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Abstract: In the as-annealed condition, the nickel-based Alloy 625 has excellent mechanical and
corrosion properties compared to those of common stainless steels. This peculiarity enables its
exploitation in several industrial fields at cryogenic and high temperatures and in the presence of
severely corrosive atmospheres. However, in this alloy, when high-temperature plastic deformation
processes and heat treatments are not carefully optimized, the occurrence of excessive grain coarsen-
ing can irremediably deteriorate the mechanical strength, possibly leading to incompatibility with the
standard requirements. Therefore, this research work investigated the possibility of adopting single-
and double-aging treatments aimed at improving such strength loss. Their optimization involved
identifying the best compromise between the hardening effect and the loss in corrosion resistance
induced by the simultaneous formation of intergranular chromium-rich carbides during aging. The
investigation of the aging treatments was performed using hardness, tensile and intergranular cor-
rosion tests considering different time–temperature combinations in a range from 621 ◦C to 732 ◦C.
Double aging resulted in a considerable acceleration in the hardening response compared to single
aging. However, even after its optimization in terms of both temperature and time, the intergranular
corrosion resistance remained a critical aspect. Among all the tested conditions, only single aging at
621 ◦C for 72 h was acceptable in terms of both mechanical and corrosion properties. The influence of
longer exposures will be investigated in a future study.

Keywords: superalloys; alloy 625; aging treatment; mechanical property; corrosion resistance

1. Introduction

Alloy 625 is a nickel–chromium–molybdenum alloy patented in 1964. Owing to the
presence of relatively high contents of Cr, Mo and Nb, this alloy provides an excellent
combination of mechanical strength, weldability, corrosion resistance and fatigue prop-
erties [1–11]. The high mechanical strength and resistance of this material to several
corrosive media allow its adoption in many fields, such as aerospace, oil and gas extraction,
power generation and automotive applications, where superior mechanical properties are
needed [1,4,6,11]. According to the ASTM B446 standard [12], this alloy is available in soft-
and solution-annealed conditions, and it attains the optimal combination of mechanical
properties and corrosion resistance compared to common stainless steels [4,6,13]. The
minimum soft annealing temperature is 871 ◦C, and it is recommended for applications
below 600 ◦C, where tensile strength and corrosion resistance are needed [12]. The mini-
mum solution annealing temperature is 1093 ◦C, which is suggested for applications above
600 ◦C, where high creep strength is required [12].

After soft-annealing treatment, the microstructure is fully austenitic, and primary
carbides and nitrides are normally heterogeneously dispersed in the matrix [8–11,14,15].
These compounds are formed during solidification and mainly include niobium and tita-
nium, leading to the depletion of these alloying elements in the surrounding regions [9].
The thermal exposure during processing, heat treatment and service can determine the
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precipitation of secondary phases. In fact, the presence of titanium, niobium, aluminum,
chromium and molybdenum can activate complex precipitation phenomena with suffi-
cient exposure above approximately 600 ◦C [9,10,15,16]. The formation of precipitates can
strongly modify the mechanical properties and corrosion resistance with respect to the as-
annealed condition [1,9]. The time–temperature–precipitation (TTP) curves available in the
literature are reported and adapted in Figure 1 [9]. In particular, according to this diagram,
the precipitate phases can be MC, M6C and M23C6 metal carbides, intermetallic phases,
normally γ′′ , δ, Ni2(Cr,Mo) and Laves, and (Cr,Nb)2N nitrides [9,15,17]. The chemical
compositions of the primary and secondary phases are given in Table 1. The precipitation
curve of the Ni2(Cr,Mo) phase with snowflake morphology is not shown in Figure 1. In
fact, according to the literature, it is formed after very long exposures below 600 ◦C, and
these time–temperature aging conditions lie outside the ranges investigated in this research.
Its precipitation kinetics have not been investigated in depth in the literature [18,19]. The
formation of intergranular carbides and intermetallic phases determines sensitization and
the reduction in ductility and deformability [4,20,21]. In fact, intergranular chromium-
and molybdenum-rich carbides deplete such alloying elements from their surroundings,
resulting in a local reduction in the resistance to intergranular corrosion [1–4,9,15,20–22].
Moreover, the formation of intergranular carbide films promotes intergranular cracking
with a consequent decrease in toughness. For this reason, during service and cooling from
the annealing temperature, exposure above 600 ◦C should be carefully monitored to avoid
the formation of precipitate phases. However, the controlled formation of intermetallic
phases can be exploited to obtain a hardening effect [15,19].
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Figure 1. Time–temperature–precipitation (TTP) curves of Alloy 625. Composition ranges in wt. %:
0.01–0.04 C, 0.05–0.10 Si, 0.02–0.10 Mn, 20.5–22.5 Cr, 4.0–4.5 Fe, 8.1–8.9 Mo, 0.1–0.25 Ti, 3.4–3.7 Nb,
0.02–0.03 Al [9].
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Table 1. Chemical compositions of the primary and secondary phases typically observed in Alloy 625.
Adapted from [1,9].

Phase Typical Composition

MC

Matrix blocky

(Cr0.04Fe0.02Ni0.09Nb0.75Mo0.03Ti0.07)C

(Cr0.03Ni0.04Nb0.39Mo0.01Ti0.53)C

Grain boundary

(Cr0.04Fe0.01Ni0.08Nb0.67Mo0.01Ti0.15)C

M6C (Cr0.21Fe0.02Ni0.37Nb0.80Mo0.24Si0.08)6C

M23C6 (Cr0.85Fe0.01Ni0.07Mo0.07)23C6

γ′′ Ni3(Nb>0.5Ti<0.5Al<0.5)

δ Ni3Nb

Ni2(Cr,Mo) Ni0.63Cr0.30Mo0.07

Laves (Cr0.31Fe0.08Ni0.41)2(Si0.17Ti0.01Nb0.19Mo0.63)

(Cr,Nb)2N (Cr0.39Nb0.41Ni0.07Mo0.13)2N

In nickel-based superalloys, grain refinement can occur only during high-temperature
plastic deformation if the thermomechanical conditions are well studied and controlled.
During solution- and soft-annealing treatments, which are performed at high temperatures,
the grain size can increase very quickly depending on the treatment time and temperature.
For such a reason, it is difficult to obtain a fine-grained structure and, very often, the average
size is significantly larger than that achievable for a component with the same geometry but
made of steel. Consequently, the temperature range of the annealing treatment inevitably
determines grain growth [11,23,24], and its severity strongly depends on the temperature
and soaking time. Since the mechanical properties are strongly affected by grain size,
heat treatment parameters should be determined based on the best compromise between
solubilization efficacy, which affects corrosion resistance, and grain growth, which directly
influences mechanical strength. The influence of annealing temperature and soaking time
on grain size and mechanical properties was studied in the literature by Rivolta et al. [11].
The possibility of increasing the mechanical resistance by means of an aging treatment at
medium-to-low temperatures is, hence, particularly interesting. Such an improvement is
generally associated with a deformability reduction that should be considered in the tuning
of aging parameters.

As described, the incompatibility of the tensile properties of this alloy with the stan-
dard requirements is a common industrial issue [12]. In fact, the ability to retain a fine
grain size after processing and heat treatment is critical. According to the processing map
of this material and its flow stress behavior [25–27], the region associated with complete
recrystallization is very narrow, and strict equipment requirements are imposed. There-
fore, considering such peculiarities, an accurate design of the plastic deformation process
becomes mandatory. However, depending on the component geometry and the available
equipment, the deformation process is often performed outside the optimal working region,
possibly leading to excessive grain coarsening. This detrimental phenomenon is further
worsened by subsequent annealing treatments. In nickel-based superalloys, the possibility
of retaining a fine grain size after high-temperature processing and heat treatment is a
critical aspect. Moreover, the absence of phase transformation temperatures prevents the
possibility of refining grains through heat treatment. According to the Hall–Petch relation
and as reported by Rivolta et al. [11], an increase in grain size determines a decrease in me-
chanical performance. In this case, the mechanical strength can become incompatible with
the standard requirements [12]. The unique possibility of recovering such property loss is
represented by age-hardening treatments. In fact, even though Alloy 625 was developed
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as a solid solution-strengthened alloy, the presence of sufficient amounts of niobium, tita-
nium and aluminum allows for precipitation of the intermetallic hardening γ′′ phase upon
thermal exposure in a range from 600 ◦C to 800 ◦C [9,16,17]. However, in this temperature
range, the simultaneous formation of intergranular Cr-rich carbides detrimental to corro-
sion resistance can occur, especially after short exposures above 700 ◦C. The ASTM B446
standard does not prescribe any kind of aging treatment [12]. In the literature, the single-
aging response was studied using hardness tests in a range from 600 ◦C to 800 ◦C by Moore
et al. [24] and from 550 ◦C to 900 ◦C by Suave et al. [1,19], which resulted in an appreciable
increase in hardness only after very long exposures. Consequently, considering that the
occurrence of a very slow precipitation response upon single aging can limit its industrial
exploitation, this research work aimed to investigate the possibility of faster age-hardening
procedures based on tailored nonstandard double-aging treatments while maintaining
corrosion resistance within acceptable limits. For this reason, a preliminary analysis of
the influence of single-aging treatments on the mechanical and corrosion properties was
performed. These results provide the basis for the definition of the experimental plan
for double-aging treatments and their investigation. Therefore, tailored aging treatments
can be developed and optimized to provide a strength enhancement sufficient to comply
with the standard requirements. The optimization of the tensile properties can also be
exploited to reduce the thickness and mass, with a consequent decrease in the consumption
of resources and carbon footprint. Currently, the sustainability of a process and of a product
is of primary importance. A reduction in the carbon footprint and consumption of resources
can be achieved through careful control of all the manufacturing stages. Enhancements in
the material mechanical performance were traditionally associated with the possibility of
decreasing the component weight, resulting in a reduction in costs and fuel consumption.
Nevertheless, the possibility of enabling material savings also limits the environmental
impact associated with raw material extraction and processing. This consideration is partic-
ularly important for high-energy-demanding processes, such as nickel-based superalloy
production.

The precipitation-hardening response is studied considering different time–temperature
combinations upon single and double aging. The temperatures were selected starting
from the aging procedure currently adopted for the alloy CarTech® Custom Age 625
PLUS® [28,29]. This grade is a variant of the conventional Alloy 625, and the unique differ-
ence is the titanium content, which is 1 wt. % higher. This compositional variation promoted
the formation of γ′′ Ni3Nb precipitates [17,28]. In this case, the double-aging treatment is
adopted to accelerate the age-hardening response compared to single-aging treatments.
For this variant, according to the standard procedure [28,29], after soft-annealing treatment
at 1038 ◦C, primary aging is performed at 732 ◦C for 8 h, followed by furnace cooling and
secondary aging at 621 ◦C 8 h. Therefore, considering these two temperature levels as the
starting point for this research work, this aging procedure was also investigated in Alloy
625. In this case, different time–temperature combinations for single and double aging were
studied using hardness, tensile and corrosion tests. To evaluate the corrosion behavior,
tests were performed according to the standard ASTM G28-A [30]. This standard is related
to the investigation of the susceptibility to intergranular corrosion in a solution of ferric
sulfate, Fe2(SO4)3 and sulfuric acid, H2SO4, for 120 h [30].

According to the available online literature about the influence of double-aging treat-
ments on the mechanical and corrosion properties, only a few results were found. For
instance, Eiselstein and Tillack [7] reported that sufficient soaking in a temperature range
from 732 ◦C to 843 ◦C is required to trigger the precipitation reaction and permit faster
aging at 649 ◦C. The authors investigated the aging response from 621 ◦C to 704 ◦C of
Alloy 625 solution annealed at 1149 ◦C for 1 h and nucleation treated at 760 ◦C for 1 h.
They confirmed the marked acceleration of the age-hardening kinetics with this multistage
treatment [7]. However, considering that the temperature range suggested by Eiselstein
and Tillack for nucleation treatment is critical for corrosion resistance because of the rapid
simultaneous formation of intergranular carbides, this research also investigated the influ-
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ence of lower primary aging temperatures on the balance between the mechanical strength
and corrosion resistance. In fact, no information is present in the literature about such
optimization of both the mechanical and corrosion properties. Consequently, because
this balance is particularly critical, we reduced the primary aging temperature to lower
values (710 ◦C, 680 ◦C and 650 ◦C) to limit the precipitation of intergranular chromium-rich
carbides as much as possible. The corrosion tests were performed on a selection of the
single- and double-aging conditions investigated in this work. Considering the common
prescription for industrial application of this alloy, the limit for the corrosion rate was set
equal to 1.20 mm/year.

In addition, to better analyze the precipitation response associated with the double-
aging procedure, we suggested a model for the double-aging treatment based on the
Larson–Miller parameter, which combines the effects of temperature and duration of
primary aging.

2. Materials and Methods

All the samples for metallographic observations, hardness, tensile and intergranular
corrosion tests were taken from a forged and untreated 60 mm diameter rod. All the
heat treatments were performed in a laboratory furnace (Model Carbolite CWF 13/13).
Tensile and corrosion specimens were obtained from the longitudinal direction of the rod.
Samples for microstructural analyses and hardness tests were cut using silicon carbide
cutoff wheels with a Remet (Model TR100 EV; sourced from Remet s.a.s., Bologna, Italy)
cutting machine. Mounting was performed in hot thermosetting phenolic resin using a
Metkon (Model Ecopress 50; sourced from Microcontrol N.T. Srl, Milano, Italy) mounting
machine. Grinding and polishing were carried out using a Struers (Model Pedemax 2 +
Planopol 3; sourced from Struers s.a.s., Arese, Italy) machine up to the mirror-polished
condition. After grinding and polishing, chemical etching was performed in five parts
HCl diluted in one part 30% H2O2 for approximately 10 s [5,31,32]. A Leica (Model DMR;
sourced from Leica Microsystems S.r.l., Buccinasco, Italy) light optical microscope and a
Zeiss (Model SIGMA 500; sourced from Carl Zeiss S.p.A., Milano, Italy) scanning electron
microscope were used for the metallographic analyses. The determination of the average
grain size in the soft-annealed condition was performed in accordance with the ASTM E112
standard [33]. In this case, the Heyn lineal intercept procedure was adopted using twelve
linear intercept lines. The hardness was measured in HV30 Vickers scale using a Wolpert
Testor 930 hardness tester according to the EN ISO 6507 standard [34]. In each condition,
five hardness measurements were performed. The room-temperature tensile properties
were investigated by tensile tests performed according to the EN ISO 6892 standard using
round proportional specimens with an INSTRON model 4507 testing machine [35]. The
susceptibility to intergranular corrosion was analyzed using a solution of ferric sulfate,
Fe2(SO4)3 and sulfuric acid, H2SO4, for 120 h according to the ASTM G28—Method A
standard [30]. The reference standard considered in this work for the mechanical strength
requirements of this alloy is the ASTM B446 standard [12]. Considering the maximum
corrosion rate, a value of 1.20 mm/year was considered to be a common prescription for
industrial applications of this grade. SEM and EDXS analyses were performed on a selec-
tion of metallographic samples. Qualitative EDXS analyses of the chemical composition
were carried out using an OXFORD Altee Energy—Advanced detector available in the
adopted SEM.

The chemical composition of the material adopted in this research is reported in Table 2.
It is compatible with the compositional limits defined by the ASTM B446 standard [12].
The chemical composition of the as-received material was analyzed via optical emission
spectroscopy using a Jobin Yvon OES spectrometer.
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Table 2. Chemical composition in wt. % determined by OES spectroscopy of the forged rod adopted
in this research work.

Ni Cr Mo Nb Fe Mn Ti Al C Si P S

wt. % 63.2 20.1 8.32 3.51 4.32 0.07 0.28 0.22 0.03 0.14 <0.01 <0.01

The samples for hardness tests and microstructural analyses were characterized by
dimensions of 10 mm × 10 mm × 10 mm. The tensile specimens were machined from
12 mm diameter rods obtained from a 60 mm diameter rod using EDM. The specimens for
corrosion tests were 25 mm × 25 mm × 7 mm. Before aging, all the metallographic samples
and the tensile and corrosion specimens were subjected to soft-annealing treatment at
1038 ◦C for 0.5 h. Single-aging treatments were performed at 621 ◦C, 650 ◦C, 680 ◦C, 710 ◦C
and 732 ◦C for up to 72 h of exposure. Double-aging treatments were performed varying
the primary aging temperature from 732 ◦C to 650 ◦C and fixing the secondary aging
temperature at 621 ◦C. After each heat treatment, all the samples and specimens were water
quenched. Each experimental aging condition was subjected to a preliminary analysis via
hardness tests. Then, according to the results, tensile and corrosion tests were performed
in selected conditions. SEM and EDXS analyses were carried out to better investigate the
results of the corrosion tests.

3. Results and Discussion
3.1. Soft-Annealed Condition

The conventional material was supplied in the as-forged condition. Soft-annealing
treatment at 1038 ◦C for 0.5 h was performed using a laboratory furnace on all the hardness
and metallographic samples and the tensile and corrosion specimens. The microstructure
in the soft-annealed condition was investigated by metallographic analysis via light-optical
and scanning electron microscopy. Figure 2 shows the presence of a fully austenitic mi-
crostructure with equiaxed and twinned grains, with an average size of 65 µm and the
absence of intergranular carbides. The grain size distribution in the soft-annealed condition
is shown in Figure 3.
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Then, the room-temperature mechanical properties of the conventional material in the
soft-annealed condition were determined by tensile tests. The hardness, yield strength, ulti-
mate tensile strength, percentage elongation after fracture A% and percentage reduction of
area Z% are reported in Table 3. In the soft-annealed condition, the minimum yield strength
prescribed by the ASTM B446 standard is 414 MPa [12]. Therefore, the mechanical strength
does not comply with the minimum standard requirement. This issue is determined by the
difficulties in maintaining a fine grain size during forging and heat treatment. The relation
between the average grain size and the mechanical properties is compatible with the results
reported in the literature by Rivolta et al. [11].

Table 3. Room-temperature mechanical properties compared to the minimum requirements defined
by the ASTM B446 standard [12].

Hardness YS [MPa] UTS [MPa] YS/UTS A% Z%

This work 194 HV30 350 829 0.42 61.0 70
ASTM B446 --- >414 >827 --- >30.0 ---

The susceptibility to intergranular corrosion was subsequently measured according to
the ASTM G28 Method A standard [30]. After the 120 h corrosion test, the corrosion rate
was 0.65 mm/year. This result confirmed the efficacy of the soft-annealing treatment at
1038 ◦C in retaining an acceptable corrosion resistance.

3.2. Single- and Double-Aging Treatments

The age-hardening response of the soft-annealed material (1038 ◦C 0.5 h) was inves-
tigated from 621 ◦C to 732 ◦C with isothermal single-aging treatments up to 72 h. The
experimental single-aging curves are shown in Figure 4. According to the results, all
the single-aging treatments provided only a slight increase in hardness. Most likely, the
single-aging hardening response becomes significant only after excessively long exposures
for most industrial applications. In the literature, the single-aging response of Alloy 625
was studied using hardness tests in a range from 600 ◦C to 800 ◦C by Moore et al. [24]
and from 550 ◦C to 900 ◦C by Suave et al. [1,19], which resulted in an appreciable increase
in hardness only after very long exposures. The hardness curves after single-aging treat-
ment obtained in our research are in good agreement with the results reported by Moore
et al. [24], confirming the occurrence of a very slow precipitation response when single
aging is adopted. The increase in hardness upon single-aging treatment in a temperature
range from 621 ◦C to 732 ◦C is determined by the formation of γ′′ precipitates, as shown by
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the time–temperature–precipitation diagram in Figure 1. According to these curves, the
simultaneous formation of intergranular M23C6 carbides can occur, but their hardening
effect is negligible compared to that provided by the intermetallic hardening γ′′ phase [15].
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Double-aging treatments were performed considering a primary aging temperature
varying from 732 ◦C to 650 ◦C and a fixed secondary aging temperature of 621 ◦C. As
reported in Figure 5, the double-aging treatments resulted in a significant improvement in
the age-hardening response compared to that associated with each single-aging treatment
taken separately. For a fixed duration of the secondary aging at 621 ◦C, the precipitation-
hardening effect is strongly enhanced with the addition of primary aging. However,
excessively long primary aging times do not provide any appreciable further acceleration
in the age-hardening response. For instance, considering primary aging at 732 ◦C, the
hardness curves for primary exposures of 3 h, 16 h and 48 h almost overlap, as shown
in Figure 5a. However, when the primary aging temperature is reduced, such behavior
becomes less evident, and the double-aging hardness curves are closer to the single-aging
curve because of the occurrence of a weaker acceleration. With respect to the double-aging
treatment, Eiselstein and Tillack [7] reported a hardness increase from 52 HRA (166 HV) to
58 HRA (213 HV) for the solution-annealed Alloy 625 after nucleation treatment at 760 ◦C
for 1 h and aging at 621 ◦C for 72 h. According to our experimental results, the hardness
of 194 HV in the soft-annealed condition increases to 282 HV after double aging at 732 ◦C
for 1 h and 621 ◦C for 72 h. After primary aging at 710 ◦C for 1 h, the hardness increased
to 266 HV. After reducing the primary aging from 680 ◦C for 1 h to 650 ◦C for 1 h, the
hardness was 225 HV and 215 HV, respectively. With respect to the alloy CarTech® Custom
Age 625 PLUS®, as reported in the literature [28,29], the hardness in the soft-annealed
condition was increased from 90 HRB (188 HV) to 37 HRC (353 HV) with the conventional
double-aging procedure (732 ◦C for 8 h and 621 ◦C for 8 h). According to our experimental
data, the same heat treatment conditions for Alloy 625 resulted in a hardness increase from
194 HV to 220 HV. This difference is mainly attributed to the lower titanium content of
Alloy 625, which weakens and slows down its age-hardening response [28,29].
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Figure 5. Vickers hardness HV30 experimental curves after double-aging treatments of the soft-
annealed material varying the primary-aging temperature from 732 ◦C to 650 ◦C and with secondary
aging temperature fixed at 621 ◦C: (a) 732 ◦C; (b) 710 ◦C; (c) 680 ◦C; (d) 650 ◦C. The standard
deviations of these hardness measurements range from 1 HV30 to 6 HV30.

The grain size strongly influences the mechanical properties because the grain bound-
aries act as obstacles to dislocation movement. The grain-coarsening process is activated
above a threshold temperature, which is equal to approximately 940 ◦C for this alloy
grade [11]. Therefore, grain growth was not observed in the temperature ranges of both the
single- and double-aging treatments investigated in this work. Regarding the formation
of phases, as reported in the time–temperature–precipitation diagram in Figure 1, the pre-
cipitate particles generated upon single-aging treatments are intergranular Cr-rich M23C6
carbides and the intermetallic γ′′ phase. The double-aging procedure allows γ′′ precipita-
tion to be accelerated due to the primary aging treatment, which promotes nucleation and
the growth of subcritical γ′′ nuclei [7,16]. This triggering effect is necessary to reduce the
overall heat treatment time, which would be significantly longer in the case of single aging
at 621 ◦C without prior nucleation treatment [7,16]. During the primary aging treatment,
depending on the temperature, intermetallic M23C6 carbides can be formed according to
the TTP curves reported in Figure 1 [7,15].

To better investigate the hardness increase induced by the double-aging treatment, the
hardness process fraction curves were determined according to Equation (1) for each tested
duration of the secondary aging at 621 ◦C. In particular, HV0 is the double-aging hardness
in the absence of primary aging. Therefore, this value coincides with the experimental
hardness of single aging at 621 ◦C for the considered duration. HV∞ represents the steady-
state hardness value upon double aging for each considered secondary aging time. Their
values are summarized in Table 4 and Figure 6. The experimental process fractions for each
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secondary aging time are reported as a function of the Larson–Miller parameter (LMP1) of
the primary aging treatment in Figure 7. The expression of the LMP1 parameter is given
in Equation (2), where T1 is the primary aging absolute temperature, C is a constant (set
equal to 22) and t1 is the primary aging time in hours. The adoption of the Larson–Miller
parameter allows us to combine the effects of both the primary aging temperature and
time into a single value. In general, creep, tempering of a quenched steel and precipitation
of strengthening phases are typical phenomena that can be studied with this approach.
The use of a single variable, the Larson–Miller parameter, simplifies the analysis of all the
properties that change with respect to treatment temperature and time. This approach also
allows for an easier correlation among these properties and the process parameters.

XHV(LMP1) =
HV(LMP1)− HV0

HV∞ − HV0
(1)

LMP1 = T1(C + log10t1) (2)

Table 4. Fitting parameters of the process–fraction curves based on the Avrami-type equation as a
function of the duration of the secondary aging treatment (Time_2) in hours.

Time2 [h] HV0 HV∞ a b

12 197 234 3.6 × 10−29 8.5
24 198 267 7.7 × 10−17 4.9
48 205 284 3.8 × 10−10 2.9
72 206 290 1.0 × 10−8 2.5
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Figure 6. HV0 and HV∞ values as a function of the duration of the secondary aging treatment
(Time_2) in hours.

The evolution of a process that involves a nucleation stage, a development and a trans-
formation end can often be described by a sigmoidal curve, whose mathematical expression
is given by the Avrami-type equation. In the metallurgical field, several structural transfor-
mations occur following these three stages, and, hence, they can be described using such
a mathematical model. For this reason, the experimental process fractions were modeled
using the Avrami-type equation with fitting parameters a and b, as reported in Equation (3),
where LMP1 is the Larson–Miller parameter of the primary aging treatment and LMP0 is a
constant set equal to 20,000 adopted to shift the “zero” of the process–fraction curves.

XHV(LMP1) = 1 − e−a(LMP1−LMP0)
b

(3)
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Figure 7. Experimental hardness process fractions and fitting curves as a function of the Larson–
Miller parameter for the primary aging treatment for each secondary aging duration: (a) 621 ◦C 12 h;
(b) 621 ◦C 24 h; (c) 621 ◦C 48 h; (d) 621 ◦C 72 h.

The fitting parameters a and b were determined using the least-square procedure, and
the related values are reported in Table 4. The goodness of fit was assessed by calculating
a determination coefficient equal to 0.97. The fitting curves are shown in Figure 7 as a
function of the Larson–Miller parameter of the primary aging treatment. Then, for each
secondary aging time, the experimental double-aging hardness values were represented as
a function of the Larson–Miller parameter of the primary aging treatment together with the
related fitting curves previously determined based on the process fractions. As shown in
Figure 8, the comparison between the fitting curves and the experimental values together
with the percentage error distribution confirm the goodness of fit of the adopted model.

The mathematical model of the double-aging hardness curves based on the Larson–
Miller parameter yields very low percentage errors. Nevertheless, both the analyses could
be improved by increasing the database width. For this reason, the authors have already
planned new aging treatments to increase the number of experimental conditions and
improve the accuracy of the model further.
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The room-temperature tensile properties were measured in selected conditions of the
double-aging treatments at 732 ◦C and 621 ◦C to evaluate the influence of increasing aging
time at both temperatures. As shown by the experimental results reported in Figure 9,
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an increase in the duration of the secondary aging treatment at 621 ◦C improved the
mechanical strength under fixed primary aging conditions. On the other hand, primary
aging exposures longer than 3 h at 732 ◦C do not provide an appreciable increase in the
tensile strength with fixed secondary aging. Therefore, after a certain duration of primary
aging, the effect of acceleration on the age-hardening response is almost saturated. The
strengthening effect induced by the precipitation of intermetallic phases is obtained at
the expense of a reduction in the deformability, as shown by the values of A% and Z% in
Figure 9. However, the deformability remains reasonable and well above the minimum
standard requirement of 30% regarding the A% [12]. The tensile strength complied with the
minimum standard requirements under all tested conditions [12]. This confirms the efficacy
of properly designed aging treatments in improving insufficient mechanical properties
induced by an excessive grain growth in the as-annealed condition.
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The relationship between the tensile strength (yield strength and ultimate tensile 
strength) and the hardness was determined by linear regression of the experimental 
results obtained in this work and those available in the literature [11]. The results of this 
analysis are reported in Figure 10. In this case, the goodness of fit of the linear regression 
model was assessed using the determination coefficient 𝑅ଶ . According to the linear 
regression parameters determined in this analysis and considering the minimum standard 
requirements for tensile strength [12], the minimum hardness value corresponding to the 
yield strength requirement is equal to 201 HV, and 192 HV for the ultimate tensile 
strength. Therefore, to satisfy both prescriptions, a minimum hardness of 201 HV is 

Figure 9. Room-temperature tensile properties (yield strength, YS; ultimate tensile strength, UTS;
percentage elongation after fracture, A%; percentage reduction of area, Z%) of the soft-annealed
material subjected to double-aging treatments at 732 ◦C and 621 ◦C for different times. (a,b) Influence
of the increase in the secondary aging time; (c,d) influence of the increase in the primary aging time.

The relationship between the tensile strength (yield strength and ultimate tensile
strength) and the hardness was determined by linear regression of the experimental results
obtained in this work and those available in the literature [11]. The results of this analysis
are reported in Figure 10. In this case, the goodness of fit of the linear regression model
was assessed using the determination coefficient R2. According to the linear regression pa-
rameters determined in this analysis and considering the minimum standard requirements
for tensile strength [12], the minimum hardness value corresponding to the yield strength
requirement is equal to 201 HV, and 192 HV for the ultimate tensile strength. Therefore,
to satisfy both prescriptions, a minimum hardness of 201 HV is needed. This information
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is extremely useful for performing a preliminary identification of the aging conditions
potentially acceptable in terms of mechanical strength.
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Data from the literature has been considered to improve the accuracy of the regression model [11].
(a) Relationship between the yield strength and the hardness; (b) Relationship between the ultimate
tensile strength and the hardness.

The susceptibility to intergranular corrosion was investigated in a selection of the
single- and double-aging conditions tested in this research. The corrosion rate limit was
set equal to 1.20 mm/year, while the minimum hardness of 201 HV was determined
based on the minimum standard requirement for the mechanical strength [12] and the
hardness–yield strength relation defined in this paper. Therefore, a performance map was
built and populated with the experimental conditions selected for the corrosion tests, as
shown in Figure 11. The soft-annealed condition is acceptable only in terms of corrosion
resistance. Upon single aging at 732 ◦C, the hardening effect is poor, and 16 h is required
to exceed the minimum hardness requirement. However, at this exposure, the corrosion
rate is significantly far from acceptability. At this temperature, such behavior is determined
by the precipitation of intergranular chromium-rich carbides, which strongly reduce the
corrosion resistance. On the other hand, upon single aging at 621 ◦C, the precipitation
of γ′′ precipitates is faster than the formation of intergranular carbides. In fact, at this
temperature, as shown by the TTP diagram in Figure 1, the intergranular M23C6 carbides
precipitate after aging times that are significantly longer than those required at 732 ◦C.
Therefore, consistent with these observations, single aging at 621 ◦C for 72 h provides an
acceptable combination of mechanical and corrosion properties, as shown in Figure 11. The
formation of intergranular carbides was investigated in detail by SEM and EDXS analyses
in selected conditions. As shown in Table 5, Figures 12 and 13, intergranular carbides
were not detected upon single aging at 621 ◦C until 72 h. This observation justifies the
presence of an acceptable corrosion resistance in this aging condition. Regarding single
aging at 732 ◦C, discrete chains of intergranular carbides were identified in the sample
aged for 16 h. No carbides were detected in the 1 h aged sample. As shown by the EDXS
analyses reported in Table 5 and summarized in Figure 12, the chemical composition of
the carbides observed in the 16 h aged sample (positions E, F and G of Figure 13f) was
enriched in chromium and, to a lesser degree, in molybdenum, as also confirmed by the
literature for M23C6 carbides [9,17]. The formation of these compounds agrees with the
TTP curves available in the literature [9] and reported in Figure 1. Their occurrence is
expected to decrease the corrosion resistance. As previously mentioned, at lower aging
temperatures, such particles are absent, especially at 621 ◦C, where 72 h is not sufficient for
the precipitation of such detrimental Cr-rich phases.
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Figure 11. Performance map of the experimental conditions tested in this research work by hardness
and corrosion tests. The two dashed lines represent the limit values for both the hardness and the
corrosion rate according to the alloy performance requirements [12]. The acceptability region is
highlighted by green shading.

Table 5. EDXS analyses in wt. % performed at the positions denoted on the SEM micrographs in
Figure 13.

Figure ID Ni Cr Mo Nb Fe Ti Al Si

Bulk
(OES) --- 63.2 20.1 8.32 3.51 4.32 0.28 0.22 0.14

Figure 13b A 62.1 21.5 8.21 3.20 4.41 0.26 0.16 0.16
Figure 13b B 62.3 21.8 7.86 3.18 4.12 0.36 0.20 0.18
Figure 13d C 61.9 22.0 7.78 2.96 4.53 0.31 0.37 0.15
Figure 13d D 62.3 22.2 7.41 3.02 4.49 0.27 0.21 0.10
Figure 13f E 55.1 27.7 8.61 4.15 3.74 0.34 0.15 0.21
Figure 13f F 55.9 27.2 9.18 2.86 4.15 0.28 0.21 0.22
Figure 13f G 56.5 26.7 8.22 3.55 4.34 0.31 0.19 0.19
Figure 13h H 61.6 22.0 8.16 3.48 4.14 0.31 0.20 0.10
Figure 13h I 61.7 22.2 7.95 3.21 4.37 0.27 0.18 0.17
Figure 13j L 62.1 21.0 8.16 3.40 4.24 0.46 0.45 0.19
Figure 13j M 62.0 21.6 8.21 3.38 4.08 0.31 0.24 0.18

Regarding the double-aging conditions tested by corrosion tests, we observed that
the corrosion rate upon double aging does not confirm the behavior of the single-aging
steps taken separately from each other. For instance, the condition of 732 ◦C for 1 h +
621 ◦C for 24 h is characterized by a corrosion rate of 2.1 mm/year. However, according
to the experimental results, both 732 ◦C for 1 h and 621 ◦C for 24 h represent single-aging
conditions acceptable in terms of corrosion resistance. The increase in the corrosion rate
with their combination in the double-aging treatment was probably determined by the
more pronounced formation of intermetallic γ′′ precipitates, which also justifies the greater
hardening effect. As reported in Figure 11, this behavior also affects the other double-aging
conditions tested in this work.
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Figure 13. SEM micrographs of different single-aging conditions and positions of the EDXS analyses.
(a,b) 621 ◦C 72 h; (c,d) 732 ◦C 1 h; (e,f) 732 ◦C 16 h; (g,h) 710 ◦C 3 h; (i,j) 680 ◦C 3 h. The letters
represent the IDs of the EDXS analyses reported in Table 5 and summarized in Figure 12.

4. Conclusions

The mechanical and corrosion properties of Alloy 625 can be optimized using tailored
aging treatments. This possibility can be exploited in the presence of an insufficient
mechanical strength induced by excessive grain coarsening during processing and heat
treatment.
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• The soft-annealed material was associated with acceptable corrosion resistance but
insufficient mechanical strength because of excessive grain growth;

• Excessively long aging exposures can activate the simultaneous formation of inter-
metallic phases and intergranular carbides. According to the SEM and EDXS obser-
vations, when chromium-rich carbides precipitated, sensitization was obtained. This
negative effect was limited by the reduced aging temperature and time;

• With single aging at 732 ◦C, the hardening effect is poor, and 16 h is required to exceed
the minimum hardness requirement. However, at this exposure, the corrosion rate is
not acceptable;

• Only single aging at 621 ◦C for 72 h resulted in acceptable mechanical and corrosion
properties. However, since the hardness is very close to the limit value estimated
for acceptability, further investigation of longer aging times is necessary and will be
considered in a future development of this work;

• The double-aging procedure allows γ′′ precipitation to be accelerated due to the
primary aging treatment, which promotes the nucleation and growth of subcritical γ′′

nuclei. This triggering effect is necessary to reduce the overall heat treatment time,
which would be significantly longer in the case of single aging at 621 ◦C without prior
nucleation treatment. However, excessively long primary aging times do not provide
any appreciable further acceleration of the age-hardening response;

• Primary aging is the most critical step for the resulting corrosion resistance. Even after
optimization in terms of both temperature and time, none of the tested conditions were
acceptable. A decrease in the primary aging temperature is useful for delaying the
precipitation of intergranular carbides, but a weaker acceleration in the age-hardening
response is obtained. An excessive reduction in the primary aging time is commonly
not compatible with industrial applications involving large components;

• The Larson–Miller parameter was adopted in the regression model to combine the
effects of the primary aging time and temperature. The double-aging process fraction
curves for the hardness were modeled as a function of the Larson–Miller parameter
for each tested secondary aging time, resulting in a good fit. This analysis revealed
that for each curve, the steady-state hardness value was dependent on the secondary
aging time.
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