ta is the active tensor. We will take
Ta =− 1

2ρµζ I, where ζ is a coefficient that measures the strength of the activity. When the
relaxation times contained in D are much shorter than the characteristic times of deformation,
the material effectively behaves as a fluid and we obtain a model for an active nematic fluid.
We refer to [17, 18] for a more detailed derivation of the model equations.

The existence of a spontaneous flow in a shallow channel is a characteristic behaviour of
active nematics. We consider an active nematic liquid crystal, confined between two parallel
plates at z= 0 and z=L (see figure 1). For simplicity, we consider a system with translational
invariance along x, and we assume that the unknown fields are constrained to lie in the (x, z)-
plane and depend only on the transverse variable z. The nematic director field is determined
by the angle θ(z) that n forms with the x-axis. We assume parallel boundary conditions so
that θ(0) = θ(L) = 0. The velocity of the fluid, v(z), is along the x-direction (so that the only
non-vanishing component is vx(z)) and satisfies the no-slip condition at the channel walls.

Within the active fluid approximation, the governing equations are given in equations (27a)
and (27b) of [18]. We write them in dimensionless form and introduce the following nondi-
mensional variables,

ξ = z/L, V(ξ) = vx(z)τ/L, q(ξ) = θ(z), (4)

where τ is the material relaxation time (contained in the definition ofD, see [17]) that controls
the time evolution of Be via equation (3). The non-dimensional equations of motion read as

4(a3 − 1)q ′
(
2V ′ sin(2q)

(
(a3 − 1)cos(2q)− 2aζ cos(2q)

))
−V ′ ′

(
4(a6 − 1)cos(2q)− 5a6 +(a3 − 1)2 cos(4q)+ 2a3 − 5

)
= 0, (5a)

(a3 − 1)rV ′
(
(a3 + 1)cos(2q)− a3 + 1

)
+ 2a2q ′ ′ = 0, (5b)

3 In nematic elastomer theory the shape parameter a is usually denoted with ℓ∥, and called effective step-length along
the direction parallel to n.
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Figure 1. Schematic representation of the channel geometry. Translational invariance
along the x-axis ensures that all the unknown fields only depend on the transverse vari-
able z, and that vz = 0. We assume no-slip walls at z= 0, z=L, and parallel boundary
conditions for the nematic director.

where the dimensionless ratio r := µL2/k= (L/Le)2, compares the length of the channel, L,
with an ‘elastic length’, Le, defined as Le =

√
k/µ. In equation (5), there are two unknown

fields,V(ξ) and q(ξ), and three dimensionless parameters, namely, a, r and the activity strength
ζ. In an abstract settingwe canwrite equation (5) asF(U,ν) = 0whereU= (V,q), ν = (a,r, ζ)
and we introduce a smooth mapping F : X×R3 → Y, between Banach spaces X, Y. We can
typically choose X= C2

0[0,L] and Y= C0
0[0,L]. We observe that F(0,ν) = 0 for any value of

the parameters ν and we want to explore the possible bifurcations from the trivial solution. A
necessary condition for a bifurcation to occur at ν = νcr is that the linear operator L, defined as
the Frechet derivative L := FU(0,νcr), is not invertible. This amounts to studying the nontrivial
solutions of the linearized equations

V ′ ′ − a(a3 − 1)ζq ′ = 0, (6a)

a2q ′ ′ +(a3 − 1)rV ′ = 0. (6b)

It is straightforward to see that the linear problem (6), with θ(0) = θ(L) = 0 and vx(0) =
vx(L) = 0, has only the trivial solution (and thus ker(L) = {0}) unless ζ has one of the critical
values

ζ = n2
4π2a

(a3 − 1)2r
, (7)

with n ∈ Z−{0}. For simplicity, we only consider the first buckling mode and take n= 1

ζcr =
4π2a

(a3 − 1)2r
. (8)

When ζ = ζcr, there exist non-trivial solutions to Lu= 0. In such a case, the null-space N=
ker(L) is two-dimensional and is generated by the vectors u1 = (V1,q1) and u2 = (V2,q2), with

V1(ξ) = 1− cos(2πξ), V2(ξ) = sin(2πξ), (9a)

q1(ξ) =
r(a3 − 1)
2πa2

sin(2πξ), q2(ξ) =− r(a3 − 1)
2πa2

(1− cos(2πξ)). (9b)

The first of these solutions corresponds to a net flow of particles, while the second represents
the banding of particles flowing in opposite directions (see figure 2).
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Figure 2. Schematic representation of the bifurcation modes as given in equations (9).
Red arrows represent the velocity field and blue lines identify the director field. Left and
right pictures show, respectively, V1, q1, and V2, q2.

3. Robustness against parameter changes

Before analysing the bifurcation in more details, it is interesting to see whether the linear
bifurcation analysis, and in particular the mode degeneracy, is robust to model parameter
changes. We consider: (1) a different active tensor, (2) one more relaxation time, (3) a dif-
ferent boundary condition for the velocity, and (4) free anchoring conditions for the director4.
We refer the reader to [13] for the details of the calculations, which, anyway, are very similar
to those presented in section 2. For shortness, in the present section we simply report the main
results.

More precisely, in case (1) we take Ta =− 1
2ρµζL, as opposed to Ta =− 1

2ρµζ I which
we have used in the previous section; while in case (2) we posit a dissipation tensor of the
form D= (L−1 ⊗L−1)T, where T now contains two different relaxation times (see [13, 17]
for details). Introducing more relaxation times entails considering a larger class of possible
viscosity coefficients. As a third example, in case (3), we change the no-slip boundary condi-
tion at the wall z=L, and impose a free boundary condition v ′x(L) = 0. Finally, in case (4), we
assume free anchoring for the director: q ′(0) = q ′(L) = 0.

We find that the qualitative features of the bifurcation diagram do not change in cases (1)
and (2), only the value of the critical activity is rescaled (see table 1). Therefore, the linear
analysis of the bifurcation and the degeneracy of the modes is unaffected by different active
tensors or viscosity coefficients in its fundamental picture. It is worth remarking that these two
cases maintain the full symmetry of the original problem.

By contrast, in case (3), the new boundary condition induces a symmetry change in the
problem, the symmetry group is now a proper subgroup of the original one. As we shall see,
this reduces the dimension of ker(L) and changes the nature of the bifurcation.

4 We thank the anonymous referee for bringing this interesting case to our attention.
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Table 1. Critical activity in the four different cases. The topological features of the
bifurcation are not affected by the parameter changes studied in (1), (2) and (4).
However, in case (4) the banding mode disappears and is replaced by a solution with
v= 0 and an arbitrarily uniformly tilted director field. By contrast, the boundary condi-
tion change considered in (3) breaks the K4-symmetry of the problem and modifies the
number of the bifurcation modes.

Case ζc dim ker(L)

(1)
a

a3 + 1
4π2a

(a3 − 1)2r
2

(2)
4π2a

(a3 − 1)2r
2

(3)
π2a

(a3 − 1)2r
1

(4)
π2a

(a3 − 1)2r
2

Case (4) deserves a separate discussion, as we still have two independent solutions, but now
ker(L) is generated by u(4)1 = (V(4)

1 ,q(4)1 ) and u(4)2 = (V(4)
2 ,q(4)2 ), with

V(4)
1 (ξ) = sin(πξ), V(4)

2 (ξ) = 0, (10a)

q(4)1 (ξ) =
r(a3 − 1)

πa2
(
1+ cos(πξ)

)
, q(4)2 (ξ) = 1, (10b)

to be compared with (9). Hence, the general solution still comprises a spontaneous flow mode,
but the banding mode is replaced by a solution with v= 0 and an arbitrarily uniformly tilted
director field. However, as we shall see in section 5, the topology of the bifurcation diagram
still coincides with that of cases (1) and (2).

The following table 1 summarizes the main conclusions

4. Lyapunov–Schmidt reduction and bifurcation diagram

In section 3 we have seen that the qualitative features of the bifurcation, and in particular the
degeneracy of the modes, are robust to parameter changes. In order to obtain a more precise
picture of the bifurcation diagram we perform a nonlinear analysis. A standard method in
this context is the Lyapunov–Schmidt reduction [6, 7]. This technique allows us to reduce the
problem to finite dimensional, and write a finite-dimensional bifurcation equation that is much
easier to analyse than the original problem.

It is possible to show that L is a Fredholm operator, so that we can split the Banach spaces X
and Y into the direct products X= N⊕N⊥ and Y= R⊕R⊥, where N= ker(L), R= range(L),
dim(N) = 2, codim(R) = 2, and we have implicitly used the L2-scalar product 〈·, ·〉 to define
the orthogonal complements N⊥ and R⊥. Every U ∈ X can be decomposed into the sum
U= u+w, with u ∈ N and w ∈ N⊥. Likewise, our problem F(U,ν) = 0 can be split into an
equivalent pair of equations,

QF(u+w,ν) = 0, (11a)

(I−Q)F(u+w,ν) = 0, (11b)

6
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where Q is the orthogonal projector onto R and I is the identity. Equation (11a), allows us to
derive w as a function of u and ν, while equation (11b), once we substitute w= w(u,ν), is
a finite-dimensional equation that yields a complete, albeit local, picture of the bifurcation.
Finally, we recall that, in our functional setting, it is often convenient to use the identity R⊥ =
ker(L†), where L† is the adjoint operator, to calculate R and R⊥.

In order to solve (11a), we look for solutions that are linear combinations of u1 and u2, as
given in (9), plus unknown functions belonging to N⊥

U=
(
V(ξ),q(ξ)

)
= αu1(ξ)+βu2(ξ)+

(
wv(ξ),wq(ξ)

)
, (12)

with

〈
(
wv,wq

)
,u1〉= 〈

(
wv,wq

)
,u2〉= 0. (13)

To find the projector Q onto R, we use R= ker(L†)⊥. The kernel of L† has a similar structure
to N, indeed it is still two-dimensional and its generating vectors, u∗1 and u∗2 , are found to be
[13]

V∗
1(ξ) =

(a3 − 1)r
8π

(
1− cos(2πξ)

)
, V∗

2(ξ) =
(a3 − 1)r

8π
sin(2πξ), (14a)

q∗1(ξ) = sin(2πξ), q∗2(ξ) = cos(2πξ)− 1. (14b)

Furthermore, it is possible to show by direct computation that 〈u∗1 ,u∗2〉= 0. Hence
equation (11a) reads

QF(U,ν) = F(U,ν)− 〈F(U,ν),u∗1〉
‖u∗1‖2

u∗1 −
〈F(U,ν),u∗2〉

‖u∗2‖2
u∗2 = 0, (15)

with U as given in (12). This equation allows us to uniquely find
(
wv(ξ),wq(ξ)

)
for any given

values of the amplitudes α, β and the material parameters. However, the explicit calculations
can be very cumbersome so that it is usually only possible to find an asymptotic approximation
of w when α,β � 1. After some algebra with the aid of Mathematica, which we omit for
brevity, we find the following form of the

(
wv(ξ),wq(ξ)

)
wv(ξ) =

3∑
k=1

ak(1− cos(2π kξ))+
3∑

k=1

bk sin(2π kξ )

+ ξ (c2 sin(2πξ)+ c1 cos(2πξ )+ c0)+O(4), (16a)

wq(ξ) =
3∑

k=1

dk(1− cos(2π kξ ))+
3∑

k=1

ek sin(2π kξ )

+ ξ ( f2 sin(2πξ)+ f1 cos(2πξ )+ f0)+O(4), (16b)

whereO(4) stands for correction terms of at least degree four in α and β. The long expressions
of the coefficients are reported in appendix.

With the aid of (16), the operator (I−Q)F(u+w(u,ν),ν) is now a finite-dimensional map
N→ R⊥ = ker(L†), so that it is possible to solve the bifurcation equation (11b) to determine
how the mode amplitudes α, β depend on the parameters. Since u∗1 and u∗2 are orthogonal
among themselves the bifurcation equation is equivalent to the two conditions

〈F(u+w(u,ν),ν),u∗1〉= 0, 〈F(u+w(u,ν),ν),u∗2〉= 0. (17)

After some algebra, we find the following bifurcation equations

7
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Figure 3. Bifurcation diagram obtained from equations (19a) (red) and (19b) (blue) with
a= 1.5, r= 1 and λ= (ζ − ζcr)/ζcr. Red and blue solid curves correspond, respectively,
to the spontaneous-flow mode u1 and the banding mode u2 as given in (9) and figure 2.
Black line represents the trivial solution.

α
[
(a3 − 1)2r2

(
(5− 3a3 + 6a6)α2

+(17− 7a3 + 14a6)β2
)
− 16π2a4λ

]
= 0, (18a)

β
[
(a3 − 1)2r2

(
(13+ 5a3 + 6a6)α2

+(25+ a3 + 14a6)β2
)
− 16π2a4λ

]
= 0, (18b)

where λ is such that ζ = ζcr(1+λ).
We see that α= 0, β= 0 is always a solution, as expected. The non trivial solutions are

obtained from (18) by eliminating one of the variables and are described by the following two
curves (

a3 − 1
)2 (

6a6 − 3a3 + 5
)
α2r2 − 16π 2a4λ= 0, β = 0; (19a)(

a3 − 1
)2 (

14a6 + a3 + 25
)
β2r2 − 16π 2a4λ= 0, α= 0. (19b)

The bifurcation diagram (figure 3) shows that two coincident pitchfork bifurcations occur at
λ= 0, i.e. ζ = ζcr, producing four solution branches. Two of these branches (solid red curve),
correspond to the spontaneous-flow mode u1, while the other two branches (solid blue curve)
represent the banding mode u2. The nonlinear analysis shows that, although dim(kerL) = 2,
the two bifurcation modes do not mix: only solutions with either α= 0 or β= 0 are observed,
at least close to the bifurcation. Furthermore, it is clear from equation (19) that the mater-
ial parameter r do not affect the qualitative features of the bifurcation diagram since it only
rescales the amplitudes of the solutions.

5. Symmetries and equivariant analysis

In sections 3 and 4 we have seen that the nature of the bifurcation is not affected by a change
in the model parameters. Furthermore, this result is in agreement with the analyses in [11, 21]

8
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Table 2. K4-action on the amplitude plane (α,β), with α̂ and β̂ the transformed coordin-
ates. The bifurcation equations (18) are equivariant with respect to the matrix represent-
ation Ti.

Physical interpretation α̂ β̂ Ti

Identity g1 α β

(
1 0
0 1

)
Mirror reflection about z= L/2 g2 α −β

(
1 0
0 −1

)
Mirror reflection about x= 0 g3 −α −β

(
−1 0
0 −1

)
π-Rotation g4 −α β

(
−1 0
0 1

)

which were performed on different sets of equations for active nematic fluids. Therefore, it is
natural to ask whether the bifurcation is only determined by the symmetry of the system. In
this section we give a positive answer to this question.

The symmetries of a system of ODEs are specified in terms of a group of transformations
of the variables that preserves the structure of the equations. An equation F(U,ν) = 0 is said
to be equivariant under the action of a group G if

gF(U,ν) = F(gU,ν), for all g ∈ G, U ∈ X. (20)

This notion is important because if F isG-equivariant andU is a solution, also gU is a solution
for every g ∈ G, and G is a symmetry group for the problem.

In our case the system of equation (5) is equivariant under the Klein four-group K4
∼= Z2 ×

Z2. Specifically, we obtain an equivalent set of equations under a transformation (ξ,V,q) 7→
(ξ̂, V̂, q̂) in the following four cases

g1: Identity and nematic symmetry. These transformations both act as the identity on
equation (5) since our model satisfies the head-tail symmetry of the director by construc-
tion. The physical transformations correspond, respectively, to (ξ,V,q) 7→ (ξ,V,q) and
(ξ,V,q) 7→ (ξ,V,π+ q);

g2: Mirror reflection about the line z= L/2. It corresponds to (ξ,V,q) 7→ (1− ξ,V,−q).
Hence, the derivatives transform according to (V ′,V ′ ′) 7→ (−V ′,V ′ ′) and (q ′,q ′ ′) 7→
(q ′,−q ′ ′);

g3: Mirror reflection about the line x= 0. It corresponds to (ξ,V,q) 7→ (ξ,−V,π− q).
Hence, the derivatives transform according to (V ′,V ′ ′) 7→ (−V ′,−V ′ ′) and (q ′,q ′ ′) 7→
(−q ′,−q ′ ′);

g4: Rotation of π about the origin. It corresponds to (ξ,V,q) 7→ (1− ξ,−V,π+ q). Hence, the
derivatives transform according to (V ′,V ′ ′) 7→ (V ′,−V ′ ′) and (q ′,q ′ ′) 7→ (−q ′,q ′ ′). This
is the product of g2 and g3.

Correspondingly, we can identify a group action on R2 that describes how g1, g2, g3, g4
transform the coordinates in the plane (α,β). The group element gi is then represented by a
2× 2 matrix Ti that can be used to analyse the bifurcation equations (18) (or (19)) and explore
the symmetry of the solutions. The matrices Ti, i = 1,2,3,4, are reported in table 2.

9
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The bifurcation analysis is carried over the (α,β)-plane. To this end, it is useful to introduce
a smoothmapping f : R2 ×R→ R2 : (x,λ) 7→ f(x,λ) so that equation (18) writes as f(x,λ) = 0
where x= (α,β), and we only keep the explicit dependence on the bifurcation parameter λ.
The bifurcation occurs at λ= 0.

A key notion in this analysis is that of fixed-point space, associated with a subgroup Σ, and
defined as the subspace of all the vectors that are fixed by any g ∈ Σ. In our specific case, we
have

Fix(Σ) = {x ∈ R2 : Tix= x, ∀ Ti ∈ Σ}. (21)

Because f(·,λ) is K4-equivariant, it maps Fix(Σ) to Fix(Σ), and the bifurcation analysis can
be restricted to Fix(Σ). The symmetry of a solution x is specified by its stabilizer, Stab(x),
consisting of all the transformations that leave x fixed. In our case, for a vector x ∈ R2, we can
write

Stab(x) =
{
g ∈ K4, Tgx= x

}
. (22)

For our problem, we have the following fixed-point spaces and stabilizers:

(i) All points in the (α,β)-plane are fixed by the identity T1. Therefore, Fix(g1) = R2.
(ii) All points of the form (α,β) = (1,0) are fixed by Σ1 = 〈T2〉. Therefore, Fix(Σ1) coin-

cides with the α-axis and Stab
(
(1,0)

)
=Σ1.

(iii) Only the origin is fixed by Σ2 = 〈T3〉. Therefore, Fix(Σ2) =
{
0
}
.

(iv) All points of the form (α,β) = (0,1) are fixed by Σ3 = 〈T4〉. Therefore, Fix(Σ3) coin-
cides with the β-axis and Stab

(
(0,1)

)
=Σ3.

(v) Finally, Fix(K4) =
{
0
}
.

Hence, there are two axial subgroups ofK4,Σ1 andΣ3, i.e. stabilizers with dim(Fix(Σ1)) =
dim(Fix(Σ3)) = 1. The advantage of this formulation is that we can now use the equivariant
branching lemma [7, 8] to make predictions about the symmetry of solutions at steady bifurc-
ations, based on the symmetry of the bifurcation problem. We state it in a generalized form [8]
which applies to our problem, where G can act reducibly on R2, but only the origin is fixed by
G, Fix(G) = {0}.

Theorem 5.1 (generalized equivariant branching lemma). Let G be a finite group or a com-
pact Lie group acting on a real vector space, V.

(a) Assume Fix(G) = {0}.
(b) Let f(x,λ) = 0 be a G-equivariant bifurcation problem with Dxf(0,0) = 0.
(c) Assume that Dxfλ(0,0)w 6= 0 for nonzero w ∈ Fix(Σ), where Σ is a stabilizer subgroup of

G.
(d) Let dim(Fix(Σ)) = 1.

Then, there is a smooth solution branch to f(x,λ) = 0 emanating from (0,0) of the form{
x= sw,
λ= λ(s),

where s is a scalar that parametrises the solution branch.

This theorem guarantees the existence of a solution branch for every one-dimensional fixed
point space. As such, it characterises the unique smooth solution branch in terms of the axial
stabiliser subgroups. Indeed, x ∈ Fix(Σ) and hence the solutions obtained have symmetries

10
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includingΣ, soΣ⊂ Stab(w). SinceΣ is a stabilizer subgroup,Σ= Stab(w), and the symmetry
of the solution x is actually Σ.

Our previous analysis shows that we only have two axial subgroups of K4, namely Σ1

and Σ3, so that, by the branching lemma, there must be two independent symmetry-breaking
branches, having symmetry Σ1 and Σ3. This result is generic for any system of equations that
possesses K4-equivariance. By contrast, when we consider a free boundary condition v ′x(L) =
0, as in section 3, we loose the global K4-symmetry since our problem is no longer equivariant
with respect to g2 and g4. In this case dim(ker(L)) = 1 so that we observe only one bifurcation
mode and no degeneracy.

Furthermore, it is possible to show that generically, for K4-symmetry, the only solutions
expected at bifurcation are those supplied by axial subgroups (see [7], theorem 2.24, p 42), so
that there are no solutions other than those predicted by the equivariant branching lemma.

6. Conclusions

In the present article, we studied the spontaneous flow arising in active nematics and the robust-
ness of its qualitatively features over material parameter changes. In particular, we noticed that
the two-fold mode degeneracy observed in some analytical and numerical studies [11, 18, 21]
does not depend on the particular set of equations used to describe active matter and is largely
unaffected by parameter changes.

A Lyapunov–Schmidt reduction and a subsequent equivariant bifurcation analysis allowed
us to explore the nature of the bifurcation more carefully. Hence, we find that the bifurca-
tion diagram generically comprises two coincident pitchfork bifurcations lying in orthogonal
planes, producing four solution branches that intersect only at the origin. Furthermore, we
showed that this bifurcation diagram is generic for any system possessing K4 ' Z2 ×Z2 sym-
metry. Therefore it should be observed in any theory of active nematic material, regardless
of the model assumptions, provided it satisfies the natural K4 symmetry of these systems. In
physical terms, two modes of instability (usually spontaneous flow and banding) should be
observed in active nematics at the same critical value of the active parameter. In some cases,
the physical realisation of the two bifurcation modes is different, and band instability does
not occur. However, regardless of the physical characteristics of the modes, the bifurcation
diagram has the same topology, essentially induced by the symmetry of the problem.

Finally, we believe that analysing the active flow through the conceptual framework of
symmetry could be a fruitful endeavour also in more complicated cases. For example, it is
known that 2D and 3D active flows have different characteristics [2, 24], but little is currently
known about the behaviour of confined active material in three dimensions. The simplification
resulting from explicitly considering the symmetries of the system could make the 3D prob-
lem more tractable and possibly help to understand the key differences between 2D and 3D
coherent flow.
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Appendix. Coefficients

a1 = [96π2(b2 + 12π2)(3+ 40π2 + 48π4)]−1

×
{
3
[
−
((
1+ 12π 2

)(
−6a6 − 15a3 + 16

(
3a6 − 3a3 + 1

)
π 2 − 23

)
α3

)
− 8π

(
3+ 4π 2

)(((
6a3 − 7

)
π2 − 1

)
a3 +π 2 − 1

)
βα2

−
(
1+ 12π 2

)(
7
(
−2a3 + 16

(
a3 − 1

)
π2 − 5

)
a3 + 80π 2 − 59

)
β2α

− 8π
(
3+ 4π 2

)(
−a3 +

(
14a6 − 11a3 + 13

)
π2 − 1

)
β3

]
b4

− 2π 2
[(

1+ 12π 2
)(

4π 2
(
18a6 − 17a3 + 7

)
+ 3

(
54a6 − 35a3 + 37

))
α3

+ 144π
(
3+ 4π 2

)(((
6a3 − 7

)
π2 − 1

)
a3 +π 2 − 1

)
βα2

+
(
1+ 12π 2

)((
858a6 − 645a3 + 4

(
202a6 − 173a3 + 139

)
π 2 + 723

)
β2

+ 24
(
1− 8π 2

)
λ
)
α+ 48π

(
3+ 4π 2

)
β

×
(
3
(
−a3 +

(
14a6 − 11a3 + 13

)
π 2 − 1

)
β2 − 4π 2λ

)]
b2

+ 576π 4
(
12π 2α+α+ 8π 3

(
3+ 4π2

)
β
)
λ
}

(23)

a2 =

(
8a6 − 7a3 + 5

)
b2αβ2

12π 2
(24)

a3 =

(
18a6 − 17a3 + 7

)
b2α

(
α2 − 3β2

)
384π 2

(25)

b1 = [192π 2
(
1+ 4π 2

)(
3b2 + 4π 2

)
]−1

×
{[

24
(
6a6 − 3a3 + 5

)
πα3 +

((
46− 680π 2

)
a6 +

(
85+ 772π 2

)
a3

− 92π2 + 157
)
βα2 + 24

(
14a6 − 7a3 + 17

)
πβ2α

+
(
−58a6 + 281a3 − 4

(
562a6 − 533a3 + 419

)
π 2 + 193

)
β3

]
b4

+ 384π 2
[(

−a3 +
(
14a6 − 11a3 + 13

)
π 2 − 1

)
β3

+
(((

6a3 − 7
)
π 2 − 1

)
a3 +π 2 − 1

)
α2β

+π (6πβ−α)λ
]
b2 − 6144π 6βλ+

24
1+ 12π2

[((
9− 12π 2

)
b2 + 4

(
π 2 + 36π4

))
β

×
(((

a3 +
(
−6a6 + 7a3 − 1

)
π2 + 1

)
α2

+
(
a3 +

(
−14a6 + 11a3 − 13

)
π 2 + 1

)
β2

)
b2 + 16π4λ

)]
+
[
12π

(
−3b2 + 16π 4 + 4

(
b2 + 1

)
π 2

)
α
(
b2
((

6a6 − 3a3 + 5
)
α2

+
(
14a6 − 7a3 + 17

)
β2

)
− 16π 2λ

)]
/(3+ 4π2)

}
(26)

b2 =

(
8a6 − 7a3 + 5

)
b2β

(
β2 −α2

)
24π 2

(27)

b3 =−
(
18a6 − 17a3 + 7

)
b2β

(
β2 − 3α2

)
384π 2

(28)
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d1 =
[
384π 3

(
3b2 + 4π 2

)(
3+ 40π 2 + 48π 4

)]−1

×
{[

− 36
(
6a6 − 3a3 + 5

)
π
(
1+ 12π 2

)
α3

−
(
3+ 4π 2

)(
46a6 + 49a3 + 12

(
10a6 + 19a3 + 43

)
π 2 + 121

)
βα2

− 36
(
14a6 − 7a3 + 17

)
π
(
1+ 12π 2

)
β2α

+
(
3+ 4π 2

)(
58a6 − 101a3 + 12

(
142a6 − 95a3 + 137

)
π 2 − 13

)
β3

]
b5

− 48π 2
[(
a3 + 1

)
β
(
13α2 + 17β2

)
+ 8π4β

((
42a6 − 43a3 + 13

)
α2

+
(
98a6 − 95a3 + 73

)
β2 + 12λ

)
+ 2π2β

((
126a6 − 155a3 + 13

)
α2 +

(
294a6 − 319a3 + 185

)
β2 + 36λ

)
+ 12π3α

((
6a6 − 3a3 + 5

)
α2 +

(
14a6 − 7a3 + 17

)
β2 − 12λ

)
+πα

((
6a6 − 3a3 + 5

)
α2 +

(
14a6 − 7a3 + 17

)
β2 − 12λ

)]
b3

+ 768π 5
(
12π 2α+α+ 14π

(
3+ 4π 2

)
β
)
λb

}
, (29)

d2 =

(
2a6 − a3 + 2

)
b3(α−β)β(α+β)

24π 3
(30)

d3 =

(
6a6 − 3a3 + 5

)
b3β

(
β2 − 3α2

)
768π 3

(31)

e1 =
[
96π 3

(
1+ 4π 2

)(
b2 + 12π 2

)]−1

× b
{
6α

((
6a6 − 3a3 + 5

)
α2 +

(
14a6 − 7a3 + 17

)
β2

)
b4

−π 2
[(

18a6 + 91a3 − 4
(
198a6 − 199a3 + 65

)
π2 + 115

)
α3

+ 96π
(((

6a3 − 7
)
π 2 − 1

)
a3 +π 2 − 1

)
βα2

+
(
202a6 + 79a3 − 4

(
302a6 − 331a3 + 221

)
π 2 + 391

)
β2α

+ 96λα+ 96π
(
−a3 +

(
14a6 − 11a3 + 13

)
π2 − 1

)
β3

]
b2

+ 768π6(2πβ− 3α)λ+
[
12π 2

(
b2 − 48π 4 + 4

(
b2 + 1

)
π 2

)
×
(
β
((
a3 +

(
−6a6 + 7a3 − 1

)
π 2 + 1

)
α2

+
(
a3 +

(
−14a6 + 11a3 − 13

)
π 2 + 1

)
β2

)
b2 + 16π 4βλ

)]
/(π + 12π 3)

−
[
3
(
9b2 + 144π 4 + 4

(
b2 − 3

)
π 2

)
α
(
b2
((

6a6 − 3a3 + 5
)
α2

+
(
14a6 − 7a3 + 17

)
β2

)
− 16π2λ

)]
/(6+ 8π 2)

}
(32)

e2 =

(
2a6 − a3 + 2

)
b3αβ2

12π 3
(33)

e3 =

(
6a6 − 3a3 + 5

)
b3α

(
α2 − 3β2

)
768π 3

(34)

c0 =
(
2
(
π + 12π 3

))−1[
b2β

((((
6a3 − 7

)
π2 − 1

)
a3 +π 2 − 1

)
α2

+
(
−a3 +

(
14a6 − 11a3 + 13

)
π 2 − 1

)
β2

)
− 16π 4βλ

]
(35)
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c1 =
(
2
(
π + 12π 3

))−1[
β
((
a3 +

(
−6a6 + 7a3 − 1

)
π2 + 1

)
α2

+
(
a3 +

(
−14a6 + 11a3 − 13

)
π 2 + 1

)
β2

)
b2 + 16π 4βλ

]
(36)

c2 =
α
(((

−6a6 + 3a3 − 5
)
α2 +

(
−14a6 + 7a3 − 17

)
β2

)
b2 + 16π 2λ

)
8π (3+ 4π 2)

(37)

f0 =
bα

(
b2

((
6a6 − 3a3 + 5

)
α2 +

(
14a6 − 7a3 + 17

)
β2

)
− 16π 2λ

)
16π 2 (3+ 4π 2)

(38)

f1 =
bα

(((
−6a6 + 3a3 − 5

)
α2 +

(
−14a6 + 7a3 − 17

)
β2

)
b2 + 16π 2λ

)
16π 2 (3+ 4π 2)

(39)

f2 =−
(
4π

(
π + 12π 3

))−1[
b
(
β
((
a3 +(−6a6 + 7a3 − 1)π2 + 1

)
α2

+
(
a3 +

(
−14a6 + 11a3 − 13

)
π 2 + 1

)
β2

)
b2 + 16π 4βλ

)]
(40)

where b=
(
(a3 − 1)/a2

)
(µL2/k) =

(
(a3 − 1)/a2

)
r and λ= (ζ − ζcr)/ζcr.
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