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Abstract. In this paper we derive a new two-dimensional brittle fracture
model for thin shells via dimension reduction, where the admissible displace-
ments are only normal to the shell surface. The main steps include to endow
the shell with a small thickness, to express the three-dimensional energy in
terms of the variational model of brittle fracture in linear elasticity, and to
study the Γ-limit of the functional as the thickness tends to zero.

The numerical discretization is tackled by first approximating the fracture
through a phase field, following an Ambrosio-Tortorelli like approach, and then
resorting to an alternating minimization procedure, where the irreversibility
of the crack propagation is rigorously imposed via an inequality constraint.
The minimization is enriched with an anisotropic mesh adaptation driven by
an a posteriori error estimator, which allows us to sharply track the whole
crack path by optimizing the shape, the size, and the orientation of the mesh
elements.

Finally, the overall algorithm is successfully assessed on two Riemannian
settings and proves not to bias the crack propagation.

1. Introduction

The problem of finding reasonable two-dimensional models of elasticity for plates
and shells dates back to more than one hundred years ago with contributions of J.
Bernoulli, L. Euler, G. R. Kirchhoff, T. von Kármán, and many others (see, e.g.,
the Kirchhoff-Love plate theory and the Föppl-von-Kármán equations in [35, 60,
50, 53]).

In recent works, a two dimensional model is usually obtained as a limit of a three
dimensional one: the target surface (shell or plate) is endowed with a fictitious thick-
ness ρ > 0 and the limit as ρ→ 0 is studied. Considering the variational framework
of elasticity, such a limit is computed in terms of Γ-convergence (see [27]). In the
context of linearized elasticity, a comprehensive work by Ph.G. Ciarlet about two-
dimensional models can be found in [22] for thin plates and in [23] for thin shells. In
these monographs, the convergence of the solution to the three-dimensional model
is considered, avoiding the notion of Γ-convergence. A justification of the above
results in terms of Γ-convergence has been provided successively in [44]. Related
works in the case of non-linear elasticity can be found, for instance, in [41, 42, 43].

In this paper, we develop and analyze a new two-dimensional model of brittle
fractures on thin shells, moving from the variational theory of brittle fractures in
linearly elastic materials (see [40]). Accordingly, the total energy of a body U ⊂ R3

subject to a displacement u : U → R3 is given by

(1.1)
1

2

∫
U

Ĉε̂(u) : ε̂(u) dx+ κH2(Ju),
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where Ĉ is the stiffness tensor, ε̂(u) stands for the symmetric gradient of u, Ju is
the jump set of u, H2 denotes the two-dimensional Hausdorff measure, and κ > 0 is
the toughness of the material. Because of compactness issues, the natural domain
of definition of functional (1.1) is SBD(U) or GSBD(U), the space of (generalized)
special functions of bounded deformation. We refer to [4, 21, 28] for further details
on these spaces. In this setting, we can find a dimension reduction result in [13],
where the authors investigate thin films bonded to a stiff substrate. In case of non-
linear or anti-planar elasticity, where the bulk energy in (1.1) is expressed in terms
of the full gradient ∇u, the domain of the energy functional simplifies to SBV(U) or
GSBV(U) (for details on the theory of these spaces see [5]). Such an approach has
been used to investigate dimension reduction problems in [11, 12, 18]. However, all
the cited works are obtained for a planar setting, i.e., the target two-dimensional
surface is a subset of R2.

The main contribution of this paper is the derivation of a brittle fracture model
for general surfaces. As in (1.1), we stick to linearized elasticity. Analogously to
the anti-plane shear setting, which has been the first one tackled in the variational
formulation of fractures (see [31]), we only consider displacement fields normal to
the surface. The advantage of this choice is that the displacement field can be
described by a scalar function, since its direction is fixed, so that we can still adopt
the space GSBV. We defer the general case to future work.

In more detail, in Section 2 we introduce the geometric setting by considering a
two-dimensional surface φ(ω) ⊂ R3, where ω ⊂ R2 is open, bounded, with Lipschitz
boundary, and φ : ω → R3 is an immersion. We endow this surface with a thickness
ρ > 0, so that our reference configuration becomes Φ(Ωρ), with Ωρ := ω × (−ρ2 ,

ρ
2 )

and Φ a suitable extension of φ. We start with a strong formulation of brittle
fracture, where a state of the system is described by a pair displacement-fracture
(u,K) for K ⊆ Φ(Ωρ) closed and u ∈ C1(Φ(Ωρ)\K;R3). In this setting, we express
the functional (1.1) in curvilinear coordinates on Ωρ. After a second change of
variables, we remove the dependence of the integration domain on the thickness,
passing from Ωρ to Ω1. Then, we restrict the admissible displacements to those
which are normal to the surface. As a standard approach in free-discontinuity
problems,[5] the functional is relaxed to GSBV(Ω1). Section 2.3 is devoted to the
Γ-convergence analysis as the thickness tends to zero. The limit functional will be
defined for u ∈ GSBV(Ω1) independent of x3 by

(1.2)
1

2

∫
Ω1

b|u|2 dx+
µ

2

∫
Ω1

∇u>A∇udx+ κ

∫
Ju

√
ν>u Aνu

√
adH2,

whereA is a symmetric positive definite matrix related to the metric tensor of φ(ω), b
is a function of the stiffness Ĉ and of the curvature of the surface, µ > 0 is the
second Lamé coefficient, and νu is the approximate unit normal to Ju. In contrast
to the Euclidean setting, the geometry of the surface and the magnitude of the
displacement |u| directly contribute to the energy of the elastic shell due to curva-
ture effects. Moreover, all the quantities in (1.2) are independent of x3, so that the
integrals could be written on ω.

Section 2.4 introduces the regularized reduced model based on a phase-field ap-
proximation of (1.2) in the sense of L. Ambrosio and V.M. Tortorelli (see [6, 7])

Fε(u, v) :=
1

2

∫
ω

b|u|2 dx+
µ

2

∫
ω

(v2 + ηε)∇u>A∇udx

+ κ

∫
ω

[
1

4ε
(1− v)2

√
a+ ε∇v>A∇v

]
dx
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for u ∈ H1(ω), v ∈ H1(ω; [0, 1]). Loosely speaking, v is a regularization of the crack
set such that where v is close to one the material is sound, while where v � 1 a
fracture is detected.

The minimization of the functional Fε is used to simulate the fracture process
driven by a time dependent boundary condition g. Following [2], according to a
quasi-static approximation, at each time ti a new state (u(ti), v(ti)) of the thin shell
is computed as the limit as j →∞ of the alternating minimization

uj := arg min
{
Fε(u, vj−1) : u ∈ H1(ω), u = g(ti) on ∂ω

}
,(1.3)

vj := arg min

{
Fε(uj , v) +

α

2τ
‖v − v(ti−1)‖2L2(ω) : v ∈ H1(ω), v ≤ v(ti−1)

}
,(1.4)

where α > 0 is a fixed parameter and τ > 0 is the time increment. In particular,
the new state (u(ti), v(ti)) is a critical point of Fε(u, v) + α

2τ ‖v− v(ti−1)‖2L2(ω). We
refer to Definitions 3.2 and 3.3 and Proposition 3.4 for further details.

We notice that the inequality constraint in (1.4) takes care of the irreversibility
condition (similar as in [46, 51, 52]), i.e., no healing of the crack is allowed. As in [2],
the presence of an L2-penalization in (1.4) ensures the convergence to a unilateral
gradient flow in the time continuous limit. Instead, to approximate a quasi-static
evolution of the crack as in [1, 3, 16, 19, 51, 52], we choose α small enough.

Following [9], we couple the alternating minimization with an anisotropic mesh
adaptation procedure. The rationale is that the phase field v is close to one in
large portions of the domain, while it exhibits very steep gradients to reach zero
in a thin neighborhood of the crack. For this reason, the mesh needs to be very
fine only across the crack. As an alternative, to ensure accuracy, one should resort
to a very fine uniform grid. This might be prohibitive from a computational point
of view, whereas an adaptive mesh significantly contains the computational effort
of the algorithm. Moreover, compared to isotropic adapted meshes (see [19, 20]),
anisotropic grids further improve the efficiency of the numerical scheme, since the
triangles can be stretched along the crack.

Since the alternating minimization (1.3)–(1.4) is discretized in a finite element
setting (as in [9, 19]), in Section 3.2 we derive an anisotropic a posteriori error
estimator to measure the distance from an exact critical point. This estimator
drives the generation of the new anisotropic adapted mesh relying on a metric
based strategy proposed in [39, 54, 55], as detailed in Section 4. Compared to the
numerical approaches of [15, 16, 19, 9, 10], the main novelty is that we now take
care of the inequality constraint in (1.4). This implies that the Euler-Lagrange
conditions satisfied by a critical point (u, v) of Fε(u, v) + α

2τ ‖v − v(ti−1)‖2L2(ω) are
expressed by a variational inequality rather than an equality, in contrast to [9] where
a penalization of the irreversibility condition is adopted and to [15, 16] where v is
set to 0 where v(ti−1) is below a certain threshold.

Finally, in Section 5 we assess the proposed model and the anisotropic discretiza-
tion on two non-Euclidean settings, i.e., a piece of a cylinder and a piece of a sphere.
This verification allows us to establish the reliability of the new dimensionally re-
duced brittle fracture model and of the anisotropic mesh adaptation procedure,
which does not bias the evolution of the crack path.

2. The Two-Dimensional Model

Before providing the technical details, we clarify some basic notation.
Given an open subset U ⊂ Rn, we denote the space of functions of bounded vari-

ation by BV(U) and the space of special functions of bounded variation by SBV(U).
The set of generalized special functions of bounded variation is indicated by GSBV(U).
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Figure 1. Geometric setting of the surface.

Furthermore, we define the following function spaces:

SBV2(U) :=
{
u ∈ SBV(U) : ∇u ∈ L2(U),Hn−1(Su) <∞

}
,

GSBV2(U) :=
{
u ∈ GSBV(U) : ∇u ∈ L2(U),Hn−1(Su) <∞

}
,

where ∇u denotes the approximate gradient of u, Su is the discontinuity set of u,
and Hn−1 stands for the (n−1)-dimensional Hausdorff measure. We refer to [5, 32]
for all the definitions and details on the theory of functions of bounded variation.
We recall here that, for u ∈ GSBV(U), the set Su is Hn−1-rectifiable. We will
denote by νu the approximate unit normal to Su, whereas, for a generic rectifiable
set K, we denote by νK the associated approximate unit normal. We further notice
that GSBV2(U), unlike GSBV(U), is a vector space (see [29]).

Throughout the paper we systematically use the Einstein summation convention,
where Greek indices take values 1 and 2, and Latin indices run form 1 to 3.

2.1. Geometric Setting. Let ω ⊂ R2 be an open and bounded set, and let φ ∈
C2(ω̄;R3) be an injective immersion, i.e., the tangent vectors aα = ∂αφ are linearly
independent. Defining the vector a3 := a1×a2

‖a1×a2‖ , normal to the surface φ(ω), we
obtain the basis {a1, a2, a3} of R3. In Figure 1 we find an illustration of this
configuration. The contravariant basis {ai} is defined by ai · aj = δij , where δij
denotes the Kronecker delta, a3 = a3. The covariant components of the metric
tensor are given by aαβ := aα·aβ . We set (aαβ) := (aαβ)−1 which is its contravariant
component matrix. Note that aαβ = aα · aβ . Moreover, we simply define a :=
det(aij).

The covariant components bαβ , the mixed components bβα of the curvature tensor,
and the Christoffel symbols Γσαβ are defined by

(2.1) bαβ := a3∂αaβ , bαβ := aασbσβ , Γσαβ := aσ∂αaβ ,

respectively. Notice that we omit the dependence on spatial variable when not
explicitly needed.

Remark 2.1. By the assumptions on φ, we obtain that there exist two positive
constants c and C, both independent of x ∈ ω, such that

(2.2) c|ζ|2 < aαβζ
αζβ < C|ζ|2 for all ζ ∈ R2 .

We further make use of the continuity of φ on the compact set ω̄ to obtain upper
and lower bounds for all the quantities in (2.1).

In this work we only deal with manifolds that are covered by one single chart φ.
To deal with more complex manifolds, e.g., compact manifolds, such as a sphere or
a torus, we have to resort to more than one chart, each one satisfying (2.2), and
then to glue them properly.
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Figure 2. Geometric setting of the thickened surface.

We now modify the surface φ(ω) by adding a thickness, ρ > 0, as illustrated in
Figure 2. Thus, we define Ωρ := ω ×

(
−ρ2 ,

ρ
2

)
and the map Φ: Ωρ → R3 by

(2.3) Φ(x) := φ(x1, x2) + x3a3 for all x = (x1, x2, x3) ∈ Ωρ ,

with φ(ω) = Φ(ω × {0}), that is, φ(ω) is the middle surface of Φ(Ωρ). We recall
that in view of Theorem 3.1-1 in [23] it is not restrictive to assume that Φ is a
diffeomorphism.

Concerning the notation related to Φ(Ωρ), symbols with or without a hat are
associated with the original Cartesian (Φ(Ωρ)) or curvilinear (Ωρ) coordinate sys-
tem, respectively. In particular, it is understood that x ∈ Ωρ with x̂ = Φ(x) when
related in the same statement. We define the covariant basis gi := ∂iΦ and the
corresponding metric tensor gij := gi · gj . By (2.3), we obtain

gα = aα + x3∂αa3 and g3 = a3 = a3 = g3 .

The contravariant basis {gi} denotes the dual basis of the covariant basis, i.e.,
gi ·gj = δji . It follows that the inverse of (gij) is given by gij := gi ·gj . Additionally,
we define g := det(gij). For the mapping Φ, we also introduce the corresponding
Christoffel symbols, denoted by Λkij := gk · ∂igj , such that the symmetry condition,
Λkij = Λkji, holds.

2.2. The Reference Model. In order to derive the two-dimensional model, we
start from the brittle fracture energy from G.A. Francfort and J.-J. Marigo[40] in
the original Cartesian coordinates, given by

(2.4) E(û, K̂ρ) :=
1

2

∫
Φ(Ωρ)\K̂ρ

Ĉε̂(û) : ε̂(û) dx̂+ κH2(K̂ρ) ,

for û ∈ C1(Φ(Ωρ) \ K̂ρ);R3) describing the displacement field and for K̂ρ ⊂ Φ(Ωρ)
a closed and H2-rectifiable set describing the fracture. The constant κ > 0 denotes
the toughness, which is a material dependent constant. The stiffness tensor Ĉ is
given by

Ĉ
ijkl

= λδijδkl + µ(δikδjl + δilδjk)

with Lamé coefficients λ ≥ 0 and µ > 0. The symbol : in (2.4) denotes the usual
tensor product

Ĉε̂(û) : ε̂(û) = Ĉ
ijkl
ε̂ij(û)ε̂kl(û) .

Furthermore, ε̂(û) denotes the strain given by the symmetric gradient

ε̂(û) :=
1

2

(
∇û+ (∇û)>

)
ε̂ij(û) :=

1

2

(
∂iûj + ∂j ûi

)
.

We remark that the following symmetries hold:

Ĉ
ijkl

= Ĉ
jikl

= Ĉ
klij

and ε̂ij(û) = ε̂ji(û) .
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Following the strategy of [23], we express (2.4) in terms of curvilinear coordinates.
For this purpose, we express the vector field û in terms of the covariant basis, by
defining ui : Ωρ → R such that

(2.5) û(x̂) = ui(x)gi(x) or equivalently uj(x) = û(x̂) · gj(x) .

For Kρ := Φ−1(K̂ρ), u ∈ C1(Ωρ \ Kρ;R3) and û ∈ C1(Φ(Ωρ \ Kρ);R3) related
by (2.5), we get

(2.6) E(û, K̂ρ) =
1

2

∫
Ωρ\Kρ

Cε(u) : ε(u)
√
g dx+ κ

∫
Kρ

√
[νKρ ]ig

ij [νKρ ]j
√
g dH2 ,

where [νKρ ]k is the k-th component of the unit normal to the surface Kρ, ε(u)
stands for the strain in the curvilinear setting

εij(u) :=
1

2

(
∂iuj + ∂jui)− ukΛkij ,

and C is the elasticity tensor in the curvilinear framework

Cijkl := λgijgkl + µ(gikgjl + gilgjk) .

A simple scaling in the variable x3 provides an integration domain independent
of ρ, namely,

πρ :

{
Ω→ Ωρ

x 7→ (x1, x2, ρx3)
with Ω := Ω1 = ω ×

(
−1

2
,

1

2

)
.

For any closed set Kρ ⊂ Ωρ, we let K := π−1
ρ (Kρ). For any scalar, vector, or tensor

field q, we add a subscript ρ to denote the composition with πρ, i.e., qρ := q ◦ πρ.
In particular, for all u ∈ C1(Ωρ \ Kρ;R3) we define uρ := u ◦ πρ and, for w ∈
C1(Ω \K;R3),

εαβ,ρ(w) :=
1

2
(∂αwβ + ∂βwα)− wkΛkαβ,ρ

εα3,ρ(w) :=
1

2

(
∂αw3 +

1

ρ
∂3wα

)
− wkΛkα3,ρ

ε33,ρ(w) :=
1

ρ
∂3w3 − wkΛk33,ρ .

(2.7)

One can easily check that ερ(uρ) = ε(u) ◦ πρ, so that the energy functional (2.6)
can be written as

E(û, K̂) =
ρ

2

∫
Ω\K

Cρερ(uρ) : ερ(uρ)
√
gρ dx(2.8)

+ κρ

∫
K

√
[DρνK ]ig

ij
ρ [DρνK ]j

√
gρ dH2 .

where Dρ := diag(1, 1, 1/ρ).
Hereafter, we restrict the model to the case of displacements that are normal

to the middle surface, i.e., of the form u = (0, 0, u3), so that (2.5) is equivalent
to û = u3g

3 = u3a
3. Hence, the whole problem can be expressed in terms of a

scalar function u and, with a slight abuse of notation, we set ε(u) := ε(0, 0, u) for
all u ∈ C1(Ωρ \Kρ).

Since Λ3
i3 = a3∂ia3 = 0, by (2.7) we obtain, for all uρ ∈ C1(Ω \K),

(2.9) εαβ,ρ(uρ) = −Λ3
αβ,ρuρ , εα3,ρ(uρ) =

1

2
∂αuρ , ε33,ρ(uρ) =

1

ρ
∂3uρ .

Finally, we recall Theorems 3.2-1 and 3.3-1 in [23], which state some important
convergence results of the geometric quantities in (2.8), for ρ→ 0.



DIMENSION-REDUCTION FOR BRITTLE FRACTURES ON THIN SHELLS 7

Proposition 2.2. With the definitions above there holds the following:

gρ = a+O(ρ) ,

gαβρ = aαβ +O(ρ), gα3
ρ = 0, g33

ρ = 1,

Λ3
αβ,ρ = bαβ +O(ρ) ,(2.10)

where we recall that g := det(gij) and a := det(aij). The convergence rates, as
ρ → 0, are uniform, i.e., they do not depend on x ∈ Ω. Furthermore, there exist
c, C > 0 such that, for every ρ > 0 sufficiently small,

(2.11) c|ζ|2 ≤ gij,ρζiζj ≤ C|ζ|2 and c|ζ|2 ≤ gijρ ζiζj ≤ C|ζ|2 for all ζ ∈ R3 .

Proposition 2.3. The following relations hold:

Cαβστ
ρ = λaαβaστ + µ(aασaβτ + aατaβσ) +O(ρ) , Cαβσ3

ρ = 0 ,

Cα3β3
ρ = µaαβ +O(ρ) , Cαβ33

ρ = λaαβ +O(ρ) ,

Cα333
ρ = 0 , C3333

ρ = λ+ 2µ .

The convergence rates as ρ → 0 are uniform, i.e., they do not depend on x ∈ Ω.
Furthermore, there exist some constants c, C > 0 such that, for ρ > 0 sufficiently
small,

(2.12) c|M|2 ≤ Cijkl
ρ MijMkl ≤ C|M|2 for all M ∈ R3×3 symmetric ,

where |·| stands for the Frobenius norm.

As a consequence of Proposition 2.2, we can rewrite (2.8) as

E(û, K̂) =
ρ

2

∫
Ω\K

Cρερ(uρ) : ερ(uρ)
√
gρ dx(2.13)

+ κρ

∫
K

√
[νK ]αg

αβ
ρ [νK ]β +

1

ρ2
[νK ]23

√
gρ dH2 .

2.3. Dimension Reduction. With a view to the limit for ρ → 0, we rescale the
energy in (2.13) by ρ−1 and observe that, as long as ρ > 0, such a scaling does not
change the “three-dimensional” minimizer of the functional.

It is a standard, in the theory of free discontinuity problems, to relax the func-
tional (2.13) from C1(Ω \K) to the space GSBV(Ω) and to replace the set K with
the discontinuity set Su. Hence, for all u ∈ GSBV(Ω) and for all ρ > 0, we define
the functional

Gρ(u) :=
1

2

∫
Ω

Cρερ(u) : ερ(u)
√
gρ dx+ κ

∫
Su

√
[νu]αg

αβ
ρ [νu]β +

1

ρ2
[νu]23

√
gρ dH2.

The current goal is the computation of the Γ-limit of the sequence of functionals
Gρ as ρ→ 0. For this purpose, we introduce the function space:

U :=
{
u ∈ GSBV2(Ω): ∂3u = 0, [νu]3 = 0

}
.

Remark 2.4. Conditions ∂3u = 0 and [νu]3 = 0 imply that u ∈ U is independent
of x3. This can be easily checked for u ∈ U ∩ SBV2(Ω), since the third component
of the distributional derivative Du is zero, so that u is constant with respect to x3.
By a truncation argument, this can be extended to every u ∈ U . Therefore, we can
identify U with GSBV(ω).

As stated in Theorem 2.6 below, the Γ-limit of Gρ turns out to be

G0(u) :=
1

2

∫
Ω

cαβστ bαβbστ |u|2
√
a dx

+
µ

2

∫
Ω

aαβ∂αu∂βu
√
adx+ κ

∫
Su

√
[νu]αaαβ [νu]β

√
adH2
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where
cαβστ :=

2λµ

λ+ 2µ
aαβaστ + µ

(
aασaβτ + aατaβσ

)
.

Remark 2.5. Analogously to (2.12), there exist two constants c, C > 0, such that

c|M|2 ≤ cαβστMαβMστ ≤ C|M|2 for all M ∈ R2×2 symmetric.

This implies that, when G0(u) <∞, we have bαβu ∈ L2(Ω).

We are now ready to state the result describing the two dimensional model in
terms of a Γ-convergence argument as the thickness ρ of Ωρ tends to zero.

Theorem 2.6. Let Gρ : L1(Ω)→ R be defined by

Gρ(u) =

{
Gρ(u) for u ∈ GSBV2(Ω)

+∞ otherwise,

and G0 : L1(Ω)→ R by

G0(u) =

{
G0(u) for u ∈ U
+∞ otherwise.

Then, Gρ Γ-converges to G0 w.r.t. the L1-topology as ρ→ 0.

Proof. The proof follows directly from Proposition 2.8 and Proposition 2.9 below.
�

In order to prove Proposition 2.3, we further need the next auxiliary lemma.

Lemma 2.7. Let {ρ`}, with ρ` > 0, be a null sequence. Let u` be such that u` → u
in L1(Ω) as `→∞ and

(2.14) sup
`∈N
Gρ`(u`) <∞.

Then, u ∈ U and, up to a subsequence, εαβ,ρ`(u`) ⇀ −bαβu and ∂αu` ⇀ ∂αu weakly
in L2(Ω). Furthermore,

lim
`→∞

∫
Su`

|[νu` ]3|dH2 = 0.

Proof. Throughout the proof, C > 0 denotes a generic constant, independent of x ∈
Ω and of ρ`.

Since Gρ`(u`) is bounded, we have that u` ∈ GSBV2(Ω). From (2.9), we have
that, for sufficiently large `,

|∇u`|2 =
∑
α

|2εα3,ρ`(u`)|2 + |ρ`ε33,ρ`(u`)|2(2.15)

≤ 4
∑
i,j

|εij,ρ`(u`)|2 ≤ CC
ijkl
ρ`
εij,ρ`(u`)εkl,ρ`(u`) ,

where the last inequality follows from (2.12). Furthermore, from Proposition 2.2
we infer that

(2.16) C ≤ [νu` ]αg
αβ
ρ`

[νu` ]β +
1

ρ2
`

(
[νu` ]3

)2 and C ≤ gρ` .

As a consequence, there holds

C

(∫
Ω

|∇u`|2 dx+H2
(
Su`
))
≤ Gρ`(u`) ≤ sup

`
Gρ`(u`) < +∞.

Because of the L1-convergence of u`, ‖u`‖L1(Ω) is uniformly bounded. Thus, by
compactness properties of GSBV2(Ω) (see, e.g., Theorem 4.36 in [5]), there holds
u ∈ GSBV2(Ω) and ∇u` ⇀ ∇u weakly in L2(Ω;Rn).
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Applying Theorem 5.8 from [5], we obtain∫
Ω

|∂3u|2 dx ≤ lim inf
`→∞

∫
Ω

|∂3u`|2 dx.

Hence, using (2.9) and (2.15), we have∫
Ω

|∂3u|2 dx ≤ lim inf
`→∞

ρ2
`

∫
Ω

∣∣ε33,ρ`(u`)
∣∣2 dx ≤ C lim inf

`→∞
ρ2
`Gρ`(u`) = 0,

which yields ∂3u = 0. Now, we show that [νu]3 = 0. From Theorem 5.22 in [5], this
lower semi-continuity property follows: For every ρ̃ > 0,∫

Su

√
[νu]αaαβ [νu]β +

1

ρ̃2

∣∣[νu]3
∣∣2√a dH2(2.17)

≤ lim inf
`→∞

∫
Su`

√
[νu` ]αa

αβ [νu` ]β +
1

ρ̃2

∣∣[νu` ]3∣∣2√a dH2 .

This yields that, for every ρ̃ > 0,

(2.18)
1

ρ̃

∫
Su

∣∣[νu]3
∣∣√adH2 ≤ lim inf

`→∞

∫
Su`

√
[νu` ]αa

αβ [νu` ]β +
1

ρ̃2

∣∣[νu` ]3∣∣2√adH2.

From Proposition 2.2, (2.14), and (2.16), for sufficiently large ` we deduce∫
Su`

√
[νu` ]αa

αβ [νu` ]β +
1

ρ̃2

∣∣[νu` ]3∣∣2√a dH2(2.19)

≤
∫
Su`

√
[νu` ]αg

αβ
ρ` [νu` ]β +

1

ρ2
`

∣∣[νu` ]3∣∣2√gρ` dH2 + C
√
ρ` + Cρ`

≤ Gρ`(u`) + C
√
ρ` + Cρ`.

By assumption (2.14), the right-hand side of (2.19) turns out to be uniformly
bounded. Thus, combining (2.18) and (2.19), we derive∫

Su

∣∣[νu]3
∣∣√adH2 ≤ C

√
ρ̃ for every ρ̃ > 0.

The previous inequality implies that [νu]3 = 0 on Su, so that u ∈ U .
As in (2.15), we obtain that ‖∂αu`‖L2(Ω) and ‖εαβ,ρ(u`)‖L2(Ω) are uniformly

bounded. Then, the weak convergence follows from (2.9) and (2.10). �

We now prove the lim inf-inequality.

Proposition 2.8. Under the same hypotheses as in Theorem 2.6, there holds G0 ≤
Γ-lim infρ→0 Gρ.

Proof. Let {ρ`}, with ρ` > 0, be a null sequence, and let u` be a sequence con-
verging in L1(Ω) to u ∈ L1(Ω). Without loss of generality, we can assume that
lim inf`→∞ Gρ`(u`) = lim`→∞ Gρ`(u`) <∞. From Lemma 2.7, it follows that u ∈ U .

After some algebraic manipulations, we have

(2.20) Gρ`(u`) = I(1)
ρ`

(u`) + I(2)
ρ`

(u`) + I(3)
ρ`

(u`) + I(4)
ρ`

(u`)

with

I(1)
ρ`

(u`) :=
1

2

∫
Ω

(
2λµ

λ+ 2µ
gαβρ` g

στ
ρ`

+ µ(gασρ` g
βτ
ρ`

+ gατρ` g
βσ
ρ`

)

)
× εαβ,ρ`(u`)εστ,ρ`(u`)

√
gρ` dx
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I(2)
ρ`

(u`) :=
1

2

∫
Ω

(λ+ 2µ)

(
λ

λ+ 2µ
gαβρ` εαβ,ρ`(u`) + ε33,ρ`(u`)

)2√
gρ` dx

I(3)
ρ`

(u`) := 2µ

∫
Ω

gαβρ` εα3,ρ`(u`)εβ3,ρ`(u`)
√
gρ` dx

I(4)
ρ`

(u`) := κ

∫
Su`

√
[νu` ]αg

αβ
ρ` [νu` ]β +

1

ρ2
`

∣∣[νu` ]3∣∣2√gρ` dH2.

We now prove the lim inf-inequality for I(1)
ρ` , I

(3)
ρ` and I

(4)
ρ` , whereas the term I

(2)
ρ`

need not be estimated, being non-negative.
From pointwise convergence (up to a subsequence) of u` almost everywhere

and from Proposition 2.2 we derive the pointwise convergence of the integrand
of I(1)

ρ` (u`). Hence, by Fatou lemma, we obtain

(2.21)
1

2

∫
Ω

cαβστ bαβbστ |u|2
√
a dx ≤ lim inf

`→∞
I(1)
ρ`

(u`).

In view of (2.2), the map v 7→
∫
ω
aαβvαvβ

√
adx is a norm in L2(Ω) and is there-

fore weakly lower semi-continuous in L2(Ω). Hence, using the weak convergence
εα3,ρ`(u`) ⇀

1
2∂αu in L2(Ω) proved in Lemma 2.7, we obtain

1

4

∫
Ω

aαβ∂αu∂βu
√
a dx ≤ lim inf

`→∞

∫
Ω

aαβεα3,ρ`(u`)εβ3,ρ`(u`)
√
adx.

From (2.2) and from Proposition 2.2, for sufficiently large ` it holds∫
Ω

aαβεα3,ρ`(u`)εβ3,ρ`(u`)
√
adx

≤
∫

Ω

gαβρ` εα3,ρ`(u`)εβ3,ρ`(u`)
√
gρ` dx+ C

√
ρ`
∑
α

‖εα3,ρ`(u`)‖2L2(Ω) ,

namely,

(2.22)
µ

2

∫
ω

aαβ∂αu · ∂βu
√
a dx ≤ lim inf

`→∞
I(3)
ρ`

(u`).

Proceeding as in (2.17)–(2.19), for every ρ̃ > 0, we have that

κ

∫
Su

√
[νu]αaαβ [νu]β

√
a dH1(2.23)

≤ lim inf
`→∞

κ

∫
Su`

√
[νu` ]αa

αβ [νu` ]β +
1

ρ̃2

∣∣[νu` ]3∣∣2√a dH2

≤ lim inf
`→∞

κ

∫
Su`

√
[νu` ]αg

αβ
ρ` [νu` ]β +

1

ρ2
`

∣∣[νu` ]3∣∣2√g dH2 + C
√
ρ`

= lim inf
`→∞

I(4)
ρ`

(u`) .

Summing up (2.21)–(2.23) and using that I(2)
ρ` is non-negative, we deduce that

G0(u) ≤ lim inf
`→∞

Gρ`(u`),

which concludes the proof. �

In the next proposition we prove the lim sup-inequality.

Proposition 2.9. Under the same hypotheses as in Theorem 2.6, there holds
Γ-lim supρ→0 Gρ ≤ G0.
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Proof. Let {ρ`}, with ρ` > 0, be a sequence such that ρ` → 0 as ` → ∞. We
can assume that G0(u) < +∞ and thus u ∈ U , otherwise, from Proposition 2.8, we
have that lim inf`→∞ Gρ`(u) = +∞ and there is nothing to prove. Moreover, setting
uP := (−P )∨u∧P for P > 0, we clearly have that uP → u in L1(Ω) and G0(uP )→
G0(u) for P → +∞. Therefore, we may just consider u ∈ SBV2(Ω) ∩ L∞(Ω).

We pick the sequence u` in SBV2(Ω) ∩ L∞(Ω) defined for all ` ∈ N by

u`(x) = u(x1, x2) exp

(
λ

λ+ 2µ
aαβbαβ ρ` x3

)
for x = (x1, x2, x3) ∈ Ω.

It turns out that u` → u in L1(Ω) as ` → ∞ and that u` is bounded in L∞(Ω).
Starting from (2.20), we show that each term I

(k)
ρ` (u`) (for k = 1, 2, 3, 4) converges

as expected.
Since all the functions involved in the exponential are uniformly bounded, it

holds |u`| ≤ C|u| for some constant C > 0. Moreover, we deduce from (2.10) in
Proposition 2.2 that

(2.24)
∣∣εαβ,ρ`(u`)∣∣ = |Λ3

αβ,ρ`
u`| ≤ C|bαβu|+ Cρ`|u|.

Since u, bαβ ∈ L∞(Ω), the right-hand side of (2.24) is bounded, and hence, in
view of (2.9) and Proposition 2.2, εαβ,ρ`(u`) → −bαβu in L2(Ω). From (2.12)
(replacing λ with 2λµ

λ+2µ ), we infer that there exists a constant C > 0 such that(
2λµ

λ+ 2µ
gαβρ` g

στ
ρ`

+µ(gασρ` g
βτ
ρ`

+gατρ` g
βσ
ρ`

)

)
εαβ,ρ`(u`)εστ,ρ`(u`) ≤ C

∑
α,β

∣∣εαβ,ρ`(u`)∣∣2.
Therefore, by the dominated convergence theorem, it follows that

(2.25) lim
`→∞

I(1)
ρ`

(u`) =
1

2

∫
Ω

cαβστ bαβbστ |u|2
√
a dx .

Moving to the term I
(3)
ρ` , we have that

∣∣εα3(u`)
∣∣ ≤ C|∂αu| ∈ L2(Ω), so that,

using (2.11), we deduce that

(2.26) lim
`→∞

I(3)
ρ`

(u`) =
µ

2

∫
Ω

aαβ∂αu∂βu
√
adx.

Since it holds that

Su` = Su , [νu` ]3 = 0 , and [νu` ]α = [νu]α ,

and thanks to Proposition 2.2, we obtain

lim
`→∞

I(4)
ρ`

= lim
`→∞

κ

∫
Su

√
[νu]αgρ` [νu]β

√
gρ` dH2(2.27)

= κ

∫
Su

√
[νu]αaαβ [νu]β

√
a dH2.

Finally, we show that I(2)
ρ` (u`)→ 0. With this aim, we note that

ε33,ρ`(u`) =
λ

λ+ 2µ
aαβbαβ u`

and, therefore, by Proposition 2.2 we have∣∣gαβρ` εαβ,ρ`(u`) + aαβbαβu`
∣∣ ≤ Cρ`|u`|.

Exploiting the fact that u` ∈ L∞(Ω) and the uniformly bound of √gρ` , we deduce∣∣I(2)
ρ`

(u`)
∣∣ ≤ Cρ2

`‖u‖2L∞(Ω),

which implies that I(2)
ρ` (u`)→ 0. Eventually, this inequality, together with (2.25)–(2.27),

implies that lim`→∞ Gρ`(u`) = G0(u), which concludes the proof. �
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We point out that the limit functional G0 (or G0) is actually two dimensional.
Since the integrands do not depend on x3, as explained in Remark 2.4, we can
simply replace Ω with the two-dimensional domain ω. Hence, for u ∈ GSBV2(ω)
we have

G0(u) =
1

2

∫
ω

cαβστ bαβbστ |u|2
√
adx+

µ

2

∫
ω

aαβ∂αu∂βu
√
a dx

+ κ

∫
Su

√
[νu]αaαβ [νu]β

√
adH1 .

Introducing the notation

b := cαβστ bαβbστ
√
a and A := (aαβ)

√
a,

we can rewrite G0 as

G0(u) =
1

2

∫
ω

b|u|2 dx+
µ

2

∫
ω

∇u>A∇udx+ κ

∫
Su

√
ν>u Aνu

√
adH1.

Notice that, due to (2.2), the symmetric matrix A(x) ∈ R2×2 is positive definite,
uniformly w.r.t. x ∈ ω, i.e., there exist 0 < α ≤ β < +∞ such that

α|ζ|2 ≤ A(x)ζ · ζ ≤ β|ζ|2 for every x ∈ ω and every ζ ∈ R2 .

2.4. The Regularized Reduced Model. The numerical minimization of the
functional G0 can be tackled via phase-field models (see, e.g., [9, 15, 16, 19]). The
seminal idea can be ascribed to [6, 7], where the authors introduce an additional
smooth variable, the phase field, which describes the fracture set. The results of
[6, 7] have been generalized in many ways,[14, 17, 30, 34, 48] including the case
of vector displacements.[21] In our setting, we need a slightly more general result
compared with [34], as we have to take into account the spatial dependence of A
in the phase-field term. The Γ-convergence result is stated in Theorem 2.10 below,
whose proof is provided in the Appendix.

Theorem 2.10. For ε > 0, let ηε > 0 be such that ηε/ε→ 0 as ε→ 0. Define the
family of functionals {Fε}ε>0, with Fε : L1(ω)× L1(ω)→ R such that

Fε(u, v) :=
1

2

∫
ω

b|u|2 dx+
µ

2

∫
ω

(v2 + ηε)∇u>A∇udx(2.28)

+ κ

∫
ω

[
1

4ε
(1− v)2

√
a+ ε∇v>A∇v

]
dx ,

for all u ∈ H1(ω), v ∈ H1(ω; [0, 1]) and Fε(u, v) := +∞ otherwise. Then G0 =
Γ-limε→0 Fε in the L1-topology.

Proof. See A. �

We remark that, loosely speaking, for small ε, the phase field minimizing Fε
is close to zero where the gradient of the displacement u is large, whereas it ap-
proaches 1 elsewhere. This implies that the material is sound where v is close
to 1, whereas a fracture is detected where v � 1. In particular, the third integral
in (2.28) converges to the length of the crack set.

With a view to the numerical approximation of the functional Fε, for small ε > 0,
we restrict the function space to H1(ω) × H1(ω; [0, 1]), and omit the subscript ε,
as it will be fixed in the numerical test cases. Moreover, for all u ∈ H1(ω), v ∈
H1(ω; [0, 1]), we introduce the stored elastic energy

(2.29) E(u, v) :=
1

2

∫
ω

b|u|2 dx+
µ

2

∫
ω

(
v2 + ηε

)
∇u>A∇udx
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and the dissipation potential

(2.30) D(v) := κ

∫
ω

[
1

4ε
(1− v)2

√
a+ ε∇v>A∇v

]
dx ,

so that

(2.31) F(u, v) = E(u, v) +D(v) .

Note that F(u, v) is Fréchet-differentiable in H1(ω)×
[
H1(ω) ∩ L∞(ω)

]
(see, e.g.,

Proposition 1.1 in [19]), with

∂uF(u, v)[ϕ] =

∫
ω

buϕdx+ µ

∫
ω

(
v2 + ηε

)
∇u>A∇ϕdx ,

∂vF(u, v)[ψ] = µ

∫
ω

vψ∇u>A∇udx+ κ

∫
ω

[
1

2ε
(v − 1)ψ

√
a+ 2ε∇v>A∇ψ

]
dx ,

for all u, ϕ ∈ H1(ω), v, ψ ∈ H1(ω) ∩ L∞(ω).

3. The Discrete Setting: a Finite Element Approximation

Let ω ⊂ R2 be a polygonal domain, and let {Th}h>0 be a family of triangulations
of ω. For every h > 0, we denote by T a generic element of Th and we set hT :=
diam(T ), where h = maxT∈Th hT . Furthermore, we denote by Vh the set of all the
vertices of Th and define Nh := #Vh.

The discretization is cast in the space

Xh :=
{
u ∈ H1(ω) : u|T ∈ P1(T ), for every T ∈ Th} ,

of piecewise continuous linear finite elements, whose Lagrangian basis is denoted
by {ξl}Nhl=1. We assume that this basis satisfies the non-positivity condition

(3.1)
∫
ω

∇ξ>l A∇ξm dx ≤ 0 ∀ l,m ∈ {1, . . . , Nh}, l 6= m.

For the particular choice A = I, with I the identity matrix, this condition is satisfied
when Th is an acute-angle mesh, and it ensures a discrete maximum principle in Xh
(see [24, 58]), i.e., that the phase field takes values in [0, 1] along the evolution
(cf. Proposition 6.14 in [2]). In the present context, the matrix A corresponds
to a metric tensor of a Riemannian manifold multiplied by a positive function.
Thus, by coordinate transformation, condition (3.1) is fulfilled if the triangulation
is acute in the Riemannian space. Indeed, according to the notation of Section 2,
the tangential gradient is

∇τ û :=
(
∇ũ− 〈∇ũ, g3〉g3

)∣∣
S
∀û ∈ C1(φ(ω)),

where ũ is an extension of û to Φ(Ωρ), which is characterized by a thickness ρ.
Then, by coordinate transformation, (3.1) is equivalent to∫

φ(ω)

∇τ (ξl ◦ φ−1)>∇τ (ξm ◦ φ−1) dx ≤ 0 ∀l,m ∈ {1, . . . , Nh}, l 6= m.

In general, the space Xh is endowed with the norm on H1(ω). However, we also
adopt the norm

‖v‖Xh =

(∫
ω

∣∣Πh(v2)
∣∣dx) 1

2

for all v ∈ Xh ,

where Πh denotes the Lagrangian interpolant associated with the space Xh.
We introduce now the discrete counterpart of the elastic energy (2.29) and of

the dissipation potential (2.30): for every u, v ∈ Xh, 0 ≤ v ≤ 1, let

Eh(u, v) :=
1

2

∫
ω

b|u|2 dx+
µ

2

∫
ω

(
Πh(v2) + ηε

)
∇u>A∇udx ,
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Dh(v) := κ

∫
ω

[
1

4ε
Πh

(
(1− v)2

)√
a+ ε∇v>A∇v

]
dx ,

which leads to the definition of the discrete phase field energy (2.31) by

Fh(u, v) := Eh(u, v) +Dh(v) for u, v ∈ Xh, 0 ≤ v ≤ 1 .

It holds that Fh(u, v) is Fréchet differentiable with

∂uFh(u, v)[ϕ] =

∫
ω

buϕdx+ µ

∫
ω

(
Πh(v2) + ηε

)
∇u>A∇ϕdx ,

∂vFh(u, v)[ψ] = µ

∫
ω

Πh(vψ)∇u>A∇udx

+ κ

∫
ω

[
1

2ε
Πh

(
(v − 1)ψ

)√
a+ 2ε∇v>A∇ψ

]
dx ,

for all u, v, ϕ, ψ ∈ Xh.

Remark 3.1. In general, the energy functional F is discretized via restriction to
the finite element space, i.e., by setting Fh := F|Xh×Xh . Here, following [1, 9], we
define Fh using the operator Πh. This ensures that also the discrete phase field
takes values in [0, 1] (see Proposition 6.14 in [2]).

3.1. An Alternating Minimization Scheme. In order to approximate a quasi-
static fracture evolution, we adopt here the scheme used in [9, 15, 16, 19], which is
based on an alternating minimization procedure. For a given time interval, [0, Tf ],
with Tf > 0, we consider the time step τ =

Tf
k , where k ∈ N is the number of time

steps, and we denote the time levels by ti := iτ for i ∈ {0, . . . , k}. Let g be the time
dependent Dirichlet boundary condition for the displacement field, assumed to be an
absolutely continuous function in AC([0, Tf ];W 1,p(ω)), with p > 2. The adopted
alternating minimization scheme works as follows: Let u0, v0 ∈ Xh the assigned
initial values. Then, for every i ∈ {1, . . . , k} and every j ∈ N, we inductively set
ui,0 := ui−1, vi,0 := vi−1 and

ui,j := arg min
{
Eh(u, vi,j−1) : u ∈ Xh, u = g(ti) on ∂ω

}
,(3.2)

vi,j := arg min

{
Fh(ui,j , v) +

α

2τ
‖v − vi−1‖2Xh : v ∈ Xh, v ≤ vi−1

}
,(3.3)

where α > 0 is a tuning parameter. As shown in Proposition 3.4, there exists a
subsequence jm such that (ui,jm , vi,jm) admits a limit in Xh×Xh as m→∞. Thus,
we set

ui := lim
m→∞

ui,jm and vi := lim
m→∞

vi,jm .

The inequality constraint in (3.3) enforces the irreversibility of the fracture. In
this way, the phase field is constrained to decrease in time to avoid any crack
healing. Moreover, the constraint v ≥ 0 is no longer required, since the adopted
discretization automatically guarantees vi,j ≥ 0 (see also Remark 3.1).

Following Theorems 4.3, 5.13, 5.17 in [2], we can show that, in the time con-
tinuous limit, the algorithm (3.2)–(3.3) detects a unilateral L2-gradient flow for
the functional Fh. Moreover, we obtain full consistency when h → 0, namely, a
sequence of L2-gradient flows of Fh converge to an L2-gradient flow of F .

As for the additional parameter α, we assume that it is very small, so that a
gradient flow of Fh is expected to be close to a quasi-static evolution along critical
points (see [52, 56]). The choice α = 0, made in [1], in order to directly obtain a
quasi-static evolution, does not ensure an energy balance when h→ 0.

Since u 7→ Fh(u, v) is a convex map, the minimization (3.2) is equivalent to

(3.4) ∂uEh(ui,j , vi,j−1)[ϕ] = 0 for every ϕ ∈ Xh, with ϕ = 0 on ∂ω.
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The minimization (3.3), instead, is equivalent to the variational inequality (cf.
Chapter 3 of [49])

(3.5) ∂vFh(ui,j , vi,j)[vi,j − ψ] +
α

τ

∫
ω

Πh

(
(vi,j − vi−1)(vi,j − ψ)

)
dx ≤ 0

for all ψ ∈ Xh, with ψ ≤ vi−1.
These remarks justify the following definition of a critical point of Fh, subject

to the inequality constraint in (3.3).

Definition 3.2. Let u, v, ṽ ∈ Xh with 0 ≤ ṽ ≤ 1. We define (u, v) as a discrete
critical point with bound ṽ if the following two conditions hold

0 = ∂uEh(u, v)[ϕ] ,(3.6)

0 ≥ ∂vFh(u, v)[v − ψ] +
α

τ

∫
ω

Πh

(
(v − ṽ)(v − ψ)

)
dx ,(3.7)

for all ϕ,ψ ∈ Xh with ϕ = 0 on ∂ω and ψ ≤ ṽ.

Notice that, relations (3.6)–(3.7) are equivalent to the single inequality

∂uEh(u, v)[ϕ] + ∂vFh(u, v)[v − ψ] +
α

τ

∫
ω

Πh

(
(v − ṽ)(v − ψ)

)
dx ≤ 0,

for all ϕ ∈ Xh with ϕ = 0 on ∂ω and for all ψ ∈ Xh with ψ ≤ ṽ.
We will also employ the continuous counterpart of Definition 3.2:

Definition 3.3. Let u ∈ H1(ω) and v, ṽ ∈ H1(ω; [0, 1]). We define (u, v) as a
critical point with bound ṽ if the following two conditions hold

∂uE(u, v)[ϕ] = 0 ∀ϕ ∈ H1(ω), with ϕ = 0 on ∂ω,

∂vF(u, v)[v − ψ] +
α

τ

∫
ω

(v − ṽ)(v − ψ) dx ≤ 0 ∀ψ ∈ H1(ω; [0, 1]), with ψ ≤ ṽ.

Following the idea of Proposition 2 in [20], we show the convergence of the
minimization scheme (3.2)–(3.3) to a discrete critical point. The result can easily
be extended to a space-continuous scheme where Xh is replaced by H1(ω) in (3.2)
and (3.3).

Proposition 3.4. Let i ∈ {1, . . . , k} and (ui,j , vi,j) be defined as in (3.2)–(3.3).
Then, (ui,j , vi,j) converges, up to a subsequence, as j → ∞ to a discrete critical
point (ui, vi) ∈ Xh ×Xh with bound vi−1.

Proof. We have that, for all j ∈ N

Fh(ui,j , vi,j) +
α

2τ
‖vi,j − vi−1‖2Xh ≤ Fh(ui,j−1, vi,j−1) +

α

2τ
‖vi,j−1 − vi−1‖2Xh

≤ Fh(ui,0, vi,0) +
α

2τ
‖vi,0 − vi−1‖2Xh .

Since A is uniformly positive definite, the sequence (ui,j , vi,j) is bounded in Xh×
Xh. Hence, we can extract a subsequence jk such that, for some ui, vi, w ∈ Xh, we
have

(3.8) ∇ui,jk → ∇ui , vi,jk → vi , vi,jk−1 → w as k →∞.
This also implies ui,jk−1

→ ui and vi,jk−1
→ vi as k →∞.

We now prove that (ui, vi) is a discrete critical point. In view of (3.4) and (3.5),
there holds for all k ∈ N and for all ϕ,ψ ∈ Xh with ϕ = 0 on ∂ω and ψ ≤ vi−1

0 = ∂uEh(ui,jk , vi,jk−1)[ϕ] ,

0 ≤ ∂vFh(ui,jk , vi,jk)[ψ − vi,jk ] +
α

τ

∫
ω

Πh

(
(vi,jk − vi−1)(ψ − vi,jk)

)
dx .
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RT

T̂

T

σT,1

σT,2

rT,1

rT,2

Figure 3. Geometric sketch of the affine map RT , together with
the main anisotropic quantities.

Passing to the limit for k →∞, it follows that

0 = ∂uEh(ui, w)[ϕ] ,

0 ≤ ∂vFh(ui, vi)[ψ − vi] +
α

τ

∫
ω

Πh

(
(vi − vi−1)(ψ − vi)

)
dx .

(3.9)

We recall that the last inequality implies that vi is a solution of (3.3) with displace-
ment ui.

It remains to show that vi = w. By (3.2)–(3.3) and by the convergence result
in (3.8), we have that

Fh(ui, w)+
α

2τ
‖w − vi−1‖2Xh = lim

k→∞
Fh(ui,jk , vi,jk−1)+

α

2τ
‖vi,jk−1 − vi−1‖2Xh

≤ lim
k→∞

Fh(ui,jk−1
, vi,jk−1

) +
α

2τ
‖vi,jk−1

− vi−1‖2Xh

= Fh(ui, vi) +
α

2τ
‖vi − vi−1‖2Xh .

By strict convexity, (3.3) has a unique solution. Hence, vi = w. Inequalities (3.9)
imply that (ui, vi) is a discrete critical point with bound vi−1. �

3.2. An Anisotropic a Posteriori Error Analysis. Goal of this section is to
quantify the error associated with a computed discrete critical point through the
minimization (3.2)–(3.3). In particular, we exploit the benefits led by the employ-
ment of an anistropically adapted mesh. We adopt the setting in [38] to recover the
anisotropic information, and we consider a reference triangle T̂ , so that, for T ∈ Th,
there exists an affine map RT : T̂ → T , with RT (x̂) = MT x̂ + θT for all x̂ ∈ T̂ ,
where MT ∈ R2×2 is invertible and θT ∈ R2 is the shift vector. We choose T̂ as the
equilateral triangle inscribed in the unit circle with one vertex at (0, 1). Hence, if
T ∈ Th has vertices (x1, y1), (x2, y2), (x3, y3), we have

MT =
1

3

(√
3(x2 − x1) 2x3 − x1 − x2√
3(y2 − y1) 2y3 − y1 − y2

)
and θT =

1

3

(
x1 + x2 + x3

y1 + y2 + y3

)
.

We consider the singular value decomposition MT = UTΣTV
>
T , of the matrix

MT , with UT = [rT,1, rT,2], VT ∈ R2×2 orthogonal and ΣT ∈ R2×2 diagonal with
entries σT,1 ≥ σT,2 > 0. Hence, for every vector z ∈ Rn the following inequality
holds

(3.10) σT,2|z| ≤ |MT z| ≤ σT,1|z| .
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Geometrically, the left singular vectors rT,i identify the directions of the semiaxes
of the ellipse circumscribed to T , while the singular values σT,i measure the corre-
sponding lengths, with i = 1, 2. The deformation of T is quantified by the aspect
ratio sT := σT,1/σT,2 ≥ 1, where sT = 1 for equilateral triangles. The matrices UT
and VT apply rotations, whereas the matrix ΣT deforms the element (see Figure 3).

We denote by û
∣∣
T̂

:= u ◦ RT the pull-back on the reference triangle of a generic
function u : T → R, and we set ê := R−1

T (e) for all e ∈ Eh∩T , where Eh represents
the skeleton of Th. We recall here the anisotropic interpolation error estimates
derived in [38, 39] for the quasi-interpolant operator Qh as defined in [25, 57, 59].

Lemma 3.5. Assume that #(∆T ) ≤ N and diam(R−1
T (∆T )) ≤ C∆ for every

T ∈ Th, with #(·) and diam(·) the cardinality and the diameter of a given set, and
∆T = {∪K∈ThK : K ∩ T 6= ∅} the patch of elements associated with T . Then, for
every T ∈ Th, every e ∈ Eh with e ∈ ∂T , and every u ∈ H1(∆T ), there hold

|u−Qhu|Hs(T ) ≤ Cs
1

σs2,T
‖M>T ∇u‖L2(∆T ), s = 0, 1

‖u−Qhu‖L2(e) ≤ C2

(
he

σT,1 σT,2

)1/2

‖M>T ∇u‖L2(∆T ),

where Ci = Ci(T̂ ,N , C∆) for i = 0, 1, 2.

We also provide the anisotropic error estimate associated with the Lagrangian in-
terpolant Πh (for the proof, see Proposition 3.3 in [9]), together with the equivalence
result between the standard H1(∆T )-seminorm and the corresponding anisotropic
counterpart:

Lemma 3.6. Let v, ψ ∈ Xh and T ∈ Th. Then, we have∥∥vψ −Πh(vψ)
∥∥
L2(T )

≤ Ĉh2
T |v|W 1,∞(T )

∥∥∇ψ∥∥
L2(T )

,

where Ĉ = Ĉ(T̂ ).

From (3.10) we directly infer the following Lemma:

Lemma 3.7. Let z ∈ H1(ω) and T ∈ Th. Then, we have

σT,2 ≤
‖M>T ∇z‖L2(∆T )

‖∇z‖L2(∆T )
≤ σT,1 .

Finally, we introduce the notation for the jump of the conormal derivative of a
function w ∈ Xh:

[[A∇w]] :=


∣∣(∇w|T −∇w|T ′)>AνT ∣∣ on e ∈ Eh if ∃T, T ′ ∈ Th : T ∩ T ′ = e

2
∣∣∣∇w|>T AνT ∣∣∣ on e ∈ Eh if ∃T ∈ Th : e ⊂ ∂ω ∩ ∂T ,

with νT the unit outward normal vector to T . Moreover, we define the edge length
function h∂T : ∂T → R by h∂T = he for e ∈ Eh ∩ ∂T .

Theorem 3.8. Let (uh, vh) ∈ Xh × Xh be a discrete critical point with bound
ṽh ∈ Xh. For every T ∈ Th, we define the quantities

γT (uh, vh) := ‖p(uh, vh)‖L2(T ) +
µ

σT,2

∥∥(v2
h −Πh(v2

h)
)
A∇uh

∥∥
L2(T )

+
µ

2
√
σT,1σT,2

∥∥√h∂T (v2
h + ηε

)
[[A∇uh]]

∥∥
L2(∂T )

,

p(uh, vh) := buh − 2µvh∇u>hA∇vh − µ(v2
h + ηε)∇uh · div(A) ,
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ρT (uh, vh) := ‖q(uh, vh)‖L2(T ) +
κε

√
σT,1 σT,2

∥∥√h∂T [[A∇vh]]
∥∥
L2(∂T )

+
h2
T

σT,2

∥∥∥∥µ∇u>hA∇uh +
κ

2ε

√
a

∥∥∥∥
L2(T )

|vh|W 1,∞(T )

+
αh2

T

τσT,2
‖∇(vh − ṽh)‖L2(T ) ,

q(uh, vh) := µvh∇u>hA∇uh +
κ

2ε
(vh − 1)

√
a− 2κε∇vh · div(A) +

α

τ
(vh − ṽh) .

Then, we have

(3.11)
∣∣∂uE(uh, vh)[ϕ]

∣∣ ≤ C ∑
T∈Th

γT (uh, vh)‖M>T ∇ϕ‖L2(∆T ) ∀ϕ ∈ H1
0 (ω) ,

and

∂vF(uh, vh)[vh − ψ] +
α

τ

∫
ω

(vh − ṽh)(vh − ψ) dx(3.12)

≤ C
∑
T∈Th

ρT (uh, vh)
∥∥M>T ∇(ψ − vh)

∥∥
L2(∆T )

for all ψ ∈ H1(Ω) with ψ ≤ ṽh.

Proof. The linearity of ϕ 7→ ∂uE(uh, vh)[ϕ] yields

(3.13)
∣∣∂uE(uh, vh)[ϕ]

∣∣ ≤ ∣∣∂uE(uh, vh)[ϕ− ϕh]
∣∣+
∣∣∂uE(uh, vh)[ϕh]

∣∣ .
We consider the first term on the right-hand side. Using the divergence theorem
and the fact that every second derivative of uh|T is zero, we have

∂uE(uh, vh)[ϕ− ϕh]

=
∑
T∈Th

{∫
T

buh(ϕ− ϕh) dx

− µ
∫
T

(
2vh∇u>hA∇vh +

(
v2
h + ηε

)
∇u>h · div(A)

)
(ϕ− ϕh) dx

+ µ

∫
∂T

(
v2
h + ηε

)
∇u>hAνT (ϕ− ϕh) dx

}
=
∑
T∈Th

{∫
T

p(uh, vh)(ϕ− ϕh) dx+
µ

2

∫
∂T

(
v2
h + ηε

)
[[A∇u]] (ϕ− ϕh) dx

}
.

Hence, by the Cauchy-Schwarz inequality∣∣∂uE(uh, vh)[ϕ− ϕh]
∣∣ ≤ ∑

T∈Th

{∥∥p(uh, vh)
∥∥
L2(T )

∥∥ϕ− ϕh∥∥L2(T )

+
µ

2

∥∥(v2
h + ηε

)
[[A∇uh]]

∥∥
L2(∂T )

‖ϕ− ϕh‖L2(∂T )

}
.

We now select ϕh := Qhϕ. By Lemma 3.5, we can estimate∣∣∂uEh(uh, vh)[ϕ− ϕh]
∣∣ ≤ C3

∑
T∈Th

(∥∥p(uh, vh)
∥∥
L2(T )

(3.14)

+
µ

2
√
σT,1σT,2

∥∥∥√h∂T (v2
h + ηε

)
[[A∇uh]]

∥∥∥
L2(∂T )

)∥∥M>T ∇ϕ∥∥L2(∆T )
,

where C3 := max{C0, C2}.



DIMENSION-REDUCTION FOR BRITTLE FRACTURES ON THIN SHELLS 19

We now deal with the second contribution on the right-hand side of (3.13). Us-
ing (3.6), Lemmas 3.5 and Lemma 3.7, and the fact that Qh preserves the boundary
values, we obtain∣∣∂uE(uh, vh)[ϕh]

∣∣ =
∣∣∂uE(uh, vh)[ϕh]− ∂uEh(uh, vh)[ϕh]

∣∣
≤
∑
T∈Th

∥∥∥µ(v2
h −Πh(v2

h)
)
A∇uh

∥∥∥
L2(T )

(
‖∇ϕ−∇ϕh‖L2(T ) + ‖∇ϕ‖L2(T )

)
≤ C4

∑
T∈Th

µ

σT,2

∥∥∥(v2
h −Πh(v2

h)
)
A∇uh

∥∥∥
L2(T )

‖M>T ∇ϕ‖L2(∆T ) ,

with C4 := 1 + C1. This last estimate, combined with (3.14), provides esti-
mate (3.11).

Let us now deal with (3.12). By (3.7), for every ψ ∈ H1(ω) and every ψh ∈ Xh
with 0 ≤ ψ,ψh ≤ ṽh we have

∂vF(uh, vh)[vh − ψ] +
α

τ

∫
ω

(vh − ṽh)(vh − ψ) dx(3.15)

≤ ∂vF(uh, vh)[vh − ψ] +
α

τ

∫
ω

(vh − ṽh)(vh − ψ) dx

− ∂vFh(uh, vh)[vh − ψh]− α

τ

∫
ω

Πh

(
(vh − ṽh)(vh − ψh)

)
dx

≤ ∂vF(uh, vh)[ψh − ψ] +
α

τ

∫
ω

(vh − ṽh)(ψh − ψ) dx︸ ︷︷ ︸
(I)

+ ∂vF(uh, vh)[vh − ψh]− ∂vFh(uh, vh)[vh − ψh]︸ ︷︷ ︸
(II)

+
α

τ

∫
ω

(vh − ṽh)(vh − ψh) dx− α

τ

∫
ω

Πh

(
(vh − ṽh)(vh − ψh)

)
dx︸ ︷︷ ︸

(III)

,

where, in the second inequality, we have added and subtracted the terms ∂vF(uh, vh)[ψh]
and α

τ

∫
ω

(vh − ṽh)ψh dx.
We consider the term (I). After integrating by parts on each element T ∈ Th, we

obtain

∂vF(uh, vh)[ψh − ψ] +
α

τ

∫
ω

(vh − ṽh)(ψh − ψ) dx

=
∑
T∈Th

{
µ

∫
T

vh(ψh − ψ)∇u>hA∇uh dx+
κ

2ε

∫
T

(vh − 1)(ψh − ψ)
√
adx

− 2κε

∫
T

∇vh · div(A)(ψh − ψ) dx+ κε

∫
∂T

[[A∇vh]](ψh − ψ) dx

+
α

τ

∫
T

(vh − ṽh)(ψh − ψ) dx

}
,

which can be bounded by the Cauchy-Schwarz inequality as

∂vF(uh, vh)[ψh − ψ] +
α

τ

∫
ω

(vh − ṽh)(ψh − ψ) dx

(3.16)

≤
∑
T∈Th

‖q(uh, vh)‖L2(T )‖ψh − ψ‖L2(T ) + κε
∑
T∈Th

∥∥[[A∇vh]]
∥∥
L2(∂T )

∥∥ψh − ψ∥∥L2(∂T )
.
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We then choose ψh = Qhψ and notice that Qh(ψ−vh) = ψh−vh and ψ−ψh = ψ−
vh−Qh(ψ− vh). This choice, together with Lemma 3.5, allows us to rewrite (3.16)
as

∂vFh(uh, vh)[ψh − ψ] +
α

τ

∫
ω

(vh − ṽh)(ψh − ψ) dx(3.17)

≤ C3

∑
T∈Th

(
‖q(uh, vh)‖L2(T ) +

κε
√
σT,1σT,2

∥∥√h∂T [[A∇vh]]
∥∥
L2(∂T )

)
×
∥∥M>T ∇(ψ − vh)

∥∥
L2(∆T )

.

Next, we estimate term (II). The equality

(vh − 1)(vh − ψh)−Πh((vh − 1)(vh − ψh)) = vh(vh − ψh)−Πh(vh(vh − ψh))

yields

∂vF(uh, vh)[vh − ψh]− ∂vFh(uh, vh)[vh − ψh]

=
∑
T∈Th

{
µ

∫
T

(
vh(vh − ψh)−Πh

(
vh(vh − ψh)

))
∇u>hA∇uh dx

+
κ

2ε

∫
T

(
vh(vh − ψh)−Πh

(
vh(vh − ψh)

))√
a dx

}
.

Thus, thanks to the Cauchy-Schwarz inequality, to Lemma 3.6, and to the choice
of ψh, we obtain

∂vF(uh, vh)[vh − ψh]− ∂vFh(uh, vh)[vh − ψh]

≤
∑
T∈Th

∥∥∥∥µ∇u>hA∇uh +
κ

2ε

√
a

∥∥∥∥
L2(T )

∥∥∥vh(vh − ψh)−Πh

(
vh(vh − ψh)

)∥∥∥
L2(T )

≤ Ĉ
∑
T∈Th

h2
T

∥∥∥∥µ∇u>hA∇uh +
κ

2ε

√
a

∥∥∥∥
L2(T )

|vh|W 1,∞(T )

∥∥∇(ψh − vh)
∥∥
L2(T )

.

Now, since ψh − vh =
[
Qh(ψ − vh)− (ψ − vh)

]
+ ψ − vh, by exploiting Lemma 3.5

for s = 1 and Lemma 3.7, we conclude that

∂vF(uh, vh)[vh − ψh]− ∂vFh(uh, vh)[vh − ψh]

(3.18)

≤ ĈC4

∑
T∈Th

h2
T

∥∥∥∥µ∇u>hA∇uh +
κ

2ε

√
a

∥∥∥∥
L2(T )

|vh|W 1,∞(T )( 1

σ2,T

∥∥M>T ∇(ψ − vh)
∥∥
L2(∆T )

+
∥∥∇(ψ − vh)

∥∥
L2(∆T )

)
≤ C5

∑
T∈Th

h2
T

σT,2

∥∥∥∥µ∇u>hA∇uh +
κ

2ε

√
a

∥∥∥∥
L2(T )

|vh|W 1,∞(T )

∥∥M>T ∇(ψ − vh)
∥∥
L2(∆T )

,

with C5 = 2ĈC4. We proceed in a similar way on term (III) in (3.15), so that we
obtain

α

τ

∫
ω

(vh − ṽh)(vh − ψh) dx− α

τ

∫
ω

Πh

(
(vh − ṽh)(vh − ψh)

)
dx(3.19)

≤
∑
T∈Th

α

τ
|T | 12

∥∥∥(vh − ṽh)(vh − ψh)−Πh

(
(vh − ṽh)(vh − ψh)

)∥∥∥
L2(T )

≤ Ĉ
∑
T∈Th

αh2
T

τ
|T | 12 |vh − ṽh|W 1,∞(T )‖∇(ψh − vh)‖L2(T )
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≤ C5

∑
T∈Th

αh2
T

τσT,2
‖∇(vh − ṽh)‖L2(T )‖M>T ∇(ψ − vh)‖L2(T ) ,

where, in the last inequality, we have also exploited the property that vh − ṽh is
piecewise affine. Combining estimates (3.17)–(3.19), we deduce result (3.12). �

With a view to the mesh adaptation procedure, we combine (3.11) and (3.12) in
a single estimate, i.e.,

∂uE(uh, vh)[ϕ] + ∂vF(uh, vh)[vh − ψ] +
α

τ

∫
ω

(vh − ṽh)(vh − ψ) dx

(3.20)

≤ C
∑
T∈Th

[
γT (uh, vh)‖M>T ∇ϕ‖L2(∆T ) + ρT (uh, vh)

∥∥M>T ∇(ψ − vh)
∥∥
L2(∆T )

]
,

for all ϕ ∈ H1(ω) with ϕ = 0 on ∂ω, and for all ψ ∈ H1(ω) with ψ ≤ ṽh.
It is evident that result (3.20) is not yet useful in practice since it depends on

the generic functions ϕ and ψ. As detailed in the next section, to make computable
the right-hand side of (3.20), we follow the approach in [9], first picking ϕ = u−uh
and ψ = v, i.e., setting

Ξ(uh, vh) :=
∑
T∈Th

ΞT (uh, vh) ,(3.21)

ΞT (uh, vh) := γT (uh, vh)‖M>T ∇(u− uh)‖L2(∆T )(3.22)

+ ρT (uh, vh)
∥∥M>T ∇(v − vh)

∥∥
L2(∆T )

,

for any T ∈ Th, and then resorting to a gradient recovery procedure to replace the
derivatives of u and v.

4. From the Estimator to the Mesh

To commute Ξ(uh, vh) into an actual a posteriori error estimator able to drive a
mesh adaptation procedure, we follow the metric-based approach in [9, 55, 39, 36].
This consists of an iterative procedure, so that, at each iteration j, with j ≥ 0, (i)
we compute the error estimator in the current mesh, T (j)

h ; (ii) we derive the metric
tensor field,M(j+1); (iii) we build the new adapted mesh, T (j+1)

h . We now detail
these three steps.

(i) For every T ∈ T (j)
h and every w ∈ H1(ω), using the singular value decompo-

sition, MT = UTΣTV
>
T , we can rewrite the norm ‖M>T ∇w‖2L2(∆T ) in ΞT (uh, vh)

as ∥∥M>T ∇w∥∥2

L2(∆T )
=
∥∥ΣTU

>
T ∇w

∥∥2

L2(∆T )
=

2∑
i=1

∫
∆T

σ2
T,i

∣∣rT,i · ∇w∣∣2 dx

=

2∑
i=1

σ2
T,i r

>
T,i GT (w) rT,i ,

where GT : H1(∆T )→ L2(∆T ;R2×2) is the symmetric semipositive definite matrix

GT (w) :=


∫

∆T

|∂1w|2 dx

∫
∆T

∂1w ∂2w dx∫
∆T

∂1w ∂2w dx

∫
∆T

|∂2w|2 dx

 .
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From (3.22) we obtain

ΞT (uh, vh) = γT (uh, vh)

( 2∑
i=1

σ2
T,i r

>
T,i GT (u− uh) rT,i

) 1
2

+ ρT (uh, vh)

( 2∑
i=1

σ2
T,i r

>
T,i GT (v − vh) rT,i

) 1
2

.

Now, the first-order partial derivatives of u and v in GT are replaced via the well-
known Zienkiewicz-Zhu recovery procedure (see [62, 63]), so that we obtain the
local a posteriori error estimator,

ΞRT (uh, vh) = γT (uh, vh)

( 2∑
i=1

σ2
T,i r

>
T,i GRT (uh) rT,i

) 1
2

(4.1)

+ ρT (uh, vh)

( 2∑
i=1

σ2
T,i r

>
T,i GRT (vh) rT,i

) 1
2

,

where [GRT (wh)]ij =
∫

∆T

(
∂iwh − Ri(wh)

)(
∂jwh − Rj(wh)

)
dx, with i, j = 1, 2,

wh ∈ Xh and where [R1(wh), R2(wh)]> denotes the recovered gradient of wh.

(ii) Two criteria drive the derivation of the metric, i.e., the minimization of the
number of the mesh elements for a given accuracy TOL on the global error estimator,

ΞR(uh, vh) :=
∑
T∈Th

ΞRT (uh, vh) ,

and the error equidistribution,

ΞRT (uh, vh) ≤ TOL

#T (j)
h

.

For this purpose, we first scale (4.1) with respect to the area |T | = |T̂ |σT,1σT,2 of
the element T ∈ T (j)

h , such that

ΞRT (uh, vh) = αTΥT (sT , rT,1) ,

where

αT := |T̂ |(σT,1 σT,2)
3
2 ,

ΥT (sT , rT,1) :=
(
sT r>T,1 ΓT (uh, vh) rT,1 +

1

sT
r>T,2 ΓT (uh, vh) rT,2

) 1
2

,

ΓT (uh, vh) := γ2
T (uh, vh)GRT (uh) + ρ2

T (uh, vh)GRT (vh) ,

γT (uh, vh) :=
γT (uh, vh)

(|T̂ |σT,1σT,2)
1
2

and ρT (uh, vh) :=
ρT (uh, vh)

(|T̂ |σT,1σT,2)
1
2

,

GT (wh) :=
GT (wh)

|T̂ |σT,1σT,2
with wh = uh, vh .

Notice that the quantity ΥT (sT , rT,1) implicitly depends also on rT,2 via the or-
thonormality condition r>T,1rT,2 = 0.

Thus, to minimize the cardinality of the mesh (or, likewise, to maximize the
triangle area) while enforcing the local accuracy TOL/#T (j)

h , we are led to solve the
local constrained minimization problem

min
sT≥1, rT,1∈S1

ΥT (sT , rT,1) ,
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S1 being the unit sphere. Following [37], we can analytically compute the unique
solution to this problem, given by

s∗T =

√
ϑT,1
ϑT,2

, r∗T,1 = vT,2 ,

with {vT,i, ϑT,i} the eigenpair of ΓT (uh, vh) for i = 1, 2, with ϑT,1 > ϑT,2 and
v>T,ivT,j = δij . Finally, the equidistribution criterion allows us to compute the
optimal lengths

(4.2) σ∗T,1 =

(
TOL

√
2 |T̂ |#T (j)

h

√
ϑT,1
ϑ2
T,2

) 1
3

and σ∗T,2 =

(
TOL

√
2 |T̂ |#T (j)

h

√
ϑT,2
ϑ2
T,1

) 1
3

.

The metric fieldM(j+1) is approximated by a piecewise tensor, provided by

(4.3) M(j+1)
∣∣
T

=
1

(σ∗T,1)2
r∗T,1r

∗,>
T,1 +

1

(σ∗T,2)2
r∗T,2r

∗,>
T,2 ,

for each T ∈ T (j)
h (see [45]). We remark that the mismatch between the index (j) for

the mesh and (j + 1) for the metric is due to the predictive feature of the adaptive
algorithm, which exploits the information on the current mesh to extrapolate the
“optimal” mesh for the next iteration.

(iii) This step is committed to a metric-based mesh generator. In particular, we
choose the FreeFEM environment [47]. The metricM(j+1) becomes the input to the
built-in function adaptmesh, which provides the anisotropic adapted mesh T (j+1)

h .

5. Numerical Examples

Next step is to properly combine the minimization in (3.2)–(3.3) together with
the adaptation procedure detailed in the previous section. With this aim, we resort
to an approach that is a variant to Algorithms 2 and 3 in [9], itemized in Algorithm 1
below.

The procedure consists of three main loops: the outermost cycle steps over the
quasi-static time advancing, the intermediate one manages the update of the mesh,
while the innermost loop controls the optimization of the physical variables u and v.
This last phase is supervised by a maximum number MaxIt of iterations, together
with a control on the increment of the phase field, to within the tolerance TOLv. In
order to recover the possible lack of accuracy on v, the same check on the increment
is also required in the intermediate loop, in combination with a stagnation of the
mesh cardinality, up to a tolerance TOLm.

The minimization performed in lines 9 and 16 are carried out by an interior point
method using the package IPOPT (see [61]), included in FreeFEM (see [47]). IPOPT
is a common large-scale nonlinear optimization tool based on the interior point
algorithm. Both equality and inequality constraints can be tackled via suitable
slack variables. The bound on the phase field can be directly enforced as a box
contraint. Among the input parameters of IPOPT, the user has to also provide the
gradient of the functional and of the constraint with respect to the phase field.

The metric computation in line 11 is driven by uh = ui,j and vh = vi,j . The
operator Π

(m+1)
h is the Lagrangian interpolant associated with the mesh T mh eval-

uated at the vertices of the mesh T (m+1)
h , which is employed to project the phase

field on the newly adapted mesh before the next iteration.
Table 1 gathers the values adopted in the numerical assessment for both the

input parameters to Algorithm 1 and for the physical quantities involved in func-
tional (2.28). For a sensitivity analysis with respect to some of these parameters in
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Table 1. Input parameters to Algorithm 1 and physical quantities
for functional (2.28).

TOL TOLm TOLv MaxIt τ ε η κ λ µ
10−3 10−2 2 · 10−3 8 10−2 5 · 10−3 10−5 1 0 1

the anti-plane case we refer to [8]. In the tests below, following [16, 19, 9], we con-
sider notched specimens characterized by a thin slit to model the initial crack. The
time dependent boundary condition in (3.2) is assumed to be linear. For technical
reasons related to the definition of space GSBV(ω), we extend the physical domain
beyond the Dirichlet boundary. Such an extension turns out to be advisable also
for the phase field in order to avoid an underestimate of the fracture energy when
the damage approaches the Dirichlet boundary.

Algorithm 1 Alternating Minimization + Anisotropic Mesh Adaptation for Shells

1: Input: TOL, TOLm, TOLv, MaxIt, α, τ , u0, v0, T (0)
h

2: for i = 0 to k do
3: j ← 0; ui,0 ← u0; vi,0 ← v0

4: repeat
5: m← 0

6: repeat
7: j ← j + 1; m← m+ 1

8: ui,j ← arg min
{
Eh(u, vi,j−1) : u ∈ X (m)

h , u = g(ti) on ∂ω
}

9: vi,j ← arg min

{
Fh(ui,j , v) +

α

2τ
‖v − vi−1‖2Xh : v ∈ X (m)

h , v ≤ vi−1

}
10: until m = MaxIt or ‖vi,j − vi,j−1‖∞ < TOLv

11: computeM(m+1) based on (4.3)

12: generate T (m+1)
h associated withM(m+1)

13: vi,j ← Π
(m+1)
h (vi,j); vi−1 ← Π

(m+1)
h (vi−1)

14: until
|#T (m+1)

h −#T (m)
h |

#T (m)
h

< TOLm and ‖vi,j − vi,j−1‖∞ < TOLv

15: ui ← arg min
{
Eh(u, vi,j) : u ∈ X (m+1)

h , u = g(ti) on ∂ω
}

16: vi ← arg min

{
Fh(ui, v) +

α

2τ
‖v − vi−1‖2Xh : v ∈ X (m+1)

h , v ≤ vi−1

}
17: T (0)

h = T (m+1)
h

18: end for

5.1. A Piece of a Cylinder. We consider a piece of cylindrical surface with radius
R = 1 and length L. As the map φ, we choose cylindrical coordinates

(5.1) (x, y) 7→

R cosx
R sinx
y

 for all (x, y) ∈ ω =

(
−π

2
,
π

2

)
× (0, L).
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t = 1.9 t = 1.91
Enlarged mesh along the
crack

Figure 4. Piece of a cylinder: phase field at two consecutive times
and detail of the mesh around the crack for L = 1.

t = 1.91 t = 2.83 t = 2.84

Figure 5. Piece of a cylinder: phase field at three times for L = 2.

With this at hand, we have

(aαβ) =

(
1

R2
0

0 1

)
, (bαβ) =

(
−R 0
0 0

)
and

√
a = R.

For the crack initialization, we define the notch Γ := [−10−3, 10−3] × [0, 0.3], so
that the computation takes place in ω \ Γ. We also set

(5.2) g(t) :=


t on [10−3, π/2]× {0},
−t on [−π/2,−10−3]× {0},

0 elsewhere.

The extended domain adopted in such a case is ω ∪ (−π2 ,
π
2 )× (−0.1, 0].

In Figure 4 we show the phase field computed for L = 1 as well as a zoom in on
the mesh close to the crack, where it exhibits a strong directional behavior.

Note that the term
∫
ω
cαβστ bαβbστ |u|2

√
a dx in the functional (2.28) adds some

energy even though the displacement is constant, due to a curvature effect. Fur-
thermore, the boundary condition creates some tension along the boundary itself.
Thus, if the length L is sufficiently large, a crack is generated along the boundary
before the original crack fully develops. This phenomenon is confirmed in Figure 5,
where we set L = 2. The initial crack propagates until t = 2.83. Then, at t = 2.84
the surface suddenly breaks along the Dirichlet boundary. To contain this effect,
we pick the Lamé coefficient λ equal to zero in Table 1.

We now weaken the surface by introducing holes. In particular, we consider
the two configurations in Figure 6 characterized by a single hole with radius 0.15
centered at (0.3, 0.75) and by three holes with radius 0.08 and centers (−0.2, 0.88),



26 S. ALMI, S. BELZ, S. MICHELETTI, AND S. PEROTTO

Figure 6. Piece of a cylinder: phase field at time t = 2.97 and t =
1.46 for the single-hole (left) and three-hole (right) configuration
for L = 1.
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Figure 7. Piece of a cylinder: crack length (left) and number
of triangles (right) as functions of time for the configurations in
Figure 4, (a), in Figure 6, left, (b), and in Figure 6, right, (c).

(−0.2, 0.68), (−0.2, 0.48). In both cases, the crack bends entering the holes. This
confirms that the crack path is not biased by the anisotropic mesh adaptatation,
consistently with what observed in [9].

In Figure 7 we provide more quantitative information about the physics of the
problem and the mesh adaptation procedure for all the considered configurations. In
particular, in the left panel, we plot the time evolution of the quantity κ−1Dh(vh),
which Γ-converges to the length of the crack (see Section 2.4 and A), while, in
the right panel, we show the trend of the cardinality of the mesh. Both the crack
length and the number of triangles exhibit a similar trend since the most relevant
phenomena occur around the crack path.

Finally, we consider the effect, i.e., the deformation, induced by the crack prop-
agation on the specimen for the three-hole configuration. With this aim, we apply
to the undeformed surface the computed displacement uh along the normal direc-
tion a3. However, for visualization purposes, we remove the points of the surface
where the phase field is below a certain threshold, here set to 10−2, to model the
physical crack. Figure 8 gathers twelve snapshots tracking the whole evolution of
the crack, from the undamaged initial configuration to the complete breaking of
the specimen.
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t = 0 t = 0.4 t = 0.8

t = 1 t = 1.05 t = 1.07

t = 1.19 t = 1.20 t = 1.30

t = 1.31 t = 1.45 t = 1.46

Figure 8. Piece of a cylinder: specimen deformation for the three-
hole configuration at different times.

5.2. A Piece of a Sphere. As a second test case, we consider a portion of a sphere
with radius R = 1. We adopt the parametrization

(x, y) 7→ R

cosx cos y
sinx cos y

sin y

 for (x, y) ∈ ω := (−x̄, x̄)× (−ȳ, ȳ) ,
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Figure 9. Piece of a sphere: phase field for the plain (left) and
for the single-hole (right) configuration.

for some 0 < x̄ < π, 0 < ȳ < π
2 . With this setting, we have

(aαβ) =
1

R2

 1

cos2 y
0

0 1

 , (bαβ) = −R
(

cos2 y 0
0 1

)
and

√
a = R2 cos y .

We set x̄ = π
2 and we make two different choices for ȳ. Concerning the initial

notch, we choose Γ := [−10−3, 10−3] × [−ȳ, 0.3 − ȳ] and we select g as in (5.2) for
the Dirichlet boundary condition.

Figure 9 shows on the left the final phase field at t = 2.38 and for ȳ = π
6 .

Analogously as in the previous section, we modify the plain configuration by digging
a hole with center at (−0.25, 0.5) and radius 0.15. The associated function vh, for
ȳ = π

7 , is displayed on the right of Figure 9 for t = 2.64. The choice for ȳ avoids
the generation of a secondary crack along the Dirichlet boundary, consistently with
what remarked for the piece of cylinder test case.

Appendix A. Proof of Theorem 2.10

In order to prove Theorem 2.10 we need the following two lemmas.

Lemma A.1. Let I ⊂ R, f, g ∈ C1(Ī) with f, g > 0 in Ī. Assume that (uε, vε)→
(u, v) in L1(I) as ε→ 0 and that

(A.1) lim inf
ε→0

µ

2

∫
I

v2
ε |u′ε|2 dx+ κ

∫
I

[
1

4ε
(1− vε)2f + ε|v′ε|2g

]
dx < +∞ .

Then, there holds v = 1 a.e. and

(A.2)
∫
Su

√
fg dH0 ≤ lim inf

ε→0

∫
I

[
1

4ε
(1− vε)2f + ε|v′ε|2g

]
dx .

Proof. Up to a subsequence, we assume that the lim inf in (A.1) is actually a limit.
All the involved limits in the proof are considered as ε→ 0.

We have v = 1 a.e. in I, since otherwise 1
4ε

∫
I
(1 − vε)2f dx → +∞. In order to

prove (A.2), we fix y0 ∈ Su and δ > 0 such that Bδ(y0) ⊂ I. Arguing as in [34, 17],
we find a sequence (yε)ε>0 in B δ

2
(y0) such that vε(yε)→ 0. Since vε → 1 a.e. in I,

there exist y+, y− ∈ Bδ(y0) such that y− < y0 < y+ and vε(y±)→ 1.
It is easy to compute that

1 = lim
ε→0

(∫ y+

yε

(1− vε)v′ε dx+

∫ y−

yε

(1− vε)v′ε dx

)
≤ lim inf

ε→0

∫
Bδ(y0)

(1− vε)|v′ε|dx .
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Therefore, by Young’s inequality we obtain

inf
Bδ(y0)

√
fg ≤ lim inf

ε→0

∫
Bδ(y0)

(1− vε)|v′ε|
√
fg dx

≤ lim inf
ε→0

∫
Bδ(y0)

[
1

4ε

(
1− vε

)2
f + ε|v′ε|2g

]
dx .

For each element in any discrete set {y1, . . . , yN} ⊂ Su (with N ≤ #Su) we can
repeat the above argument for all δ > 0 such that Bδ(yk) ∩ Bδ(y`) = ∅ for k 6= `,
in order to obtain

(A.3) N inf
I

√
fg ≤

N∑
i=1

inf
Bδ(yi)

√
fg ≤ lim inf

ε→0

∫
I

[
1

4ε
(1− vε)2f + ε|v′ε|2g

]
dx .

Because of (A.1), the right-hand side of (A.3) is uniformly bounded. There-
fore, #Su must be finite and we can conclude (A.2) by taking the limit as δ → 0. �

The lim sup-inequality is first shown for a certain class of functions which are
dense in the set GSBV2(ω) ∩ L1(ω) (see [26]).

Lemma A.2. Let u ∈ SBV2(ω) be such that
(1) Su is the intersection of ω with a finite number of pairwise disjoint (n −

1)-simplexes;
(2) Hn−1

(
Su \ Su

)
= 0;

(3) u ∈W k,∞(ω \ Su) for all k ∈ N.
Then, there exists a sequence (uε, vε) converging to (u, 1) in L1(ω) as ε → 0 such
that

(A.4) lim sup
ε→0

Fε(uε, vε) ≤ F(u, v) .

Proof. Throughout the proof, C > 0 denotes an arbitrary constant independent of
ε > 0, which may vary from line to line, and the limits are considered as ε→ 0.

For the construction of a recovery sequence of u, we choose a smooth cut off
function φ : R → R with φ = 1 on B 1

2
(0) and φ = 0 on R \ B1(0). For all x ∈ ω,

define τ(x) = dist(x, Su) and φε(x) = φ( τ(x)
δε

) for all ε > 0, where δε :=
√
εηε. In

this way, we have δε
ε → 0 and ηε

δε
→ 0. Let us consider the functions uε = (1−φε)u

on ω. Then, we have uε ∈ H1(ω), uε = u on ω \Bδε(Su) and uε → u in L1(ω).
In order to construct the recovery sequence corresponding to v = 1 a.e., we define

σ : [0,∞)→ [0, 1] by σ(t) = 1− exp(− t
2 ), which solves the initial value problem

σ′ =
1

2
(1− σ) , σ(0) = 0 .

We note that σ is a strictly increasing, Lipschitz continuous function and σ(t)→ 1
as t→∞. For simplicity of notation, we set

ϕ(ζ, x) :=

(
ζ>Aζ√

a

) 1
2

and τ̃(x) =
τ

ϕ(∇τ, x)
for all ζ ∈ Rn, x ∈ ω .

We notice that by the properties of A and by Section 3.2.34 in [33] we can define
0 < d := infx∈ω ϕ(∇τ, x) and ∞ > D := supx∈ω ϕ(∇τ, x). Furthermore, we set
δ̃ε := δε

εd for all ε > 0 and

ρε := Dε

(
δ̃ε − 2 ln

(
ε

1 + ε

))
,
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so that ρε → 0 as ε→ 0. Now we define, for every t > 0 and for every x ∈ ω,

σε(t) :=

{
0 for t ∈ [0, δ̃ε)

min
{

1, (1 + ε)σ(t− δ̃ε)
}

otherwise
and vε(x) := σε

(
τ̃(x)

ε

)
.

Now, the sequence (uε, vε) will be used as the recovery sequence for (u, 1). It is
easy to check that, for sufficiently small ε > 0, there holds vε = 1 on ω \ Bρε(Su)
and vε = 0 on Bδε(Su). Moreover, ∇vε = 0 in Bδε(Su) and in ω \Bρε(Su), so that

Fε(uε, vε) =

∫
ω

b|uε|2 dx+

∫
ω\Bδε (Su)

v2
ε∇u>ε A∇uε dx(A.5)

+ ηε

∫
ω

∇u>ε A∇uε dx+
1

4ε

∫
Bδε (Su)

√
a dx

+

∫
Bρε (Su)\Bδε (Su)

[
1

4ε
(1− vε)2 + εϕ2(∇vε, x)

]√
adx .

Let us now estimate the integrals on the right-hand side of (A.5), separately.
Since uε → u in L1(ω), we have

(A.6)
∫
ω

b|uε|2 dx→
∫
ω

b|u|2 dx as ε→ 0 .

As shown in [7, 34, 30], we observe that∫
ω\Bδε (Su)

v2
ε∇u>ε A∇uε dx ≤

∫
ω

∇u>A∇udx ,(A.7)

ηε

∫
ω

∇u>ε A∇uε dx→ 0 as ε→ 0 ,(A.8)

1

4ε

∫
Bδε (Su)

√
a dx→ 0 as ε→ 0 .(A.9)

Concerning the last term in (A.5), we introduce the notation

Kε(vε) :=

∫
Bρε (Su)\Bδε (Su)

[
1

4ε
(1− vε)2 + εϕ2(∇vε, x)

]√
adx .

Precisely, we need to show that

(A.10) lim sup
ε→0

Kε(vε) ≤
∫
Su

√
∇v>A∇v

√
adHn−1 .

This inequality, together with (A.6)–(A.9), allows us to conclude the assertion (A.4)
by taking the lim sup in (A.5).

By the assumption on Su, it holds Su =
⋃N
i=1 S

i
u for some N ∈ N and for some

pairwise disjoint (n− 1)-simplexes S1
u, . . . , S

N
u , so that, for sufficiently small ε > 0,

we can rewrite Kε(vε) as

Kε(vε) =

N∑
i=1

∫
Bρε (Siu)\Bδε (Siu)

[
1

4ε
(1− vε)2 + εϕ2(∇τ, x)

]√
adx .

Hence, without loss of generality, we may assume that Su itself is an (n−1)-simplex.
We consider the (n− 1)-dimensional hyperplane ν⊥u which contains Su.

As illustrated in Figure 10, we split the integration domain for Kε in several
parts, namely,

S±⊥u := {x ∈ ω : x = y ± tνu for some y ∈ Su and t > 0} , S⊥u := S−⊥u ∪ S+⊥
u ,

and we consider

(A.11) Kε(vε) = Kε|S+⊥
u

(vε) +Kε|S−⊥u (vε) +Kε|ω\S⊥u (vε) ,
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Su
∂Bδε (Su)

∂Bρε (Su)

νu

S+⊥
u

S−⊥u

∇τ

Figure 10. Splitting of the integration domain for Kε.

where, for U ⊂ ω, we set

(A.12) Kε|U (vε) :=

∫
U∩Bρε (Su)\Bδε (Su)

[
1

4ε
(1− vε)2 + εϕ2(∇vε, x)

]√
adx .

First of all, note that, for all x ∈ ω \ Su, we have

(A.13) ∇vε(x) =
1

ε
σ′ε

(
τ̃(x)

ε

)(
∇τ(x)

ϕ(∇τ(x), x)
−
τ(x)∇

[
x 7→ ϕ

(
∇τ(x), x

)]
ϕ2(∇τ(x), x)

)
.

In S+⊥
u we have that ∇τ(x) = νu is constant, and x 7→ ϕ(νu, x) is Lipschitz

continuous. Hence, (A.13) yields

ϕ2(∇vε, x) ≤ 1

ε2

∣∣∣∣σ′ε( τ̃(x)

ε

)∣∣∣∣2(1 + Cτ(x)
)2
,

and from (A.12) we can estimate

Kε|S+⊥
u

(vε) ≤ (1 + Cρε)
2

∫
S+⊥
u ∩Bρε (Su)\Bδε (Su)

[
1

4ε

(
1− σε

(
τ̃(x)

ε

))2

+
1

ε

∣∣∣∣σ′ε( τ̃(x)

ε

)∣∣∣∣2
]
√
adx .

Together with the Coarea formula (see, e.g., Theorem 2.93 in [5]), we obtain

Kε|S+⊥
u

(vε) ≤ (1 + Cρε)
2

∫ ρε

δε

∫
S+⊥
u ∩∂Bt(Su)

[
1

4ε

(
1− σε

(
t

εϕ
(
νu, x

)))2

(A.14)

+
1

ε

∣∣∣∣σ′ε( t

εϕ
(
νu, x

))∣∣∣∣2
]
√
a dHn−1 dt .

We apply the coordinate transformation x 7→ x + tνu, which maps Su to S+⊥
u ∩

∂Bt(Su), to the inner integral of (A.14), obtaining

Kε|S+⊥
u

(vε) ≤ (1 + Cρε)
3

∫
Su

∫ ρε

δε

[
1

4ε

(
1− σε

(
t

εϕ(νu, x+ tνu)

))2

(A.15)

+
1

ε

∣∣∣∣σ′ε( t

εϕ(νu, x+ tνu)

)∣∣∣∣2
]
√
adtdHn−1 ,

where we additionally used the fact that
√
a is Lipschitz and bounded away from

zero.
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Note that, by construction,

σ′ε(t) =
1 + ε

2
exp

(
δ̃ε − t

2

)
for δ̃ε < t < δ̃ε − 2 ln

(
ε

1 + ε

)
and σ′ε = 0 otherwise. Thus, σ′ε is decreasing in (δ̃ε,∞) with supremum (1 + ε)/2.
Hence, with γε := δ̃εε(ϕ(νu, x) + Cρε) we can compute∫ ρε

δε

1

ε

∣∣∣∣σ′ε( t

εϕ(νu, x+ tνu)

)∣∣∣∣2 dt

≤
∫ ρε

γε

1

ε

∣∣∣∣σ′ε( t

ε(ϕ(νu, x) + Cρε)

)∣∣∣∣2 dt+

∫ γε

δε

(1 + ε)2

4ε
dt

≤
∫ ρε

δε

1

ε

∣∣∣∣σ′ε( t

ε(ϕ(νu, x) + Cρε)

)∣∣∣∣2 dt+ Cδ̃ε ,

for a.e. x ∈ ω. Since σε is increasing and x 7→ ϕ(νu, x) is Lipschitz continuous
on Su, we can estimate∫ ρε

δε

1

4ε

(
1−σε

(
t

εϕ(νu, x+ tνu)

))2

dt ≤
∫ ρε

δε

1

4ε

(
1−σε

(
t

ε(ϕ(νu, x) + Cρε)

))2

dt.

Therefore, inserting the two previous estimates in (A.15) we obtain

Kε|S+⊥
u

(vε) ≤ (1 + Cρε)
3

∫
Su

∫ ρε

δε

[
1

4ε

(
1− σε

(
t

ε(ϕ(νu, x) + Cρε)

))2

+
1

ε

∣∣∣∣σ′ε( t

ε(ϕ(νu, x) + Cρε)

)∣∣∣∣2
]
√
adtdHn−1 + Cδ̃ε .

We introduce another change of variables, namely t 7→ tε(ϕ(νu, x) + Cρε), so
that

Kε|S+⊥
u

(vε) ≤ (1 + Cρε)
4

∫ δ̃ε−2 ln
(

ε
1+ε

)
δ̃ε

[
1

4

(
1− σε(t)

)2
+
∣∣σ′ε(t)∣∣2] dt(A.16)

×
∫
Su

√
ν>u Aνu

√
a dHn−1 + Cδ̃ε .

Using the explicit form of σε, we compute the first integral on the right-hand side
of (A.16) as∫ δ̃ε−2 ln

(
ε

1+ε

)
δ̃ε

[
1

4

(
1− σε(t)

)2
+
∣∣σ′ε(t)∣∣2]dt

=

∫ −2 ln
(

ε
1+ε

)
0

[
1

4

(
1− (1 + ε)σ(t)

)2
+

1

4

(
1− σ(t)

)2]
dt

≤ 1

2

∫ ∞
0

(
1− σ(t)

)2
dt =

∫ ∞
0

(
1− σ(t)

)
σ′(t) dt =

∫ 1

0

(1− t) dt =
1

2
.

Hence, taking the limit in (A.16) as ε→ 0, we deduce

lim sup
ε→0

Kε|S+⊥
u

(vε) ≤
1

2

∫
Su

√
ν>u Aνu

√
a dHn−1 .

Repeating all the arguments above for Kε|S−⊥u (vε) with ∇τ(x) = −νu on S−⊥u ,
we infer

(A.17) lim sup
ε→0

(
Kε|S−⊥u (vε) +Kε|S+⊥

u
(vε)

)
≤
∫
Su

√
ν>u Aνu

√
adHn−1 .
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Finally, we show that Kε|ω\S⊥u → 0 as ε → 0. For x ∈ Bρε(Su) \ Su, we claim
that

(A.18)
∣∣∣∇[x 7→ ϕ

(
τ(x), x

)]∣∣∣ ≤ C

τ(x)
.

Indeed, let x, y ∈ Bρε(Su) \ Su. We set τ := min{τ(x), τ(y)}, x := πBτ (Su)(x) =
πSu(x) + τ∇τ(x) and y := πBτ (Su)(y) = πSu(y) + τ∇τ(y), where πE denotes the
projection onto E ⊂ Rn. Since the projection on a convex set is Lipschitz continuous
with Lipschitz constant equal to one, we have that |x− y| ≤ |x− y| and

(A.19)
∣∣∇τ(x)−∇τ(y)

∣∣ =
1

τ

∣∣∣x− πSu(x)−
(
y − πSu(y)

)∣∣∣ ≤ 2

τ
|x− y| .

Together with the positive definiteness of A, for x, y ∈ Bρε(Su)\Su and ε sufficiently
small we obtain∣∣∣ϕ(∇τ(x), x

)
− ϕ

(
∇τ(y), y

)∣∣∣ ≤ C∣∣∇τ(x)−∇τ(y)
∣∣+ C|x− y|

≤ C

min{τ(x), τ(y)}
|x− y| ,

which yields (A.18).
From (A.13) we obtain

ϕ2(∇vε(x), x) ≤ C

ε2

∣∣∣∣σ′ε( τ̃(x)

ε

)∣∣∣∣2 for all x ∈ ω \ S⊥u .

We plug the above inequality into the expression of Kε|ω\S⊥u (vε) and apply again
the Coarea formula, so that

Kε|ω\S⊥u (vε) ≤ C
∫ ρε

δε

∫
∂Bt(Su)\S⊥u

[
1

4ε

(
1− σε

(
t

εϕ
(
∇τ, x

)))2

(A.20)

+
1

ε

∣∣∣∣σ′ε( t

εϕ
(
∇τ, x

))∣∣∣∣2
]
√
a dHn−1 dt .

Next, we use the coordinate transformation x 7→ x+(t−δε)∇τ(x), which maps ∂Bδε(Su)
onto ∂Bt(Su). Note that ∇τ(x) = ∇τ(x+ t∇τ(x)) and, from (A.19), we infer that
|∇2τ | ≤ C

δε
on ∂Bδε(Su) \ S⊥u , so that the Coarea factor is bounded by Cρε/δε.

Hence, from (A.20) we deduce

Kε|ω\S⊥u (vε) ≤
Cρε
δε

∫
∂Bδε (Su)\S⊥u

∫ ρε−δε

0

[
1

4ε

(
1− σε

(
t+ δε

εϕ(∇τ, x+ t∇τ)

))2

+
1

ε

∣∣∣∣σ′ε( t+ δε
εϕ(∇τ, x+ t∇τ)

)∣∣∣∣2
]
√
a dtdHn−1 ,

where we again use the Lipschitz continuity and the uniform strictly positive bound-
edness of a, and additionally shift the integration domain with respect to t. Re-
peating the same arguments used for the estimate of Kε|S+⊥

u
, we obtain

Kε|ω\S⊥u (vε) ≤
Cρε
δε

∫
∂Bδε (Su)\S⊥u

√
∇τ>A∇τ

√
a dHn−1 ≤ Cρε

δε
Hn−1

(
∂Bδε(Su) \ S⊥u

)
.

It is easy to check that ∂Bδε(Su)\S⊥u ⊂ ∂Bδε(∂Su), where ∂Su denotes the relative
boundary of Su in the hyperplane ν⊥u . Hence,

(A.21) Kε|ω\S⊥u (vε) ≤
Cρε
δε
Hn−1

(
∂Bδε(∂Su)

)
≤ Cρε → 0 as ε→ 0 .

Summing up (A.11), (A.17), and (A.21), we obtain the desired estimate (A.10). �
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We now conclude the proof of Theorem 2.10.

Proof. We provide a proof which folds for a generic dimension n.
We first show the lim inf-inequality. Let (uε, vε) be a sequence converging to

(u, v) in L1(ω). We assume, without loss of generality, that

lim inf
ε→0

Fε(uε, vε) = lim
ε→0
Fε(uε, vε) < +∞ .

Since the norm is lower semicontinuous, we clearly have

(A.22)
∫
ω

b|u|2 dx ≤ lim inf
ε→0

∫
ω

b|uε|2 dx .

Following the proof of Lemma 3.2 in [34], we obtain

(A.23)
µ

2

∫
ω

∇u>A∇udx ≤ lim inf
ε→0

µ

2

∫
ω

vε∇u>ε A∇uε dx ,

and by a slicing argument (see also [17]) we obtain from Lemma A.1

(A.24) κ

∫
Su

√
ν>u Aνu

√
adHn−1 ≤ lim inf

ε→0
κ

∫
ω

[
1

4ε
(1− v)2

√
a+ ε∇v>A∇v

]
dx .

Combining the inequalities (A.22)–(A.24) we deduce the required lim inf-inequality.
The Γ-lim sup-inequality immediately follows from Lemma A.2 using the density

result in Theorem 3.1 in [26]. �
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