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Abstract: In recent years, active periodic structures with in-time modulated parameters have drawn
ever-increasing attention due to their peculiar (and sometimes exotic) wave propagation proper-
ties. Although many experimental works have shown the efficacy of time-modulation strategies,
the benchmarks proposed until now have been mostly proof-of-concept demonstrators, with little
attention to the feasibility of the solution for practical purposes. In this work, we propose a micro
electro-mechanical system (MEMS) periodic structure with modulated electromechanical stiffness
featuring non-reciprocal band-gaps that are frequency bands where elastic waves are allowed to
travel only in one direction. To this aim, we derive a simplified analytical lumped-parameter model,
which is then verified through numerical simulations of both the lumped-parameter system and the
high-fidelity multiphysics finite element model including electrostatic effects. We envision that this
system, which can easily be manufactured through standard MEMS production processes, may be
used as a directional filter in MEMS devices such as insulators and circulators.

Keywords: periodic structures; MEMS; non-reciprocal; time modulation

1. Introduction

In mechanics, periodic structures are systems composed of the repetition of a unitary
cell with a well-defined topology and physical properties [1]. In the last few decades, they
have drawn an ever-increasing interest due to their ability to manipulate the propagation
of waves in a number of different ways [2]. From a mechanical standpoint, vibration
insulation and filtering are possibly their most interesting applications. Periodic structures
indeed feature frequency bands, known as band-gaps, where wave propagation is hindered.

In recent years, a wealth of works dealing with periodic structures with (periodi-
cally) time-varying properties have shown that even more complex phenomena can be
attained: selective wave filtering [3], topological pumping [4], and non-reciprocal wave
transmission [5] are a few examples. The latter consists, loosely speaking, of the fact that
wave propagation in a non-reciprocal medium is different depending on the propagation
direction. In the context of periodic structures, this reveals in the presence of the so-called
directional band-gaps and in a non-symmetric dispersion diagram [5–9]. In other words,
depending on the propagation direction, one may find band-gaps that are not present if
traveling in a different direction. In the case of 1D periodically modulated waveguides, di-
rectional band-gaps for right and left-propagating waves will appear in different frequency
intervals, thus realizing a directional filter. Many benchmarks have already been proposed
in the literature, as in [8], where an array of masses coupled through piloted magnets
have been studied, and in [7], where an elastic beam with periodic shunted piezoelectric
patches was experimentally tested. These solutions, however, are mainly proof-of-concept
demonstrators.

In this work, we propose a micro electro-mechanical system (MEMS) periodic structure
that can be used as a directional filter. In Radio Frequency (RF) applications, indeed, non-
reciprocal components have long been used for filters, insulators, and circulators [10,11].
Given the high demand for these components in modern telecommunication systems,
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MEMS filters [12] and non-reciprocal filters [13,14] have also been proposed to reduce the
footprint area of these devices and lower the production costs. To the best of the authors’
knowledge, however, all these implementations rely upon different kinds of electric circuit
resonators and typically operate in the range of MHz or even GHz. The solution we
propose in this work, instead, uses a mechanical array of resonators, whose equivalent
mechanical properties are modulated by means of the electrostatic forces at the interface of
properly placed parallel plate electrodes. For this reason, the layout we propose can even
be designed to work at frequencies in the range of a few tens of kHz.

The paper is organized as follows. In Section 2, a simplified electromechanic model for
the unitary cell of the system is derived; in Section 3, with the aid of a continuum model,
we find analytic expressions for the key parameters defining the non-symmetric dispersion
diagram of the structure; in Section 4, we numerically verify our model by means of a
high-fidelity multiphysics finite element model. Finally, conclusions are drawn in Section 5.

2. The Model

The system we propose is a 1-dimensional periodic waveguide, basically consisting of
a spring-mass chain with elastic suspensions and where each mass hosts a fixed electrode in
a dedicated cavity. Like the majority of inertial MEMS, the system features a 2D geometry,
which is imposed by the etching process of the silicon wafer. In this context, springs
are typically realized using folded beams [15]. The unitary cell of the periodic structure
is in turn composed of R = 3 sub-cells, with three being the minimum number of sub-
cells to obtain a wave-like traveling stiffness profile required to observe a non-reciprocal
behavior [16]. The stiffness modulation, as already mentioned, is achieved by regulating
the electrostatic forces acting between the fixed electrodes and the masses. The system is
qualitatively represented in Figure 1.

Figure 1. Unitary cell composed of three sub-cells. The masses (gray) are connected to each other
through folded beams (blue) and to the ground (red). The electrodes (yellow) are fixed and placed in
the hollowed masses. While the structure is set to a constant voltage V0, an alternate voltage Vi(t) is
imposed to each electrode i.

Let us now consider the sub-cell depicted in Figure 2, where the mass m is connected
to the following/preceding mass and to the ground by springs of elastic constant k and kg,
respectively. For the i-th mass, the equation of motion writes

mẍi + (2k + kg)xi − kxi−1 − kxi+1 − fel = 0, (1)
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where fel is the net electrostatic force acting on the mass. Considering only the right side of
the electrode, we can write its capacity as

CR(x) =
εA

x + x0
, (2)

where ε is the vacuum permittivity constant, A the area, and x0 the gap at rest. The
electromechanical attractive force can then be obtained from the capacitor potential energy
U as

fel,R =
∂U
∂x

=
1
2

∂CR
∂x

∆V2 = −1
2

εA
(x + x0)2 ∆V2, (3)

with ∆V = Ṽi − V0, Ṽi is the time-varying voltage applied to the electrode, and V0 the
constant voltage applied to the structure. Using a Taylor expansion about x = 0 and
neglecting O(x4) terms, we can write

fel,R ≈ −
εA
2

(
1
x2

0
− 2

x3
0

x +
3
x4

0
x2 − 4

x5
0

x3

)
∆V2. (4)

Figure 2. Sub-cell scheme considering a mass displaced by x. The area of interest for electrostatic
forces is highlighted in light green.

In the same way, for the left side, we have

fel,L =
1
2

εA
(x− x0)2 ∆V2 ≈ εA

2

(
1
x2

0
+

2
x3

0
x +

3
x4

0
x2 +

4
x5

0
x3

)
∆V2, (5)

so that, summing the two contributions, we have that the net electrostatic force is

fel = fel,L − fel,R ≈ εA

(
2
x3

0
x +

4
x5

0
x3

)
∆V2. (6)

As it can be observed, this configuration is self-equilibrated (electrostatic forces are
null for x = 0) and extends the linearity range of the parallel plate capacitor since the
quadratic terms are canceled out. Additionally, it can be seen how fel introduces a linear
and cubic voltage-dependant stiffness into the system. Setting the electrode tension to

Ṽi(t) = Va cos
(

ωmt− 2i
R

π

)
= Va cos θi, (7)

where i = {1, . . . , R} is the sub-cell ordinal, R = 3, and ωm is the modulation frequency,
we can develop the squared voltage difference as

∆V2 =

(
V2

a
2

+ V2
0

)
− 2VaV0 cos θi +

V2
a

2
cos(2θi). (8)
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Plugging (8) into (6), we obtain

fel = (kE0 − kE1 cos θi + kE2 cos(2θi))

(
1 +

2
x2

0
x2

)
x, (9)

where

kE0 =
2εA
x3

0

(
V2

a
2

+ V2
0

)
, kE1 =

4εA
x3

0
VaV0 , kE2 =

εA
x3

0
V2

a . (10)

According to (9), the electrostatic stiffness features a constant term and two harmonics
at ωm and 2ωm (for both the linear and cubic terms). However, considering typical values
V0 ∼ 10 V and Va ∼ 1 V, we have that

kE1

kE2
=

4V0

V1
∼ 40, (11)

and we can neglect the second harmonic.
Under the hypotheses of small displacements, we can also neglect the cubic stiffness,

and, substituting the electrostatic forces in the equation of motion, we can finally write

mẍi + (2k + kg − kE0 + kE1 cos θi)xi − kxi−1 − kxi+1 = 0 (12)

and recast the equations of motion for the i-th cell in matrix form as

Mẍi + K(t)xi −KLxi−1 −KRxi+1 = 0, (13)

where xi is the displacement vector of the i-th cell, xi−1 and xi+1 are the neighboring cell
displacement vectors, while KL/R are the corresponding left/right stiffness matrices, so
that Equation (13) writes:m 0 0

0 m 0
0 0 m


ẍ1
ẍ2
ẍ3

−
0 0 k

0 0 0
0 0 0


x−2
x−1
x0

−
0 0 0

0 0 0
k 0 0


x4
x5
x6

+

k∗ + kE1 cos θ1(t) 0 0
0 k∗ + kE1 cos θ2(t) 0
0 0 k∗ + kE1 cos θ3(t)


x1
x2
x3

 = 0 (14)

where k∗ = 2k + kg − kE0. Using this formalism, the asymmetric dispersion relation for the
lumped-parameter spatiotemporal cell can be computed with the Bloch Based Procedure
(BBP) illustrated in [6].

3. Parametric Analysis for Harmonic Modulation

In this section, we derive the modulation parameters that can be used to design a
structure satisfying a user-tailored dispersion relation. This can be performed, in theory,
by analyzing the quadratic eigenvalue problem (QEVP) stemming from the application of
the BBP to (13). However, even considering the simple case (described until now) of three
masses and truncating the solution to the first harmonic, the resulting equations feature
high-order polynomials with no closed-form solution. To circumvent this problem, we
turn to the analysis of a rod with elastic suspensions, which is the continuum equivalent
of a spring-mass chain system, and we seek a solution using the well-known Plane Wave
Expansion Method (PWEM) [17].
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3.1. Dispersion Relation for Rod on Elastic Foundations

Considering a rod with Young’s modulus E, density ρ, and cross-section area A, the
governing equation writes

EA
∂2u
∂x2 − γu = ρA

∂2u
∂t2 , (15)

where γ is the distributed ground stiffness and is modulated as

γ(x, t) = γ0 + γm cos(ωmt− κmx), (16)

where γ0 and γm are constant, and κm = 2π/λm is the modulation wavenumber, with λm
as the spatial periodicity of the spatiotemporal cell. To apply PWEM, both Floquet solution
u and stiffness γ are expanded in a Fourier series as

u =
+∞

∑
n=−∞

ûnei((ω+nωm)t−(κ+nκmx)), γ =
+∞

∑
p=−∞

γ̂peip(ωmt−κmx), (17)

which are first truncated to order N and then plugged into (15). Exploiting the orthogonality
property of the Fourier series, one can rid of the double summation generated by the γu
term, and finally, write a set of equations

EA(κ + qκm)
2ûq +

N

∑
n=−N

γ̂q−nûn = ρA(ω + qωm)
2ûq, (18)

where q ∈ Z is an additional index. Writing a number 2N + 1 of the above equation for
q ∈ {−N, . . . , N}, a square system in the coefficients ûq is obtained and, in matrix form,
writes as (

L0(κ) + ωL1 + ω2L2

)
û = L(κ, ω)û = 0, (19)

which is a QEVP that can be solved by imposing κ, and where û = [ûN , . . . , û−N ]
T . For

each κ, then 2(2N + 1) eigenfrequencies are obtained and the dispersion diagram can be
drawn.

3.2. Dispersion Analysis

To derive simplified formulas for the dispersion key characteristics, namely, directional
bandgap positions and amplitude, with respect to the modulation parameters, we loosely
retrace the steps presented in [5] for a simple rod with no elastic suspensions.

First, setting N = 1, we retain only the first harmonic in the solution. We also notice
that for the harmonic modulation in (16), the Fourier coefficients are γ̂0 = γ0, γ̂±1 = γm/2,
and γp = 0 for |p| ≥ 2. Let us define

ωγ =

√
γ̂0

ρA
, ωa =

√
γ̂1

ρA
, (20)

and the following dimensionless quantities

Ω? =
ω?λm

2πc0
, µ = κλm, (21)

where ? denotes a generic subscript and where c0 =
√

E/ρ. Using the expressions above,
we can write a 3× 3 dimensionless QEVP as

L(µ, Ω) = 0, (22)
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where the components of L are

L11 =
( µ

2π
+ 1
)2
− (Ω + Ωm)

2 + Ω2
γ, (23)

L22 =
( µ

2π

)2
−Ω2 + Ω2

γ, (24)

L33 =
( µ

2π
− 1
)2
− (Ω−Ωm)

2 + Ω2
γ, (25)

L12 = L21 = L23 = L32 = Ω2
a. (26)

As conducted in [5], we can focus on the forward and backward directional band-gaps
separately by considering the partitions of L(µ, Ω) pertaining to {û0, û−1} and {û0, û+1},
respectively. This way, the characteristic equation for the backward directional band-gap
writes

L11L22 − L12L21 = 0, (27)

that is, (( µ

2π
+ 1
)2
− (Ω + Ωm)

2 + Ω2
γ

)(( µ

2π

)2
−Ω2 + Ω2

γ

)
= −Ω2

a. (28)

The above equation is quartic; however, in the limit Ωa → 0 (no modulation), it turns
into two separate quadratic algebraic equations, whose solutions are

Ω1,2 = ±
√

Ω2
γ +

( µ

2π

)2
, (29)

Ω3,4 = −Ωm ±
√

Ω2
γ +

( µ

2π
+ 1
)2

. (30)

Similarly, from L22L33 = 0, we obtain

Ω5,6 = +Ωm ±
√

Ω2
γ +

( µ

2π
− 1
)2

. (31)

We can now obtain the wave number where the branches intersect by solving Ω1 = Ω3
and Ω1 = Ω5 for µ:

µF,B = ±π(1±Ωmσ), (32)

where

σ =

√
1 +

4Ω2
γ

1−Ω2
m

. (33)

The corresponding frequencies, finally, write

ΩF,B = Ω1(µF/B) =

√
Ω2

γ +
(1±Ωmσ)2

4
, (34)

so that the positions of the directional band-gaps openings are defined by the two sets
{µB, ΩB} and {µF, ΩF}. The frequency separation between these two points can be com-
puted as the difference

∆ΩFB = ΩF −ΩB =
Ωmσ√

Ω2
γ + (1 + Ωmσ)2/4 +

√
Ω2

γ + (1−Ωmσ)2/4
, (35)
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which, considering Ωm � 1, can be approximated as

∆ΩFB ≈
Ωmσ√

1 + 4Ω2
γ

≈ Ωm. (36)

The analytic dispersion branches and the parameters derived above are shown in
Figure 3a and compared to the numerical results obtained by exactly solving (22).

Figure 3. Dispersion relations for a rod on elastic suspensions with space–time modulation. Nu-
merical results (black lines) are compared to the analytic results (colored lines), and key properties
are shown on the dispersion diagrams for completeness. (a) Case with no amplitude modulation
(γm = 0); (b) with constant properties in time (ωm = 0); (c) with both modulations active.

Another important parameter to consider is the band-gap amplitude. Previous works
have shown that this usually has only a second-order dependence on the modulation
speed; differently from [5], we thus conduct this analysis setting Ωm = 0. In this case, the
dispersion is symmetric, so we can also set µ = π. Under these hypotheses, one can again
solve the characteristic equation L11L22 − L2

12 = 0 for Ω, obtaining

Ωtop =

√
1
4
+ Ω2

γ + Ω2
a, Ωbot =

√
1
4
+ Ω2

γ −Ω2
a, (37)

for the top and bottom frequencies of the band-gap, so that the amplitude writes

∆Ωbg = Ωtop −Ωbot =
2Ω2

a√
1
4 + Ω2

γ + Ω2
a +

√
1
4 + Ω2

γ −Ω2
a

≈ Ω2
a√

1
4 + Ω2

γ

, (38)

where the last approximation is taken, considering that Ω2
γ � Ω2

a. The band-gap amplitude
is reported in the diagrams of Figure 3b for Ωm = 0 and in Figure 3c for Ωm = 0.05,
showing in both cases accurate predictions in spite of the approximations. Finally, it is
straightforward to observe that we have complete separation of the directional band-gaps
(i.e., with no overlap) for a modulation speed Ωm ≥ Ωm,lim = ∆Ωbg.

3.3. From Rod to Spring-Mass Chain

As mentioned at the beginning of this section, a spring-mass chain can be seen as the
discrete approximation of a rod. We can use the following relationships to switch from the
rod parameters to spring-mass chain ones:

m = ρAa, k =
EA
a

, kg = γa, c0 = a

√
k
m

(39)

with a = λm/R being the distance between two adjacent masses and R the number of
masses per spatial period (which was assumed equal to 3 in the previous section).
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In Figure 4, we show the comparison of the dispersion relations for a space-time
modulated rod (obtained with PWEM) and its spring-mass chain counterpart (obtained
with the BBP). These results were obtained by fixing the rod properties to EA = ρA = 1,
γ0 = 10, γm = 5, λm = 1, Ωm = Ωm,lim, and letting R vary. As it can be observed, the
spring-mass chain’s diagram converges to the rod’s one, increasing the number of masses
(i.e., sub-cells). In the case of the minimum number of sub-cells R = 3, the diagrams slightly
drift apart; however, band-gap positions are very close to the ones predicted with the rod
model, and their widths are almost the same. Upon these observations, we can finally
conclude that the analytic formulae derived in this section for a rod on elastic suspensions
can be usefully exploited to guide the design of a spring-mass chain system.

Figure 4. Comparison between the dispersion diagrams of a rod (black line) and of its spring-mass
chain discretization (blue line), using R = 3, 6, 10 masses (a–c). Directional band-gaps predicted with
the rod model are highlighted in green and yellow, while the band-gaps of the spring-mass chain
system are enclosed in dashed red boxes.

4. Numerical Study of the MEMS Device

In this section, we numerically study an example of a finite-size system, with typical
MEMS dimensions, composed of the unitary cells introduced in Section 2 and qualitatively
depicted in Figure 1. As anticipated, we use R = 3 masses per cell, accepting a small drift
from the continuous rod case with the aim to reduce the size and complexity of the system.
With reference to the scheme in Figure 5, we can define the geometrical dimension of our
system by setting the values of the lumped parameters appearing in (12) and by using the
following equations

...

x

y

Figure 5. Scheme of the geometry of the COMSOL model (only 2 sub-cells are shown). The dashed-
dotted line denotes a symmetry axis.

m = ρt(LxLy − LhxLhy), (40)
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kg = 2
Ew3

bt
L3

g
, k =

2
NF

Ew3
bt

L3
i

, (41)

where factor 2 in the stiffness definitions is to take into account the fact that the beams come
in pairs as parallel springs, and where NF = 2 is the number of folds. In the same way,
setting the desired electrical stiffness in (10), we can define the electrode dimensions from

A = Leyt, x0 = (Lhx − Lex)/2. (42)

Notice that the stiffness modulation parameters kE0 and kE1 both depend on the
voltages V0 and Va; however, since the former depends on V2

0 +V2
a and the latter on V0Va, if

V0 � Va, we can tune kE0 by setting V0 and kE1 changing Va. All the geometric, mechanical,
and electric parameters are collected in Tables 1–3.

Table 1. Geometric parameters (in µm), as shown in Figure 5.

Lg = 150 Li = 150 Lx = 100 Ly = 200
Lex = 5 Ley = 100 Lhx = 7 Lhy = 102
x0 = 1 wb = 2 wc = 8

Table 2. Mechanical and electrical parameters.

E = 148 [GPa] silicon elastic modulus
ρ = 2330 [kg/m3] silicon density
t = 10 [µm] silicon wafer thickness
λm = 312 [µm] cell spatial period
ε = 8.854× 10−12 [F/m] vacuum permittivity
Va = 2 [V] AC voltage amplitude
V0 = 14 [V] DC voltage amplitude
ωm = 12, 500 [rad/s] voltage modulation frequency

Table 3. Spring-mass chain lumped parameters.

k = 3.51 [N/m] stiffness between masses
kg = 7.02 [N/m] ground stiffness
kE0 = 3.51 [N/m] constant electrostatic stiffness
kE1 = 0.99 [N/m] time-modulated electrostatic stiffness
m = 44.81 [ng] mass value

For the numerical verification, we simulate the system with an electromechanical
model in COMSOL Multiphysics to take into account in full the effect of the electrostatic
forces exerted by the modulated electrodes. The system is composed of Nc = 40 cells and
is forced in the middle of the chain with a tone burst. The tone burst’s central frequency
is in between the two directional band-gaps. This way, both right and left-propagating
waves can be analyzed with a single run. Moreover, the amplitude of the forcing is chosen
in order not to trigger nonlinear effects in the electrostatic domains (the maximum mass
displacement is less than 2% of the gap amplitude x0 – with reference to (6), the ratio
between the linear and cubic terms is equal to (x0/x)2/2, so that the former is three orders
of magnitude higher than the latter).

The results are shown in Figure 6. As it can be observed, the numerical dispersion
closely matches the spring-mass chain model prediction, with only a small drift due to the
flexibility of the masses and of the beam connections, which are not accounted for in the
analytic formulae for the springs. The dimensionless parameters introduced in Section 3
also match: the shift of the band-gaps is equal to Ωm = 0.07 (1990 Hz), the band-gap
amplitude is approximately ∆Ωbg = 0.05 (1300 Hz), and the cutoff frequency of the system
is given by Ωγ = 0.48 (14.1 kHz).
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Figure 6. Numerical dispersion, obtained with the COMSOL Multiphysics model, vs. analytical
prediction (black line), obtained with the spring-mass chain model and the BBP (right) and spectrum
of the input tone burst (left).

5. Conclusions

In this work, we analyzed a one-dimensional periodic waveguide with periodically
time-varying properties. The system consists of a spring-mass chain system resting on
elastic foundations, whose stiffness is modulated by means of the electrostatic forces exerted
by the parallel plate electrodes collocated inside the masses. We first derived a simplified
model, valid for small displacement around the equilibrium, and we fully characterized its
dispersion relation through the study of its continuum equivalent (rod system). Finally,
our model has been validated against the numerical results of a high-fidelity model in
COMSOL Multiphysics. The proposed system can be readily produced using standard
MEMS technologies and, as demonstrated by the dimensionless analysis of the dispersion,
can be easily tailored to work in different frequency ranges, going (considering typical
MEMS dimensions) from a few kHz onward, just by properly selecting the spring-mass
chain parameters. For this reason, the presented layout can be both interesting to be used
for new low-frequency applications and/or to replace already existing components in
high-frequency ones.
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