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A B S T R A C T

The ongoing trend toward Industry 4.0 has revolutionised ordinary workplaces, profoundly changing the role
played by humans in the production chain. Research on ergonomics in industrial settings mainly focuses
on reducing the operator’s physical fatigue and discomfort to improve throughput and avoid safety hazards.
However, as the production complexity increases, the cognitive resources demand and mental workload could
compromise the operator’s performance and the efficiency of the shop floor workplace. State-of-the-art methods
in cognitive science work offline and/or involve bulky equipment hardly deployable in industrial settings.
This paper presents a novel method for online assessment of cognitive load in manufacturing, primarily
assembly, by detecting patterns in human motion directly from the input images of a stereo camera. Head pose
estimation and skeleton tracking are exploited to investigate the workers’ attention and assess hyperactivity
and unforeseen movements. Pilot experiments suggest that our factor assessment tool provides significant
insights into workers’ mental workload, even confirmed by correlations with physiological and performance
measurements. According to data gathered in this study, a vision-based cognitive load assessment has the
potential to be integrated into the development of mechatronic systems for improving cognitive ergonomics
in manufacturing.
1. Introduction

Mental health problems at work affect hundreds of millions of
people worldwide. About 17.6% of the global working population
suffer from common mental disorders (CMD) [1], such as anxiety,
bipolarity and acute stress. The annual prevalence attains 38.2% in
the European Union, embracing attention-deficit hyperactivity disorder
(ADHD), insomnia (7.0%), and major depression (6.9%) [2]. Many
recent surveys [3] and systematic reviews [4,5] indicate the inadequate
organisation and management of the work as a primary cause of
such disorders and outline the relationship between excessive working
pressures and demands and the incidence of depression, poor health
functioning, anxiety, distress, fatigue, job dissatisfaction and burnout.

Besides, work-related stress and psychological risks have direct
financial implications for private companies and governments. In Eu-
rope, the cost related to mental illness symptoms is around 617 billion
euros annually, including employers’ expenses (absenteeism, presen-
teeism, turnover and loss in productivity) and social welfare costs [6].

On the other hand, the introduction of hybrid manufacturing sys-
tems, where workers and autonomous machines operate in close prox-
imity, has contributed to changing the role of the human in the pro-
duction chain, resulting in new occupational safety and health (OSH)
challenges. The digitalisation of the actual workplace has led to work
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intensification, constant time pressure and adaptation to rapid and
frequent changes in customer demand and requirements (i.e. goods
to produce and services to offer). Many of these changes provide
development opportunities, nevertheless, they may perilously increase
cognitive demand, when inadequately handled, and result in adverse
health and safety hazards. Consequently, the elevated mental workload
may compromise the operator’s performance and the efficiency of the
workplace.

The study of human cognitive factors will supplement the well-
established research on physical ergonomics [7,8], to comprehensively
understand how humans interact with the environment and facilitate
a reduction of the workload. In addition, various studies have shown
that psychological factors at work may have a significant influence on
the development of musculoskeletal disorders (MSDs) [9]. For instance,
mental workload, fatigue, and job stress can alter biomechanical con-
trol strategies for upper extremities (i.e. neck, shoulders, arms, and
hands) and low back extension, as well as increase gait and sway
variability [10]. As a final consequence, the phenomenon may induce
muscle pain in the worker and even occupational injuries.

The global burden of work-related mental disorders is expected to
increase year on year [11] and can no longer be overlooked. Despite
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Fig. 1. The system overview. Left: Conceptual illustration of workstation layout including: RGB-D camera, assembly, instructions graphical user interface (GUI), and storage area.
Right: Block diagram of the proposed online framework to assess cognitive load and provide visual feedback to the user.
cognitive load theory has aroused much interest in the last decade [12],
the study of cognitive load in manufacturing operations is a moderately
new topic [13,14]. The field of Cognitive Manufacturing [15] (i.e. the
usage of data across systems, equipment and processes to optimise the
manufacturing performance) has only very recently aimed to attain
information about human workload.

To the best of our knowledge, available tools can be used almost
exclusively by experts or merely provide offline insights about the
cognitive process (e.g. subjective questionnaires [16]). A first attempt
toward a more usable tool was made by Thorvald et al. [17], who
developed an analytic method, denoted Cognitive Load Assessment
for Manufacturing (CLAM), for assessing the cognitive burden that
the worker is expected to employ within a particular assembly task
and workstation layout. As a matter of fact, manual assembly is an
essential activity in the manufacturing sector, which exposes workers to
situations with varying cognitive demands [18]. When combining the
latter with high time pressure, an increase in mental load frequently
occurs [19]. The tool is intended to be used directly by workers
involved in the manufacturing domain. Nevertheless, such evaluation
is still made offline, asking the end-users to fill a form and rate a set of
factors associated with different aspects of their daily activity.

The scientific and industrial communities still need to be provided
with a validated set of models and metrics for the cognitive workload.
Particularly, gaps were identified in relation to the online assessment
of the mental demand inflicted by manufacturing tasks.

To respond to this challenge, the purpose of this paper is to develop
a quantitative and online method to examine how industrial work
affects people relative to their attention distribution, decision-making,
mental overload, frustration, stress and errors. We propose an online
framework to monitor the cognitive workload of human operators
by detecting patterns in their motion directly from the input images
of a stereo camera. Head pose estimation and skeleton tracking are
exploited to investigate the workers’ attention and assess hyperactiv-
ity and unforeseen movements (see system overview in Fig. 1). The
developed tool computes a list of indicators associated with different
aspects of an assembly task and workstation layout in manufacturing.
Each factor impacts with a weight on two defined indexes: the mental
effort and psychological stress level. According to the scores interval,
we determine the level of cognitive load an individual is experiencing
within the current setup. The study employs assembly experiments to
validate our online framework against state-of-the-art offline methods
in the field of cognitive science (i.e. physiological signals, secondary
task-performance measure and subjective questionnaires).

The paper is structured as follows. In Section 2, we characterise
cognitive load and provide an overview of related works about the
methods to measure it. Next, we present our framework for the online
assessment of mental effort and stress level. Pilot experiments are
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then proposed in Section 5 and the result are discussed and validated
through statistical analysis. The final sections discuss the contributions
and limitations of the framework.

2. Related works

The evidence that undue cognitive demand at work can prejudice
the mental health of workers and their manufacturing performance has
increased the interest in cognitive load theory (CLT). CLT investigates
the interaction of cognitive structures, information and its implica-
tions [20]. In particular, the term cognitive load refers to the amount
of processing that performing a particular task imposes on the learner’s
cognitive system [12]. Xie and Salvendy [21] present a detailed con-
ceptual framework of human information processing and distinguish
between instantaneous and overall load. Instantaneous load is defined as
the dynamics of cognitive load, which constantly fluctuates over time
as a response to stimuli that the present activity and environmental
conditions are imposing on the subject. Overall load results by the
whole working procedure and represents the experienced and garnered
instantaneous load in the human’s brain.

A large and growing body of literature has investigated techniques
to model human mental workload [22] and quantify the cost of per-
forming tasks [21,23]. Paas and Van Merriënboer [12] describe mental
load, mental effort, performance, and level of stress as the measurable
dimensions of cognitive load. Generally, cognitive load measurements
belong to three main categories: physiological measures, subjective
rating scales and performance-based measures.

Physiological measurement of workload relies on evidence that
increased mental demands lead to an increased physical response from
the body [20]. Various researchers have investigated the relationship
between mental effort and heart rate variability (HRV) metrics in three
frequency bands of interest: very low frequency (VLF, 0–0.04 Hz),
low frequency (LF, 0.04–0.15 Hz), and high frequency (HF, 0.15–
0.4 Hz) [24,25]. According to recent studies, intense cognitive demand
leads to a decrease in HF power and a growth in the LF, respectively
related to a parasympathetic withdrawal and a predominant increase in
sympathetic activity [24,26]. Besides, the galvanic skin response (GSR,
also known as electrodermal activity, EDA) has been widely studied
to quantify cognitive states [27]. GSR or EDA is the measure of the
continuous changes in the skin’s electrical conductance caused by the
variation of the sweating activity of the human body. The signal is
typically described as a combination of two components, the tonic
and phasic response. High-resolution EDA is used by researchers for
indexing variations in sympathetic arousal associated with emotion,
cognition, and attention [28,29] and today represents one of the pre-
ferred metrics for stress [30]. More recent studies also include measures
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Fig. 2. Overall structure of the online cognitive load assessment framework. The proposed approach detects patterns in human’s motion (blue block), investigates workers’ attention
(orange block) and their interaction with assembly instructions on a monitor (yellow block). Combining all these factors, final scores of mental effort and psychological stress level
are computed (green block). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
of respiratory activity [31], eye activity [32,33], cortisol level [34],
speech measures [35], and brain activity [36].

Psychophysiological measurements provide objective and quantita-
tive information, as well as the possibility to visualise a continuous
trend and identify detailed patterns of load. However, these signals are
highly sensitive to human movements, and the sensory acquisition sys-
tem may be bothersome for the users and condition normal activities,
severely limiting the adoption in real-world scenarios.

Thus far, the measurement of cognitive load in laboratory settings
mainly relies on subjective rating scales [16]. The most commonly used
questionnaire is called NASA-Task Load Index (NASA-TLX) [37]. Self-
ratings nevertheless have many limitations [38]. Firstly, they are based
on the assumption that people are able to introspect on the cognitive
processes and report the amount of experienced cognitive effort. Sec-
ondly, they are often affected by many biases, such as acquiescence and
social desirability. Lastly, the data are delivered after the completion of
the activity and can be exploited only following extensive analysis by
experts in the area of cognitive ergonomics and cognitive science.

The third alternative to measuring cognitive load is through task-
and performance-based techniques. Various metrics are presented in
the literature (e.g. reaction time, accuracy and error rate) to assess
the performance of both the primary and secondary tasks [23]. The
secondary task is performed concurrently and is supposed to reflect the
level of the cognitive load imposed by the primary task [12]. Despite
the high sensitivity and reliability, this technique can be rarely applied,
even in laboratory settings.

All the studies reviewed here support the hypothesis that existing
approaches for cognitive load assessment have their strength and weak-
ness and can be sensitive to distinctive aspects of workload. When
measuring workload empirically, the rule of thumb is to select a variety
of measurements that seem appropriate to the application and are likely
to provide insights into cognitive processes [39]. Unfortunately, most
of these techniques are potentially difficult to be applied in indus-
trial scenarios. Indeed, they require rather expensive and impractical
equipment that may be uncomfortable for the users.

Despite the increasing enthusiasm to understand the multidimen-
sional construct of the mental workload, the cognitive manufacturing
field is still looking for practical solutions [13]. Our work responds to
the growing need to gather online data giving insights about the mental
processing system and enables the identification of excessive cognitive
load of assembly workers.

3. The cognitive load assessment framework

The overall structure of the proposed cognitive assessment frame-
work is represented in Fig. 2. Our method investigates (i) the con-
centration level of a worker by considering gaze direction and head
3

pose, (ii) the stress level, by analysing activity-related body language
(i.e. self-touching occurrences and high activity periods) and (iii) the
information and part identification cost, namely the cognitive effort
required to utilise the assembly instructions and handle the right tools
and components to complete the task. Additionally, we include a priori
defined parameters reflecting features of the specific assembly task and
workstation layout (e.g. the number of assembly parts and noise level).
Combining all these factors, we compute the final scores of mental
effort and stress level. This enables us to identify excessive cognitive
load in the assembly workers. Besides, the framework includes a visual
feedback interface, through which intuitive warning messages can be
provided to the assemblers.

To make the proposed framework easily deployable in both lab-
oratory and industrial settings, the choice of the external sensory
systems was driven by the implementation costs and users’ comfort
(e.g. by avoiding wearability constraints, recurrent removal of the
device to charge it). Hence, we selected a family of affordable active 3D
imaging systems, namely RGB-D cameras, to detect human operators
and quantify their workload. The depth information and RGB images
of the camera are processed by the ‘human upper-body kinematics
tracking’ module and the ‘attention tracking’ module to compute a set
of cognitive load factors introduced in Section 4. These two modules
operate in synergy with the ‘interaction with instructions’ module and
converge into the ‘cognitive load assessment’ module to compute the
final scores of mental effort and stress level (see Fig. 2).

Before describing the modules in detail, we provide the definition
of the workstation layout. An operating environment can be defined by
the involved workstations and their relative configuration. We consider
at least three types of workstations1 in industrial assembly tasks: the
assembly workstation 𝑊1, which is the area occupied by the assembly
components, the instructions workstation 𝑊2, which provides the assem-
bly information and the steps to follow through e.g. a monitor, and
the storage area 𝑊3, where the assembly components (e.g. screws, nuts
and tools) are stored. Based on the number of workstations, the system
accordingly associates reference frames (see Fig. 1) in the position
specified during a configuration phase. The positions of those reference
frames with respect to the operator’s head are used to determine the
level of attention toward every workstation (see Section 3.2).

1 Throughout this paper, the term ‘operating environment’ (also known as
‘working area’ or ‘workplace’) refers to a place available to manufacturing
personnel to carry out work. The ‘workstation’ is instead a specific location,
e.g. an assembly table, where employees perform specific tasks.
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3.1. Human upper-body kinematics tracking module

The central role of this module is to detect the presence of a human
operator entering the working area and to provide information to the
system about the variations of his/her kinematic body configuration
over time. We exploit a visual skeleton tracking algorithm, developed
by StereoLabs2 to track the human skeleton from the input images
of a stereo camera. The module is, however, scalable to any other
visual tracking method, e.g. OpenPose [40], or even IMU-based motion
capture systems, such as Xsens suit.3 The algorithm extracts the 3D
position of twenty-five human keypoints (e.g. neck, shoulders, elbows,
wrists, hips, knees, ankles) in real-time. Among them, we select the ones
belonging to the upper body, and we analyse their displacements to
compute factors describing the operator stress level (see Section 4.2).

Spatio-temporal information of human movements is also used to
distinguish between possible tasks performed by the operator. To do
this, the distance on the horizontal plane between the ‘‘neck’’ skeleton
keypoint and the workstations is continuously computed: the worker is
assumed to perform the task associated with the workstation he/she is
closest to. For instance, we assume that the assembler is searching for a
tool if he/she accesses the storage area. On the other hand, the mental
effort factors (defined in Section 4.1) are computed only if the subject
is within a predefined range with respect to the assembly or instruction
workstation (i.e. 𝑊1 or 𝑊2).

3.2. Human attention tracking module

Nowadays, several sensory systems can provide accurate measure-
ments of human engagement and attention, such as eye-tracking screen-
based devices (e.g. Gazepoint GP3 [32]) and glasses (e.g. Tobii Glasses
2 [33]), or electroencephalography headsets (e.g. Neurolectrics Eno-
bio [36]). However, these systems bring about significant disadvan-
tages such as discomfort (in wearable systems) and limited operational
range (in screen-based eye-tracking devices). For these reasons, we
developed a vision-based module, which is briefly outlined in Algo-
rithm 1. We exploit a head tracker,4 which adopts OpenCV to detect the
human face and a TensorFlow pre-trained deep learning model to iden-
tify facial landmarks. To estimate the head pose, a Perspective-n-Point
(PnP) problem between the OpenFace5 3D model of the face and the
output of the detector (i.e. sixty-eight keypoints in pixel coordinates)
is solved using the OpenCV function solvePnP. The PnP problem
is stated as an iterative method based on a Levenberg–Marquardt
optimisation [41] and the solution is the pose that minimises the
reprojection error, namely the sum of squared distances between the
observed projections on the image plane and the projected 3D points
in the model. A Kalman Filter is used to stabilise the pose computed
frame by frame.

The output of the procedure is the location and orientation of the
head with respect to the camera frame. According to the estimated
odometry, a frame is associated with the head and the transformation
camera
head 𝑇 expresses the head pose variation over time. Subsequently,
we look up the transformation between the head frame and each
workstation defined in the configuration phase and the Cartesian vector
expressing their relative position is mapped in spherical coordinates
(i.e. azimuth angle 𝜃, elevation angle 𝜑 and radial distance).

To estimate the level of attention toward each workstation, we
model a fuzzy logic membership function on the computed angles. In
particular, the azimuth and elevation values are separately transformed
using a Raised-Cosine Filter [42], where a sigmoid normalises the

2 https://github.com/stereolabs
3 https://www.xsens.com/motion-capture
4 https://github.com/yinguobing/head-pose-estimation
5
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Algorithm 1 Human Attention Tracking
1: procedure
2: cameraworkstation← position of W1,2..𝑀 w.r.t. camera
3: face_model← 3D model of the face
4: top:
5: img ← new acquired image at time 𝑡
6: face_marks← detect_face&landmarks( img )
7: head_pose← cv.solvePnP( face_model, face_marks )
8: steady_head_pose← kalman_filter( head_pose )
9: camera

head 𝑇 ← pose2TF( steady_head_pose )
10: loop:
11: for each workstation W𝑖 do
12: headworkstation(i)←camera

head 𝑇 -1 ∗ cameraworkstation(i)
13: 𝜃𝑖, 𝜑𝑖 ← cartesian2spherical( headworkstation(i) )
14: 𝐴W𝑖 ← 𝑓 (𝜃𝑖) ∗ 𝑓 (𝜑𝑖)
15: attention_W(i)← 0
16: if human ∈W1 ∨W2 then
17: if 𝐴W𝑖 > threshold then
18: attention_W(i)← 𝐴W𝑖

19: focus = arg max̸0( attention_W(i) )
20: goto top.
Note that in 𝑎𝑥 the apex 𝑎 represents the reference frame in which the variable
𝑥 is expressed.

values to a scale from zero to one. To obtain the desired behaviour
in different ranges, we define the function as follows:

𝑓 (𝛼𝑖) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if |

|

𝛼𝑖|| ≤ 𝛼min,𝑖
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2
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1 − cos
(

|

|
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𝜋
)]

, if 𝛼min,𝑖 < |

|

𝛼𝑖|| ≤ 𝛼max,𝑖

0, if |

|

𝛼𝑖|| > 𝛼max,𝑖

(1)

where 𝛼𝑖 is one of the two measured angles (i.e. azimuth 𝜃𝑖(𝑡) or eleva-
tion 𝜑𝑖(𝑡)) at each time instant 𝑡, allowing the continuous localisation
f the 𝑖th workstation with respect to the subject’s gaze direction. The
uzzy function includes control points (𝛼min,𝑖, 𝛼max,𝑖 > 0) defined a
riori, which determine the independent upper and lower limits of the
rea where the function has a smooth behaviour. Thus, the indicator
(𝛼𝑖) decreases exponentially along with the growth of absolute angle
alue above the minimum threshold (𝛼min,𝑖), before levelling off at a
aximum threshold (𝛼max,𝑖).

The assessment of the attention level 𝐴𝑊 𝑖 toward each 𝑖th work-
tation is therefore computed as the product between the normalised
zimuth 𝜃𝑖(𝑡) and elevation 𝜑𝑖(𝑡) indicators:

𝑊 𝑖
(

𝜃𝑖(𝑡), 𝜑𝑖(𝑡)
)

= 𝑓
(

𝜃𝑖(𝑡)
)

∗ 𝑓
(

𝜑𝑖(𝑡)
)

. (2)

iven the estimated attention to all workstations, we can assess if
he worker is currently distracted or concentrated on a particular
orkstation. This is determined by simply checking if at least one of

he attention parameters is above a predefined threshold. If it would
e the case, we find out the workstation that the worker is looking at
s the one in which the associated parameter 𝐴𝑊 𝑖 is maximum.

.3. Interaction with instructions module

In this work, we assume that assembly instructions are shown on
monitor through a Graphic User Interface (GUI), permitting the

perator to browse them (see Fig. 1). Inputs from the keyboard permit
o watch the next instruction, check the same instruction again (i.e. in-
truction check back) or go back in instructions. As a consequence,
he ‘interaction with instructions’ module is in charge of monitoring
he task advancement. According to registered keyboard commands, it
rovides the system with the number of steps of the assembly sequence
hat the user has already completed, the instruction check backs and the
ccurrence of an error that obliges the user to go back to more than one

nstruction.

https://github.com/stereolabs
https://www.xsens.com/motion-capture
https://github.com/yinguobing/head-pose-estimation
https://cmusatyalab.github.io/openface
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3.4. Cognitive load assessment module

The last module exploits workload indicators in manufacturing
as identified by several experienced researchers and industrial ex-
perts [17]. Particularly, we define a list of cognitive load factors and
compute them starting from the output of the modules described above.
Note that the unit of analysis is on the workplace level, including both
the operator and the workstations layout. Each factor is then multiplied
by its assigned weight 𝜆 (see Section 5.4), and a definite sum of the
weighted metrics determines the final scores of mental effort and stress
level. A detailed description of the proposed cognitive load factors and
scores can be found in the next section.

4. Definition of cognitive load factors and final scores

We define and develop a set of cognitive load factors that are com-
puted for each system pipeline loop and contribute specifically to one
of the aforementioned indexes (i.e. mental effort and stress level). Some
of the factors include both an instantaneous and overall parameter, based
on the cognitive load definitions provided at the beginning of Section 2,
and their specific usage will be explained afterwards. In addition, we
present ‘workstation factors’, which may affect the total cognitive load
in assembly tasks. Note that the proposed indexes analyse the assembler
behaviour within a predefined workstation layout. Moreover, each fac-
tor is not expected to directly reflect human cognitive processing. Our
position is that a combination of those factors could provide insights
into the human cognitive system.

4.1. Mental effort factors

4.1.1. Concentration Loss: This factor analyses the attention that an
individual gives to a task. It is based upon contemporary psychology
claim that cognitive load usurps executive resources, which otherwise
could be used for attentional control, thus increases distraction [43].

Accordingly, we assess here the amount of time not dedicated
to the assembly, instructions or any other defined workstation, and
hence quantify how long an individual is not concentrated on his/her
assembly task. The Concentration Loss factor is thus defined as

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠 (𝑡) = 1 −
𝑀
∑

𝑤=1

[attention time]𝑤
time elapsed , (3)

where 𝑀 is the number of workstations defined in the configuration
phase. The ‘[attention time]𝑤’ is the interval in which the subject is fo-
used on the 𝑤th workstation 𝑊𝑤, namely 𝐴𝑊𝑤 is above the predefined
hreshold and 𝐴𝑊𝑤 > 𝐴𝑊 𝑖, ∀ 𝑖 ≠ 𝑤. For instance, ‘[attention time]2’

represents the time spent looking at the instructions on the monitor.
Finally, the ‘time elapsed’ refers to the time passed since the task starts,
expressed in seconds.6

4.1.2. Learning Delay: This metric investigates the ability to rapidly
learning a novel rule from instructions and assesses the operator’s
automaticity in completing the assembly. We took inspiration from
Rapid Instructed Task Learning [44,45] theory, which analyses the effi-
cient action execution immediately following instructions and without
prior practice. The studies highlight that instructions can even produce
automatic effects in relatively simple tasks.

The assumption here is that the more time the subject spends fo-
cusing on the assembly components, the slower is the learning. Hence,
we can infer that the less trivial is the task, the higher is the cognitive
load. The Learning Delay factor is thus defined as

𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝐷𝑒𝑙𝑎𝑦 (𝑡) =
dwell time on assembly

time elapsed , (4)

here ‘dwell time on assembly’ or ‘[attention time]1’ is the interval in
hich the subject focuses on the assembly workstation 𝑊1.

6 Note that ‘time elapsed’ is defined in the same way for all the factors.
5

4.1.3. Concentration Demand: The estimated incidence of attention fail-
ures is usually associated with cognition overload [46]. This factor is
defined as the number of times the subject gets distracted, losing their
attention toward all workstations involved in the task.

In particular, the instantaneous parameter evaluates the transitions
to not attention per instruction, excluding the ones to shift the focus to
another workstation, thus is defined as

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝐷𝑒𝑚𝑎𝑛𝑑 (𝑖𝑛) =
𝑀
∑

𝑤=1

(

[losses of attention]𝑤

− [switches to another workstation]𝑤
)

, (5)

here 𝑖𝑛 represents the 𝑛th instruction and 𝑀 is the number of defined
orkstations.

The overall parameter keeps the memory of load that the operator
xperiences during the task. Whenever the event 𝑑 (i.e. loss of attention
rom any workstation) is detected, we record the instant in which it
ccurs. Then, the ratio of the sum of the time instances and the time
lapsed is considered:

𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝐷𝑒𝑚𝑎𝑛𝑑 (𝑡) =
𝐷
∑

𝑑=1

[instant of attention loss]𝑑
time elapsed , (6)

here 𝐷 is the number of total occurrences of attention loss while
orking on the task. Note that each occurrence equally impacts the

ndicator, and as time passes, the contribution of a past event decreases.

.1.4. Instructions Cost: This metric examines the general quality of the
nstructions used to gather information about the work. The analysis
elies on human–computer interaction guidelines and studies on the
equired cognitive effort to utilise them [47]. We counted the attention
witches between the assembly workstation and the monitor, excluding
he required checks for a new instruction. The instantaneous parameter
efines the cost of information per instruction as

𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 𝐶𝑜𝑠𝑡 (𝑖𝑛) = instruction checks − 1, (7)

here 𝑖𝑛 is the 𝑛th instruction. On the other hand, the overall parameter
onsiders the 𝐶 instants in which the event 𝑐 (i.e. a not required switch)
ccurred:

not required switches = instruction checks − instructions showed,

𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 𝐶𝑜𝑠𝑡 (𝑡) =
𝐶
∑

𝑐=1

[instant of not required switch]𝑐
time elapsed . (8)

4.1.5. Task Difficulty: This factor estimates the required cognitive effort
to perform a task. To do that, the framework automatically records the
instructional check backs 𝑏 on the GUI. Since task demand can vary
as a function of the cognitive load [48], the instantaneous parameter is
also here complemented with an overall parameter. The latters are thus
defined as

𝑇 𝑎𝑠𝑘 𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 (𝑖𝑛) = instruction check backs, (9)

𝑇 𝑎𝑠𝑘 𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 (𝑡) =
𝐵
∑

𝑏=1

[instant of instruction check back]𝑏
time elapsed , (10)

where 𝐵 is the total amount of instruction check backs performed
during the task.

4.1.6. Frustration by Failure: This is a simple metric describing the
mechanism triggered after making a mistake 𝑒. The instantaneous and
overall parameters are computed as for previous factors:

𝐹𝑟𝑢𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑏𝑦 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 (𝑖𝑛) = number of mistakes made, (11)

𝐹𝑟𝑢𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑏𝑦 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 (𝑡) =
𝐸
∑

𝑒=1

[instant of mistake occurrence]𝑒
time elapsed ,

(12)
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i
i

with 𝐸 the total amount of mistakes made during the task. Here, an
error in the assembly sequence is detected whenever the user goes back
to more than one instruction.

It should be reminded that, thanks to skeleton tracking, we detect in
which workstation the operator is. Hence, please note that the factors
described above are computed only if the human is in proximity to
workstation 𝑊1 and remain constant if the operator moves away.

4.1.7. Tool Identification: This factor assesses the mental processing to
dentify the tool needed for the assembly. Whenever the storage area
s accessed (i.e. the human is in proximity to workstation 𝑊3), the Tool
Identification factor is computed as the time spent to seek the right tool
in tenths of a second.

4.2. Stress level factors

The analysis of body language is gaining an increasing interest in
the emerging field of automatic detection of stress [49]. Accordingly,
we defined activity-related features solely based on visual information
and the derived skeleton tracking.

4.2.1. Self-touching: It has been proven that self-touching is a be-
havioural indicator of stress and anxiety [50]. We compute the distance
between each hand and the head key points of the detected skeleton.
If the value is below a predefined threshold, a self-touching occurrence
is registered and impacts the final score for a minute:

𝑆𝑒𝑙𝑓 − 𝑡𝑜𝑢𝑐ℎ𝑖𝑛𝑔 (𝑡) =
𝑆
∑

𝑠=1

[instant of self-touching]𝑠 + 60 − 𝑡
60 , (13)

where 𝑆 is the number of self-touching occurrences 𝜖 [𝑡− 60, 𝑡] and 𝑡 is
the time in seconds.

4.2.2. Hyperactivity: An analysis of human motion is performed to
detect stress-related high activity periods. Our method is solely based
on visual spatiotemporal information of human kinematics extracted
from video sequences representing the monitored subject.

We capture the movements 𝑚𝑗
𝑘 of each joint in a time window

𝜏 as the sum of the 3D position displacements 𝑑𝑗𝑘−𝑙,𝑘−𝑙−1 within two
subsequent frames (where 𝑘 refers to a system pipeline loop), i.e. 𝑚𝑗

𝑘 =
∑𝜏−1

𝑙=0 𝑑𝑗𝑘−𝑙,𝑘−𝑙−1. In an initial calibration phase, we compute and store
the mean motion 𝜇1,..𝜇𝑁 of upper body joints and their standard
deviation 𝜎1,..𝜎𝑁 (where 𝑁 is the number of selected upper body
joints). This baseline recording permits us to compare the online data
with a session under resting conditions of the specific subject. Then,
during task execution, we periodically compute the deviation of every
joint from its mean motion, 𝛥𝑗

𝑘 = 𝑚𝑗
𝑘 − 𝜇𝑗 . If 𝛥𝑗

𝑘 is greater than the
stored standard deviation 𝜎𝑗 , the ‘activity’ associated with 𝑗th joint is
evaluated as 𝑎𝑗𝑘 = 𝛥𝑗

𝑘∕𝜎𝑗−1. The parameter 𝑎𝑗𝑘 is set to zero, otherwise. A
unique descriptor of activity level, i.e. Hyperactivity, is finally computed
as the mean of all the upper body joints’ activity.

4.3. Workstation factors

The worker can navigate the list of products and combine different
objects in sequences to handle more complex assemblies. In the cata-
logue (.csv file), the number of components and required tools for each
object are specified. The sequence of objects to assemble is loaded and
the following parameters are evaluated for the selected task.

4.3.1. Number of assembly components: A parameter, normalised be-
tween 0 and 1, rising linearly with the number of parts intended to
be assembled into a complex product.

4.3.2. Number of tools used: A normalised parameter describing the
number of tool used to complete the assembly.
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4.3.3. Physical effort: The required physical effort to perform a task.
The estimated difficulty factor takes values between 0 (simple — not
previous experience is required) and 1 (difficult — significant training
and experience are required).

4.3.4. Variant flora: An estimation of the level of variation on a work-
station (from no variation, i.e. one-piece production, to full variation,
i.e. flexible and customised production).

In addition, several environmental factors such as lighting con-
ditions, temperature and level of noise may influence the operators’
conditions. While the first two can be considered rather constant in an
industrial workplace, the level of noise may greatly vary depending on
the working scenario. There is increasing evidence that chronic noise
stress impairs cognition and induces oxidative stress in the brain [51].
With this in mind, the Level of noise factor has been defined.

4.3.5. Level of noise: The sound pressure level in manufacturing envi-
ronment. A sound sensor could measure the surrounding ambient sound
in the audible frequency spectrum for the human ear. Given the mean
level of noise 𝜇𝑛𝑜𝑖𝑠𝑒 in A-weighted decibels (dBA), the parameter is
defined as follows:

𝐿𝑒𝑣𝑒𝑙 𝑜𝑓 𝑛𝑜𝑖𝑠𝑒 =

⎧

⎪

⎨

⎪

⎩

0, if 𝜇noise ≤ 20 dBA
parabolic function, if 20 < 𝜇noise ≤ 70 dBA
1, if 𝜇noise > 70 dBA

(14)

where the thresholds (20, 70 dBA) are defined in compliance with
recommended standard occupation noise exposure [51].

4.4. Cognitive load scores estimation

The cognitive load factors described in the previous sections are
computed online, in the background of workers normal activities. This
is to identify excessive cognitive load on the fly and deliver warning
messages to the assembly worker. With this aim, we multiply each
factor by a weight (see Section 5.4): the sum of the weighted mental
effort and stress level factors results respectively in the two homonyms
‘higher-level’ scores.

The mental effort is computed at two different levels. Its dynamics is
estimated online exploiting the instantaneous parameters and provided
as feedback through a dedicated screen. A detailed description of the
visual feedback interface is presented in Section 6.5. For the post hoc
analysis, we instead select the overall factors since, at this stage, we do
not aim to evaluate the cognitive load triggered by a stimulus but the
overall mental effort induced by the whole task and cross-compare its
trend among diverse testing conditions.

On the other hand, the stress level score is defined by the hyperac-
tivity, plus each occurrence of self-touching impacts with a predefined
value on the final score, and, as time passes, its contribution decreases.

5. Experimental analysis

In this section, the experimental campaign to validate our frame-
work is described in detail. We adopted both quantitative and qualita-
tive measures to assess the performance and potentials of the proposed
approach.

5.1. Experimental setup

For the experiments, we reproduced a possible operating environ-
ment in our laboratory (see Fig. 3). The participants were asked to sit at
a desk, and a 3D printed assembly kit7was placed on the table (defining
workstation 𝑊1). The instructions to assemble the object were shown
on a monitor (workstation 𝑊2) and consisted of short comprehensive
videos of about 20 s each. The user could browse them through an
intuitive GUI, implemented in C++ using Qt5. Inputs from the keyboard

permitted to watch the next instruction, reproduce the same instruction
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Fig. 3. Overview of the experimental setup highlighting: zed2 stereo camera, instruc-
tions GUI (monitor and keyboard), storage area and screen providing visual feedback.
The 3D assembly is placed on the table in front of the subject.

video (i.e. instruction check back) or go back in instructions. Finally,
small boxes with screws, bolts, nuts and required tools were placed in
the area right behind the participant defining workstation 𝑊3.

A stereo camera (zed2, Stereolabs, San Francisco, CA, USA) mon-
itored the participant from the front for the entire duration of the
experiment. Note that the framework does not require the recording
of a video (i.e. the computations were performed online), however, it
was acquired as a backup to measure the detection accuracy of subjects’
motion patterns.

The experiments aimed to cross-test the performance of our cogni-
tive load assessment framework against physiological measurements.
In particular, the trend of the mental effort was analysed in relation
to heart rate variability, while the stress level was compared with
the commonly used features in galvanic skin response. The following
section justifies the choice of these specific parameters as ground truth
and describes the sensors adopted (also highlighted in Fig. 4) and the
post-processing of the acquired signals.

5.2. Baseline measurements

5.2.1. HRV responses
A chest strap (H10,8 Polar Electro Oy, Kempele, Finland) was used

to record the electrocardiogram (ECG) signal. The RR interval, i.e. the
time elapsed between two successive R-waves, were extracted from
the raw ECG. Cardiovascular data analysis was subsequently performed
using Kubios software.9 The tool computes several classical metrics in
time, frequency and non-linear domain. In this work, the frequency
domain HRV data were considered. More precisely, the LF/HF ratio is
selected since it is indicative of the mental effort, as suggested by the
literature [26,25].

5.2.2. Galvanic skin responses
The skin conductance was monitored by wristband Empatica E4,10 a

medical-grade wearable device acquiring real-time physiological data.
The recorded GSR signal was then processed using the open-source
MATLAB toolbox Ledalab.11 A Butterworth low pass filter with a cut-
off frequency at 2 Hz was used to filter the high-frequency components.
Finally, we applied the continuous decomposition analysis to separate
the tonic (Skin Conductance Level, SCL) and phasic (Skin Conductance
Response, SCR) components. As Marucci et al. [28], we investigated
the mean value of the SCL and the mean amplitude of the SCR peaks
to assess the stress induced by the whole task on participants.

7 https://tinyurl.com/3Dprintedassembly
8 https://tinyurl.com/polarH10
9 https://www.kubios.com

10 https://www.empatica.com/en-eu/research/e4
11 http://www.ledalab.de
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5.2.3. Secondary task performance
Concurrently with the primary assembly task, participants were

asked some questions (three per experimental condition) through head-
phones. In the task-based methodology, performance on a secondary
task is supposed to reflect the level of the cognitive load imposed by
the primary task [12]. We measured the reaction time of the user to
the presented query whose answer is well known (e.g. the spelling of
the name, the date of born, etc.).

5.2.4. Subjective questionnaire
At the end of the experiment, we asked participants to fill NASA-

TLX [37] and a custom questionnaire. The latter is a subjective scaling
approach to capture mental effort- and stress-related factors in different
task conditions. The evaluation includes a technique developed by
NASA to assess the relative importance of factors in determining the
experienced workload. Pairs of rating scale labels are presented, and
the subject is asked to select which of the two was more relevant
to the experience of cognitive workload in the task just performed.
From the pattern of choices, we are able to associate a weight to each
cognitive load factor and compute the overall score consistent with the
experience of a specific subject. A copy of the custom questionnaire can
be found as supplementary materials for this paper.

5.3. Experimental protocol

The whole experimental procedure was carried out at Human-
Robot Interfaces and Physical Interaction (HRII) Lab, Istituto Italiano
di Tecnologia (IIT) in accordance with the Declaration of Helsinki, and
the protocol was approved by the ethics committee Azienda Sanitaria
Locale (ASL) Genovese N.3 (Protocol IIT_HRII_ERGOLEAN 156/2020).
All the subjects recruited were volunteers, naïve about the purpose of
the experiment, and declared not to suffer from any mental disorder
or cardiovascular disease. The cognitive load employed by a worker
is highly susceptible to the skills of the individual assessor. Thus,
personnel without previous expertise and experience in the presented
assembly task was considered.

The study employed a within-subjects experimental design in which
each participant underwent all three experimental conditions. The tasks
were devised with three levels of complexity (i.e. task 1 - simple, task
2 - medium, and task 3 - difficult) and industrial noise (i.e. task 1 -
low, 45 dBA, task 2 - medium, 65 dBA, and task 3 - high, 75 dBA).
The tasks order was defined as 1–2–3 for all the subjects, with the
aim of imposing a growing complexity and thus identify an increase in
cognitive effort. The participants had fifteen minutes to complete each
section. Before the beginning of the experiment, an initial calibration
was performed to capture the physiological parameters and track the
upper joints movements under resting conditions and then, set them as
a reference. Moreover, the user had the chance to get familiar with the
assembly parts and the interface for instructions.

The rest of the section describes two different experimental ses-
sions that represent the consecutive phases in the development of our
framework.

Fig. 4. Measurements and sensors used as ground truth to test the proposed metrics.

https://tinyurl.com/3Dprintedassembly
https://tinyurl.com/polarH10
https://www.kubios.com
https://www.empatica.com/en-eu/research/e4
http://www.ledalab.de
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Fig. 5. Concentration Loss, Learning Delay, Instructions Cost and Task Difficulty factors associated to subject 1 during three experimental conditions.
5.4. Model calibration experiments

The purpose of the first experimental session was to test the setup
and identify the weights that should be associated with each cognitive
load factor for the computation of cognitive load scores. To do this, five
male subjects (27.6 ± 2.0 years old) performed the whole experiment
and filled in the custom questionnaire. Analysing factors’ trend over
time, we defined thresholds that thereafter permit the normalisation
of the values assumed by cognitive load factors (i.e. ∈ [0, 1]). Given
the patterns of choices in the questionnaire, we computed the weights
that each subject would associate with each factor. The mean among
all subjects for each factor weight was used in the second experimental
session to create weighted combinations resulting in the mental effort
and stress level scores.

5.5. Multi-subject cognitive load assessment experiments

Ten subjects, five males and five females (26.6 ± 3.7 years old),
were recruited for the second session. During the test, the cognitive
load factors were computed online, and the final scores were shown
on a monitor, only visible to the researcher (see Fig. 3). At the same
time, physiological measurements were recorded. A statistical analysis
was subsequently performed on the acquired data. We adopted the
non-parametric repeated measures Friedman’s test to examine if the
subject experienced different conditions imposed by the experiment
(low, medium and high cognitive load). Finally, Spearman’s rho corre-
lation coefficient was used to assess if any relationship exists between
the scores computed in the proposed framework and our ground truth
measurements (i.e. physiological signals, performance measure and
questionnaires).

6. Experimental results

In this section, the results of the two experimental sessions are
presented. We begin by outlining the outcomes of the model calibration
experiments, highlighting the functioning of the final framework. This
is followed by a deep analysis of cognitive load-related data acquired in
multi-subject experiments. Finally, we report the outcome of the online
visual feedback interface.

6.1. Model calibration

Table 1 shows the results of the model calibration experiments.
Concentration Loss and Learning Delay take on values between 0.0 and
1.0 by definition. Tool Identification factor saturates to 1.0 after ten
seconds as a practical choice. On the contrary, the other factors have to
be normalised. To this aim, we defined upper-limit thresholds for each
proposed factor as the maximum registered value for all subjects who
took part in the first testing session.

Besides, patterns of labels’ choices in the custom questionnaire
show the relative importance of the proposed factors in determining
how much mental effort the operator is experiencing in the task. The
third column of Table 1 illustrates the means of the weights given
by participants to each factor. Interestingly, the cognitive demand to
understand instructions (e.g. Instruction Cost) represents the perceived
most crucial contributor to workload.
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Table 1
Thresholds and Weights associated with mental effort factors.

Thresholds Weights
Instantaneous Overall

Concentration Loss – – 1.6
Learning Delay – – 3.2
Concentration Demand 12 26.0 1.6
Instruction Cost 13 20.1 4.0
Task Difficulty 6 10.7 2.2
Frustration by Failure 2 4.7 3.0
Tool Identification – – 1.4

6.2. Cognitive load factor assessment

6.2.1. Mental effort
Fig. 5 displays the mental effort factors over time for one subject,

as an example. We report Concentration Loss, Learning Delay, Instruction
Cost and Task Difficulty factors since they show a meaningful trend
throughout the task execution. On the other hand, the impact of Con-
centration Demand, Frustration by Failure and Tool Identification factors is
punctual when a specific event occurs. The results of tasks 1, 2 and 3 are
reported on the same chart to highlight differences in the trends. Note
that the participant completed the first and second task before the total
available time (i.e. fifteen minutes). The factors are normalised online,
when needed, according to thresholds defined in the first experimental
session.

The results obtained from the weighted combination of the factors
are presented in Fig. 7 (first row). In particular, the black line sets out
the trend of the mental effort score over time in the different experi-
mental conditions. Coloured bars highlight instead the score mean in
three-minute intervals.

6.2.2. Stress level
The estimated stress of a participant during the experiments is illus-

trated in Fig. 8 (first row). Specifically, each occurrence of self-touching
impacts 0.2 on the final score and as time passes, the contribution
decreases (reaching zero after one minute). The grey and black pro-
files represent hyperactivity and self-touching factors, respectively. By
summing them, the stress level score is evaluated and its mean within
blocks lasting three minutes is reported as coloured bars.

6.3. Significance of experimental conditions

6.3.1. Cognitive load scores
The mental effort and stress level means in three-minute intervals

were compared with a Friedman’s test to access differences in tasks
across repeated measures. The imposed conditions (i.e. increasing com-
plexity and noise) affect the mental effort score significantly, 𝜒2 = 6.58,
p = 0.0373, and the stress level score marginally, 𝜒2 = 5.96, p = 0.0507.
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Fig. 6. Results of the subjective evaluations (NASA TLX and custom questionnaire): bars represent mean and standard error between scores given by participants in different
experimental conditions.
6.3.2. HRV responses
Cardiovascular data analysis was performed on three-minute blocks

of RR intervals of ECG signal. For all the subjects, we extract HRV fea-
tures in frequency-domain and differences in their trend were assessed
using Friedman’s test with repeated measures (three-minute blocks).
Different experimental conditions significantly impact the LF (Hz) pa-
rameter (𝜒2 = 6.68 p = 0.0354), which exhibits a predominant decrease
over the tasks. HF (Hz) showed instead marginal difference among
the tasks (𝜒2 = 5.88 p = 0.0529). Median LF/HF ratio levels for the
low, medium and high imposed cognitive load experiments were 3.10,
3.64 and 3.77, respectively. The statistical test revealed a significant
difference in LF/HF ratio depending on the imposed complexity and
noise, 𝜒2 = 9.24 p = 0.0098.

6.3.3. Galvanic skin responses
As Marucci et al. [28], we investigated the mean value of the

SCL and the mean amplitude of the SCR peaks during the experimen-
tal conditions. The analysis was performed in three-minute intervals
with Friedman’s test. Both tonic and phasic components revealed a
significant main effect of the load condition (p < 0.01).

6.3.4. Secondary task performance
Friedman’s test revealed a statistically significant difference in the

reaction time of the secondary task (𝜒2 = 10.23 p < 0.01). In general,
the participants tended to delay the answer as the task complexity
increases.

6.3.5. Subjective questionnaires
Fig. 6 presents the results of subjective questionnaires in the three

experimental conditions. The bars represent the mean of the scores
assigned by participants and the error bars display the 95% confidence

Fig. 7. Comparison between mental effort score computed online by the pre-
sented framework and LF/HF ratio extracted offline from three-minute blocks of
electrocardiography signal for subject 1.
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of scale means. The Kruskal–Wallis test was conducted to compare the
three conditions in a systematic manner. The results from the NASA-
TLX show statistically significant differences in mental demand (𝜒2

= 10.61 p = 0.005) and effort (𝜒2 = 14.22 p = 0.0008) among the
tasks. For the other scores, the p-values were over 0.05 significance
level. From the custom questionnaire, we identify a significant effect
in perceived concentration demand (𝜒2 = 7.11 p = 0.0286), learning
delay (i.e. automaticity in completing the assembly, 𝜒2 = 6.48.11 p
= 0.0392) and task difficulty (𝜒2 = 14.33 p = 0.0008) depending on
imposed experimental conditions. Finally, the latter significantly affect
the overall cognitive workload score (𝜒2 = 7.24 p = 0.0267) computed
by the ratings combination defined in the first testing session.

6.4. Correlation between cognitive load scores and physiological variables

A Spearman’s rank-order correlation was run to determine if a
relationship exists between the scores computed in our framework and
standard measures presented in the literature for the assessment of cog-
nitive load. Fig. 7 compares the trend of the mental effort score with the
ratio of low-frequency power to high-frequency power (LF/HF ratio) in
three-minute intervals extracted from ECG signals (second row). For
seven out of ten participants, there was a strong, positive correlation
between the mean within three-minute blocks of the computed score
and the HRV feature, which was statistically significant (see Table 2
first row). For each subject, we also compute the correlation between
the mental effort score and the reaction time in the secondary task
(three questions per experimental condition every three minutes). The
test revealed a positive correlation, but no significance was found (see
Table 2 second row).

The trend of the stress level score is instead analysed in comparison
with GSR-related measures. Fig. 8 compares the trend of the stress

Fig. 8. Comparison between stress level score computed online by the presented
framework and skin conductance level (SCL) and response (SCR) extracted offline from
three-minute blocks of galvanic skin response for subject 1.
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Table 2
Spearman’s correlation coefficients between estimated indicators of Cognitive Load (mental effort and stress level) and state-of-the-art measurements (physiological signals and
performance) considering all participants.

Subject

1 2 3 4 5 6 7 8 9 10

Mental effort/HRV 0.80** 0.74** 0.62* 0.67** 0.60* 0.87** 0.49* 0.20 0.06 0.21
Mental effort/Secondary task 0.42 −0.46 0.53 0.82 0.47 0.47 0.03 0.60 0.26 0.54

Stress level/SCL 0.43 0.58* 0.63* 0.72** 0.07 0.01 0.47 0.31 −0.13 0.01
Stress level/SCR 0.64* 0.21 0.63* 0.68* −0.17 0.57* 0.35 0.40 0.05 −0.25

*Significance level are indicated at the *p < 0.05.
**Significance level are indicated at the **p < 0.005.
level score with the SCL and SCR features extracted by three-minute
intervals of GSR signals (second row). The bottom half of Table 2
provides the summary statistics. The skin conductance variables were
partially correlated with the estimated score. In particular, positive
correlations were detected, but they were statistically significant just
for few subjects.

6.5. Online visual feedback

Cognitive load scores are computed online since our final goal is
to identify the excessive cognitive load and deliver warning messages
to the human operator. An interface was designed and implemented to
provide visual feedback on the workload that the worker is currently
experiencing during the assembly task (see Fig. 9). The interface shows
the real-time acquired video depicting the monitored subject. A pyrami-
dal shape is drawn on the image to highlight the facing direction, and
the percentage of attention toward the assembly (𝑊1) and instructions
(𝑊2) workstations is specified. Within this context, the workstation
factors and instantaneous parameters are considered, and their weighted
combinations result in the instantaneous scores of mental effort and
stress level. The latter is represented as colour-coded bars. Colour is
used here to warn when excessive cognitive load is identified (green —
low cognitive load, yellow — medium cognitive load, orange — high
cognitive load, and red — very high cognitive load). The reader can
better understand the functioning of the implemented visual feedback
by watching the video provided as supplementary material for this
paper.

Fig. 9. Online visual feedback reporting: current head direction, percentage of atten-
tion toward involved workstations, and estimated mental effort and stress level scores as
colour-coded bars. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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7. Discussion

From the performance comparison between our vision-based frame-
work and state-of-the-art methods, we observed, in the trends, dif-
ferences among the various experimental conditions (i.e. increasing
task complexity and noise). Therefore, statistical analysis was per-
formed on the acquired data. Statistical significance through separate
repeated-measures analysis of variance was found for both HRV and
GSR features, as for the outcomes of the secondary task and question-
naires, in the different testing sessions. Hence, we can infer that the
subject actually experienced the imposed cognitive load conditions.

A promising finding was that statistically significant differences
were also identified in the cognitive load scores computed by our
method (i.e. mental effort and stress level). This encouraged us to com-
pare our online scores with state-of-the-art offline methods hardly
deployable in industrial settings. As observed in Table 2, the mental
effort mean in three-minute intervals appeared to be positively corre-
lated to the LF/HF ratio extracted from ECG signal within the same
time intervals and to secondary task performance. Moreover, positive
correlations were detected between the stress level and GSR-related
features.

Results provided first evidence on the capability of the method to
provide meaningful and reliable insights about the human cognitive
load at work. Practical strong points of the setup include the reduced
cost of the system components and the users’ comfort while performing
their tasks. Our cognitive load assessment framework does not require
the worker to wear any sensor and can be easily configured and used by
non-experts in the areas of cognitive ergonomics and human–computer
interaction.

Besides, it is worth mentioning that the system is capable of identify-
ing online excessive workload periods in assembly tasks and providing
visual feedback using colour-coded bars.

8. Conclusions

This paper presented an online and quantitative method to monitor
the cognitive load of human operators by analysing the attention
distribution and detecting motion patterns in assembly activities di-
rectly from the input images of a stereo camera. The main focus was
on identifying risks in tasks and workstation design, where excessive
workload might lead to errors or work difficulty. We exploited cog-
nitive load factors in manufacturing as identified by experts [17] and
evaluated them online through cutting-edge artificial intelligence algo-
rithms (i.e. head pose estimation and skeleton tracking). We estimated
the mental effort and stress level currently experienced by the worker,
investigating attention- and activity-related behavioural features, and
we delivered intuitive warning messages on a screen.

The proposed method shows promising features to be applied to the
manufacturing sector. The framework indeed works online, does not re-
quire expensive equipment and does not ask the human worker to wear
any sensor permitting the natural flow of work activities. The main
limitation is the assumption of a well-structured working environment,
where assembly instructions are shown on a monitor. A natural pro-
gression of this research is to generalise the framework, including more
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workstations and examining complicated industrial operations with
multiple human workers, potentially also wearing personal protective
equipment.

Future works could also investigate the benefits of a subject-specific
model of cognitive load processes to address individual demands and
characteristics of the workers. Indeed, both the weights and the thresh-
olds defined for the developed factors could be tuned depending on
each user feedback or previous user-specific calibration phase. More-
over, usability methods could be exploited to ensure that the system
meets user satisfaction and the stated reductions in support and training
costs.

The final results suggest that the presented method has the poten-
tial to be integrated into the development of human–robot interac-
tion systems for improving human cognitive ergonomics in industrial
settings.
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