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A B S T R A C T   

Curve squeal is one of the most annoying noise problems related to the operation of trains, trams, and metros in 
urban environments. It typically occurs in sharp curves, which are very common in urban areas, and is disturbing 
for both passengers and people in proximity to the line. Curve squeal is characterized by a loud tonal noise that 
usually occurs close to the natural frequencies of the wheel. It is generally attributed to the self-excited vibration 
of the wheel, as a result of the contact phenomena taking place at the wheel/rail interface during curve nego-
tiation. An experimental campaign has been carried out on a sharp tramway curve to measure noise emission due 
to curve squeal. This revealed that different squealing frequencies and noise levels were generated by two 
different tramcars of the same type. The presence of a second contact point between the flange back of the 
leading inner wheel of one of the tramcars and the groove rail was found to be the reason behind these dissimilar 
experimental results. Thus, the aim of this work is to assess the role of the flange back contact condition on the 
excitation of squeal noise. A curve squeal prediction model is formulated in the frequency domain to include the 
presence of multiple wheel/rail contact patches. Numerical simulations reveal that this contact condition can 
significantly alter the squealing frequencies involved, similarly to what is observed in the pass by sound pressure 
measurements. The contact on the flange back is found to promote mode-coupling mechanisms in the proximity 
of close pairs of wheel vibration modes. These results suggest that the potential presence of multiple contacts 
between wheel and rail should be considered to obtain reliable curve squeal predictions.   

1. Introduction 

Curve squeal noise is a loud and very annoying tonal noise, which 
often occurs when a rail vehicle negotiates a tight curve. Different 
mechanisms have been proposed in past research to describe the root 
causes of the physical phenomenon. The most common is the wheel/rail 
self-excitation caused by the falling behaviour of the friction curve in 
fully sliding conditions. A negative slope of the friction curve provides a 
negative equivalent damping to the wheel/rail system, which may result 
in the so called “wheel self-excited vibration” [1,2]. Other mechanisms 
such as mode coupling and flange contact have also been evaluated as 
possible sources of curve squeal. 

As far as mode coupling is concerned, the friction force acts as a 
coupling force between the motions in the directions normal and 
tangential to the contact surface. In other words, velocity dependent 
forces (the friction forces in this specific case) modify the characteristics 
of the system, coupling the natural frequencies of two close structural 

modes, resulting in an unstable behaviour of the system [3,4]. 
As observed experimentally in [5,6], the mode coupling type of 

instability usually results in a phase difference between the vertical and 
the lateral fluctuations. This type of instability can also be identified 
experimentally by looking at the shift in the frequencies involved in the 
squeal phenomena with respect to the wheel natural frequencies [5]. 

A thorough literature review of the several experimental and nu-
merical investigations concerning curve squeal is provided by Thomp-
son et al. in [7]. The review presents the possible techniques that can be 
adopted to predict the curve squeal occurrence and summarises the 
experimental evidence obtained in the last few decades. Curve squeal 
predictions can be carried out using either frequency- or time-domain 
formulations. In the former, the system is linearised for small fluctua-
tions in friction force about the steady-state curving condition and the 
stability of the linearised system is studied to determine potential un-
stable frequencies. In the latter, the nonlinear equations are solved 
directly in the time domain. A model in the frequency-domain that 
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includes vibration in the lateral and vertical directions was proposed by 
De Beer et al. [8] and extended by Huang [9] to consider also longitu-
dinal and spin dynamics. The model was further extended by Squic-
ciarini et al. [10] to include the simultaneous presence of multiple 
contact points between the wheel and rail. The role of the track dy-
namics and its conditions has been investigated theoretically in [11,12] 
and experimentally in [13,14]. A twin-disc rolling contact test rig was 
adopted by Meehan and Liu to characterize the slope of the friction- 
creep curve in different contact conditions and to assess the effective-
ness of friction modifiers on curve squeal noise mitigation [15]. 

Concerning the time-domain analysis, different modelling ap-
proaches have been adopted. These can firstly be based on the integra-
tion of the equations of motion describing the wheel/rail dynamics, as 
done in [9,16,17]. Formulations, which include the wheel and rail dy-
namics using Green’s functions, were developed in [18,19] for single 
and multiple contact points. A comprehensive model of the railway 
wheelset-track interaction in curves was developed by Martinez-Casas 
et al. [20], in which the equation of motion of the entire wheelset 
Finite Element Model (FEM) is coupled with the track by means of a pre- 
tabulated multi-Hertzian contact model. The results reported in [21] 
suggest the possible occurrence of curve squeal also in the presence of 
constant friction conditions, as obtained also in [22]. A time-domain 
formulation, including acoustic predictions, was presented by Lai 
et al. adopting a FE model and modal reduction techniques [23]. 

The research described in this work has been motivated by mea-
surements undertaken on a modern low-floor tramcar traversing a tight 
curve. These revealed that an additional contact point existed between 
the flange back of the leading inner wheels of the bogie and the check 
rail part of the groove rail. This may have a strong influence on the curve 
squeal noise levels and frequencies. The aim of the present work is to 
assess the role of this contact condition on the excitation of squeal noise. 
A wheel/rail coupled model in the frequency domain is adopted, 
including the possible presence of multiple wheel/rail contact points. 
The system is linearized about the steady-state curving condition, which 
is identified by multibody simulations of the tramcar vehicle dynamics 
during the negotiation of the reference curve. Experimental Modal 
Analysis (EMA) and impact tests were adopted to introduce in the model 
the actual high-frequency wheel and rail dynamics, including cross 
contributions between different contact points. Due to uncertainty in the 
environmental and wheel/rail contact conditions, that are the main 
factors behind curve squeal, the frequency-domain formulation adopted 
includes statistical variability at the wheel/rail interface. The model is 
used to identify the frequencies at which the vehicle is most prone to 
squeal. Numerical simulations under single and multiple wheel/rail 
contact conditions are qualitatively compared with the squeal noise 
measurements. This shows that the curve squeal predictions obtained 
using this computationally efficient methodology give good agreement 
with the measurements, highlighting the difference between single and 
multiple contact points. 

The paper is organized as follows: the experimental evidence that 
motivated this work is summarised in Section 2. In Section 3, 

experimental evidence is compared with the results obtained through 
multibody simulations of the reference tramcar. The modelling 
approach adopted to carried out curve squeal prediction is formulated in 
Section 4, while the methodology adopted to introduce wheel and rail 
mobilities is described in Section 5. The curve squeal noise measure-
ments of Section 2 are compared with the predictions in Section 6. 
Finally, concluding remarks are given in Section 7. 

2. Curve squeal noise measurements 

An experimental campaign was carried out to measure the noise 
emission and rail vibration due to curve squeal. Pass-by noise mea-
surements were performed on a reference curve (radius 24 m), negoti-
ated by tramcars travelling at a constant speed of 10 km/h. The curve 
had been recently renovated and fitted with a new embedded track with 
groove rails. A cross-section of the curve was monitored with two ac-
celerometers mounted on the side of the rail head and on the check rail 
part of the groove rail (see Fig. 1a). Rail vibration on the check rail was 
analysed to detect flange-back contacts during curve negotiation. An 
example of flange-back contact condition filmed by an on-board camera 
mounted during one of the tests is shown in Fig. 1b. A microphone 
placed on the inner side of the curve, at a lateral distance of 2.5 m from 
the centre of the track, was used to measure the sound pressure gener-
ated by the tramcar during curve negotiation. 

The noise emission of three different tramcars of the same types was 
recorded during the experimental campaigns. All these trams are mod-
ern low-floor articulated units, with seven car bodies: four are each 
mounted on a single bogie, while the other three are suspended between 
the four bogied ones. The trams are equipped with independently 
rotating resilient wheels. Three passages of vehicle (a) and single pas-
sages of vehicle (b) and vehicle (c) were recorded. All tramcars were 
found to generate strong and persistent curve squeal noise emission 
while negotiating the same curve a short time apart. Despite similar 
squealing characteristics were expected by tramcars of the same type 
negotiating the same curve in almost identical environmental condi-
tions, measured noise levels highlighted that the three passages of 
vehicle (a) always result into squeal close to 550 Hz and 2500 Hz while 
vehicle (b) and vehicle (c) result into dominant noise emission mainly 
close to 1500 Hz and 2500 Hz. 

Noise signals are further analysed by separating noise contribution in 
different frequency intervals. Measured squealing frequencies are found 
to be close to one-third octave bands lower/upper limits. Thus, data are 
collected into pairs of adjacent one-third octave bands that include the 
most important frequencies associated to a squealing event. For 
example, to capture the squeal noise events in the range 1200–1500 Hz 
the measured signals are filtered between 1130 and 1760 Hz. 

For all the vehicle passages available (five in total), the noise signals 
have been filtered in four frequency bands, corresponding to the most 
important squealing frequencies measured, and the Leq over a 5 s moving 
window is evaluated in each of these bands. For every 0.5 s time win-
dows the four bands are ranked in order of importance by comparing 

Fig. 1. (a) Placement of sensors on the rail and (b) an example of flange back contact condition recorded by the on-board camera.  
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their level with the overall noise. This provides a straightforward hier-
archy, on a ranking scale from 1 to 4, that quantifies the extent of the 
band’s influence on the overall noise. In addition, the relative amount of 
time each band is found to be in a certain rank has been calculated. For 
example, if a frequency is dominant over the entire pass-by, this fre-
quency belongs to rank 1 for 100 % of the time, and so on. 

This analysis shows that in the three passages of the same vehicle (a) 
the 404–707 Hz and the 1760–2825 Hz bands are always the most 
critical squealing bands. The total noise emission is dominated by the 
404–707 Hz band for 74.2 %, 48 % and 46.8 % of the total time. While 
the 1760–2825 Hz band dominates the noise emission for the 28.8 %, 52 
% and 52.1%. The 1130–1760 Hz becomes dominant only for 1.1 % of 
the whole curve negotiation of the third passage of vehicle (a). This 
confirms that the pattern observed for vehicle (a) once, is persistent on 
other passages of the same vehicle. 

Looking at vehicles (b) and (c), the 404–707 Hz frequency interval is 
never found to be a dominant band concerning noise emission. 
Furthermore, the 1130–1760 Hz band is found to be the dominant for 
the 57.1 % and 56.7 % during the curve negotiation of vehicle (b) and (c) 
while the 1760–2825 Hz band dominates the noise emission for the 42.9 
% and 39.1 % of the time. Noise contribution is dominated by the 
3530–4400 Hz band for the 4.2 % of the time during the passage of 
vehicle (b). This confirms that, although vehicle (b) was measured only 
once, other vehicles of the same type present the same squealing 
behaviour. 

To understand the reasons behind these dissimilar results, further 
investigations have been performed on the measurements associated to 
one of the passages of vehicle (a) and the passage of vehicle (b). 

Spectrograms of the measured noise levels for the two different runs 
are presented in Fig. 2. 

While noise peaks are mainly concentrated around 550 Hz and 2500 
Hz in the first case (Fig. 2a), in the second one (Fig. 2b) the first 
squealing frequency detected is in the range 1200–1500 Hz. Different 
conditions of the wheel profiles, due to wear, may explain how vehicles 
with the same architecture and the same (nominal) wheel profiles 
generate noise at different squealing frequencies. The spectrogram of 
case (b) reveals also that the squealing frequencies occur in a wider 
range than case (a), where the tonal nature of the noise is more evident. 

Squeal is taking place at frequency different from the wheel reso-
nances, and this is visible in terms of a shift and a spread in the squealing 
frequencies (see Fig. 2b). This may be an indication that several modes 
are involved in the instability and therefore mode coupling can occur. It 
is possible that the eigenfrequencies of the wheels of tramcar (a) and 
tramcar (b) were different due to different wearing conditions. How-
ever, a change in the eigenfrequencies due to wear cannot justify the 
different vibration modes that were found to be excited during curve 
negotiation, as well as the presence of a shift and a spread in the 
squealing frequencies during the passage of tramcar (b) only. 

In addition, the maximum noise level measured in case (b), (108 
dBA) is found to be 6 dB higher than the one observed in case (a), (102 
dBA). 

The microphone signals were also processed by applying the fast 
time-weighting (see [24]). Fig. 3 shows the overall noise levels together 
with the contributions from specific frequency bands. 

The analysis shows that the overall noise emission generated by 
tramcar (a) and tramcar (b) is always dominated by one frequency band 
at a time. The noise from tramcar (a) is characterized by noise emissions 
either in the bands centred at 500/630 Hz or at 2000/2500 Hz, while the 
overall noise emission from tramcar (b) is mostly dominated by the 
bands centred at 1250/1600 Hz with some smaller contributions from 
the bands at 2000/2500 Hz. 

During the passage of the vehicle, the microphone is sensitive to the 
noise radiated by all the wheels of the tram (4 bogies). It was not 
possible to separate the contribution of the different wheels, nor it was 
possible to identify the squealing wheels at a given time. However, the 
spectrograms of the inner rail acceleration (see Fig. 4) suggest that most 
of the noise recorded by the microphone (Fig. 2) is generated by the 
inner wheels of the vehicle. In fact, the tonal frequencies highlighted in 
Fig. 2a and b are also present in the spectrogram of rail acceleration 
during the passage of vehicle (a) and (b) (see Fig. 4a and b). 

It is reasonable to assume that small differences in how each bogie 
negotiates the curve can result in different squealing frequencies. For 
tramcar (a) and in this specific section, the contact conditions seem al-
ways to lead to squeal in the 500/630 Hz or 2000/2500 Hz frequency 
bands. On the other hand, when tramcar (b) runs over the same section 
of the line, the most frequent squealing frequency is contained in the 
bands centred at 1250/1600 Hz. For reasons that these results alone 
cannot yet clarify, the contact conditions associated with the different 
tramcars favour different squealing frequencies. 

In addition, while the noise levels generated by the two tramcars at 
around 2500 Hz are similar (about 100 dBA), a noticeable increase is 
observed when the sound emission switches to the 1250/1600 Hz bands, 
reaching up to 108 dBA. 

To investigate further the relation between the wheel/rail contact 
conditions and the squealing frequencies, the fast time-weighting SPL is 
compared in Fig. 5 with the signal measured by the accelerometer 
installed on the left check rail (the one on the inner side of the curve). 
The acceleration levels are processed using the same fast time-weighting 
and are presented with a reference value of 10− 6 m/s2. Both signals are 
A-weighted. Acceleration levels are reported on the left-hand y-axis 
(black continuous line) while the overall SPL is indicated on the right- 
hand axis. The acceleration levels allow identification of the passage 
of the four bogies over the instrumented section (identified with Roman 
numbers I-IV). Looking at case (a), sharp peaks are associated with the 
passage of each of the rear inner wheels of the bogies, which are in 
flange contact because of the very sharp curve radius (this is confirmed 
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Fig. 2. SPL spectrograms (inner side of the curve, 2.5 m from the track centre) generated by: (a) tramcar a, and (b) tramcar b.  
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by vehicle dynamics simulation, see Section 3 below). The contacts 
between the flange and the side of the rail head result in a strong lateral 
vibration that is also measured by the accelerometer placed on the check 
rail. The trend of the acceleration levels is slightly different for tramcar 
(b); in this case there are two peaks associated with the passage of bogies 
I, II and IV. The time delay between them (0.6 s) corresponds to the 

passage of the wheelbase (1.7 m) at 10 km/h. This implies that, in 
addition to the flange contact between the rear inner wheel of the bogie 
and the rail head, also a flange back contact between the front inner 
wheel and the check rail occurs. The presence of this second contact 
point for case (b) is believed to be the reason for the different squealing 
frequencies highlighted for the two tramcars. 

Fig. 3. Fast time-weighting SPL (inner side of the curve, 2.5 m from the track centre) generated by: (a) tramcar a, and (b) tramcar b.  
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Fig. 4. Spectrograms of the inner rail lateral accelerations generated by: (a) tramcar a, and (b) tramcar b.  

Fig. 5. Fast time-weighting SPL (inner side of the curve, 2.5 m from the track centre) and rail lateral accelerations generated by: (a) tramcar a, and (b) tramcar b.  
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The critical role of check rail contact on curve squeal was also 
observed by other authors [2,7], who measured severe noise levels up to 
20 dB greater than the ones usually found in literature. In that case it was 
identified that the squeal occurred at the leading inner wheel and was 
associated with radial modes with 2–5 nodal diameters (2.2–4.5 kHz). 
These investigations confirm that the possible presence of multiple 
contact points should be considered to obtain more realistic curve squeal 
predictions. 

To explore the effect of such contact conditions, a frequency-domain 
model that accounts for the presence of both single and multiple contact 
patches is presented in the following sections. This is then used to 
recreate the contact conditions of the measurements described in this 
section and to verify if the numerical results confirm the experimental 
observations at least in terms of a correspondence between the contact 
conditions and the squealing frequencies. 

3. Vehicle dynamics simulation 

A multibody model is adopted to describe the vehicle dynamics 
during curve negotiation. In this Section, the description of the reference 
tramcar analysed in the present study is provided and some results of the 
vehicle dynamics simulation in terms of wheel/rail contact forces on the 
leading bogie are presented. 

The tramcar model is developed in an in-house vehicle dynamics 
software [25–27]. The mathematical model has been designed to 

reproduce the dynamics of the whole tramcar during curve negotiation. 
The carbodies are rigid in the model and are interconnected by kine-
matic constraints and/or elastic and viscous elements, replicating the 
actual connections between them. Large displacements and consequent 
kinematic non-linearities are considered. The equations of motion of the 
tramcar are formulated in terms of generalized coordinates that corre-
spond to rigid body motions and mode shapes of each module compo-
nent. The model has been validated against experimental data in [28]. 

The wheel/rail contact model is based on a multi-Hertzian approach 
[29,30] that enables the possibility of multiple simultaneous contact 
points. The multibody model allows to collect the steady state value of 
the virtual penetration between the wheel and the rail for each contact 
point. The linearized Hertzian contact stiffness can be then computed 
knowing the steady state normal load acting on the different contact 
points as proposed in [2,31]. Pre-calculated contact tables are used to 
store the results of the geometrical analysis of wheel and rail profiles to 
reduce the computational effort required during the simulation. The 
effect of the rubber elements interposed between the tyre and the web in 
the resilient wheels is included through a truncated modal approach. 
The importance of modelling accurately the actual wheel/rail contact 
condition when dealing with curve squeal prediction will be also shown 
in Section 6. The model is set up to replicate the negotiation of the curve 
under investigation during the experimental campaign. This is a 24 m 
radius left-hand curve. In the simulations the tramcar first runs in a 
straight line for 21 m, then it negotiates the curve for 51 m and finally 

Fig. 6. Wheel/rail contact forces in normal direction: (a) Front Left, tread, (b) Front Left, flange back, (c) Rear Left, tread, (d) Rear Left, flange.  
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returns to a straight track. The speed in the simulation is set to 10 km/h, 
corresponding to the nominal speed in the tests. 

Two simulation conditions are considered that correspond to either a 
single contact point condition (assumed in case a) or a multiple one 
(assumed in case b). The analysis is limited to the first bogie of the 
tramcar, being the inner leading wheel of the vehicle usually identified 
as the most critical concerning curve squeal occurrence, due to the high 
angle of attack between wheel and rail [2]. Similar wheel/rail contact 
conditions can be found also on the leading inner wheels of the other 
carbodies. The experimental evidence presented in Section 2 refers to 
two tramcars with the same architecture running on the same reference 
curve. Although it is plausible to assume that the different contact 
conditions are due to different wear condition of the wheels, the actual 
shapes of the profiles are unknown and cannot be used in the simula-
tions. The contact between the wheel flange back and the check rail is 
instead induced by a modification in the rail gauge, which is increased 
from 1445 mm (standard rail gauge in the reference curve) to 1447 mm. 
Wheel/rail normal contact forces on the front and rear inner wheels of 
the bogie (left wheels) are analysed in some detail to verify that wheel/ 
rail contact conditions simulated in case (a) and case (b) can be 
considered representative of the actual wheel/rail contact conditions 
during measurements. Normal forces acting on the tread, flange and 
flange back on the front left (FL) and rear left (RL) wheels are thus re-
ported in Fig. 6. The main difference between case (a) and case (b) can 
be observed in Fig. 6b depicting the normal force on the wheel flange 
back. In fact, while in the case (a) the flange back contact at steady state 
is absent, a constant load of 4.3 kN is highlighted in case (b) simulation. 
The other flange-type contact observed is the one on the rear left wheel 
that is almost the same for case (a) and case (b). The presence of the 
flange contact only on the rear inner wheel (Fig. 6d, case (a) simulation) 
seems to be coherent with the isolated peaks highlighted in the check 
rail vibration measurements (Fig. 4a). Furthermore, a contact on the 
flange-back of the leading inner wheel (Fig. 6b, case (b) simulation) 
followed by a contact on the flange of the inner rear wheel (Fig. 6d, case 
(b) simulation) suggests the simulated scenario may be close to what 
highlighted in the check rail vibration measurements of case (b), where 
two successive peaks were found during the passage of bogie I,II,IV 
(Fig. 5b). 

The results of the simulations are also presented in terms of lateral 
contact forces on the Front Left (FL), Rear Left (RL), Front Right (FR) and 
Rear Right (RR) wheels of the leading car with a focus on the steady- 
state normal and transverse contact forces acting on the leading inner 
wheel after 25 s. The word “lateral” refers to a reference system where 
the longitudinal axis is tangent to the track centreline while the word 
“transverse” refers to a local reference system tangent to the contact 
plane. 

The first simulation (case (a)) is presented in Fig. 7. On this sharp 

curve both the front outer and the rear inner wheels of the first car are in 
flange contact. On the leading inner wheel (see Fig. 7b) the wheel/rail 
contact point is located on the wheel tread. As described in the previous 
paragraph looking at Fig. 6, this wheel/rail contact condition is assumed 
to be representative of the actual contact condition present during the 
measurement reported in Fig. 2a. 

At the curve entrance (approximately 8 s in Fig. 7a) the leading axle 
moves from a centred position towards the right, until the maximum 
clearance is taken up and flange contact on the outer wheel takes place. 
Peaks in the lateral contact forces are observed due to the transition from 
a straight track to a curved one. Afterwards, the leading outer wheel 
pushes against the rail and moves along the curve in flange contact. As 
the curve is very sharp, due to the counter steering behaviour of the first 
bogie during curve negotiation, the rear axle moves towards the left with 
respect to the track centre line, resulting in flange contact on the rear 
inner wheel. When the wheel comes into flange contact, the sharp peaks 
in the wheel/rail lateral contact forces are generated on the front outer 
and rear inner wheels. After the transient, a steady-state curving con-
dition is reached at about 15 s. Similar wheel/rail contact force oscil-
lations occur when leaving the curve, when the front and rear wheelsets 
progressively return to a centred position with respect to the track. 

In the second simulation (case (b), shown in Fig. 8), in which a 1447 
mm rail gauge is introduced, a secondary contact occurs between the 
flange back and the check rail for the leading inner wheel, as shown in 
Fig. 8b. 

This situation is assumed to be representative for the wheel/rail 
contact condition in Fig. 5b, in which double peak corresponding 
respectively to the flange back contact of the front inner wheel and the 
flange contact of the rear inner wheels is highlighted. The comparison 
between the results of cases (a) (Fig. 7) and (b) (Fig. 8) highlights that, 
while steady-state transverse creep forces in the tread contact patch are 
similar (11.8 kN in case (a) and 10.8 kN in case (b)), the total lateral 
force acting on the front left wheel is lower in case (b) (8.4 kN) than in 
case a (13.2 kN), due to the presence of the normal force acting on the 
flange back. 

From this model, steady-state parameters, such as creepages, contact 
angle, normal load and contact stiffness, are identified at 25 s in both 
situations and are used as the input to the curve squeal prediction model. 

4. Wheel/rail coupled model 

The curve squeal prediction model adopted in this work is based on 
the theoretical model in the frequency domain proposed by Huang [9] 
and extended by Squicciarini et al. [10] to include the simultaneous 
presence of multiple contact points between wheel and rail. The possi-
bility of curve squeal occurrence is predicted in two steps, with a 
simulation of vehicle dynamics in the time domain followed by a 

Fig. 7. Case a: (a) lateral wheel/rail contact forces on the first car of the 
vehicle, and (b) steady-state normal and transverse contact forces (t = 25 s) on 
the leading inner wheel. 

Fig. 8. Case b: (a) lateral wheel/rail contact forces on the first car of the 
vehicle, and (b) steady state normal and transverse contact forces (t = 25 s) on 
the leading inner wheel. 
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stability analysis of the wheel/rail coupled system in the frequency 
domain (see Fig. 9). 

The wheel/rail interaction is described by means of a point-contact 
model, in which the wheel and the rail are coupled by contact forces 
incorporating a Hertzian spring in the normal direction [2,9]. The non- 
linear equations of motion describing the wheel/rail sliding velocities in 
the tangential directions are first presented in a time-domain formula-
tion and then linearised about the steady-state curving condition defined 
in the multibody simulation. The wheel/rail dynamic behaviour is 
described considering the displacements in the longitudinal, transverse 
and normal directions and the spin rotation. Fig. 10 shows the sign 
convention adopted for wheel and rail velocities (Fig. 10a) and contact 
forces (Fig. 10b). 

4.1. Single contact point formulation 

The dynamic components of the contact forces, i.e. the fluctuations 
about their steady-state values, can be represented in a vector form: 

f = [ f1 f2 f3 f6 ]
T (1)  

and the dynamic fluctuations of the wheel and rail velocities are: 

vw = [ vw
1 vw

2 vw
3 vw

6 ]
T (2)  

vr = [ vr
1 vr

2 vr
3 vr

6 ]
T (3)  

The local behaviour of the two contacting bodies is described by means 
of a Hertzian contact spring and its deformation, positive under 
compression, is expressed by: 

dc
3 = −

(
dr

3 − dw
3

)
= −

∫ t

0

(
vr

3 − vw
3

)
dt (4)  

To guarantee that contact is maintained, the overall sliding velocity in 
the normal direction must be equal to zero: 

vs
3 = vr

3 − vw
3 + vc

3 = 0 (5)  

while in the longitudinal and transverse directions, as well as around the 
normal axis, non-zero dynamic sliding velocities exist and can be 
expressed as: 
⎡

⎢
⎢
⎢
⎢
⎢
⎣

vs
1

vs
2

vs
3

vs
6

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

vr
1

vr
2

vr
3

vr
6

⎤

⎥
⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎢
⎣

vw
1

vw
2

vw
3

vw
6

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

vc
1

vc
2

vc
3

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(6)  

Creepages can be obtained as the sum of steady-state and dynamic 
components: 

⎡

⎣
γ1tot
γ2tot
γ6tot

⎤

⎦ =
1
v0

⎡

⎢
⎢
⎣

vs
1tot

vs
2tot

vs
6tot

⎤

⎥
⎥
⎦ =

1
v0

⎡

⎢
⎢
⎣

vs
10 + vs

1

vs
20 + vs

2

vs
60 + vs

6

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ10 +
vs

1

v0

γ20 +
vs

2

v0

γ60 +
vs

6

v0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7)  

where v0 is the reference vehicle speed along the curve. 
The longitudinal and transverse forces together with the spin 

moment can be written as the product between the friction coefficient μ 
in i-direction (that is the creep force normalised against the normal load) 
and the normal contact force: 
⎡

⎣
f1tot
f2tot
f6tot

⎤

⎦ =

⎡

⎣
μ1
(
γ1tot,γ2tot,γ6tot,f3tot

)

μ2
(
γ1tot,γ2tot,γ6tot,f3tot

)

μ6
(
γ1tot,γ2tot,γ6tot,f3tot

)

⎤

⎦f3tot (8)  

where μ1, μ2, μ6 are non-linear functions of the creepages and normal 
contact force (f3tot = f30 + f3). As the steady-state components of the 
friction forces are balanced by the forces exerted by vehicle suspension 
during curve negotiation, only the dynamic components are related to 
squeal: 
⎡

⎢
⎢
⎣

f1

f2

f6

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

f1tot

f2tot

f6tot

⎤

⎥
⎥
⎦ −

⎡

⎢
⎢
⎣

f10

f20

f60

⎤

⎥
⎥
⎦ =

=

⎡

⎢
⎢
⎣

μ1
(
γ1tot,γ2tot,γ6tot,f3tot

)

μ2
(
γ1tot,γ2tot,γ6tot,f3tot

)

μ6
(
γ1tot,γ2tot,γ6tot,f3tot

)

⎤

⎥
⎥
⎦(f30 + f3) −

⎡

⎢
⎢
⎣

μ1
(
γ10,γ20,γ60,f30

)

μ2
(
γ10,γ20γ60,f30

)

μ6
(
γ10,γ20,γ60,f30

)

⎤

⎥
⎥
⎦f30.

(9)  

It is possible to linearise Eq. (9) about a generic steady state curving 
condition, obtaining: 

Fig. 9. Overview of the modelling approach: curve squeal occurrence is predicted by performing the stability analysis of the wheel/rail coupled system [2].  

Fig. 10. Wheel/rail model conventions: (a) velocities, and (b) contact forces.  
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⎡

⎣
f1
f2
f6

⎤

⎦ =
f30

v0

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂μ1

∂γ1

∂μ1

∂γ2

∂μ1

∂γ6

∂μ1

∂f3

∂μ2

∂γ1

∂μ2

∂γ2

∂μ2

∂γ6

∂μ2

∂f3

∂μ6

∂γ1

∂μ6

∂γ2

∂μ6

∂γ6

∂μ6

∂f3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

vs
1

vs
2

vs
6

v0f3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎣
μ1
μ2
μ6

⎤

⎦f3 (10)  

Assuming harmonic oscillations of the forces and the velocities (at the 
generic circular frequency ω), it is possible to move to the frequency 
domain: 

fi = Fiejωt, vr
i = Vr

i e
jωt, vw

i = Vw
i ejωt, vc

i = Vc
i e

jωt, vs
i = Vs

i e
jωt

i = 1, 2, 3, 6
(11)  

where Fi,Vr
i ,Vw

i ,Vc
i and Vs

i denote the complex amplitudes of the 
respective quantity at the given circular frequency ω. Thus, Eq. (6), 
becomes: 

Vs =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Vs
1

Vs
2

Vs
3

Vs
6

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Vr
1

Vr
2

Vr
3

Vr
6

⎤

⎥
⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Vw
1

Vw
2

Vw
3

Vw
6

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Vc
1

Vc
2

Vc
3

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(12)  

The dynamic components of the sliding velocities can be written as the 
product between the vector of the dynamic contact forces and the 
coupled system mobility: 

Vs =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Vs
1

Vs
2

Vs
3

Vs
6

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

Y11 Y12 Y13 Y16
Y21 Y22 Y23 Y26
Y31 Y32 Y33 Y36
Y61 Y62 Y63 Y66

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

F1
F2
F3
F6

⎤

⎥
⎥
⎦ = YF (13)  

where Yij = Yr
ij +Yw

ij +Yc
ij is the sum of the rail, wheel and contact mo-

bilities (see Section 5). The latter is derived from the contact spring, 
which for the normal direction is defined through the linearized contact 
stiffness kH [2,31]: 

Yc
33 =

jω
kH

(14)  

The transverse contact stiffness can be computed from the linearized 
Hertzian normal contact stiffness value, by adopting the following for-
mula [32]: 

1
ki
=

χ
kH

i = 1, 2 (15)  

χ is a value between about 1 and 1.4 that mainly depends on contact 
patch geometry: 

χ ≈ 1+
ν

1 − ν

(
1
4
+

1
πtan− 1g

)

(16)  

where ν is the Poisson’s ratio and g is equal to a/b for the stiffness in the 
longitudinal direction or b/a for the transverse one, in which a and b are 
the contact patch semi-axis lengths in longitudinal and transverse di-
rections respectively [2,16]. Therefore, the mobility of the contact 
spring in the tangential direction can be computed as: 

Yc
ii =

jω
ki

i = 1, 2 (17)  

Only the diagonal terms are included in the formulation of the contact 
mobility matrix. Returning to Eq. (13), the sliding velocities are the 
result of the contribution of tangential contact forces and normal load 
fluctuations. They can be separated as follows: 

Ṽ
s
=

⎡

⎢
⎢
⎣

Vs
1

Vs
2

Vs
6

⎤

⎥
⎥
⎦ =

⎡

⎣
Y11 Y12 Y16
Y21 Y22 Y26
Y61 Y62 Y66

⎤

⎦

⎡

⎣
F1
F2
F6

⎤

⎦+

⎡

⎣
Y13
Y23
Y63

⎤

⎦F3 = ỸF̃ + dF3 (18)  

where Ỹ is obtained removing the rows and the columns of the matrix Y 
related to the normal direction (3), as a consequence of Eq. (5): 

Ỹ = EYET (19)  

where the matrix [E] is defined as: 

E =

⎡

⎣
1 0 0 0
0 1 0 0
0 0 0 1

⎤

⎦ (20)  

Then, combining Eq. (5) and the third equation in the matrix of Eq. (13), 
yields: 

F3 = −

[
Y31

Y33

Y32

Y33

Y36

Y33

]

F̃ = bTF̃ (21)  

and substituting Eq. (21) in Eq. (18): 

Ṽ
s
=

(
Ỹ + dbT

)
F̃ = GF̃ (22)  

The relationship between the tangential contact forces and the sliding 
velocities is given by the matrix of the wheel/rail coupled system G. The 
relationship between contact forces and creepages (obtained by refor-
mulating Eq. (10)) is introduced hereafter: 

F̃ =

⎡

⎣
F1
F2
F6

⎤

⎦ = K

⎡

⎢
⎢
⎣

Vs
1

Vs
2

Vs
6

⎤

⎥
⎥
⎦+ RF3 (23)  

The matrix K represents the effect of the variation in the friction coef-
ficient due to a fluctuation in the creepages and R represents the effect of 
a fluctuation in the normal load: 

Kij =
f30

v0

∂μi

∂γj
; Ri = μi + f30

∂μi

∂f3
(24)  

In Eq. (24), f30 is the steady-state value of the normal load, μi is the 
friction coefficient in the i-direction, γj is the creepage in the j-direction 
and f3 is the dynamic force in the normal direction. The friction coeffi-
cient is computed by introducing the heuristic formula derived from 
Kraft [33] proposed by Huang [9] into the Shen-Hedrick-Elkins theory 
[34] to include the effect of falling friction (Eq. (25)): 

μ(γtot) = μ0(1 − λe− τ/γtot ) (25)  

γtot =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

γ2
1 + γ2

2

√

(26)  

where the slope of the friction curve is defined by the falling ratio λ and 
the saturation coefficient τ, while μ0 is the static friction coefficient and 
γtot in Eq. (26) is the total creepage. As an example, Fig. 11 shows the 
effect of varying the falling friction parameters λ and τ on the relation 
between normalised transverse friction force μ2 and transverse creepage 
γ2 (in the absence of other creep components). The value of μ0 is 0.4 in 
both cases. The value of τ is 0.05 in Fig. 11a and the value of λ is 0.4 for 
Fig. 11b. 

Combining Eq. (21), Eq. (22) and Eq. (23), the equation describing 
the self-excited loop, considering a single wheel/rail contact point, is 
obtained: 

F̃ =
(

KG + RbT
)
F̃ = (KG + S )F̃ (27)  

F. Castellini et al.                                                                                                                                                                                                                               



Applied Acoustics 218 (2024) 109862

9

Rearranging Eq. (27) it is possible to define the expression of the open- 
loop transfer function matrix Q = (KG+S) of the Multi-Input Multi- 

Output (MIMO) system shown in Fig. 12. F̃
dist 

indicates a generic 
disturbance in the wheel/rail contact forces that can alter the steady 
state condition. 

The stability analysis of the MIMO system about the steady-state 
curving condition is used to determine the behaviour of the wheel/rail 
coupled system at each frequency. The stability analysis is performed 
through the Nyquist Generalized Criterion for MIMO systems [35,36]. 

4.2. Multiple contact points formulation 

The wheel/rail coupled model for a single contact point can be 
extended to include the presence of a second wheel/rail contact patch by 
reformulating Eq. (13) as 

Vs =

[
Vs

1

Vs
2

]

=

[
Y11 Y12
Y21 Y22

][
F1
F2

]

(28)  

where Ymn is the system mobility matrix containing the point and 
transfer contributions of the m,n = 1,2 contact points. Thus, the generic 
term Yij,mn consists of the sliding velocity of the m-th contact point in the 
i-th direction as the result of applying a unit dynamic force at the n-th 
contact point in the j-th direction. 

Assuming the overall sliding velocities of the n-th contact point in the 
normal direction are zero (see Eq. (5)) it is possible to define the 
following quantities: 

dT
n = [Y13,1n Y23,1n Y63,1n Y13,2n Y23,2n Y63,2n ] n = 1, 2 (29)  

aT
n =

[
Y31,n1

Y33,nn

Y32,n1

Y33,nn

Y36,n1

Y33,nn

Y31,n2

Y33,nn

Y32,n2

Y33,nn

Y36,n2

Y33,nn

]

n = 1, 2 (30)  

bT
n =

Y33,11Y33,22

Y33,11Y33,22 − Y2
33,12

(

− aT
n +

Y33,12

Y33,nn
aT

3− n

)

n = 1, 2 (31)  

Eq. (22) can now be reformulated to include the contribution of the 
second contact point: 

Ṽ
s
=

⎡

⎣
Ṽ

s
1

Ṽ
s
2

⎤

⎦ =
(

Ỹ + d1bT
1 + d2bT

2

)

⎡

⎣
F̃1

F̃2

⎤

⎦ = GF̃ (32)  

Combining Eq. (32) and Eq. (23), the equation describing the self- 
excited loop considering two wheel/rail contact points is obtained: 

[
F̃1
F̃2

]

=

⎛

⎝

[K1 0
0 K2

]

G +

[R1 0
0 R2

]
⎡

⎣
bT

1

bT
2

⎤

⎦

⎞

⎠

[
F̃1
F̃2

]

= (KG + S )

[
F̃1
F̃2

]

(33)  

As the system mobility matrix G is a fully populated matrix, the systems 
of equations describing the wheel/rail dynamics at the two contact 
points are coupled. The stability analysis to predict curve squeal 
occurrence is performed by adopting the same approach adopted in the 
single contact point formulation [35,36]. 

Fig. 11. Effects on friction curve of (a) falling ratio λ, and (b) saturation coefficient τ.  

Fig. 12. Wheel/rail self-excited loop in the frequency domain. Instability can 
be introduced by a fluctuation in the contact forces as the result of a variation in 
creepages K and/or in normal load S. 

Fig. 13. Resilient wheel cross section.  

Table 1 
FE model parameters.  

Parameter Unit Value 

Rw m 0.33 
Esteel MPa 210 
νsteel − 0.3 
Erubber MPa 36 
νrubber − 0.475  
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5. Wheel and rail mobilities 

The Finite Element Method (FEM) is used to create a model of the 
resilient wheel in order to reproduce its structural dynamics, in partic-
ular to estimate its mobility at the wheel/rail contact points as required 
in the model. 

The wheels of this tram have a nominal radius of 0.33 m and 
incorporate 24 V-shaped rubber elements positioned between the tyre 

and the web. A 3D model of the wheel has been developed adopting 
159,378 brick elements. The rubber elements are modelled as an 
equivalent rubber ring assuming a linear elastic material. The wheel is 
clamped in the hub. The cross section of the wheel is shown in Fig. 13 
and the FE model parameters are reported in Table 1. Rw is the wheel 
nominal radius while Esteel, Erubber and νsteel, νrubber are the Young modulus 
and the Poisson coefficients adopted to model steel and rubber 
components. 

Table 2 
Measured natural frequencies (fn) and damping ratios (ξn) and predicted mode shapes (colormap refers to modal 
displacement magnitude) of the wheel modes with the highest curve squeal occurrence (ND = number of nodal 
diameters).  

Mode No Mode Type Natural Frequency Damping Ratio Modeshape 
¡ ¡ fn, Hz ξn,% ¡

1 Axial-2ND 535 0.80 

2 Axial-3ND 1273 0.72 

3 Radial-3ND 1423 1.11 

4 Web Axial-0ND 1560 0.45 

5 Radial-4ND 2230 0.49 

6 Axial-4ND 2479 0.38 

7 Tyre Torsion-1ND 2537 0.59 

8 Tyre Radial-0ND 2774 0.76 

9 Radial-5ND 3367 0.58 

10 Axial-5ND 3736 0.77 

11 Axial-6ND 5112 0.53 

* As it is difficult to distinguish purely axial/radial modes (due to their strong coupling), the nomenclature is defined 
according to the direction of maximum vibration amplitude at the nominal contact point. 
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This wheel model was validated by means of a comparison with the 
results of an Experimental Modal Analysis (EMA) performed on a wheel 
of a similar tramcar to that used in the running tests. The wheel modes of 
vibration that are found to be the most relevant concerning curve squeal 
occurrence in the numerical simulations discussed in Section 6 are re-
ported in Table 2, together with the measured natural frequency (fn) and 
damping ratio (ξn). 

The presence of a rubber layer between the wheel tyre and the web 
results in coupling between different directions so that modes that are 
predominately axial will also exhibit a significant component of vibra-
tion in the radial direction and vice versa. When two such modes have 
natural frequencies that are close to each other, an instability due to 

mode coupling may occur [5]. This is studied further in Section 6. 
The modal superposition approach is used to compute the wheel 

point and transfer mobilities considering the longitudinal, lateral and 
vertical velocities and the spin rotation for each potential contact point 
(tread, flange back and flange) 

Yw
ik(ω) =

∑

n

jωϕinϕkn

mn
(
ω2

n − ω2 + 2jξnωnω
) i, k = 1, 2, 3, 6 (34)  

where ωn is the measured natural circular frequency of the mode n, ξn is 
the measured modal damping and mn is the modal mass. The numerator 
includes the modal amplitudes ϕin, ϕkn (obtained from the FE model) 
associated with the n-th mode and the degrees of freedom i,k. 

Fig. 14. Wheel mobility (a) in axial direction, and (b) in radial direction: comparison between experimental (—) and numerical results ( ).  

Fig. 15. Comparison between experimental (—) and numerical mobilities on rail head ( ): (a) vertical, (b) lateral, (c) vertical-lateral cross.  
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A comparison between measured and predicted mobilities for the 
radial and axial direction on the wheel tread is presented in Fig. 14. A 
good correlation between numerical and experimental results is ach-
ieved up to 6 kHz, which is commonly the frequency range of interest 
concerning curve squeal noise phenomena [7]. 

The analysis carried out by Ding et al. [11] highlights the only sig-
nificant effect of the rail dynamics on curve squeal prediction is found to 
be related to the “damping-like” behaviour of the rail at high frequency, 
which may lead to instability due to a “coupling-like” mechanisms be-
tween the wheel and the rail. Similar results were highlighted by Lai 
et al. in [12]. These findings suggest that a rather simple track model can 
be adopted to carry out curve squeal prediction, without the need of 
including rail cross-section deformation, pinned–pinned resonances, or 
effect of multiple wheels [11]. Therefore, the dynamic behaviour of the 
track is introduced in the wheel/rail interaction model by means of an 
equivalent system with a transfer function defined as the ratio of two 
polynomials: 

H(s) =
B(s)
A(s)

=
b1sm− 1 + b2sm− 2 + ...+ bm

sm + a1sm− 1 + a2sm− 2 + ...+ am
(35)  

This approach has been used to reproduce the frequency response 
functions of the railway track [37,38] and is here applied to the 
Embedded Rail System (ERS) of this study. ERS frequency response 
functions are measured through impact tests, adopting an impact 
hammer to excite the track in the vertical and lateral directions. The 
track response is measured by a set of accelerometers mounted on the 
rail head and check rail. Point mobilities in the vertical and lateral di-
rections, as well as transfer mobilities for rail head and check rail contact 
points, are computed and fitted to the on-site measurements. The results 
for the vertical, lateral and cross mobility are shown in Fig. 15. A filter of 
second order (m = 2) is chosen for the curve fitting procedure. The same 
procedure has been performed for the transfer mobilities between the 
two contact points (results not shown here). The magnitude of the 
vertical-lateral cross mobilities in this grooved rail system is high and 
comparable to the direct terms (Fig. 15c) and, on the other hand, the 
longitudinal dynamics of the track are neglected due to its high 
impedance in this direction. Similarly, also the spin mobility is not 
included in the current model. 

The point and cross mobilities of the rail head estimated by the 
identified model are in good agreement up to 2 kHz with the experi-
mental curves. 

6. Prediction of curve squeal occurrence 

The intermittent nature of curve squeal and the unpredictable vari-
ability of contact parameters suggest that a statistical approach is suit-
able to gain a better understanding of the problem. Thanks to the high 

computational efficiency of the frequency-domain formulation, it is 
possible to carry out a set of simulations accounting for a random 
variation of the most relevant input parameters of the model. This 
strategy was already adopted in [10]. Following the experimental ob-
servations highlighted in Section 2, a numerical assessment on the role 
of single and multiple contacts between wheel and rail is carried out in 
this section. A set of 100 simulations is considered for each situation. 
Vehicle and friction parameters are obtained for each of the 100 simu-
lated cases by extracting random values from a uniform distribution. A 
±20 % variation is applied to the vehicle speed and steady-state values 
of creepages, normal force and wheel/rail contact angle. A fluctuation in 
the lateral contact position, limited to ±5 mm, is obtained through a 
translation of the mobility matrix (see [16]). Intervals for parameter 
variation are also defined for the friction coefficient and falling friction 
parameters λ and τ. A wide range of variability is included in the value of 
friction coefficient to consider also the most critical scenarios for curve 
squeal occurrence. The interval is limited to the friction coefficient 
measured on dry rail in [39]. The intervals for falling friction parameters 
are defined around the values adopted in [5,9,16]. Prediction of curve 
squeal occurrence is carried out considering the leading inner wheel of 
the vehicle for both case (a) and case (b). The summary of the model 
parameters subjected to random variations and the variation ranges are 
presented in Table 3. 

Falling friction and mode-coupling mechanisms are usually attrib-
uted as the cause of curve squeal events. In the first set of results pre-
sented below the two mechanisms are present together in the 
simulations. To explore the effect of mode coupling alone, the same 
simulations are then recalculated in the absence of falling friction. 

6.1. Simulation with falling friction 

Numerical predictions including falling friction for case (a) are pre-
sented in Fig. 16a. The results of curve squeal predictions are presented 
in terms of unstable frequencies which, for each simulation, are super-
imposed on the axial and radial mobilities of the wheel. The red dots 
indicate the presence of an instability in the wheel/rail coupled system 
at the corresponding frequency. For this case, curve squeal is expected at 
frequencies close to 535 Hz (axial mode, 2 ND), 1273–1423 Hz (axial 
and radial modes, 3 ND) and 2479 Hz (axial mode, 4 ND). A few unstable 
points are also predicted at about 3736 Hz (axial mode, 5 ND) and 5112 
Hz (axial mode, 6 ND). The diagram allows an estimate to be made of the 
wheel vibration modes which are most prone to squeal, according to the 
number of the unstable occurrences within the total number of simu-
lated variants. The set of simulations for case (a) suggests that it is very 
likely that squeal develops at frequencies close to the 2 ND and the 4 ND 
axial modes (535 Hz and 2479 Hz respectively). The occurrence of fewer 
unstable points in the frequency range 1200–1600 Hz means that the 

Table 3 
Nominal parameter values and relative variation ranges (Δ) for curve squeal simulations of case (a) and case (b).  

Parameter Symbol Case (a) Case (b)* Δ 
− (Unit) − − −

Vehicle Speed v0 (km h− 1) 10 10 ±20 % 
Normal Force f30 (kN) 32.8 30.1 4.3 ±20 % 
Longitudinal Creepage γ10 (− ) 1e− 5 − 1e− 3 9e− 3 ±20 % 
Transverse Creepage γ20 (− ) 0.04 0.04 0.14 ±20 % 
Spin Creepage γ60 (m− 1) − 0.13 − 0.13 2.93 ±20 % 
Contact Angle θ (◦) 2.5 2.6 − 75.3 ±20 %  

Lateral CP Position** Δl2 (m) [− 0.005, 0.005] −

Friction Coefficient µ (− ) [0.2, 0.7] −

Falling Ratio λ (− ) [0, 0.2] −

Saturation Coefficient τ (− ) [0.01, 0.08] −

*Tread CP (left column) and flange back CP (right column). 
**CP: Contact Point. 
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instability of the 3 ND axial and radial modes is less likely and arises only 
in the presence of specific wheel/rail contact conditions (further away 
from the steady-state parameters identified in the vehicle dynamics 
simulation) or only under critical friction conditions (high friction co-
efficient or strong falling friction effect). 

The squealing frequencies predicted in the first analysis are in good 
agreement with the ones observed in the pass-by measurements on the 
first tramcar (see Fig. 2a), where the noise is dominated by the 550 Hz 
and 2500 Hz tonal contributions. 

Numerical simulations of case (b) (see Fig. 16b) confirm that the 
presence of a flange back contact point alters the squealing frequencies 
involved. The system instability close to 535 Hz is completely sup-
pressed in this case. To clarify this, Fig. 17 shows the mode shapes of the 

modes associated with the most common squealing frequencies. The 
wheel mode at 535 Hz is mostly axial and flange back contact is pre-
venting its excitation for two reasons. First, the flange back contact is 
limiting the wheel/rail relative motion in the axial direction, preventing 
or at least decreasing the excitation of wheel modes where axial dis-
placements are predominant. The contribution of this physical 
constraint is relevant at low frequency, where the contact mobility is 
limited. The lower total force in the lateral direction detected on the 
inner wheel of case b (Fig. 8a) compared with case (a) (Fig. 7a) is the 
second reason why the excitation of wheel modes with predominantly 
axial displacement is decreased. 

The higher frequency 3–4 ND axial and radial modes, found to be 
unstable in both situations, have a significant modal component in both 
axial and radial directions (see Fig. 17b, 17c, 17d) meaning that a flange 
back contact is no longer limiting the instability associated with these 
modes. Furthermore, the tangential forces acting on the flange back 
have a significant component in the radial direction that can also pro-
mote their instability. Thus, a contact on the flange back, in the presence 
of a close pair of modes with significant axial and radial modal com-
ponents (such as the pair of modes at 1273 and 1423 Hz, see Fig. 17b, 
and c) could favour a mode-coupling type instability. 

In Fig. 16b, an increase in the instability occurrence is observed at 
about 1400–1600 Hz and 2400–2600 Hz. The squealing frequencies 
predicted in these frequency ranges seem to be shifted with respect to 
the ones obtained in Fig. 16a. Different unstable frequencies may occur 
due to different modes being involved in the two situations or, as stated 
above, due to mode-coupling phenomena, which usually arise when 
there are two vibration modes that are close in frequency. The large 
spread in the squealing frequencies observed in noise measurements of 
case (b) (see Fig. 2b) suggests a possible and intermittent mode-coupling 
mechanism was taking place, especially looking at the range 1200–1600 
Hz (see also [5]). This mechanism may have been favoured by the 
presence of a second contact point on the flange back, which was pro-
moting the exchange of energy between the axial and radial directions. 

6.2. Simulation without falling friction 

The curve squeal analysis is repeated by reproducing each of the 100 
variants simulated in Section 6.1 (see Fig. 16) without falling friction, 
meaning that the only reason for instabilities is mode coupling. The 
absence of falling friction is modelled by assuming μ = μ0 (see Eq. (25)) 
in the Shen Hedrick Elkins contact model. The results are shown in 
Fig. 18. While the results for case (b) are similar to the analysis with 
falling friction, no unstable points are obtained in the simulations for 
case (a). This confirms that the multiple wheel/rail contact condition 
may favour the development of mode-coupling mechanisms. 

Because it is difficult to identify whether the system instability is due 
to a coupling of two or more modal contributions, the 100 variants for 
case (b) are repeated by removing one or more wheel vibration modes. 
The results of this analysis are summarised in Table 4. Each row of the 
table represents a squeal simulation of case (b) in which a wheel mode 
contribution is removed from the mobilities. The ranges of the unstable 
frequencies for each of the simulated cases are given in the third and 
fourth columns. 

Instability in 1400–1600 Hz frequency range occurs only in the 
presence of the 3ND radial mode (1423 Hz). If this mode is removed, no 
unstable cases in that frequency range are obtained. Removing the 
wheel modes at 1273 Hz or 1560 Hz does not alter the unstable fre-
quency obtained in the complete simulation (Fig. 16b). However, by 
removing both these wheel modes, no unstable cases are obtained, 
meaning that system instability arises only in the presence of a pair of 
wheel vibration modes that are close in frequency. Analyses are also 
performed by removing the wheel vibration modes at 2479, 2537 Hz and 
2774 Hz and no noticeable change in the frequencies involved are 
observed apart from the case in which the 2479 Hz modal contribution is 
suppressed. Similar to the 1400–1600 Hz range, the wheel mode at 

Fig. 17. Cross-section of unstable wheel axial and radial vibration modes 
predicted by numerical simulations: (a) axial 2 ND (535 Hz), (b) axial 3 ND 
(1273 Hz), (c) radial 3 ND (1423 Hz), (d) axial 4 ND (2479 Hz). 

Fig. 16. Curve squeal simulation results for (a) single and (b) multiple contact 
points. Red dots ( ) indicate system instabilities for each of the 100 simulated 
variants. Unstable points are depicted against wheel mobility in axial (—) and 
radial ( ) directions. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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2479 Hz alone is not capable of promoting instability without the 
presence of falling friction. 

7. Conclusions 

Curve squeal noise measurements on a modern low floor tramcar 
have revealed an important influence of the contact between the flange 

back of the leading inner wheel and the check rail on noise levels and 
squealing frequencies. This is confirmed by monitoring the check-rail 
acceleration levels and comparing the squealing frequencies involved 
during the curve negotiation of two tramcars of the same type. The 
presence of a flange-back contact condition on the leading inner wheel 
of the vehicle promotes the instability of the axial and radial wheel 
modes at 1273 and 1423 Hz (3ND) and 2479 Hz (4ND) and at the same 
time it suppresses squeal of the 535 Hz wheel axial mode with 2ND. 
Moreover, the flange-back contact seems to favour mode-coupling 
mechanisms, which are highlighted by squealing frequencies different 
from the natural frequencies of the wheel vibration modes involved in 
the squeal events. 

Motivated by these experimental findings, a methodology to predict 
the curve squeal occurrence in the frequency domain, including single 
and multiple wheel/rail contact points, is formulated to assess the role of 
this wheel/rail contact condition. A multibody simulation of the refer-
ence vehicle is performed for the calculation of the steady-state curving 
conditions. The wheel dynamic behaviour is introduced by means of a 
FE model validated against measurements on a resilient wheel of the 
reference tramcar. The track mobility is introduced by fitting measured 
mobilities with a ratio of two polynomials. The approach includes 
vertical-lateral cross terms at each contact point as well as the transfer 
contribution between different contact points. 

Numerical simulations with single and multiple contact conditions 
show a good agreement with the corresponding occurrences of squealing 
frequencies measured experimentally. The role of multiple contact 
points in promoting mode-coupling effects is assessed through squeal 
simulations in the absence of falling friction. It is shown how the fidelity 
of curve squeal predictions is strongly related to the accuracy in the 
description of the actual wheel/rail contact conditions. The use of sta-
tistical approaches or sensitivity analysis on different situations is thus 
recommended to include in the curve squeal prediction all the possible 
wheel/rail contact conditions. 
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Table 4 
Summary of simulations excluding one or more wheel vibration modes.  

Simulation No. Vibration Modes Removed Squealing Frequency Range   

1400–1600 Hz 2400–2600 Hz 

1 – ✓ ✓ 
2 Axial 3ND (1273 Hz) ✓ ✓ 
3 Radial 3ND (1423 Hz)  ✓ 
4 Web Axial – 0ND (1560 Hz) ✓ ✓ 
5 Axial 3ND (1273 Hz) 

Web Axial – 0ND (1560 Hz)  
✓ 

6 Axial 4ND (2479 Hz) ✓  
7 Tyre Torsion – 1ND (2537 Hz) ✓ ✓ 
8 Tyre Radial (2774 Hz) ✓ ✓ 
9 Tyre Torsion – 1ND (2537 Hz) 

Tyre Radial (2774 Hz) 
✓   

Fig. 18. Curve squeal simulation results for (a) single and (b) multiple contact 
points without falling friction effect. Red dots ( ) indicate system instabilities 
for each of the 100 simulated cases. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 
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