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Abstract 

Modelling is crucial to understand the behavior of environmental systems. A deeper comprehension 

of a model can be aided by global sensitivity analysis. Variability ascribed to model variables could have a 

stochastic (i.e., lack of knowledge) or an operational (i.e., possible design values) origin. Despite the 

possible different nature in the variability, current global sensitivity analysis strategies do not distinguish 

the latter in their formal derivations/developments. We propose to disentangle the variability in the 

operational and stochastic variables while assessing the model output sensitivity with respect to the former. 

Two operational sensitivity indices are introduced that serve to characterize the sensitivity of a model output 

of interest with respect to an operational variable in terms of (a) its average (with respect to the stochastic 

variables) intensity and (b) its degree of fluctuation (across the set of possible realizations of the stochastic 

variables), respectively. We exemplify our developments considering two scenarios. Results highlight the 

relevance of employing an operational global sensitivity analysis when the focus is on the influence of 

operational variables on model output. 

Key Points 

• Distinct natures of model variables are recognized within a global sensitivity analysis strategy 

• Two global sensitivity indices for operational variables are proposed under uncertainty in the 

stochastic model variables 

• The novel global sensitivity analysis strategy could help management and risk analysis for 

operational variables 

Keywords: Global sensitivity analysis; Stochastic variables; Operational variables; Management; 

Uncertainty. 

1. Introduction 

Sensitivity analysis (SA) is establishing as a fundamental discipline to support environmental 

systems modelling (Razavi et al., 2021; Saltelli et al., 2021 and reference therein).   

In particular, global SA (GSA) is gaining attention due to the possibility of characterizing the 

sensitivity of selected model output(s) with respect to model variables (or parameters) across the entirety A
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of their space of definition (e.g., Pianosi et al., 2016; Razavi & Gupta, 2015). From a mathematical point 

of view, the global character of the SA is accommodated by treating the model variables as random ones 

(either discrete or continuous). The latter choice appears to be natural to code and treat quantitatively 

variability and led to the emergence of diverse GSA strategies over the last decades. The most well-known 

strategy is the variance-based GSA of Sobol (Sobol, 1993; Owen 1994; Homma & Saltelli, 1996) according 

to which the degree of sensitivity of a model output is proportional to the amount of variance of the latter 

that is ascribable to the variability in one (or groups) variable(s). Recognition that the variance is 

insufficient to describe the model output uncertainty in case that its probability density function (pdf) 

deviates from Gaussianity, diverse strategies can be adopted by grounding the model output sensitivity onto 

the variations of: (i) distinct statistical moments of the output pdf (Dell’Oca et al., 2017, 2020); (ii) the 

whole output pdf (Borgonovo, 2007); (iii) the cumulative distribution function of the output (Pianosi and 

Wagner, 2015, 2018). A different picture is adopted in derivative-based GSA in which the model output 

sensitivity is linked to average (in the model variables space) measures of the variations in the model output 

due to variations in the model variables (Morris, 1991; Campolongo, et al 2007; Sobol & Kurechenco, 

2009; Campolongo et al., 2011; Haghnegahdar & Razavi, 2017). Recently, variograms-based GSA has been 

advanced to characterize the sensitivity of the output as a function of the scale of perturbation of the model 

variables (Razavi & Gupta, 2016a; 2016b; Sheikholeslami & Razavi, 2020). Note that, variance-based and 

derivative-based GSA can be obtained from the variogram-based GSA. Correlation-based GSA have also 

been proposed by leveraging on diverse measures of the output and variable(s) degree of correlation 

spanning Pearosn, Spearman, partial correlation coefficients (Pastres et al.,1999), mutual information 

(Krzykacz-Hausmann, 2001) and copula density (Dell’Oca et al., 2020). More complete surveys of GSA 

can be found in Razavi & Gupta (2015), Pianosi et al., (2016) and Razavi et al., (2021). 

Modelling of a system generally requires to deal with variables whose variability can be of an (a) 

operational or (a) a stochastic nature. In this context, the former relates with those system elements which 

values can be prescribed (either as a constants or spatially and time varying) following the prescriptions of 

an operator(s) ‘external’ to the system. This type of variables can also be understood as system 

design/management variables (also known as controllable, e.g., Saltelli et al., 2008 pp. 257). For example, 

in a subsurface hydrology setting an operational variable could be pumping rate of a well designed to 

mitigate the risk of water pollution. On the other hand, model variables of a stochastic nature relate with 

those system elements upon which we have a lack of knowledge that prevents the prescription of their 

values exactly. For example, in a subsurface hydrology setting the spatial distribution of the hydraulic 

conductivity of an aquifer is a stochastic system factor. Generally, even though our degree of knowledge 

about stochastic variables could evolve (e.g., through data acquisition or through a better understanding of 

the dynamics that determine their values), it is less likely that we can modify (or design) stochastic variables 
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(also known as uncontrollable, e.g., Saltelli et al., 2008 pp. 257). Yet, the distinction between operational 

and stochastic variables can be dependent on the specific context (e.g., a river flowrate can pass from being 

a stochastic variable to an operational one considering unmanaged and managed catchments). Nevertheless, 

despite their different nature we can treat both the operational and stochastic variables as random variables, 

in order to reflect (i) the fan of possible values that the operational variables could assume and (ii) the 

degree of uncertainty about the stochastic variables (given our current level of knowledge about them).  

Operational and stochastic variables are commonly encountered jointly in a variety of water-realted 

setting, e.g., eutrophication of shallow water systems (Pastres et al., 1999), hydrological and financial 

management of river systems (Hamilton et al., 2022), protection of diked wetlands (Alminagorta, 

Rosenberg & Kettenring et al., 2016), water management within the socio-hydrological perspective 

(Elshafei et al., 2016), management of sewer overflows in a urban river (Riechel et al., 2016), risk 

assessment of drinking water supply (Cantoni et al., 2021), urban flood scenarios (Wu et al., 2021), live 

cycle of small water resource recovery facilities (Thompson et al., 2022) and tomato production in urban 

environments (Peña et al., 2022),  regulation of rivers under climate change (Patil et al., 2022), management 

of grape harvest (Lo Piano et al., 2022), impact of coastal shrimp ponds in saltwater intrusion (Hou et al., 

2022), crop yields under climate change (Karimi et al., 2022), analysis of water networks (Chen et al., 

2022), investigation of riparian freshwater lenses (Jazayeri et al., 2021), impact of partially penetrating 

barriers on island freshwater lenses (Yan et al., 2021), impact of water withdrawals on waterfalls features 

(Schalko & Boes, 2021), functioning of sewer networks (Dobson et al., 2022), sediment management for 

dams (Niu & Shah, 2021), wave propagation in pressurized pipe (Wang, 2021) and algal growth dynamics 

(Hariz, Lawton & Craggs, 2023),  just to name a few.   

In this context, we are not aware of any GSA strategies in which the specific nature of the model 

variables is explicitly accounted for in terms of the GSA-framework and subsequent interpretation of the 

results. According to common GSA the stochastic and operational variabilities are blended (e.g., jointly 

sampled) during the evaluation of the output sensitivity with respect to the system variables. We believe 

that the above mentioned distinction is of tantamount relevance in the light of typical GSA purposes, i.e., 

scientific discovery, dimensionality reduction, data worth assessment and decision supports (Razavi et al., 

2021). For instance, in a decision-making context our primarily objective could be to understand which 

operational variables are the most relevant (since it is just on those type of variables that we can intervene) 

while we have to account for the stochasticity in the other variables. Furthermore, inspection of the 

sensitivity of a model output(s) with respect to the operational variables (which values could be controlled),  

by explicitly recognizing that the sensitivity could vary across the possible ensemble of realizations of the 

stochastic variables, could enhanced the understanding of the model functioning.  
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For example, we are interested in evaluating the sensitivity of a well contamination with respect to 

(i) the imposed pumping rate and (ii) the duration of the latter. From our GSA we would like to support 

decisions (e.g., determine the relevance of the two operational variables) and grasp a better understanding 

of our system. The hydraulic properties of the aquifer are partially known (e.g., pointwise measurements of 

the hydraulic conductivity are available). This lack of knowledge leads to the adoption of a stochastic model 

for the generation of an ensemble of plausible hydraulic conductivity distributions that are compatible with 

the investigated aquifer (see e.g., Bear & Cheng, 2010). In this context, the common GSA strategies would 

suggest to explore the variability of operational and stochastic variables jointly (i.e., without making any 

distinction on their nature). As such, we will determine the sensitivity of the well contamination with respect 

to (i) the selected operational variables and (at the same time) (ii) the hydraulic conductivity distributions 

(considering interactions), i.e., the sensitivity is evaluated by implicitly blending the variability of the 

former with that of the latter despite their different nature. This approach is useful to answer questions like 

‘Is the variability in the hydraulic distribution (i.e., uncertainty) or that on the operational variables (i.e., 

fan of design values) the most relevant factor(s) for the well contamination?’. Questions of the latter kind 

are those typically posed within an uncertainty quantification analysis. On the other hand, following an 

operational point of view, questions of the kind ‘What is the sensitivity of the well contamination to the 

operational variables, given the uncertainty about the hydraulic conductivity distribution?’ are more 

relevant from an operational perspective. Note that, the uncertainty aspect is present also in the latter 

question. We propose to address this kind of questions by (a) disentangling the variability in the operational 

variables from that of the stochastic variables at the first stage of the GSA, i.e., we evaluate the GSA index 

(selecting the one that better suits our context) for diverse specific realizations of the stochastic variables 

(e.g., for diverse hydraulic conductivity fields in the example above). This leads to have a pdf for the GSA 

index. Afterwards, (b) we accommodate for the uncertainty in the stochastic variables by analyzing salient 

features of the GSA index pdf. We name this approach as operational GSA.     

The paper is organized as follow. In Section 2 we recall the details of the moment-based GSA that 

we employ here to exemplify our approach. Then we present the operational GSA strategy. Section 3 

presents two applications and conclusions are drawn in Section 4.   

2. Methods 

As a GSA technique, we focus on the moment-based approach of Dell’Oca et al. (2017). 

Nevertheless, the concepts and formulations associate with the operational GSA (Section 2.3) can be 

applied to a variety of GSA techniques that better suit needs and purposes depending on the specific context 

(e.g., Baroni & Francke, 2020; Razavi & Gupta, 2019; Pianosi & Wagner, 2015; Sobol, 1993).  
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2.1 Moment Based Sensitivity Index 

2.1.2 Definition 

In this section we briefly recall the definition of the moment-based sensitivity indices proposed by 

Dell’Oca et al. (2017). We consider a target system quantity, y, which depends on a set of random variables 

  associated with the system under investigation, i.e., ( )y  . The sensitivity of y with respect to the i-th 

variable i , can be quantifies according with the following metric  

   

 

| SM SM | |
SM

SM

i

i

iE y y
AMA

y





 − =    (1) 

where SM[ ]y  is a given unconditional statistical moment (SM) of y,  SM | iy   is a given SM of y 

conditional to i  and  
i

E −  is the average operator with respect to i . In case of SM[ ] 0y = , we drop 

the denominator in (1).  According to (1), the sensitivity of y with respect to i  is identified as the (average) 

variation of a SM of y due to the variability in i .  

Note that, it is possible to consider diverse SM of y to characterize the sensitivity of the latter with 

respect to i  (see also Dell’Oca et al., 2017 for further details). In this context, the quantification of the 

influence of each model variable i  on the diverse SM of y (e.g., i  could affect the first SM while not the 

second one) allows for a comprehensive understanding of the model functioning and can support factor 

screening and fixing procedures.       

2.2.2 Evaluation workflow 

Figure 1 depicts a sketch of the workflow employed to evaluate the GSA index SM
i

AMA   in 

Equation (1). For the purpose of illustration, we consider a model output y as a function of an independent 

coordinate x (e.g., space or time) and three random variables 1 2 3( ; ; )  = . The variables space   is 

explored by drawing a set of Monte Carlo of realizations of the stochastic variables   (e.g., according with 

a regular binning scheme). Leveraging on the latter it is possible to estimate the unconditional SM[y] and 

conditional SM[ | ]iy   statistical moment of y and apply Equation (1) to obtain SM
i

AMA  .  
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Figure 1. Sketch of the evaluation workflow leading to the moment-based GSA index SM
i

AMA   for the 

output of interest y. For illustrative purpose, we consider three random variables 1 2 3( ; ; )  =  and we 

introduce the independent coordinate x (e.g. time or space). 

   

2.2 Operational and Stochastic system variables 

As highlighted in Section 1, in many environmental settings, it is possible to discern the set of 

system variables   in (i) a set of operational variables, θ, and (ii) a set of stochastic variables, ω. Thus, we 

specify that the target system quantity depends on both the operational and the stochastic variables, i.e., 

( )y   = y(θ, ω). At this stage, we highlight that it is possible to evaluate the sensitivity of y according with 

Equation (1) considering an operational variable θi, i.e., we can quantify the impact that θi has on a given 

SM of y considering that θi can potentially assume diverse design values. The same can be done considering 

a stochastic variable ωi, i.e., we can quantify the impact of ωi on a given SM of y considering the uncertainty 

that affect ωi. In this context, we point out that during the evaluation of SM
i

AMA   no distinctions about 

the nature of i  is done, as such proper cautions on the conclusions drawn upon SM
i

AMA   must be taken 

especially if the focus of the study is tied to the characterization of the impact of the operational variables.  

Additionally, according to Equation (1) the impact of an operational parameter 
i i =  on a SM of 

y is evaluated by focusing on the discrepancy between SM[y] and SM[y|θi], i.e., fixed the value of θi we 

evaluate a SM of y by averaging with respect to the other operational variables and with respect to the 

stochastic variables. This averaging is propaedeutic to the filtering of the impact of the other variables rather 

than θi and to account for possible interactions of θi. From an operational perspective, the issue with this 

way of proceeding lays in the fact that we evaluate the sensitivity of y with respect to θi, considering 

interaction with the other operational variables (a deemed aspect), but also as its interacts with the lack of 
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knowledge that we have about the stochastic variables of the system before the selected metric for 

sensitivity (i.e., the normalized average discrepancy between conditional and unconditional SM of y 

according to Equation (1)) is evaluated. From an operational perspective, we are more interested in the 

evaluation of the sensitivity of y with respect to θi by recognizing that the selected metric for sensitivity 

might varies across diverse realizations of ω. We address this aspect in the following Section 2.3. 

In this context, we introduce two averaging operators, considering θ and ω as independent of each 

other. Firstly, we consider the average with respect to the operational variables, i.e.,   

[ ( )] ( )E p d 


= 


    (2) 

where pθ  represents the probability density function (pdf) of θ and Γθ its support of definition. Note that, E 

[ψ(θ)] is still a random quantity since it is a function of ω. The second average type of average concerns 

the stochastic variables, i.e., 

( ) ( ) p d 


 = 


     (3) 

where pω and Γω are the pdf and support space of ω, respectively. Note that, in our context, <ψ(θ)> is a 

random quantity since we treat the possible variability in the operational variables by viewing them as 

random variables. Note that, in case all or some of the variables collected in θ are discrete random variables 

we employ corresponding probability distribution (e.g., Pθ) and we substitute integrals with summations 

when needed in expressions in (2)-(3). We highlight this aspect since in many contexts it might be possible 

that some operational variables can only assume some well-defined values (e.g., due to practical constrains 

or design choices). The same holds in case of discrete variables in ω.  

2.3 Moment Based Operational Sensitivity Indices  

2.3.1 Definition 

In this section we focus on evaluating the sensitivity of y with respect to the operational variable θi 

by explicitly recognizing that the metric selected to characterize the sensitivity can vary depending on the 

value of ω. Following Dell’Oca et al. (2017), we assess the impact of θi on a given SM of y as  

 | SM[ ( )] SM ( ) | |
SM ( )

SM[ ( )]

i

i

iE y y
AMA

y





  




 − 
=  (4) 

where SM[y(ω)] is a given unconditional (with respect to θ) statistical moment of the system target quantity 

y(ω) conditional to a realization of ω, and SM[y(ω)| θi] is the counterpart conditional also to a value of θi; 
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the average  
i

E −  is the counterpart of Equation (2) conducted only with respect to θi.  In case of SM[y(ω)] 

= 0, we drop the denominator in Equation (4).  The rationale behind Equation (4) is to assess the sensitivity 

of y with respect to θi, as the average variability of a given SM of y due to the possible variations in the 

operational variable θi, considering a generic realization of ω. In the light of the uncertainty about ω, the 

index SM ( )
i

AMA    is also a stochastic variable.  

Thus, as two summary indices to characterize the operational sensitivity of y with respect to the 

operational variable θi we propose to evaluate 

SM SM ( )
i i

OpAMA AMA  =   (5) 

and 

2

SM
( SM ( ) SM ( ) )

i i
i

AMA
AMA AMA


   =  −     (6) 

The index SM
i

OpAMA   quantifies the sensitivity of y with respect to the operational variable θi, as the 

averaged value of the random SM ( )
i

AMA   . In other words, SM
i

OpAMA   provides a representative value 

(in the light of the uncertainty in ω) of the operational influence that 
i  has on the system target quantity y 

(considering a given SM of the latter). At the same time, we need to quantify the variability of the 

operational sensitivity of y with respect to θi, due to the uncertainty that plague ω. This aspect is (at least 

partially) quantified by 
SM

i
AMA 

 , whereas the larger it gets the more is variable (across the possible 

realizations of ω) the response of y to variations of θi. Note that, 
SM

i
AMA 

  serves also to highlight possible 

interaction between θi and ω, whereas to a null value of 
SM

i
AMA 

  corresponds the situation in which the 

sensitivity of y with respect to θi is equals in all the realizations of ω. Furthermore, depending on the context, 

it might be useful to investigate other features of the distribution of SM ( )
i

AMA    in addition to those 

quantified in Equations (5)-(6) (e.g., skewness and kurtosis of the distribution of SM ( )
i

AMA   ). 

2.3.2 Evaluation Workflow 

 Figure 2 depicts a sketch of the workflow here employed to evaluate the operational GSA indices 

introduced in Equations (5)-(6). For the purpose of illustration, we consider a model output y that is a 

function of an independent coordinate x (e.g., space or time).  The first step (S1) consists in exploring the 

stochastic space by drawing a set of Monte Carlo realizations of ω (here we assume the latter to be a function 
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of x). Secondly (S2), each single realization of ω interacts with the variability of the operational variables 

θ (e.g., we employ a regular binning to discretize the variability of the latter; note that here θ is independent 

from x) in order to obtain the unconditional SM[y(ω)] and conditional SM[y(ω)|θi] statistical moment of 

interest of y given a realization of ω. Afterwards (S3), the stochastic sensitivity index SM ( )
i

AMA    in 

(4) is evaluated. Then steps (S2-S3) are repeated for whole set of Monte Carlo realizations of ω and then 

(S5) (i) the average value and (ii) standard deviation of SM ( )
i

AMA    are evalauted, i.e., the operational 

GSA indices SM
i

OpAMA   and  
SM

i
AMA 

 , respectively. A quick comparison of Figure 1 and Figure 2 helps 

to grasp the difference on the nature of the moment-based GSA index SM
i

AMA   (see Section 2.1.1) and 

the operational moment-based GSA indices SM
i

OpAMA   and  
SM

i
AMA 

 (see Section 2.3.1), especially with 

regard to the disentangling of the stochastic and operational variables during the evaluation of the latter.    

 

 

Figure 2. Sketch of the evaluation workflow to determine the operational moment-based GSA indices 

SM
i

OpAMA   and 
SM

i
AMA 

  for the output of interest y . For illustrative purpose, we consider one stochastic 

ω and two operational θ = (θ1, θ2) variables and we introduce the independent coordinate x (e.g. time or 

space). For each realization ω we evaluate the random moment-based SA index associated with the i-th 

operational variable, i.e., SM ( )
i

AMA   . This allows to disantagle the variability in θ from that in ω 

during the evaluation of the sensitivity of y.  Afterwards, the expected value and standard deviation of 
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SM ( )
i

AMA    are evaluated to obtain the operational moment-based GSA indices SM
i

OpAMA   and  

SM
i

AMA 

 , respectively. In the latter step we accommodate for the variability in the stochastic variable ω. 

 

 3 Applications  

In this section we exemplify the moment-based GSA strategies detailed in Section 2, considering (i) the 

Ornstein-Uhlenbeck (OU) stochastic process and (ii) a solute transport scenario taking place within a 

heterogeneous porous formation. For both example we consider the first, i.e.,SM E=  (or expected value) 

and the second (centered), i.e., SM V=  (or variance), statistical moment of the output quantities of interest. 

3.1 Ornstein-Uhlenbeck Process  

The OU process is a well know stochastic process with application in a variety of environmental 

disciplines (e.g., Risken, 1989). According to the OU, a stochastic variable y(s), with s being an independent 

variable, obeys to the following Langevin equation 

( )
( ( )) / ( )

dy s
y s s

ds
  = − +   (7) 

where µ is the long-term average value of the process, γ is the relaxation constant and ξ(s) is a white noise 

(we consider a unitary variance). As initial condition we assume y(0)=1e3. Here, we treat µ and γ as the 

operational variables of the system, i.e., θ = (µ, γ). Table 1 lists the support of definitions of the two 

operational variables, that are treated as independent uniformly distributed random variables. At the same 

time, the noise term ξ(s) is the stochastic variable, i.e., ω = (ξ). The OU process is solved numerically 

according with a Euler scheme.  

 

Table 1. Support of definitions of the operational variables of the Ornstein-Uhlenbeck process. 

Operational factor Support 

µ [1000 1010] = −  

γ [10 :100] =  

  

  In this context, our goal is the quantification of the moment-based operational global sensitivity of 

y(s) with respect to µ and γ by means of the indices in Equations (5)-(6). We accomplish the latter by 
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employing the evaluation workflow of Section 2.3.2 considering 105 realizations of the noise series ξ(s)  

and by discretizing both   and   in 104 uniform bins (we consider all pairwise combinations). This 

allows us to evaluate the necessary unconditional, i.e., SM[y(s;ξ)], and conditional, i.e., SM[y(s;ξ)|θi], 

statistical moment(s) of interest of the OU process. Furthermore, with the same set of simulations and 

discretizations we follow the evaluation workflow in Section 2.1.2 to obtain the moment-based GSA 

detailed Section 2.1.1.  

3.1.2 Global Sensitivity Analysis of the First Statistical Moment of the Ornstein-Uhlenbeck 

In this section we investigate the sensitivity of the OU process by focusing on its first SM. 
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Figure 3. Moment-based GSA for the Ornstein-Uhlenbeck process considering the first SM. Operational 

indices 
i

OpAMAE  (continuous curves) and 
i i

Op

AMAEAMAE
   (dashed curves) are depicted for θi = ((a) 

µ (red); (b) γ (blue)), versus s. Sets of twenty randomly chosen ( )
i

AMAE   are also depicted (note that, 

the latter overlaps with 
i

OpAMAE  in panel (a)). (c) Comparison of 
i

AMAE  (dash-dotted curves) for i  

= (ξ (black); µ (red); γ (blue)) and 
i

OpAMAE  (continuous curves) for θi = (µ (red); γ (blue)) (note that, 

AMAE  and  
OpAMAE  practically coincide).  

 

Figure 3 depicts (a) 
OpAMAE  (red continuous curve) jointly with the confidence intervals 

Op

AMAEAMAE
   (red dashed curves) versus s. Few randomly chosen realizations of ( )AMAE   (grey 

curves) are also depicted. Inspection of Figure 3a highlights that the operational sensitivity of the first SM 

of  y with respect to µ (as summarized through 
OpAMAE ) increase with s, i.e., as expected, variations in 

the value of the long-term average µ of the OU process majorly affect the first SM of y as it tends to relax 

around µ. At the same time, the first SM of y for small s is not very sensitive to µ, i.e., the behaviour of first 

SM of y for small s is strongly influenced by the (deterministic) initial condition. Meanwhile, the variability 

of the operational sensitivity of the first SM of y with respect to µ (as quantified by 
Op

AMAEAMAE
  ) is 

always small, i.e., the impact of variations in µ on the first SM of y is more or less independent from the 

specificity of the random noise ξ(s) series.  

Figure 3b is the counterpart of Figure 3a considering the relaxation constant γ. Inspection of Figure 

3b suggests that also the operational sensitivity of the first SM of y with respect to γ (as summarized through 

OpAMAE ) is low for small values of s (see discussion of 
OpAMAE  above). At the same time, both 

OpAMAE  and 
OpAMAE  aproach constant values for s > 300 (approximately), i.e., the operational 

sensitivity of the first SM of y does not vary when the OU reaches its long-term/asymptotic behavior. 

Meanwhile, 
OpAMAE  tends to be smaller than 

OpAMAE  while the variability of the operational 

sensitivity of the first SM of y with respect to γ (as quantified by 
Op

AMAEAMAE
  ) is larger than that 

associated with µ, i.e., variations in the relaxation variable γ lead to diverse values of the first SM of y 

depending on the intensity of the series of ξ(s) since γ interacts with the current state of y (see Equation 7). 
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Figure 3c compares 
i

AMAE  (dash-dotted curve) for i = (µ (red); γ (blue); ξ (black)) with 

i

OpAMAE  (continous curve) for θi = (µ (red); γ (blue)), as a function of s. We note that, AMAE  and 

OpAMAE  practically coincide, i.e., the sensitivity of the first SM of y with respect to µ is independent 

from disentangling or not the variability in ξ(s)  from that in (µ, γ). We explain this result by considering 

that µ determines the value around which the OU relaxes (see Equation 7) and thus the influence of µ on 

the first SM of y is detached from the specificity of the noise ξ(s). On the contrary, AMAE  and 
OpAMAE  

behave differently: as s increases AMAE  approaches a null value after a peak, while 
OpAMAE  reaches 

a constant. The behavior of AMAE  can be explained by noticing that E[y(s)|γ]  approaches the same value 

independently of γ (yet, at diverse ‘speed’ depending on γ resulting in the non-zero values of AMAE  over 

small s) leading to 0AMAE =  for s > 300, i.e., considering E[y(s)|γ] (rather than E[y(s; ξ)|γ]) we do not 

keep track of the specificity of the series of ξ(s) and the interaction between γ and the current state of y(s) 

(this in contrast with 
OpAMAE , see previous discussion). Finally, for the specific values of the ranges 

listed in Table 1, AMAE  is larger than AMAE  and AMAE  for all s: the lack of knowledge about ξ(s) 

leads to stronger discrepancies between E[y(s)] and E[y(s)|ξ] that those ascribable to the variability in the 

long term average and in the relaxation constant. 

3.1.2 Global Sensitivity Analysis of the Second Statistical Moment of the Ornstein-Uhlenbeck 

In this section we investigate the sensitivity of the OU process by focusing on its second (centered) 

SM. 
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Figure 4. Moment-based GSA for the Ornstein-Uhlenbeck process considering the second (centered) SM. 

Operational indices 
i

OpAMAV  (continuous curves) and 
i i

Op

AMAVAMAV
   (dashed curves) are depicted 

for θi = ((a) µ (red); (b) γ (blue)), versus s. Sets of twenty randomly chosen ( )
i

AMAV   are also depicted. 

(c) Comparison of 
i

AMAV  (dash-dotted curves) for i  = (ξ (black); µ (red); γ (blue)) and 
i

OpAMAV  

(continuous curves) for θi = (µ (red); γ (blue)). 

 

Figure 4 depicts 
i

OpAMAV  (continous curve)  jointly with the confidence intervals 

i i

Op

AMAVAMAV
   (dashed curve) for θi = ((a) µ (red); (b) γ (blue)) and twenty corresponding randomly 
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chosen realizations of ( )
i

AMAV   (grey curves). Comparison of 
i

OpAMAE  (Figure 3a-b) and 
i

OpAMAV  

(Figure 3a-b) reveals different trends in the operational sensitivity of the OU depending on the SM in 

correspondece of s < 300 (approximately). At the same time, considering s > 300 (approximately) both 

i

OpAMAE  and 
i

OpAMAV  become constants. The latter observation suggests that once the OU approaches 

the long-term/asymptotic behaviour the variability in each operational variable influences the first and 

second (centered) SM of the OU in a stationary manner, i.e., there is no influence of the pre-asymptotic 

behaviour.  Furthermore, the bounds 
Op

AMAVAMAV
   are not negligebles (this is in contrast with values 

of 
Op

AMAEAMAE
   in Figure 3a), i.e., the way in which variations in µ influence the second (centered) 

SM of the OU do depend on the specificity of ξ(s).   

Figure 4c compares 
i

AMAV  (dash-dotted curve) for i  = (ξ (black); µ (red); γ (blue)) and 

i

OpAMAV  (continous curve) for θi = ((a) µ (red); (b) γ (blue)), as a function of s. Inspection of Figure 4c 

reveals that also the diverse 
i

AMAV  approach constant values for s > 300 and that the stochasticity in ξ is 

the dominant factor. At the same time, we note that the relative importance of µ and γ vary when considering 

i
AMAV  or 

i

OpAMAV  . Furthermore,  the comparison of AMAV  and AMAE  (see Figure 3c) reveals 

a persisten influence of γ on the OU process when we consider the second (centered) SM rather than the 

first SM, i.e., the relaxation variable continously influences the variability (as measured by the second 

(centered) SM) across diverse realizations (associated with variations of µ and ξ) of the OU process even 

when the long-term behaviour is approched. 

3.2 Solute Transport within Heterogeneous Porous Formation 

In this section we focus on the spreading of a solute body that travels through a porous 

heterogeneous formation under the action of four pumping wells, i.e., W1, W2, W3 and W4. (see Figure 5 

for a sketch of the problem setting).  
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Figure 5. Sketch of the solute transport scenario within randomly heterogeneous porous formation. (a) The 

system stochastic variable is the spatial distribution of the logarithm of the hydraulic conductivity, i.e., Y(x) 

(see colormap). The operational variables are the wells W1-4 distances (d1, d2) and the ratio of the wells 

pumping rates r = q2 /q1 (with q3 = q1 and q4 = q2). A constant hydraulic head 
BCh  is imposed along all the 

domain boundaries. (b) Solute body is initially at the domain center (red circle). The magnitude of the 

Darcy’s velocity field during the activation of W1 is depicted as a colormap (green low, yellow high), note 

the increase in the flow perturbations in proximity of W1.  Inset depicts an example of the pumping wells 

activation schedule considering a ratio of pumping r = 0.5. The time window ti represents the time of 

activation of the i-th well. We depict four snapshots of the solute plume at the end of each ti interval.  

 

Considering heterogeneous geological formations, the typical data scarcity and the erratic nature 

of the hydraulic conductivity lead to a lack of knowledge about the exact spatial arrangement of the latter. 

Thus hydraulic conductivity is treated as a random field (e.g., Bear and Cheng, 2010). As a common 

assumption, the logarithm of the hydraulic conductivity (divided by its geometric mean, here set equal to 

one for convenience), i.e., Y(x) (where x = (x, y) is the space location coordinate, see Figure 5a), is 

considered as a stationary multi-Gaussian field, i.e., Y(x) ⁓ N(0, σ2
Y) and we set σ2

Y = 1. Regarding the 

spatial correlation of Y(x), we assume an isotropic exponential spatial covariance, i.e., CY(z) = σ2
Yexp(-z/lY), 

where z is a spatial lag vector and lY is the correlation length scale of Y(x). Therefore, the random field Y(x).  

represents the stochastic variable of the system under investigation, i.e., ω = Y(x). The stochastic dimension 

is explored by drawing 5000 Monte Carlo realizations of Y(x) (we employ a regular grid of square elements 

of edge size equals to lY /10). The physical domain of interest is a two dimensional square with edge length 

L = 30lY (see Figure 5a).  
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Regarding the set of operational variables of the problem, we consider the distance between (i) W1-

W2 and W3-W4, i.e., d1, and between (ii) W1-W4 and W3-W2, i.e., d2 (see the wells arrangement in Figure 

6a). Additionally, we consider (iii) the ratio between the pumping rate in W2 and W1, i.e., r = q2 /q1, given 

that q3 = q1 and q4 = q2. Thus, the vector of operational variable is θ = (d1; d2; r). We treat the operational 

variables as independent and discrete random variables with probabilities listed in Table 2. This choice 

reflects a possible design phase in which the operators decide to focus on few equally likely values of the 

operational variables. Regarding the pumping schedule of the wells we firstly activate W1 within the time 

window t1 = [0-tp/2] and subsequently W2 during t2 = [tp/2-3tp/2], W3 during t3 = [3tp/2-5tp/2] and, lastly, 

W4 during t4 = [5tp/2-7tp/2], with tp=2000 (in consistent unit) (see Figure 5b for an example of a pumping 

schedule).   

 

Table 2. Discrete probabilities, P, assigned to the diverse values of the operational variables for the solute 

transport scenario. 

Distance 1d  Distance 2d  Pumping ratio r 

1( 20) 1/ 3P d = =  2( 20) 1/ 3P d = =  ( 0) 1/ 3P r = =  

1( 21) 1/ 3P d = =  2( 21) 1/ 3P d = =  ( 0.5) 1/ 3P r = =  

1( 22) 1/ 3P d = =  2( 22) 1/ 3P d = =  ( 1) 1/ 3P r = =  

  

We simplify the flow problem by neglecting storage effects due to matrix and fluid compressibility. 

Thus, conservation of mass translates into the divergence free of the Darcy’ flow (see Bear & Cheng, 2010). 

Regarding the boundary conditions, we impose a constant value of the hydraulic head hBC along the domain 

edges in order to avoid any background flow. The flow problem is solved by leveraging on the Matlab 

Reservoir Simulation Toolbox (Lie, 2019), employing a regular grid of square elements of size lY/10. 

Transport of solute within the ensuing Darcy’s scale flow field is grounded on the advection and diffusion 

equation (ADE) (see Bear and Cheng, 2010) Here we consider a spatially constant diffusion coefficient D. 

The ADE is solved using a standard particle tracking method employing 105 solute particles per each 

realization Darcy’s flow field. As initial condition, solute particles are released at the center of the physical 

domain (see Figure 5b).  

Our system output of interest is the spreading scale of the solute plume. Considering a solute plume 

transported within a Darcy’s flow field, we evaluate the standard deviation of the plume particles positions 

along both principal coordinates, i.e., 
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 ( ) 

2

2

( ) ( ) ( )

( ) ( ) ( )

x p p

y p p

t x t x t

t y t y t





= −

= −

 (8) 

where xp and yp  are the particle spatial coordinates at time t and {-} represents the average over the ensemble 

of particles released in each single Darcy’s flow field within the Monte Carlo set. The spreading scales σx(t) 

and σy(t) are typically employed in setting characterized by the presence of a preferential mean flow 

direction aligned with one of the principal coordinates (e.g., given that x is aligned with the main flow 

direction, σx(t) and σy(t) characterize the longitudinal and transverse plume spreading, respectively, see e.g., 

Dentz et al., 2004). The latter condition does not hold in our setting and we characterize the solute spreading 

through the following spreading scale  

( ; , ) ( ; , ) ( ; , ) / 2x yt t t Dt        =                           (9) 

Note that, we normalize the spreading scale by the purely diffusive counterpart.  

Thus, given the system output of interest in Equation (9) and we proceed to evaluate its operational 

sensitivity with respect to the operational parameters θi =(d1; d2; r). The latter is conducted by following 

the evaluation workflow in Section 2.3.2 in which the variability of Y(x) is sampled through the Monte 

Carlo realizations while that of the operational variables is sampled according the discrete probabilities in 

Table 1. On the base of the same set of simulations we follow the evaluation workflow in Section 2.1.2 to 

conduct the GSA presented in Section 2.1.1.  

3.2.1 Global Sensitivity Analysis of the First Statistical Moment of Solute Spreading 

In this Section we conduct the sensitivity analysis of σ(t) by focusing on its first SM. Figure 6 

depicts 
i

OpAMAE  (continous curve)  jointly with the confidence intervals 
i i

Op

AMAEAMAE
   (dashed 

curve) for θi =((a) d1 (red); (b) d2 (blue); r (green)) and few corresponding randomly chosen realizations of 

( )
i

AMAE Y  (grey curves). Additionally, Figures 6d-e depict the unconditional first SM of the solute 

spreading ( ; )t YE  (black curve) and the conditional counterpart ( ; | )it YE   for θi =(d1 (red curves); (b) d2 

(blue curves); (c) r (green curves)) considering two randomly chosen realizations of Y(x).   
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Figure 6. Moment-based operational GSA for the solute spreading considering the first SM, 
i

OpAMAE  

(continuous curves) and 
i i

Op

AMAEAMAE
   (dashed curves) for θi =((a) d1 (red); (b) d2 (blue); (c) r 

(green)), as a function of t. Sets of randomly chosen ( )
i

AMAE Y  are also depicted (grey curves). Vertical 

dashed lines delineate the period of wells activations. (d-e) Unconditional first SM of solute spreading 

( ; )t YE  (black curve) and the conditional counterpart ( ; | )it YE   for θi = (d1 (red curves); d2 (blue curves);  r 

(green curves)) (see figure legend) considering two randomly chosen realizations of Y(x).   
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Inspection of Figure 6a-c reveals that during t1 the 
i

OpAMAE  for the diverse θi (i) coincide and (ii) 

are slightly larger than zero. The same holds for the diverse 
i i

Op

AMAEAMAE
  . Inspection of Figure 6d-

e during t1 highlights, for diverse realizations of Y(x), the similarity between ( ; )t YE  and ( ; | )it YE   for all 

the operational variables. During t1 none of the latter impact the flow field that is experienced by the solute 

cloud as it is conveyed towards W1 and the only detected (small) discrepancies are those due to the 

difference in the (random) diffusive component of the solute motion across realizations of Y(x) (i.e., in each 

single realization of Y(x) the diffusive component of the particles motion is modelled as an independent 

white noise leading to very small discrepancies in the plume spreading scale across the realizations of Y(x) 

during t1, even though none of the θi is influencing the solute spreading).  

Considering t2, we note that 
1

Op

dAMAE  and 
1dAMAE  increase with time, see Figure 6a. The solute 

spreading is obviously impacted by the distance between W2 and the solute cloud during t2. Thus we expect 

d1 to be influential. In particular, solute spreading is dictated by the flow perturbations triggered by W2 that 

are experienced by the plume as it travels towards the latter (see also Figure 5b). Inspection of Figure 6d-c 

highlights how 
1( ; | )t Y dE  tends to deviates from ( ; )t YE  as time passes within t2 and in particular 

1( ; | )t Y dE  

decreases with d1. Concurrently, the intensity of the flow perturbations dictating the plume spreading vary 

across the Y(x) realizations (e.g., compare Figure 6d and Figure 6e), leading to increasing degree of 

variability of the first SM of solute spreading sensitivity with respect to d1, i.e., 
1dAMAE  increases during 

t2. Considering d2, the indices 
2

Op

dAMAE  and 
2dAMAE  have the same values recorded during t1 since d2 does 

not influence the W2-flow perturbations and thus solute spreading. The latter observation is corroborated 

by the equivalence of 
2( ; | )t Y dE  and ( ; )t YE  in Figure 6d-e during t2. Regarding r, inspection of Figure 6c 

highlights that 
Op

rAMAE  and 
rAMAE  increase during t2, i.e., similarly to d1, at diverse values of r 

correspond diverse intensity of the flow perturbations experienced by the solute cloud as it is conveyed 

towards W2 within each realization of Y(x). Furthermore, inspection of Figures 6d-e reveals that ( ; | )t Y rE  

for r = 0 tends towards unity (see normalization in Equation 9) since diffusion is the only active transport 

mechanism. The variability in the dominant transport mechanism during t2 ascribable to variations in r 

concur to the increase of 
Op

rAMAE  while the growth of 
rAMAE is rooted in the influence of the 

heterogeneous arrangement of Y(x) on the intensity of the solute spreading due to the advective component 

of transport (e.g., compare the sets of ( ; | )t Y rE  in Figure 6d and Figure 6e). 
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Focusing on the time window of activation of W3, Figure 6a highlights that 
1

Op

dAMAE  and 
1dAMAE  

slightly decrease at the beginning of t3. After the activation of W3 the intensity of the flow perturbations 

experienced by the plume drastically diminish with respect to those at the end of t2 leading to the decrease 

in the sensitivity of the first SM of spreading with respect to d1 in comparison with the relevance of the 

latter during the ending of t2. Moreover, in some realizations of Y(x) the decrease in the flow perturbations 

experienced by the plume could promote the dominance of the diffusive transport (e.g., 
1( ; | )t Y dE  for d1 = 

22 during t3 in Figure 6d). The latter underpins the reduction of 
1dAMAE  during the early stages of t3. As 

time passes within t3, the operational sensitivity of d1 increases, i.e., as the plume is conveyed towards W3 

the distance d1 gains relevance due to its influence on the position of W3 with respect to the solute cloud 

and thus on the intensity of the flow perturbations associated with the activation of W3 that are experienced 

by the solute plume. Regarding 
2

Op

dAMAE  and 
2dAMAE  Figure 6b highlights that both increase during t3, 

as expected (see discussion about 
1

Op

dAMAE  and 
1dAMAE  during t1). At the same time, Figure 6c reveals 

that 
Op

rAMAE  and 
rAMAE  decrease within t3 since the flow perturbations associated with W3 are not 

influenced by r. Nevertheless, the influence of r persist during t3 due to its relevance in determining the 

spreading state at the beginning of t3 (i.e., during t3 the indices 
Op

rAMAE  and 
rAMAE  do not immediately 

drop to zero).   

Lastly, Figures 6a-c reveal that all 
i

OpAMAE  and 
i

AMAE
  decrease at the beginning of t4 to then 

increase thereafter. Right after the activation of W4 the flow perturbations experienced by the solute plume 

drastically drop leading to the decrease in the sensitivity of the first SM of spreading with respect to all the 

operational parameters (see previous discussion of 
1

Op

dAMAE  during t3). At the same time, as the intensity 

of the flow perturbations acting on the plume decrease the relevance of diffusion increases (e.g., see 

1( ; | )t Y dE  for d1 = 22 and 
2( ; | )t Y dE  for d2 = 22 in Figure 6d and ( ; | )t Y rE  for r = 0 in Figure 6d-e, during t4) 

leading to the temporary drop in 
i

AMAE
  (see also previous discussion of 

1dAMAE during t3). As the plume 

is conveyed towards W4 the solute spreading evolves differently depending on the value of the operational 

parameters (see the dispersion of ( ; | )it YE   in Figure 6d-e during t4) leading to the increase of 
i

OpAMAE  as 

time passes during t4 for all θi. Moreover, as the plume approaches W4 advection becomes the main 

transport mechanism and thus the differences in the heterogeneous arrangement of Y(x) acquire relevance. 

This sustain the variability of the sensitivity of the first SM of the solute spreading across realizations of 
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Y(x) (compare the relative dispersion of ( ; | )it YE   around ( ; )t YE  during t4 for the two realizations of Y(x) 

in Figure 6d and Figure 6e), i.e., 
i

AMAE
  increases while time passes during t4 for all θi. 

 

Figure 7. (a) Comparison of the GSA based on the first SM of the solute spreading. 
i

AMAE  (dash-dotted 

curve) for i  = (Y (black); d1 (red); d2 (blue); r (green)), and 
i

OpAMAE  (continuous curves) for θi = (d1 

(red); d2 (blue); r (green)). (b) Unconditional ( )tE  (black curve) and conditional ( | )itE    first SM of solute 

spreading i  (d1 (red curves); d2 (blue curves); r (green curve); Y (grey curves)) for the diverse values of 

the operational variables (d1; d2; r) (see Figure legend and Table 1) and twenty random realizations of Y(x). 

 

Figure 7a depicts the results of the GSA grounded on 
i

AMAE  (dash-dotted curves) for i  = (d1 

(red); d2 (blue); r (green); Y (black)) versus t. For comparison, we also depict 
i

OpAMAE  (continuous 

curves) for θi = (d1 (red); d2 (blue); r (green)). Moreover, Figure 7b depicts ( )tE  (black curve), 
1( | )t dE  

(red curves), 
2( | )t dE  (blue curves), ( | )t rE  (green curves) and ( | )t YE  (grey curves, twenty random 

realizations of Y(x)).  

Inspection of Figure 7a reveals that, for the current setting, the first SM of solute spreading is less 

sensitive to the envisioned variability in the wells placements (d1, d2) and in the pumping rates (r) than to 

the lack of knowledge in the spatial arrangement of the hydraulic conductivity. Inspection of Figure 7b 

highlights that the variations in the wells characteristics i = (d1, d2, r) result in ( | )itE   that are close to 
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( )tE , i.e., the first SM of solute spreading conditional to the operational variables and the unconditional 

counterpart are dominated by the uncertainty in Y(x). At the same time, the first SM of solute spreading is 

strongly impacted by the knowledge of Y(x), i.e., the diverse ( | )t YE  are strongly dispersed around ( )tE . 

In particular, the latter holds during t1 and t3 since the heterogeneity-driven advective spreading of solute is 

surely active (i.e., wells W1 and W3 are activated despite the value of r). This results in the increase of 

YAMAE  during t1 and t3, see Figure 7a. On the contrary, during t2 and t4 the wells W2 and W4 could be 

inactive in case of r = 0 allowing diffusion to homogenize the state of solute spreading across the ensemble 

of realizations of Y(x). The latter results in the tendency of YAMAE  to decrease during the initial stages of 

t2 and t4. At the same time, in the case of r = 0 the corresponding  ( | )t rE   tends towards unity during t2 and 

t4. This is in contrast with the tendency of ( | )t rE  to increase in case of r > 0. Thus, the possible prevalence 

of advective or diffusive solute transport (regulated by r during t2 and t4) enhances the influence of the ratio 

of pumping rate on the first SM of solute spreading during t2 and t4.  

3.2.2 Global Sensitivity Analysis of the Second Statistical Moment of Solute Spreading 

In this Section we investigate the sensitivity of σ(t) by focusing on its second (centered) SM.  Figure 

8 depicts 
i

OpAMAV  (continous curve)  jointly with the confidence intervals 
i i

Op

AMAVAMAV
   (dashed 

curve) for θi =((a) d1 (red); (b) d2 (blue); (c) r (green)) and few corresponding randomly chosen realizations 

of ( )
i

AMAV Y  (grey curves). Additionally, Figure 8e depicts the unconditional second (centered) SM of 

solute spreading ( ; )t YV  (black curve) and the conditional counterpart ( ; | )it YV   for θi  = (d1 (red curves); d2 

(blue curves);  r (green curves)) considering one random realization of Y(x).   
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Figure 8. Moment-based operational GSA for the solute spreading considering the second (centered) SM, 

i

OpAMAV  (continuous curves) and 
i i

Op

AMAVAMAV
   (dashed curves) for θi = ((a) d1 (red); (b) d2 (blue); 

(c) r (green)), as a function of t. Sets of randomly chosen ( )
i

AMAV Y  are also depicted (grey curves). 

Vertical dashed lines delineate the period of wells activations. (d-e) Unconditional second (centered) SM 

of solute spreading ( ; )t YV  (black curve) and the conditional counterpart ( ; | )it YV   for θi = (d1 (red curves); 

d2 (blue curves);  r (green curves)) (see figure legend) considering two randomly chosen realizations of 

Y(x).   

 

The comparison of results in Figures 8a-c and Figure 6a-c reveals an overall qualitative agreement 

of the operational GSA grounded on ( )
i i

AMAVAMAV Y
   and ( )

i i
AMAEAMAE Y

   for the diverse θi  

during t1, t3 and t4. In particular, during t1 the values of 
i

OpAMAV  and ( )
i i

AMAVAMAV Y
   associated 

with the diverse θi coincide and are larger than zero. These results confirm the role of the discrepancies in 

σ(t) due to the randomness in the diffusive component of solute motion (see previous discussion of 

( )
i i

AMAEAMAE Y
   during t1 in Section 3.2.1). Note that, Figure 8d reveals that during t1 ( ; | )it YV   (for 
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all θi) and ( ; )t YV  are (i) small (discrepancies in the plume spreading due to diffusive motion are small, this 

is expected given the high number of solute particles employed to resolve each plume) and (ii) their 

discpepancies are of a similar order of magnitude of ( ; )t YV , which leads not negligibles values of 

( )
i i

AMAVAMAV Y
  .  

The most striking qualitative difference between Figure 8 and Figure 6 is noted during t2 when 

2 2

( )
dd AMAVAMAV Y   decreases while 

2 2

( )
dd AMAEAMAE Y   remains more or less constant. Inspection 

of Figure 8d reveals that, ( ; )t YV  increases during t2 under the influence of variations in d1 and r which 

affect the intensity of the flow perturbations induced by W2. Meanwhile, variations in d2 do not affect the 

behavior of W2 and thus the conditional second (centered) SM 
2( ; | )t Y dV  shows a decreasing degree of 

(relative) dispersion around ( ; )t YV  during t2, i.e., 
2 2

( )
dd AMAVAMAV Y   decreases during t2.  

Figure 9a depicts the results of the GSA as grounded on 
i

AMAV  (dash-dotted curves) for i = (d1 

(red); d2 (blue); r (green); Y (black)) versus t. For comparison, we also depict 
i

OpAMAV  (continuous 

curves) for θi = (d1 (red); d2 (blue); r (green)). Moreover, Figure 9b depicts ( )tV  (black curve), 
1( | )t dV  (red 

curves), 
2( | )t dV  (blue curves), ( | )t rV  (green curves) and ( | )t YV  (grey curves, twenty random realizations 

of Y(x)).  

 

Figure 9. (a) Comparison of the GSA based on the second (centered) SM of the solute spreading. 
i

AMAV  

(dash-dotted curve) for i  = (Y (black); d1 (red); d2 (blue); r (green)), and 
i

OpAMAV  (continuous curves) 
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for θi = (d1 (red); d2 (blue); r (green)). (b) Unconditional ( )tV  (black curve) and conditional ( | )itV    second 

(centered) SM of solute spreading i  (d1 (red curves); d2 (blue curves); r (green curve); Y (grey curves)) 

for the diverse values of the operational variables (d1; d2; r) (see Figure legend and Table 1) and twenty 

random realizations of Y(x). 

Inspection of Figure 9a reveals (i) the dominance of YAMAV  and (ii)  an high degree of similarity 

in the trends of 
i

OpAMAV  and 
i

AMAV  for  i = θi = (d1; d2; r).  whereas 
i

AMAV  is generally lower 

than its 
i

OpAMAV  counterpart. These observations are in agreement with the analysis of 
i

OpAMAE  and 

i
AMAE  in Section 3.2.1.  

Comparison of 
i

AMAV  (see Figure 9a) and 
i

AMAE (see Figure 7a) reveals a general higher 

degree of sensitivity of the solute spreading with respect to i = (d1; d2; r) when we consider the second 

(centered) SM. At the same time, we note an overall similarity in the trends of 
i

AMAV  and 
i

AMAE  for 

i = (d1; d2; r) over time suggesting a coherence in the influence of the latter on the diverse SM of the solute 

spreading. We note the general similarity in the dispersion of ( | )itV   around ( )tV  in Figure 9b and the 

counterpart for ( | )itE   around ( )tE  in Figure 7b while considering i = (d1; d2; r).  Furthermore, we note 

that during t2 and t4 the value of ( | )t rV  for r = 0 (dashed green curve) decreases since diffusion tends to 

homogenize the solute spreading state across the diverse combinations of the remaining variables i = (d1; 

d2; r) given Y(x) (see also ( | )t rE  for r = 0 in Figure 7b). This results in the increase of rAMAV  during t2 

and less markedly during t4.  

At the same time, Figure 9a reveals that the second (centered) SM of the solute spreading becomes 

less sensitive to the lack of knowledge about Y(x) as time passes, i.e., YAMAV  decreases over time. This 

is in contrast with the behavior of YAMAE  (see Figure 7a and previous discussion). Figure 9b reveals that 

the knowledge of Y(x) corresponds to a drastic reduction of the second (centered) SM of the solute spreading 

during t1, i.e., ( | )t YV  is order of magnitude smaller than the unconditional counterpart ( )tV . The latter 

results in 1YAMAV   during t1. Concurrently, ( )tV  practically coincides with ( | )itV   for i = (d1; d2; r) 

during t1 since variations in none of these variables affect the spreading of solute, i.e., 0
i

AMAV   for i
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= (d1; d2; r) during t1. As time passes, ( | )t YV  increases since it reflects the variability in the solute spreading 

due to the variations in i = (d1; d2; r) given the knowledge of Y(x). Yet, over time the knowledge of Y(x) 

becomes less relevant to the reduction of the uncertainty about the spreading of solute, i.e., ( )tV  and ( | )t YV  

become similar since the ( )tV  is more influenced by the assumed variability in (d1; d2; r) rather than the 

lack of knowledge about hydraulic conductivity field.         

4. Conclusions 

We highlight the role of recognizing the different nature, i.e., stochastic (due to a lack of 

knowledge) or operational (due to diverse design/interventional choices), of the variability ascribed to 

model variables in the context of global sensitivity analysis (GSA). Contrary to standard GSA 

methodologies, we propose to disentangle the variability of the stochastic variables from that of the 

operational ones when assessing the sensitivity of a model output of interest with respect to the latter. We 

accomplish the latter by evaluating the sensitivity of a model output with respect to the operational variables 

for a random realization of the stochastic variables. Due to the lack of knowledge about the stochastic 

variables the latter evaluation is repeated for diverse realizations. This leads to the probability distribution 

of the (random) model output sensitivity with respect to an operational variable for which we evaluate (a) 

the expected value and (b) the standard deviation (both evaluated with respect to the stochastic variables) 

in order to characterize the GSA of a model output with respect to operational variables in the presence of 

stochastic ones. In this context, (a) and (b) quantify the average degree of sensitivity of a model output with 

respect to an operational variable and its degree of variability across the diverse realizations of the stochastic 

variables, respectively. We term this GSA approach as the operational GSA. We recall here that in standard 

GSA the evaluation of the model output sensitivity is conducted by blending the stochastic and operational 

variabilities during the evaluation of selected GSA indices. Thus, while the former addresses questions like 

‘Is the lack of knowledge about the stochastic variables or the variations in the operational parameters the 

most influential aspect to the output?’ the second focuses on ‘What is the relevance of the diverse 

operational variables on the output, in the presence of a lack of knowledge about stochastic system 

variables?’. This means that the two strategies are complementary, as it is typically the case for different 

GSA. 

The moment-based GSA of Dell’Oca et al., (2017) is adopted here as the reference GSA strategy, 

while the idea and developments proposed are fully compatibles with other GSA techniques. A comparison 

of the results grounded on the standard moment-based GSA and its operational counterpart for two 

exemplifying models highlights different degrees of sensitivity depending on: (a) the statistical moment of 
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interest of the model output and (b) the adoption of the standard moment-based GSA or the operational 

counterpart. Our set of results highlights the importance of adopting the operational GSA perspective to 

fully characterize the sensitivity of model output to operational variables in the presence of stochastic 

variables. 
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