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Abstract 

Laser beams can be manipulated to achieve different types of interaction mechanisms with metals allowing them to heat, melt, 
vaporize, or ablate them. Today’s laser sources are robust, fast-addressable optoelectronic devices, easily integrated into 
automation systems along with sophisticated CAD/CAM solutions. Being a photonic digital tool, the laser beam is a fundamental 
tool for Industry 4.0 and is already widely exploited in the manufacturing of metallic stents. The conventional manufacturing 
method of laser cutting employs a subtractive method to cut the stent mesh on tubular feedstock. On the other hand, laser beams 
can be exploited to melt metallic powders to produce stent geometries in a layer-by-layer fashion. The present work provides a 
short state of the art review concerning the works focusing on the two laser-based manufacturing processes underlining the 
evolution of the laser source types and used materials. The work provides insights into the future opportunities and challenges 
that should be faced by the manufacturing research communities in the light of improving the biomedical device performance by 
exploiting the possibilities provided by the digital tool. 
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1. Introduction 

Cardiovascular diseases are amongst the major causes of death in Europe. Cardiovascular stents have become an 
essential device for resolving the narrowing of arteries with a minimally invasive surgery. Stents are commonly 
placed in the narrowed artery by means of a catheter and expanded to the final dimension either by means of a 
balloon or superelastic behaviour. The simple functioning principle of the cardiovascular stent requires a cage-like 
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tubular geometry that maintains its shape for the duration required to remodel the artery. Since their introduction as a 
solution to cardiovascular pathologies, metallic stents have been widely produced via laser based manufacturing 
processes. Initially laser cutting of microtubes was the preferred method due to the high focusability of the laser 
beams to small spots able to produce the strut sizes in the range of 100 µm. As the laser technology developed 
further, several novel possibilities enhancing the functioning of the biomedical device emerged thanks to the flexible 
manufacturing platform allowed by the digital photonic tool. Today, lasers can provide the means for both 
subtractive manufacturing with small beams (typically 20-80 µm) through laser cutting and additive manufacturing 
through laser powder bed fusion for the metallic stents. The recent developments in the laser technology provides 
further opportunities for higher precision, higher productivity, and in-process monitoring solutions. Indeed laser 
systems have become a workhorse in industrial manufacturing with the leading applications in cutting and welding. 
The increased flexibility and adaptability of the laser based manufacturing systems result in a system revenue of up 
to 50 billion USD [1]. Similarly the metal additive manufacturing processes are widely driven by the pace of the 
laser based processes. While stent manufacturing is a highly specific application, the benefits of the laser based 
manufacturing processes by means of a digital tool have been exploited arguably since the inception of the device. 
Hence, this work provides an overall view of the two manufacturing routes and the related scientific literature with 
an outlook on the future challenges. 

2. Subtractive and additive laser based manufacturing methods for stents 

Laser cutting (LC) is the conventional manufacturing method used for producing metallic stents. Standard 
geometries are produced by cutting tubular precursors with typically 1-5 mm diameter and 0.05-0.20 mm thickness. 
The laser beam separates through closed incisions on the tubes. Laser powder bed fusion (LPBF) as an additive 
manufacturing process generates the stent geometry by layer-by-layer melting of powder precursors. Table 1 
provides a basic comparison of the two manufacturing techniques. Fig. 1 shows example systems and the related 
components for the manufacturing of metallic stents. Fig. 2 Shows examples of stents produced by the two laser 
based manufacturing techniques with different materials, geometries and sizes. 

     Table 1. Basic comparison between the two laser based manufacturing solutions for producing metallic stents 

Process Laser cutting Laser powder bed fusion 
Feedstock Standard minitubes Powder 
Geometry Optimized for strength Optimizable for patient requirements 
Feature resolution Very high (<10 µm) Medium (>100 µm) 
Toolpath programming Conventional 2D CAM Layer-by-layer scanning 
Surface finish Medium to high Low to medium 
Materials Several certified alloys Materials under development 
Productivity High Potentially very high 
Production scale Serial, large scale, and centralized Serial or on-demand and decentralized 
Process monitoring Highly feasible, underdeveloped Highly feasible, progressively developing 
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Fig. 1. Examples of laser based metallic stent manufacturing systems from Politecnico di Milano. a) General view and b) close up of the laser 

cutting system for microtubes. c) Internal view of the LPBF system with a reduced build platform and d) the system during the process. 
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tubular geometry that maintains its shape for the duration required to remodel the artery. Since their introduction as a 
solution to cardiovascular pathologies, metallic stents have been widely produced via laser based manufacturing 
processes. Initially laser cutting of microtubes was the preferred method due to the high focusability of the laser 
beams to small spots able to produce the strut sizes in the range of 100 µm. As the laser technology developed 
further, several novel possibilities enhancing the functioning of the biomedical device emerged thanks to the flexible 
manufacturing platform allowed by the digital photonic tool. Today, lasers can provide the means for both 
subtractive manufacturing with small beams (typically 20-80 µm) through laser cutting and additive manufacturing 
through laser powder bed fusion for the metallic stents. The recent developments in the laser technology provides 
further opportunities for higher precision, higher productivity, and in-process monitoring solutions. Indeed laser 
systems have become a workhorse in industrial manufacturing with the leading applications in cutting and welding. 
The increased flexibility and adaptability of the laser based manufacturing systems result in a system revenue of up 
to 50 billion USD [1]. Similarly the metal additive manufacturing processes are widely driven by the pace of the 
laser based processes. While stent manufacturing is a highly specific application, the benefits of the laser based 
manufacturing processes by means of a digital tool have been exploited arguably since the inception of the device. 
Hence, this work provides an overall view of the two manufacturing routes and the related scientific literature with 
an outlook on the future challenges. 

2. Subtractive and additive laser based manufacturing methods for stents 

Laser cutting (LC) is the conventional manufacturing method used for producing metallic stents. Standard 
geometries are produced by cutting tubular precursors with typically 1-5 mm diameter and 0.05-0.20 mm thickness. 
The laser beam separates through closed incisions on the tubes. Laser powder bed fusion (LPBF) as an additive 
manufacturing process generates the stent geometry by layer-by-layer melting of powder precursors. Table 1 
provides a basic comparison of the two manufacturing techniques. Fig. 1 shows example systems and the related 
components for the manufacturing of metallic stents. Fig. 2 Shows examples of stents produced by the two laser 
based manufacturing techniques with different materials, geometries and sizes. 
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Geometry Optimized for strength Optimizable for patient requirements 
Feature resolution Very high (<10 µm) Medium (>100 µm) 
Toolpath programming Conventional 2D CAM Layer-by-layer scanning 
Surface finish Medium to high Low to medium 
Materials Several certified alloys Materials under development 
Productivity High Potentially very high 
Production scale Serial, large scale, and centralized Serial or on-demand and decentralized 
Process monitoring Highly feasible, underdeveloped Highly feasible, progressively developing 
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Fig. 1. Examples of laser based metallic stent manufacturing systems from Politecnico di Milano. a) General view and b) close up of the laser 

cutting system for microtubes. c) Internal view of the LPBF system with a reduced build platform and d) the system during the process. 
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Fig. 2. Examples of biomedical devices manufactured using laser cutting (a,b,c) and laser powder bed fusion (d,e) with NiTi (a), AISI 316L (b), 

AZ31 Mg-alloy (c), and CoCr (d,e). The ruler shows numbers in cm. 

3. State of the art in laser based manufacturing of metallic stents 

The literature survey was carried out based on Scopus and sectorial conferences regarding laser based stent 
manufacturing (last access on 20 June 2022). The literature on metallic stent manufacturing is rather limited, 
although publications appear consistently. A total of 64 works were gathered and categorically analyzed between 
1998 and 2022 (see Fig. 3). The first appearance of a scientific article by Kathuria describes the use of laser cutting 
of a metallic stent in 1998 [2]. Wessarges et al describe the use of laser powder bed fusion in 2014 [52]. To date, 
several types of materials have been investigated by different groups. The sparse behaviour of the number of 
publications per year can be related to the hardware intensive research requirements and the need to build up or 
work with specialized manufacturing equipment. However, several insights concerning the technological 
developments and future trends can be extracted from these works. 

 

 
Fig. 3. Evolution of laser based metallic stent manufacturing articles over the years (LC: laser cutting, LPBF: laser powder bed fusion) 

3.1. Laser cutting (LC) of metallic stents in the literature 

Table 2 lists the laser cutting works in literature consisting of 51 works between 1998 and 2022. It can be seen 
that the research follows the certain developments in the laser technology over the years. Starting from the pulsed 
Nd:YAG lasers, the research converts to the use of fiber laser as early as 2002 by Keline et al [3].While being 
anticipated by Momma et al [2] in 1999, the use of ultrashort pulsed lasers becomes a matter of deeper discussion 
from 2010 as shown by Mielke et al [17] with the use of an Er:glass fiber optic chirped pulse amplification (CPA) 
system. Around 2010 also the long pulsed (µs to ms) and CW fiber lasers become mainstream as shown in Fig. 3.a 
and later dominate the types of laser sources employed as shown in Fig. 3.b. As the ultrafast ps- and fs-pulsed lasers 
become more widely available starting from 2010 their share in the analyzed laser cutting systems increases (Fig. 
3.c). The different wavelengths are scarcely explored as visible and UV ranges have been explored in a total of 3 
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works, as the authors have employed the fundamental wavelengths of NIR lasers most commonly (Fig. 3.d). The 
vast majority of works analyzed AISI 316L as arguably the gold standard for stenting (Fig. 3.d). A considerable 
attention towards superelastic NiTi and biodegradable Mg and Zn-alloys has been observed since 2010. 

     Table 2. Laser cutting of stents in literature (t: feedstock thickness; : laser wavelength;  na: not available; *:water cooled; +water jet guided; 
#submerged). 

Reference Year Material Feedstock t (mm) Geometry Laser source   (nm) Emission 
Kathuria [2] 1998 AISI 316L Microtube 0.10 Stent Nd:YAG 1064 µs-pulsed 
Momma et al [3] 1999 AISI 316L Microtube 0.10 Stent Nd:YAG 1064 µs-pulsed 
Kleine et al [4] 2002 AISI 316L Microtube 0.10 Stent Fiber 1070 µs-pulsed 
Gachon et al [5] 2003 AISI 316L Microtube 0.10 Stent na na na 
Raval et al [6] 2004 AISI 316L Microtube 0.11 Stent Nd:YAG 1064 µs-pulsed 
Liu et al [7] 2005 na na na na Fiber 1070 µs-pulsed 
Kathuria [8] 2005 AISI 316L Microtube 0.10 Stent Nd:YAG 1064 µs-pulsed 
Baumeister[9] 2006 AISI 316L Thin sheet 0.10 Linear cuts Fiber 1070 CW 
Sudheer [10] 2006 AISI 316L Microtube 0.11 Stent Nd:YAG 1064 µs-pulsed 
Kubota et al [11] 2007 AISI 316L Microtube 0.11 Stent Nd:YAG 1064 µs-pulsed* 
Chen [12] 2008 CoCr Thin sheet 0.08 Stent Fiber 1070 CW 
Meszlényi et al [13] 2008 AISI 304L Microtube 0.12 Stent Nd:YAG 1064 µs-pulsed 
Sudheer [14] 2008 CoCr Microtube 0.11 Stent Nd:YAG 1064 µs-pulsed 
Meng et al [15] 2009 AISI 316L Microtube 0.11 Stent Fiber 1070 µs-pulsed 
Kovalenko et al [16] 2010 AISI 316L Microtube 0.10 Stent Nd:YAG 1064 µs-pulsed 
Lesma et al [17] 2010 Mg-alloy Thin sheet 0.40 Stent mesh Fiber 1070 ns-pulsed 
Mielke et al [18] 2010 NiTi Microtube 0.25 Stent Fiber optic CPA 1550 fs-pulsed 
Muhammad et al [19] 2010 AISI 316L Microtube 0.15 Stent Fiber 1070 µs-pulsed* 
Muhammad et al [20] 2010 NiTi Microtube 0.28 Linear cuts Disc 343 ps-pulsed 
Pauchard et al [21] 2010 NiTi Microtube 0.28 Stent Nd:YAG 1064 µs-pulsed + 
Haga et al [22] 2011 NiTi Microtube 0.25 Stent Ti:sapphire 775 fs-pulsed 
Muhammad et al[23] 2011 Pt-alloy Microtube 0.07 Stent Disc 343 ps-pulsed 
Chen et al [24] 2012 AISI 316L Microtube 0.08 Stent Fiber 1070 µs-pulsed 
Demir et al [25] 2012 AISI 316L Microtube 0.20 Stent Fiber 1064 ns-pulsed 
Demir et al [26] 2012 Mg-alloy Microtube 0.20 Stent Fiber 1064 ns-pulsed 
Mohammad and Li [27] 2012 NiTi Microtube 0.18 Linear cuts Ti:sapphire 800 fs-pulsed # 
Demir et al [28] 2013 Mg-alloy Microtube 0.20 Stent Fiber 1064 ns-pulsed 
Qiang et al [29] 2013 Mg-alloy Microtube 0.20 Stent Fiber 1064 ns-pulsed 
Muhammad et al [30] 2013 AISI 316L Microtube 0.15 Linear cuts Fiber 1070 µs-pulsed* 
Nagy et al [31] 2013 NiTi Microtube 0.10 Stent Nd:YAG 1064 µs-pulsed 
Bhullar [32] 2014 AISI 316L Thin sheet 0.13 Flat stent Ti:sapphire 800 fs-pulsed 
Demir and Previtali [33] 2014 Mg-alloy Thin sheet 0.40 Flat stent Fiber 1070 CW 
Demir and Previtali [33] 2014 Mg-alloy Microtube 0.20 Stent Fiber optic CPA 1550 CW 
Demir et al [34] 2014 Mg-alloy Microtube 0.20 Stent Fiber 1064 ns-pulsed 
Teixidor et al [35] 2014 AISI 316L Thin sheet 0.10 Linear cuts Fiber 1070 µs-pulsed 
Amin et al [36] 2015 AISI 316L Thin sheet 0.10 Linear cuts Nd:YAG 1064 µs-pulsed 
Fu et al [37] 2015 NiTi Thin sheet 0.75 Linear cuts Fiber 1070 µs-pulsed 
Demir and Previtali [38] 2016 Mg-alloy Thin sheet 0.25 Flat stent Fiber 532 ns-pulsed# 
García-López al [39] 2016 AISI 316L Microtube 0.22 Linear cuts Fiber 1070 ms-pulsed 
Liu et al [40] 2016 NiTi Microtube 0.24 Linear cuts Fiber 1070 µs-pulsed * 
Mostaed et al [41] 2016 Zn-alloy Microtube 0.25 Linear cuts Fiber 1064 ns-pulsed 
Sealy et al [42] 2016 Mg-alloy Thin sheet 0.70 Linear cuts Fiber 1070 µs-pulsed  
Biffi and Tuissi [43] 2017 NiTi Thin sheet 0.10 Flat stent Fiber optic CPA 1030 fs-pulsed 
Biffi and Tuissi[43] 2017 NiTi Thin sheet 0.13 Flat stent Fiber 1070 CW 
Catalano et al [44] 2017 AISI 316 Thin sheet 0.20 Flat stent Fiber 1064 ns-pulsed 
Catalano et al [45] 2017 Mg-alloy Thin sheet 0.20 Flat stent Fiber 1064 ns-pulsed 
Liu et al [46] 2017 CoCr Microtube 0.15 Linear cuts Fiber 1070 µs-pulsed  
Maudes et al  2017 AISI 316L Microtube 1.00 Stent Fiber 1070 ms-pulsed 
Catalano et al [47] 2018 Zn-alloy Thin sheet 0.12 Flat stent Fiber 1064 ns-pulsed 
García-López et al [48] 2018 Mg-alloy Microtube 0.16 Linear cuts Fiber 1070 µs-pulsed* 
García-López et al [49] 2018 AISI 316L Microtube 0.11 Linear cuts Fiber 1070 µs-pulsed 
Sun et al [50] 2019 AISI 316L Microtube 0.20 Linear cuts Fiber 1070 ms-pulsed* 
Nuñez-Nava et al [51] 2021 Mg-alloy Microtube 0.11 Linear cuts Fiber 1070 µs-pulsed 
Sun et al [52] 2021 NiTi Microtube 0.20 Linear cuts Fiber 1070 µs-pulsed 
Cadena et al [53] 2022 NiTi Microtube 0.23 Linear cuts Fiber 1070 µs-pulsed 
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     Table 2. Laser cutting of stents in literature (t: feedstock thickness; : laser wavelength;  na: not available; *:water cooled; +water jet guided; 
#submerged). 

Reference Year Material Feedstock t (mm) Geometry Laser source   (nm) Emission 
Kathuria [2] 1998 AISI 316L Microtube 0.10 Stent Nd:YAG 1064 µs-pulsed 
Momma et al [3] 1999 AISI 316L Microtube 0.10 Stent Nd:YAG 1064 µs-pulsed 
Kleine et al [4] 2002 AISI 316L Microtube 0.10 Stent Fiber 1070 µs-pulsed 
Gachon et al [5] 2003 AISI 316L Microtube 0.10 Stent na na na 
Raval et al [6] 2004 AISI 316L Microtube 0.11 Stent Nd:YAG 1064 µs-pulsed 
Liu et al [7] 2005 na na na na Fiber 1070 µs-pulsed 
Kathuria [8] 2005 AISI 316L Microtube 0.10 Stent Nd:YAG 1064 µs-pulsed 
Baumeister[9] 2006 AISI 316L Thin sheet 0.10 Linear cuts Fiber 1070 CW 
Sudheer [10] 2006 AISI 316L Microtube 0.11 Stent Nd:YAG 1064 µs-pulsed 
Kubota et al [11] 2007 AISI 316L Microtube 0.11 Stent Nd:YAG 1064 µs-pulsed* 
Chen [12] 2008 CoCr Thin sheet 0.08 Stent Fiber 1070 CW 
Meszlényi et al [13] 2008 AISI 304L Microtube 0.12 Stent Nd:YAG 1064 µs-pulsed 
Sudheer [14] 2008 CoCr Microtube 0.11 Stent Nd:YAG 1064 µs-pulsed 
Meng et al [15] 2009 AISI 316L Microtube 0.11 Stent Fiber 1070 µs-pulsed 
Kovalenko et al [16] 2010 AISI 316L Microtube 0.10 Stent Nd:YAG 1064 µs-pulsed 
Lesma et al [17] 2010 Mg-alloy Thin sheet 0.40 Stent mesh Fiber 1070 ns-pulsed 
Mielke et al [18] 2010 NiTi Microtube 0.25 Stent Fiber optic CPA 1550 fs-pulsed 
Muhammad et al [19] 2010 AISI 316L Microtube 0.15 Stent Fiber 1070 µs-pulsed* 
Muhammad et al [20] 2010 NiTi Microtube 0.28 Linear cuts Disc 343 ps-pulsed 
Pauchard et al [21] 2010 NiTi Microtube 0.28 Stent Nd:YAG 1064 µs-pulsed + 
Haga et al [22] 2011 NiTi Microtube 0.25 Stent Ti:sapphire 775 fs-pulsed 
Muhammad et al[23] 2011 Pt-alloy Microtube 0.07 Stent Disc 343 ps-pulsed 
Chen et al [24] 2012 AISI 316L Microtube 0.08 Stent Fiber 1070 µs-pulsed 
Demir et al [25] 2012 AISI 316L Microtube 0.20 Stent Fiber 1064 ns-pulsed 
Demir et al [26] 2012 Mg-alloy Microtube 0.20 Stent Fiber 1064 ns-pulsed 
Mohammad and Li [27] 2012 NiTi Microtube 0.18 Linear cuts Ti:sapphire 800 fs-pulsed # 
Demir et al [28] 2013 Mg-alloy Microtube 0.20 Stent Fiber 1064 ns-pulsed 
Qiang et al [29] 2013 Mg-alloy Microtube 0.20 Stent Fiber 1064 ns-pulsed 
Muhammad et al [30] 2013 AISI 316L Microtube 0.15 Linear cuts Fiber 1070 µs-pulsed* 
Nagy et al [31] 2013 NiTi Microtube 0.10 Stent Nd:YAG 1064 µs-pulsed 
Bhullar [32] 2014 AISI 316L Thin sheet 0.13 Flat stent Ti:sapphire 800 fs-pulsed 
Demir and Previtali [33] 2014 Mg-alloy Thin sheet 0.40 Flat stent Fiber 1070 CW 
Demir and Previtali [33] 2014 Mg-alloy Microtube 0.20 Stent Fiber optic CPA 1550 CW 
Demir et al [34] 2014 Mg-alloy Microtube 0.20 Stent Fiber 1064 ns-pulsed 
Teixidor et al [35] 2014 AISI 316L Thin sheet 0.10 Linear cuts Fiber 1070 µs-pulsed 
Amin et al [36] 2015 AISI 316L Thin sheet 0.10 Linear cuts Nd:YAG 1064 µs-pulsed 
Fu et al [37] 2015 NiTi Thin sheet 0.75 Linear cuts Fiber 1070 µs-pulsed 
Demir and Previtali [38] 2016 Mg-alloy Thin sheet 0.25 Flat stent Fiber 532 ns-pulsed# 
García-López al [39] 2016 AISI 316L Microtube 0.22 Linear cuts Fiber 1070 ms-pulsed 
Liu et al [40] 2016 NiTi Microtube 0.24 Linear cuts Fiber 1070 µs-pulsed * 
Mostaed et al [41] 2016 Zn-alloy Microtube 0.25 Linear cuts Fiber 1064 ns-pulsed 
Sealy et al [42] 2016 Mg-alloy Thin sheet 0.70 Linear cuts Fiber 1070 µs-pulsed  
Biffi and Tuissi [43] 2017 NiTi Thin sheet 0.10 Flat stent Fiber optic CPA 1030 fs-pulsed 
Biffi and Tuissi[43] 2017 NiTi Thin sheet 0.13 Flat stent Fiber 1070 CW 
Catalano et al [44] 2017 AISI 316 Thin sheet 0.20 Flat stent Fiber 1064 ns-pulsed 
Catalano et al [45] 2017 Mg-alloy Thin sheet 0.20 Flat stent Fiber 1064 ns-pulsed 
Liu et al [46] 2017 CoCr Microtube 0.15 Linear cuts Fiber 1070 µs-pulsed  
Maudes et al  2017 AISI 316L Microtube 1.00 Stent Fiber 1070 ms-pulsed 
Catalano et al [47] 2018 Zn-alloy Thin sheet 0.12 Flat stent Fiber 1064 ns-pulsed 
García-López et al [48] 2018 Mg-alloy Microtube 0.16 Linear cuts Fiber 1070 µs-pulsed* 
García-López et al [49] 2018 AISI 316L Microtube 0.11 Linear cuts Fiber 1070 µs-pulsed 
Sun et al [50] 2019 AISI 316L Microtube 0.20 Linear cuts Fiber 1070 ms-pulsed* 
Nuñez-Nava et al [51] 2021 Mg-alloy Microtube 0.11 Linear cuts Fiber 1070 µs-pulsed 
Sun et al [52] 2021 NiTi Microtube 0.20 Linear cuts Fiber 1070 µs-pulsed 
Cadena et al [53] 2022 NiTi Microtube 0.23 Linear cuts Fiber 1070 µs-pulsed 
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Fig. 4. The distribution of laser cutting of metallic stent works in literature a) in years and in terms of b) the used laser sources, c) the emission 
modes employed, and d) the corresponding emission wavelength ranges. 

Amongst the different explored technologies the use of wet cutting [18], water jet guided cutting [20], and 
submerged cutting in different liquids (eg. water, alcohol, oil) [26] emerges. While the authors have demonstrated 
improvements in the cut quality, their use has been limited apparently due to the more complicated manufacturing 
systems. The rise of high power ultrashort-pulsed lasers in the last decade is also expected to contribute to the 
limited use of liquids in the laser cutting systems. Ultrashort-pulsed lasers with higher power levels (>10W) allow 
for high quality cuts with limited amount of dross and heat affected zones without compromising the productivity. 
An important aspect regarding the flexibility of laser cutting regards the employed feedstock geometry. While the 
conventional stents are made of microtubes cut to the stent shape, the use of flat and inflatable geometries have been 
demonstrated [31]. Such geometries take advantage of the small laser beam to cut through the flat material, which 
can be expanded to a 3D tubular form. 

3.2. Laser powder bed fusion (LPBF) of metallic stents in the literature 

While being widely used in the production of biomedical implants, the attention towards the use of LPBF for 
producing metallic stents is a relatively more recent. Wessarges et al [52] demonstrated the possibility of producing 
AISI 316L stents with simplified mesh geometries using a micro LBPF system and small sized powders (0-10 µm). 
The possibility of producing stent meshes in tubular geometries employing industrial LPBF machines and 
conventional powder sizes (typically in the range of 15-50 µm) was demonstrated later in in 2017 [53]. Several 
research groups later on started to focus on the LPBF of metallic stents. The main challenge in LPBF of metallic 
stents lies on the feature resolution of the conventional machines used. Therefore as reported in Table 3, the 
diameter and the strut size of the produced stents as well as the definition of the design rules are important factors of 
future feasibility. Within the limited amount of 17 works the main material of interest have been AISI 316L and 
CoCr, both of which are conventional stent materials and are processable stably by LPBF (Fig. 5.a). The interest 
over superelastic NiTi and biodegradable Fe and Zn alloys is also present in the case of LPBF. A main issue with 
LPBF regards the low surface quality of the as-built surfaces, while chemical and electrochemical polishing 
techniques are still under development (Fig. 5.b). The achieved strut thicknesses vary in a wide range between 0.05 
to 0.5 mm, while the lower end of this distribution is more desirable for the final application (Fig. 5.c) . 
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     Table 3. Laser powder bed fusion of metallic stents in literature (t: strut thickness; D: stent diameter; PP: post-processing; CE: chemical 
etching; EP: electrochemical polishing). 

Reference Year Material t (mm) D (mm) PP Relevance 
Wessarges et al [54] 2014 AISI 316L 0.05 2.0 None Pioneering work with micro LPBF 
Demir and Previtali [55] 2017 CoCr 0.30 2.0 CE First journal publication, confirms feasibility of LPBF  
Wen et al [56] 2018 Pure Zn 0.05 2.0 None Shows suitability with biodegradable alloys 
Finazzi et al [57] 2019 CoCr 0.02 2.0 CE Design rules defines, bifurcated stents demonstrated 
Langhi et al [58] 2019 AISI 316L 0.15 3.0 None LPBF microstructure shown with tubular geometry 
Finazzi et al [59] 2020 CoCr 0.07 2.0 EP Functional stent design with balloon expandability 
Hufenbach et al [60] 2020 FeMnCS 0.12 2.0 None Biodegradation and expandability shown 
Wiesent et al [61] 2020 AISI 316L 0.10 3.0 EP Manufacturing irregularities analyzed by FEM 
Omar et al [62] 2020 CoCr 0.30 13.0 None Different geometries with very large diameters  
Langhi et al [63] 2021 AISI 316L 0.50 2.0 None LPBF metallurgy extensively analyzed with tubes 
Maffia et al [64] 2021 NiTi 0.25 6.0 to 8.0 None NiTi stent with variable diameter and open-cell 
McGee et al [65] 2021 Ti6Al4V 0.25 10 CE Chemical etching for removing supports for open-cell 
Wiesent et al [66] 2022 AISI 316L 0.10 3.0 EP FEM analyzing influence of geometrical irregularities  
Langi et al [67] 2022 AISI 316L 0.40 4.0 EP LPBF and commercial stents compared  
Tseng et al [68] 2022 Ti6Al4V 1.20 12.8 None Laser annealing studied on very large geometries 
Yan et al [69] 2022 NiTi 0.45 12.0 None Superelastic/biocompatible with very large geometries 
Jamshidi et al [70] 2022 NiTi 0.30 8.0 CE Superelastic behaviour observed upon heat treatment 
Finazzi et al [71] 2022 NiTi 0.12 2.0 to 6.0 None Patient specific design and superelastic behaviour 
 

a)  b)  c)  

Fig. 5. The distribution of laser powder bed fusion of metal stent works in literature a) in terms of the processed materials, b) post-processing 
methods, and  c) the resultant strut thicknesses (strut larger than 0.5 mm were excluded in the graph). 

4. Opportunities and challenges of future 

4.1. Geometrical opportunities 

The literature survey indicates that the manufacturing solutions are not considered often with the geometrical 
opportunities. The recent studies on LPBF identified the need for assessing the design rules for the additive 
manufacturing of metallic stents, while for laser cutting such solutions are scarcely addressed. Flat stents, use of 
origami or kirigami approaches may be better exploited using LC and LPBF for actuation, deployment, and even for 
removal purposes. The achieved strut thicknesses at the end of the processing route is an important factor. While 
strut dimensions are related to material, geometry, and stent type the use ultrafine struts in the range of 50 µm is 
what is expected in the clinical use [72]. Evidently, the current production routes need to be pushed towards thinner 
struts in LPBF. Surface texturing for coating or drug insertion is another possibility provided by both of the 
technologies [73]. While surface texturing has been associated to laser cut stents, the 3D design of additively 
manufacturing stents with dedicated surface textures [74] can be envisaged for future with adequate feature 
resolution being achieved. The use of hollow sections or density variations is a possibility through LPBF that can 
provide benefits from the perspective of manipulating the stent properties locally. 
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limited use of liquids in the laser cutting systems. Ultrashort-pulsed lasers with higher power levels (>10W) allow 
for high quality cuts with limited amount of dross and heat affected zones without compromising the productivity. 
An important aspect regarding the flexibility of laser cutting regards the employed feedstock geometry. While the 
conventional stents are made of microtubes cut to the stent shape, the use of flat and inflatable geometries have been 
demonstrated [31]. Such geometries take advantage of the small laser beam to cut through the flat material, which 
can be expanded to a 3D tubular form. 

3.2. Laser powder bed fusion (LPBF) of metallic stents in the literature 

While being widely used in the production of biomedical implants, the attention towards the use of LPBF for 
producing metallic stents is a relatively more recent. Wessarges et al [52] demonstrated the possibility of producing 
AISI 316L stents with simplified mesh geometries using a micro LBPF system and small sized powders (0-10 µm). 
The possibility of producing stent meshes in tubular geometries employing industrial LPBF machines and 
conventional powder sizes (typically in the range of 15-50 µm) was demonstrated later in in 2017 [53]. Several 
research groups later on started to focus on the LPBF of metallic stents. The main challenge in LPBF of metallic 
stents lies on the feature resolution of the conventional machines used. Therefore as reported in Table 3, the 
diameter and the strut size of the produced stents as well as the definition of the design rules are important factors of 
future feasibility. Within the limited amount of 17 works the main material of interest have been AISI 316L and 
CoCr, both of which are conventional stent materials and are processable stably by LPBF (Fig. 5.a). The interest 
over superelastic NiTi and biodegradable Fe and Zn alloys is also present in the case of LPBF. A main issue with 
LPBF regards the low surface quality of the as-built surfaces, while chemical and electrochemical polishing 
techniques are still under development (Fig. 5.b). The achieved strut thicknesses vary in a wide range between 0.05 
to 0.5 mm, while the lower end of this distribution is more desirable for the final application (Fig. 5.c) . 
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opportunities. The recent studies on LPBF identified the need for assessing the design rules for the additive 
manufacturing of metallic stents, while for laser cutting such solutions are scarcely addressed. Flat stents, use of 
origami or kirigami approaches may be better exploited using LC and LPBF for actuation, deployment, and even for 
removal purposes. The achieved strut thicknesses at the end of the processing route is an important factor. While 
strut dimensions are related to material, geometry, and stent type the use ultrafine struts in the range of 50 µm is 
what is expected in the clinical use [72]. Evidently, the current production routes need to be pushed towards thinner 
struts in LPBF. Surface texturing for coating or drug insertion is another possibility provided by both of the 
technologies [73]. While surface texturing has been associated to laser cut stents, the 3D design of additively 
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4.2. Material challenges 

Both of the laser based processes require further studies of new materials. In the case of laser cutting the attention 
is towards the novel biodegradable alloys, which require further understanding of the possible thermal alterations 
caused by the process on the biodegradation behaviour. On the other hand, the use of laser cutting of flat sheets can 
be a platform for producing prototype stents with novel materials. Such route would provide a more direct solution 
for producing implantable devices with a realistic mesh produced through a manufacturing cycle including all the 
main phases. The laser cutting system can be potentially used for modifying the material properties through a local 
heat treatment. The digital laser tool can be employed to change the material to behave in a more rigid or more 
elastic way enabling new opportunities in the insertion and deployment phases. Concerning LPBF, the process 
should be developed for standard stenting materials as well as novel ones. The rapid solidification process induced 
by LPBF generates very different material properties compared to the conventional ones used in laser cutting. Their 
mechanical and biological performances are still required to be studies. On the other hand, multimaterial processing 
in LPBF [75] is another new and interesting possibility that can regulate mechanical, biological, and biodegradation 
properties as desired providing a larger domain for the stent design [76]. 

4.3. Monitoring for in-process quality control 

The process monitoring of LC and LPBF produced stents does not seem to be addressed in the literature. 
Although being an industrially employed process, the monitoring means for LC appear to have been neglected in the 
literature, while cutting issues related to nozzle clogging, focal point errors, geometrical deviations of the tubing 
should be better addressed. The LC process can benefit from methods and lessons learned in macro cutting 
operations and other laser micromachining processes [77][78]. In LPBF there is a vibrant literature on the process 
monitoring [79]. Such solutions can be investigated and adapted to the dimensional requirements of the metallic 
stents. Concerning the route for patient-specific devices the monitoring methods can provide the in-process or on-
board quality control highly desirable for the one-of-a-kind devices. 

5. Conclusions 

This work showed an overview of the use of laser based manufacturing techniques for producing metallic stents. 
The laser beam has been shown to be a fundamental digital tool for producing the fine features of the stent geometry 
both in the subtractive laser cutting and the additive laser powder bed fusion methods. The work underlined the 
main outcomes of the literature works in a categorical manner, indicating possible future outcomes. An important 
aspect that remains crucial to the future research regards the communication between the clinicians and the 
engineers. Indeed a direct collaboration between the two parts will allow for improving the device performance and 
availability by a more efficient manufacturing route. The biomedical implant manufacturing field may take 
advantage of the identified future opportunities to for enhancing the collaborative efforts between the two sides. 
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4.2. Material challenges 

Both of the laser based processes require further studies of new materials. In the case of laser cutting the attention 
is towards the novel biodegradable alloys, which require further understanding of the possible thermal alterations 
caused by the process on the biodegradation behaviour. On the other hand, the use of laser cutting of flat sheets can 
be a platform for producing prototype stents with novel materials. Such route would provide a more direct solution 
for producing implantable devices with a realistic mesh produced through a manufacturing cycle including all the 
main phases. The laser cutting system can be potentially used for modifying the material properties through a local 
heat treatment. The digital laser tool can be employed to change the material to behave in a more rigid or more 
elastic way enabling new opportunities in the insertion and deployment phases. Concerning LPBF, the process 
should be developed for standard stenting materials as well as novel ones. The rapid solidification process induced 
by LPBF generates very different material properties compared to the conventional ones used in laser cutting. Their 
mechanical and biological performances are still required to be studies. On the other hand, multimaterial processing 
in LPBF [75] is another new and interesting possibility that can regulate mechanical, biological, and biodegradation 
properties as desired providing a larger domain for the stent design [76]. 

4.3. Monitoring for in-process quality control 

The process monitoring of LC and LPBF produced stents does not seem to be addressed in the literature. 
Although being an industrially employed process, the monitoring means for LC appear to have been neglected in the 
literature, while cutting issues related to nozzle clogging, focal point errors, geometrical deviations of the tubing 
should be better addressed. The LC process can benefit from methods and lessons learned in macro cutting 
operations and other laser micromachining processes [77][78]. In LPBF there is a vibrant literature on the process 
monitoring [79]. Such solutions can be investigated and adapted to the dimensional requirements of the metallic 
stents. Concerning the route for patient-specific devices the monitoring methods can provide the in-process or on-
board quality control highly desirable for the one-of-a-kind devices. 

5. Conclusions 

This work showed an overview of the use of laser based manufacturing techniques for producing metallic stents. 
The laser beam has been shown to be a fundamental digital tool for producing the fine features of the stent geometry 
both in the subtractive laser cutting and the additive laser powder bed fusion methods. The work underlined the 
main outcomes of the literature works in a categorical manner, indicating possible future outcomes. An important 
aspect that remains crucial to the future research regards the communication between the clinicians and the 
engineers. Indeed a direct collaboration between the two parts will allow for improving the device performance and 
availability by a more efficient manufacturing route. The biomedical implant manufacturing field may take 
advantage of the identified future opportunities to for enhancing the collaborative efforts between the two sides. 
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